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ABSTRACT

Federated learning (FL), a new collaborative learning paradigm, has been widely studied
recently due to its property to collaboratively train data from different devices without
sharing the raw training data. Nevertheless, recent studies show that an adversary (e.g., an
honest-but-curious server) can still be possible to infer private information about devices’
training data, e.g., sensitive attributes such as income, race, and sexual orientation. To
mitigate the attribute inference attacks, various existing privacy-preserving FL methods
can be adopted/adapted. However, all these existing methods have key limitations: they
need to know the FL task in advance, or have intolerable computational overheads or util-
ity losses, or do not have provable privacy guarantees. We aim to address all these issues
and design a task-agnostic privacy-preserving FL (short for TAPPFL) method against
attribute inference attacks from the information-theoretic perspective. Specifically, we
formally formulate TAPPFL via two mutual information goals, where one goal learns
task-agnostic data representations that contain the least information about the private at-
tribute in each device’s data, and the other goal is that the learnt representations include
as much information as possible about the training data to maintain utility. However, it
is intractable to compute exact mutual information in general. Then, we derive tractable
mutual information bounds, and each bound can be parameterized via a neural network.
Next, we alternatively train these parameterized neural networks to approximate the true
mutual information and learn privacy-preserving representations for device data. We also
derive theoretical privacy guarantees of our TAPPFL against worst-case attribute inference
attacks. Extensive results on multiple datesets and applications validate the effectiveness
of our TAPPFL to protect data privacy, maintain the FL utility, and be efficient as well.

1 INTRODUCTION

The emerging collaborative data analysis using federated learning (FL) (McMahan et al., 2017a) aims to
address the data insufficiency problem, and has a great potential to protect data privacy as well. In FL,
the participating devices keep, analyze, and train their data locally, and only share the trained models (e.g.,
model gradients or parameters), instead of the raw data, with a center server (e.g., cloud). The server updates
its global model by aggregating the received device models, and broadcasts the updated global model to all
participating devices such that all devices indirectly use all data from other devices. FL has been deployed
by many companies such as Google Federated Learning (2022), Microsoft Federated Learning (2022), IBM
Federated Learning (2022), and Alibaba Federated Learning (2022), and applied in various privacy-sensitive
applications, including on-device item ranking (McMahan et al., 2017a), content suggestions for on-device
keyboards (Bonawitz et al., 2019), next word prediction (Li et al., 2020), health monitoring (Rieke et al.,
2020), and medical imaging (Kaissis et al., 2020). However, recent works have shown that, though only
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sharing device models, it is still possible for an adversary (e.g., an honest-but-curious server) to perform
the attribute inference attack (Aono et al., 2017; Ganju et al., 2018; Melis et al., 2019; Dang et al., 2021;
Wainakh et al., 2022) —i.e., inferring the private/sensitive information (e.g., a person’s gender, race, sex-
ual orientation, income) of device’s training data. Hence, designing privacy-preserving FL mechanisms to
defend against the attribute inference attack is important and necessary.

Table 1: Comparisons of the PPFL methods.
Methods Task-Agnostic Efficient Provable Accurate

MPC ✓ ✓
AdvT ✓ ✓
MC ✓ ✓
DP ✓ ✓ ✓

TAPPFL ✓ ✓ ✓ ✓

To mitigate the issue, various existing privacy-
preserving FL methods can be adopted/adapted, in-
cluding multi-party computation (MPC) (Danner &
Jelasity, 2015; Mohassel & Zhang, 2017; Bonawitz
et al., 2017; Melis et al., 2019), adversarial train-
ing (AdvT) (Liu et al., 2019; Li et al., 2019; Oh
et al., 2017; Kim et al., 2019), model compression
(MC) (Zhu et al., 2019), and differential privacy
(DP) (Pathak et al., 2010; Shokri & Shmatikov, 2015; Hamm et al., 2016; McMahan et al., 2018; Geyer
et al., 2017). However, all these existing methods have key limitations, thus narrowing their applicability (see
Table 1). Specifically, MPC and AdvT methods have to be designed for specific FL tasks (task-dependent,
which cannot be achieved in many real-world applications). For instance, a set of users collaboratively per-
form a FL task, and a defender aims to protect the users’ data from being inferred. However, the users require
a stringent confidentiality about their data and do not let the defender know their learning task, as knowing
the learning task only (e.g., face recognition) may somehow disclose some sensitive information (e.g., gen-
der) about the data. Also, MPC methods have intolerable computational overheads and AdvT methods do
not have provable privacy guarantees. MC and DP methods are task-agnostic, but both of them result in high
utility losses (see Figure 4). In addition, MC methods do not have provable privacy guarantees.

In this paper, we aim to design a practical privacy-preserving FL mechanism against attribute inference at-
tacks (termed TAPPFL) that is task-agnostic, efficient, accurate, and has privacy guarantees as well. Our
main idea is based on information theory. Specifically, we formulate TAPPFL via two mutual information
(MI) goals, where one MI goal learns low-dimensional representations for device data that contain the least
information about the private attribute in each device’s data—thus protecting attribute privacy, and the other
MI goal ensures the learnt representations include as much information as possible about the training data—
thus maintaining FL utility. Our TAPPFL is task-agnostic as our formulation does not know the FL task at
hand. However, the true MI values are challenging to compute, due to that they deal with high-dimensional
random variables and require to compute an intractable posterior distribution. Inspired by the MI neural es-
timators (Belghazi et al., 2018; Chen et al., 2016; Cheng et al., 2020), we recast calculating intractable exact
MI values into deriving tractable (variational) MI bounds, where each variational bound is associated with a
posterior distribution that can be parameterized via a neural network. Hence, estimating the true MI values
reduces to training the parameterized neural networks. We further propose an alternative learning algorithm
to train these neural networks and learn task-agnostic privacy-preserving representations for device data.
We also derive provable privacy guarantees of our TAPPFL against worst-case attribute inference attacks.
Finally, we evaluate our TAPPFL on multiple datasets and applications (e.g., Image, Loans, and Income).
Experimental results validate that the learnt devices’ data representations can be used to achieve high utility
and maintain attribute privacy as well. Our key contributions can be summarized as follows:

• We propose a novel privacy-preserving FL method (TAPPFL) against attribute inference attacks based on
information theory. Our TAPPFL is task-agnostic, efficient, accurate, and has provable privacy guarantees.

• We formulate our TAPPFL via mutual information objectives and design tractable variational bounds to
estimate intractable mutual information.

• We evaluate our TAPPFL on various datasets and applications, and experimental results demonstrate the
effectiveness of our TAPPFL for privacy-preserving representation learning for FL against attribute infer-
ence attacks and show the significant advantages over the compared baselines.
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2 RELATED WORK

Privacy-preserving FL against inference attacks. Secure multi-party computation (Danner & Jelasity,
2015; Mohassel & Zhang, 2017; Bonawitz et al., 2017; Melis et al., 2019), adversarial training (Oh et al.,
2017; Wu et al., 2018; Pittaluga et al., 2019; Liu et al., 2019; Kim et al., 2019), model compression (Zhu
et al., 2019), and differential privacy (DP) (Pathak et al., 2010; Shokri & Shmatikov, 2015; Hamm et al.,
2016; McMahan et al., 2018; Geyer et al., 2017; Wei et al., 2020) are the four typical privacy-preserving
FL methods. For example, Bonawitz et al. (2017) design a secure multi-party aggregation for FL, where
devices are required to encrypt their local models before uploading them to the server. However, it incurs
an intolerable computational overhead and may need to know the specific FL task in advance. Adversarial
training methods are inspired by GAN (Goodfellow et al., 2014). Particularly, these methods adopt adver-
sarial learning to learn obfuscated features from the training data so that their privacy information cannot
be inferred from a learnt model. However, these methods also need to know the FL task and lack of formal
privacy guarantees. Zhu et al. (2019) apply gradient compression/sparsification to defend against privacy
leakage from shared local models. However, to achieve a desirable privacy protection, such approaches re-
quire high compression rates, leading to intolerable utility losses. In addition, it does not have formal privacy
guarantees. Shokri & Shmatikov (2015) propose a collaborative learning method where the sparse vector is
adopted to achieve DP. However, the DP methods have high utility losses, in order to protect data privacy.
Mutual information (MI) estimation. Accurately estimating MI between high dimensional random vari-
able is challenging (Belghazi et al., 2018). To address the challenge, recent methods (Alemi et al., 2017;
Belghazi et al., 2018; Oord et al., 2018; Poole et al., 2019; Hjelm et al., 2019; Cheng et al., 2020) propose
to first derive (upper or lower) MI bounds by introducing auxiliary variational distributions and then train
parameterized neural networks to estimate variational distributions and approximate true MI. For instance,
MINE (Belghazi et al., 2018) views MI as a KL divergence between the joint and marginal distributions,
converts it into the dual representation, and derives a lower MI bound. Cheng et al. (2020) design a Con-
trastive Log-ratio Upper Bound of MI, which connects MI with contrastive learning (Oord et al., 2018), and
estimates MI as the difference of conditional probabilities between positive and negative sample pairs.

3 BACKGROUND AND PROBLEM DEFINITION

3.1 FEDERATED LEARNING

The Federated Learning (FL) paradigm enables a server to coordinate the training of multiple local devices
through multiple rounds of global communications, without sharing the local data. Suppose there are M
devices C = {Ci}Mi=1 and a server S participating in FL. Each device Ci is assumed to own data samples
xi from a distribution Di over the sample space X i. In each round t, each device Ci first downloads the
previous round’s global model (e.g., Θt−1) from the server, and then updates its local model (e.g., Θi

t) using
the local data {xi} and global model Θt−1. The server S then randomly collects a set of (e.g., K) current
local models in devices (e.g., CK) and updates the global model for the next round using an aggregation
algorithm. For example, when using the most common FedAvg (McMahan et al., 2017b), the server updates
the global model as Θt ←

∑
i∈CK

ni∑
i∈Ck

ni
Θi

t, where ni is the size of the training data of device Ci.

3.2 PROBLEM DEFINITION

We assume each device Ci’s data has its own private attribute and denote it as ui. Each device Ci aims
to learn a feature extractor fΘi : X i → Ri, parameterized by Θi, that maps data samples from input
space X i to the latent representation space Ri; and we denote the learnt representation for a sample xi as
ri = fΘi(xi). The learnt representations can be used for downstream tasks, e.g., next-word-prediction on
smart phones (Li et al., 2020). We assume the server S is honest-but-curious and it has access to the feature
extractor parameters {Θi} shared by devices. The server’s purpose is to infer any private attribute ui through
the {Θi} without tampering the FL training process. Our goal is to learn the feature extractor fΘi per device
such that it protects the private attribute ui, and preserves the FL utility as well. For a general purpose, we
assume the FL task is unknown (i.e., task-agnostic) to the defender (i.e., who learns the feature extractor).
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4 DESIGN OF TAPPFL
In this section, we will design our task-agnostic privacy-preserving FL (TAPPFL) method against attribute
inference attacks. Our TAPPFL is inspired by information theory and has provable privacy guarantees.

4.1 FORMULATING TAPPFL VIA MUTUAL INFORMATION OBJECTIVES

For ease of description, we choose a device Ci and demonstrate how to learn the privacy-preserving feature
extractor fΘi for Ci. Our goal is to transform the data xi ∼ Di into a representation ri = fΘi(xi) that
satisfies the following two goals:
• Goal 1: Privacy protection. ri contains as less information as possible about the private attribute ui.

Ideally, when ri does not include information about ui, it is impossible for the server to infer ui from ri.
• Goal 2: Utility preservation. ri should include as much information about the training data xi as pos-

sible. Ideally, when ri retains the most information about xi, the model trained on ri will have the same
performance as the model trained on the raw xi, thus preserving utility.

We propose to formalize the above two goals via mutual information (MI). In information theory, MI is
a measure of shared information between two random variables, and offers a quantifiable metric for the
amount of information leakage on one variable given the other. Formally, we quantify the privacy protection
and utility reservation goals using two MI objectives as follows:

Achieving Goal 1: minΘi I(ri;ui); Achieving Goal 2: maxΘi I(xi; ri|ui). (1)

where I(ri;ui) is the MI between ri and ui, and we minimize such MI to maximally reduce the correlation
between ri and ui. I(xi; ri|ui) is the MI between xi and ri given ui. We maximize such MI to keep the
raw information in xi as much as possible in ri and remove the information that xi contains about ui.

4.2 ESTIMATING MI VIA TRACTABLE VARIATION BOUNDS

The key challenge of solving the above two MI objectives is that calculating an MI between two arbitrary
random variables is likely to be infeasible (Peng et al., 2018). To address it, we are inspired by the existing
MI neural estimation methods (Alemi et al., 2017; Belghazi et al., 2018; Oord et al., 2018; Poole et al., 2019;
Hjelm et al., 2019; Cheng et al., 2020), which convert the intractable exact MI calculations to the tractable
variational MI bounds. Specifically, we first obtain a MI upper bound for privacy protection and a MI
lower bound for utility preserving via introducing two auxiliary posterior distributions, respectively. Then,
we parameterize each auxiliary distribution with a neural network, and approximate the true posteriors by
minimizing the upper bound and maximizing the lower bound through training the involved neural networks.
Minimizing upper bound MI for privacy protection. We propose to adapt the variational upper bound
CLUB proposed in (Cheng et al., 2020). Specifically, we have

I(ri;ui) ≤IvCLUB(r
i;ui) = Ep(ri,ui)[log qΨi(ui|ri)]− Ep(ri)p(ui)[log qΨi(ui|ri)], (2)

where qΨi(ui|ri) is an auxiliary posterior distribution of p(ui|ri) needing to satisfy the condition:
KL(p(ri,ui)||qΨi(ri,ui)) ≤ KL(p(ri)p(ui)||qΨi(ri,ui)). To achieve this, we need to minimize:

min
Ψi

KL(p(ri,ui)||qΨi(r
i,ui)) = min

Ψi
KL(p(ui|ri)||qΨi(u

i|ri))

=min
Ψi

Ep(ri,ui)[log p(u
i|ri)]− Ep(ri,ui)[log qΨi(u

i|ri))]⇐⇒ max
Ψi

Ep(ri,ui)[log qΨi(u
i|ri)], (3)

Finally, our Goal 1 for privacy protection is reformulated as solving the below min-max objective function:

min
Θi

min
Ψi

IvCLUB(r
i;ui)⇐⇒min

Θi
max
Ψi

Ep(ri,ui)[log qΨi(ui|ri)], ri = fΘi(xi). (4)

We note that Equation (4) can be interpreted as an adversarial game between: (1) an adversary qΨi (i.e.,
attribute inference classifier) who aims to infer the private attribute ui from the representation ri; and (2) a
defender (i.e., the feature extractor fΘi ) who aims to protect the private attribute ui from being inferred.
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(b) TAPPFL device training
Figure 1: (a) Scheme of our task-agnostic privacy-preservation representation learning framework for FL
(TAPPFL); and (b) TAPPFL training on a single device.

Maximizing lower bound MI for utility preservation. We adopt the MI estimator proposed in (Nowozin
et al., 2016) to estimate the lower bound of I(xi; ri|ui). Specifically, we have

I(xi; ri|ui) ≥ Ep(xi,ri,ui)

[
log qΩi [(xi|ri,ui)

]
− I(xi;ui) +H(xi),

where qΩi is an arbitrary auxiliary posterior distribution that aims to maintain the information in xi, and
H(xi) is the entropy of xi. Note that I(xi;ui) and H(xi) are constants as xi and ui are fixed. Hence, our
Goal 2 for utility preservation can be rewritten as the following max-max objective function:

max
Θi

I(xi; ri|ui)⇐⇒ max
Θi

max
Ωi

Ep(xi,ri,ui)

[
log qΩi [(xi|ri,ui)

]
, ri = fΘi(xi). (5)

We note that Equation (5) can be interpreted as a cooperative game between the feature extractor fΘi and
qΩi who aim to preserve the utility collaboratively.
Objective function of TAPPFL. By combining Equations (4) and (5) and considering all devices, our final
objective function of learning the task-agnostic privacy-preserving representations in FL is as follows:∑

Ci∈C

min
Θi

(
λi max

Ψi
Ep(ui,ri)

[
log qΨi(u

i|fΘi(x
i))

]
− (1− λi)min

Ωi
Ep(xi,ri,ui)

[
log qΩi [(x

i|fΘi(x
i),ui)

] )
, (6)

where λi ∈ [0, 1] achieves a tradeoff between privacy and utility for the device Ci. I.e., a larger λi indicates
a stronger attribute privacy protection, while a smaller λi indicates a better utility preservation for Ci.

4.3 IMPLEMENTATION VIA TRAINING PARAMETERIZED NEURAL NETWORKS

In practice, Equation (6) can be solved via training three parameterized neural networks, i.e., the feature
extractor fΘi , the privacy-protection network gΨi associated with the auxiliary distribution qΨi , and the
utility-preservation network hΩi associated with the auxiliary distribution qΩi , using sampled data from each
device Ci. Specifically, in each device Ci, we first collect a set of samples {xi

j} and the associated private
attributes {ui

j} from Di. Note that, as our TAPPFL is task-agnostic, we do not know the sample labels for
the FL task. With it, we can then approximate the expectation terms in Equation (6). Specifically, we approx-
imate the expectation associated with the auxiliary distribution qΨi as Ep(ui,fΘi (xi)) log qΨi(ui|fΘi(xi)) ≈
−
∑

j CE(ui
j , gΨi(fΘi(xi

j))), where CE(·) means the cross-entropy error function. Moreover, we ap-
proximate the expectation associated with the auxiliary distribution qΩi via the Jensen-Shannon (JSD) MI
estimator (Hjelm et al., 2019; Nowozin et al., 2016). That is, Ep(xi,fΘi (xi),ui) log qΩi(xi|fΘi(xi),u

i) ≈
I
(JSD)
Θi,Ωi (xi; fΘi(xi),ui) = E(xi,ui)[−sp(−hΩi(xi, fΘi(xi),ui)] − E(xi,ui,x′i)[sp(hΩi(x′i, fΘ(x

i),ui)]

with x′i an independent and random sample from the same distribution as xi, and the expectation can
be replaced by the samples {xi

j ,x
′i
j ,u

i
j}. sp(z) = log(1 + exp(z)) is the softplus function.
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Figure 1 illustrates our task-agnostic privacy-preserving learning framework for FL. Our TAPPFL needs to
simultaneously train three neural networks, i.e., the feature extractor fΘi , the privacy-protection network
gΨi , and the utility-preservation network hΩi , in each device Ci. In particular, the server first initializes a
global model Θ0 and broadcasts Θ0 to all devices; and the devices initializes {Ψi

0} and {Ωi
0} locally. Then

the training procedure involves two iterative steps. For example, in the t-th round: In Step I, each device
updates Θi

t using the received Θt−1 from the server, and locally updates Ψi
t and Ωi

t using Ψi
t−1 and Ωi

t−1

based on its training data; and the devices send the updated {Θi
t} to the server. In Step II, the server selects a

set of {Θi
t} and updates the global model Θt by aggregating these models via, e.g., Fedvg (McMahan et al.,

2017b), and broadcasts Θt to all devices. We repeat the two steps alternately until convergence or reaching
the maximum number of iterations. Algorithm 1 in Appendix details the TAPPFL training process.

5 THEORETICAL RESULTS

5.1 INHERENT TRADEOFF BETWEEN UTILITY PRESERVATION AND ATTRIBUTE PRIVACY LEAKAGE

We consider the attribute has a binary value and the primary FL task is binary classification. We will leave
it as a future work to generalize our results to multi-value attributes and multi-class classification.

Let A be the set of all binary attribute inference classifiers, i.e., A = {A : ri ∈ Ri → {0, 1}, ∀Ci}. Let
Di be a joint distribution over the input xi, sensitive attribute ui, and label yi for device Ci. W.l.o.g, we
assume the representation space is bounded, i.e., maxCi∈C maxri∈Ri ∥ri∥ ≤ R. Moreover, we denote the
binary task classifier as c : ri → {0, 1}, which predicts data labels based on the learnt representation. We
further define the advantage of the worst-case adversary with respect to the joint distribution Di as below:

AdvDi(A) = max
A∈A
|PrDi(A(ri) = a|ui = a)− PrDi(A(ri) = a|ui = 1− a)|, ∀a = {0, 1}. (7)

If AdvDi(A) = 1, this means an adversary can completely infer the privacy attribute through the learnt
representations. On the other hand, if AdvDi(A) = 0, an adversary can obtain the inference performance
that is random guessing. Our goal is thus to learn the representations such that AdvDi(A) is small per device.
Theorem 1. Let ri be the representation with a bounded norm R (i.e., maxri∈Ri ∥ri∥ ≤ R) learnt by the
feature extractor fΘi for device Ci’s data xi, and A be the set of all binary attribute inference classifiers.
Assume the primary task classifier c is CL-Lipschitz, i.e., ∥c∥L ≤ CL. Then, the device Ci’s utility loss (i.e.,
classification error) erri can be bounded as:

erri = CEui=0(y
i, c(ri)) + CEui=1(y

i, c(ri)) ≥ ∆yi|ui − 2R · CL · AdvDi(A), (8)

where CEui=a(y
i, c(ri)) is the conditional cross-entropy error of predicting yi using ri given the attribute

ui = a ∈ {0, 1}; ∆yi|ui = |PrDi(yi = 1|ui = 0)− PrDi(yi = 1|ui = 1)| is a device-dependent constant.
Remark. Theorem 1 says that, for a device-dependent constant ∆yi|ui , any primary task classifier using
representations learnt by the feature extractor fΘi has to incur a classification error on at least a private
attribute. Specifically, the smaller/larger the advantage AdvDi(A) is, the larger/smaller the lower bound
error. Note that the lower bound is independent of the adversary, meaning it covers the worst-case adversary.
Hence, Equation (8) reflects an inherent trade-off between utility preservation and attribute privacy leakage.

5.2 PROVABLE PRIVACY GUARANTEES AGAINST ATTRIBUTE INFERENCE ATTACKS

The attribute inference accuracy incurred by the worst-case adversary is bounded in the following theorem:
Theorem 2. Let Θi

∗ (resp. ri∗ ) be the learnt optimal feature extractor parameters (resp. optimal represen-
tations) by Equation (6) for device Ci’s data. Define Hi

∗ = H(ui|ri∗). Then, for any attribute inference

adversary A = {A : ri → ui}, Pr(A(ri∗) = ui) ≤ 1− Hi
∗

2 log2(
6

H∗
i
)
.

Remark. Theorem 2 shows that when the conditional entropy Hi
∗ = H(ui|ri∗) is larger, the attribute infer-

ence accuracy induced by any adversary is smaller, i.e., the less attribute privacy is leaked. From another
perspective, as H(ui|ri∗) = H(ui) − I(ui; ri∗), achieving the largest H(ui|ri∗) indicates minimizing the
mutual information I(ui; ri∗) —This is exactly our Goal 1 aims to achieve.
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Table 2: Testing accuracy vs. attribute inference accuracy on the considered four datasets.
CIFAR10

λ Testing Acc Attr. Infer. Acc Gap
Private attribute: Animal or not (binary)

0 0.82 0.74 0.26
0.25 0.80 0.64 0.14
0.5 0.76 0.60 0.10
0.75 0.76 0.56 0.06
1 0.48 0.52 0.02

Loans
λ Testing Acc Attr. Infer. Acc Gap

Private attribute: Race (binary)
0 0.9993 0.833 0.333
0.25 0.9993 0.733 0.233
0.5 0.9993 0.733 0.233
0.75 0.8000 0.633 0.133
1 0.7333 0.567 0.067

Adult income
λ Testing Acc Attr. Infer. Acc Gap

Private attribute: Gender (binary)
0 0.875 0.700 0.20
0.25 0.750 0.550 0.05
0.5 0.750 0.550 0.05
0.75 0.825 0.550 0.05
1 0.700 0.525 0.025

Adult income
λ Testing Acc Attr. Infer. Acc Gap

Private attribute: Marital status (7 values)
0 0.825 0.375 0.232
0.25 0.800 0.275 0.112
0.5 0.800 0.250 0.107
0.75 0.725 0.243 0.043
1 0.700 0.175 0.032

6 EXPERIMENTS
6.1 EXPERIMENTAL SETUP

Datasets and applications. We evaluate our TAPPFL using three datasets from different applications.
CIFAR-10 (Krizhevsky, 2009) is a widespread image dataset. The primary task is to predict the label of the
image, while the private attribute is a binary attribute indicating if an image belongs to an animal or not. For
the Loans dataset (Hardt et al., 2016), the primary task is to accurately predict the affordability of the person
asking for the loan while protecting their race. Finally, for the Adult Income dataset (Dua & Graff, 2017),
predicting whether the income of a person is above $50,000 or not is the primary task. The private attributes
are the gender and the marital status. More detailed descriptions of these datasets and the training/testing
sets can be found on Appendix B.
Parameter settings. We use a total of 100 devices participating in FL training. By default, the server
randomly selects 10% devices and uses FedAvg (McMahan et al., 2017b) to aggregate devices’ feature
extractor parameters in each round. In each device, we train the three parameterized neural networks via
the Stochastic Gradient Descent (SGD) algorithm, where we set the local batch size to be 10 and use 10
local epochs, and the learning rate in SGD is 0.01. A detailed architecture of each neural network can be
found in Table 3 in Appendix B. Before the overall learning, we first pretrain the feature extractor network
only to obtain a good initialization, i.e., high utilty. The number of global rounds is set to be 20. In
TAPPFL, for simplicity, we set λi = λ for all devices and all devices share the same private attribute.
The TAPPFL algorithm is implemented in PyTorch. We use the Chameleon Cloud platform offered by the
NSF (Keahey et al., 2020) (CentOS7-CUDA 11 with Nvidia Rtx 6000). Our code is available at https:
//github.com/anonymousesubmission.
Evaluation metrics. We evaluate TAPPFL on both utility preservation and privacy protection. We use the
testing accuracy (i.e., device’s feature extractor + utility network on the primary task’s test set) to measure
utility preservation; and attribute inference accuracy (i.e., device’s feature extractor + privacy network on the
privacy task’s test set) to measure the privacy leakage. The larger testing accuracy, the better utility preser-
vation; and the attribute inference accuracy closer to random guessing, the less attribute privacy leakage.

6.2 EXPERIMENTAL RESULTS

Utility-privacy tradeoff. Accordingly to Equation (6), when λ = 0 the first term of the objective function
is disregarded, meaning that the protection of the private attribute is not considered. On the contrary, the
second term is disappeared when λ = 1, or in other words, we only consider protecting the private attribute
and utility is not preserved. Our goal is to achieve a better trade-off by tuning λ within [0, 1], which allows
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(d) Adult: Marital status

Figure 2: Mutual information vs. λ. Note that the CE loss and JSD loss are inversely proportional to the
MIs in the two Goals. Each point corresponds to a CE loss or JSD loss at a selected λ.

(a) Adult (Gender): Raw
input

(b) Adult (Gender):
Learnt rep.

(c) Adult (Marital status):
Raw input

(d) Adult (Marital sta-
tus): Learnt rep.

(e) CIFAR10: Raw input (f) CIFAR10: Learnt rep. (g) Loans: Raw input (h) Loans: Learnt rep.
Figure 3: 2D t-SNE embeddings of learnt representations by TAPPFL and of the raw input. Each color
corresponds to a private attribute value.

preserving the FL utility and protecting the attribute privacy at the same time. Table 2 shows the testing
accuracy and average attribute inference accuracy of all devices in the considered datasets, where we set five
different λ values, i.e., 0, 0.25, 0.5, 0.75, and 1.0. We also show the gap between the attribute inference
accuracy and the random guessing. The smaller the gap, the better the privacy protection. Ideally, when
there is no gap, the learnt representation by our TAPPFL does not allow the adversary (i.e., the server) to
infer any information related to the private attribute. Specifically, we have the following observations: 1)
The testing accuracy is the largest when λ = 0, hence the utility is maintained the most. However, the
attribute inference accuracy is also the highest, indicating leaking the most attribute privacy. 2) The attribute
inference accuracy is the closest to random guessing when λ = 1, meaning the attribute privacy is protected
the most. However, the testing accuracy is also the smallest, indicating the utility is not well maintained. 3)
When 0 < λ < 1, our TAPPFL achieves both reasonable testing accuracy and attribute inference accuracy—
This indicates TAPPFL has a better utility-privacy tradeoff. Note that our TAPPFL does not know the labels
of the primary task and learns the task-agnostic representations for device data during the entire training.
Mutual information scores vs. tradeoff parameter λ. Furthermore, we analyze our TAPPFL via plotting
the two MI scores (i.e., the CE loss associated with Goal 1 (privacy protection)) and JSD loss associated
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with Goal 2 (utility preservation) vs. λ. Note that the CE loss and JSD loss are inversely proportional
to the MI in the two goals. Figure 2 shows the results on CIFAR10. Each point corresponds to either a
CE loss or JSD loss at a selected λ. The tendency of these scores in function of λ is presented by a trend
line, which is computed using a least squares polynomial fit of first degree. We observe that: 1) When the
trade-off parameter λ is low, the privacy protection is not carefully considered, which is translated into a high
MI between the learnt representation and the private attribute, thus the CE loss is relatively small. On the
other hand, the utility preservation is maximized, resulting also into a high MI of the input given the learnt
representation and the private attribute, as the JSD loss is relatively small. 2) Contrarily, for high values of
λ, the privacy is largely protected in exchange for a large utility loss. Specifically, as λ increases, the CE
between the private attribute and the learnt representation increases, which is translated into a decrease of
their MI, thus better protecting attribute privacy. Though not easily appreciated in the curves, the JSD loss
tends to increase, thus reducing the utility.
Visualization of the learnt representations. In this experiment, we leverage the t-SNE embedding al-
gorithm (Van der Maaten & Hinton, 2008) to visualize the learnt representations by our trained feature
extractor for the device data, and those without our feature extractor. λ is chosen in Table 2 that achieves
the best utility-privacy tradeoff. Figure 3 shows the 2D t-SNE visualization results, where each color corre-
sponds to a private attribute value. We can observe that the 2D t-SNE embeddings of the raw input data form
some clusters for the private attributes, meaning the private attributes can be easily inferred, e.g., the t-SNE
embedded representations via training a multi-class classifier. On the contrary, the 2D t-SNE embeddings
of the learnt representations by our TAPPFL for different attribute values are completely mixed, which thus
makes it difficult for a malicious server to infer the private attributes from the learnt representations.
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Figure 4: Compared defense re-
sults on CIFAR10.

Comparison with the state-of-the-art defenses. In our last experiment,
we compare our TAPPFL with the two task-agnostic privacy protection
methods, i.e., differential privacy (DP) (Wei et al., 2020) and model com-
pression (MC) (Zhu et al., 2019) (See Table 1). MC prunes the devices’
feature extractor parameters whose magnitude are smaller than a thresh-
old, and the devices only share parameters larger than the threshold to the
server. DP protects privacy with theoretical guarantees. Specifically, DP
randomly injects noise into the feature extractor’s parameters and uploads
the noisy parameters to the server. The server then performs the aggrega-
tion using the noisy parameters. Here, we consider applying the Gaussian
noise and Laplacian noise to develop two DP baselines, i.e., DP-Gaussian
and DP-Laplace (note that the DP protection in (Wei et al., 2020) is very
weak due to very high ϵ such as 50 and 100). Thus, we tune the hyperparameter, i.e., noise variance in DP
and pruning rate in MC, such that DP and MC have the same attribute inference accuracy as TAPPFL, and
then compare their utility/testing accuracy. Figure 4 shows the comparison results on CIFAR10, where we
set five attribute inference accuracies as 0.55, 0.60, 0.65, 0.70, and 0.75, respectively. We can see that our
TAPPFL achieves the best privacy-utility tradeoff and is significantly better than the compared defenses.

7 CONCLUSION
We study privacy-preserving federated learning (FL) against the attribute inference attack, i.e., an honest-
but-curious server infers sensitive information in the device data from shared device models. To this end, we
design a task-agnostic and provable privacy-preserving representation learning framework for FL (TAPPFL)
from the information-theoretic perspective. TAPPFL is formulated via two mutual information goals: one
goal learns low-dimensional representations for device data that contain the least information about the data’s
private attribute, and the other one includes as much information as possible about the training data, in order
to maintain FL utility. TAPPFL can also bound the privacy leakage of the private attributes. Extensive results
on various datasets from different applications show that, by tuning the utility-privacy tradeoff parameter,
our TAPPFL can well protect the attributes (i.e., attribute inference accuracy is close to random guessing),
and obtains a high utility. TAPPFL is also shown to significantly outperform the state-of-the-art defenses.
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Algorithm 1 Task-agnostic privacy-preserving rep. learning for FL against attr. infer. attacks (TAPPFL)

Input: ρ: fraction of participating devices; C = {Ci}Mi=1: M total devices; B: batch size; E: #local epochs; T : #global
rounds; lr1, lr2, lr3: learning rates of the feature extractor NN, privacy protection NN, and utility preservation NN.

Output: {ΘT
i }Mi=1, {ΨT

i }Mi=1, {ΩT
i }Mi=1

1: Initialization: {Θ0
i ,Ψ

0
i ,Ω

0
i }Mi=1. E.g., {Θ0

i }Mi=1 are initialized via pretraining each feature extractor NN.
2: for global round t = 0, 1, 2, · · · , T − 1 do
3: for each device Ci ∈ C do
4: Θt+1

i ← DeviceUpdate(i,Θt
i)

5: end for
6: Θt+1 ← ServerUpdate({Θt+1

i }, ρ)
7: Set {Θt+1

i } ← Θt+1

8: end for
9: DeviceUpdate(i,Θt) :

10: Θt
i ← Θt

11: CE_loss = CE(ui, fΘt
i
(xi))

12: JSD_loss = −I(JSD)(xi, fΘt
i
(xi),ui)

13: for local epoch e = 1, 2, · · · , E do
14: B ← Split device Ci’s data into mini-batches of size B
15: for each min-batch b ∈ B do
16: Ψt+1

i ← Ψt
i − lr1 · ∂CE_loss/∂Ψt

i

17: Ωt+1
i ← Ωt

i + lr2 · ∂JSD_loss/∂Ωt
i

18: Θt+1
i ← Θt

i + lr3 · ∂
(
λCE_loss+ (1− λ)JSD_loss

)
/∂Θt

i

19: end for
20: end for
21: ServerUpdate({Θt+1

i }, ρ) :
22: CK ← randomly select K = ρ ·M devices
23: Θt+1 ← 1

K

∑
k∈CK

Θt+1
k

A PROOFS

A.1 PROOF OF THEOREM 1

We first introduce the following definitions and lemmas that will be used to prove Theorem 1.

Definition 1 (Total variance (TV) distance). LetD1 andD2 be two distributions over the same sample space
Γ, the TV distance between D1 and D2 is defined as: dTV (D1,D2) = maxE⊆Γ |D1(E)−D2(E)|.
Definition 2 (1-Wasserstein distance). LetD1 andD2 be two distributions over the same sample space Γ, the
1-Wasserstein distance betweenD1 andD2 is defined as W1(D1,D2) = max∥f∥L≤1 |

∫
Γ
fdD1−

∫
Γ
fdD2|,

where ∥ · ∥L is the Lipschitz norm of a real-valued function.

Definition 3 (Pushforward distribution). Let D be a distribution over a sample space and g be a function of
the same space. Then we call g(D) the pushforward distribution of D.

Lemma 1 (Contraction of the 1-Wasserstein distance). Let g be a function defined on a space and L be
constant such that ∥g∥L ≤ CL. For any distributions D1 and D2 over this space, W1(g(D1), g(D2)) ≤
CL ·W1(D1,D2).

Lemma 2 (1-Wasserstein distance on Bernoulli random variables). Let y1 and y2 be two Bernoulli random
variables with distributions D1 and D2, respectively. Then, W1(D1,D2) = |Pr(y1 = 1)− Pr(y2 = 1)|.
Lemma 3 (Relationship between the 1-Wasserstein distance and the TV distance (Gibbs & Su, 2002)). Let
g be a function defined on a norm-bounded space Z , where maxr∈Z ∥r∥ ≤ R, and D1 and D1 are two
distributions over the space Z . Then W1(g(D1), g(D2)) ≤ 2R · dTV (g(D1), g(D2)).
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We now prove Theorem 1, which is restated as below:
Theorem 1. Let ri be the representation with a bounded norm R (i.e., maxri∈Ri ∥ri∥ ≤ R) learnt by the
feature extractor fΘi for device Ci’s data xi, and A be the set of all binary attribute inference classifiers.
Assume the primary task classifier c is CL-Lipschitz, i.e., ∥c∥L ≤ CL. Then, the device Ci’s utility loss (i.e.,
classification error) erri can be bounded as:

erri = CEui=0(y
i, c(ri)) + CEui=1(y

i, c(ri)) ≥ ∆yi|ui − 2R · CL · AdvDi(A), (8)

where CEui=a(y
i, c(ri)) is the conditional cross-entropy error of predicting yi using ri given the attribute

ui = a ∈ {0, 1}; ∆yi|ui = |PrDi(yi = 1|ui = 0)− PrDi(yi = 1|ui = 1)| is a device-dependent constant.

Proof. We denote Di
ui=a as the conditional distribution of Di given ui = a, and cfi as the (binary) com-

position function of c ◦ fΘi
. As c is binary task classifier on the learnt representations, it follows that the

pushforward cfi(Di
ui=a) induces two distributions over {0, 1} with a = {0, 1}. By leveraging the triangle

inequalities of the 1-Wasserstein distance, we have

W1(Di
yi|ui=0,D

i
yi|ui=1)

≤W1(Di
yi|ui=0, cfi(D

i
ui=0)) +W1(cfi(Di

ui=0), cfi(D
i
ui=1)) +W1(cfi(Di

ui=1),D
i
yi|ui=1) (9)

Using Lemma 2 on Bernoulli random variables yi|ui = a, we have

W1(Di
yi|ui=0,D

i
yi|ui=1) = |PrDi(y

i = 1|ui = 0)− PrDi(y
i = 1|ui = 1)| = ∆yi|ui . (10)

Using Lemma 1 on the contraction of the 1-Wasserstein distance and that ∥c∥L ≤ CL, we have

W1(cfi(Di
ui=0), cfi(D

i
ui=1)) ≤ CL ·W1(fi(Di

ui=0), fi(D
i
ui=1)). (11)

Using Lemma 3 with maxi,ri ∥ri∥ ≤ R , we have

W1(fi(Di
ui=0), fi(D

i
ui=1)) ≤ 2R · dTV (fi(Di

ui=0), fi(D
i
ui=1)). (12)

We further show dTV (fi(Di
ui=0), fi(D

i
ui=1)) = AdvDi(A), as proven in (Liao et al., 2021). Specifically,

dTV (fi(Di
ui=0), fi(D

i
ui=1)) = max

E
|Prfi(Di

ui=0
)(E)− Prfi(Di

ui=1
)(E)|

= max
AE∈A

|Prri∼fi(Di
ui=0

)(AE(r
i) = 1)− Prri∼fi(Di

ui=1
)(AE(r

i) = 1)|

= max
AE∈A

|Pr(AE(r
i) = 1|ui = 0)− Pr(AE(r

i) = 1|ui = 1)|

= AdvDi(A), (13)

where the first equation uses the definition of TV distance, and AE(·) is the characteristic function of the
event E in the second equation.

With Equations 11-13, we have W1(cfi(Di
ui=0), cfi(D

i
ui=1)) ≤ 2R · CL · AdvDi(A). Furthermore, using

Lemma 2 on Bernoulli random variables yi and cfi(x
i), we have

W1(Di
yi|ui=a, cfi(D

i
ui=a)) = |PrDi(yi = 1|ui = a)− PrDi(cfi(x

i) = 1|ui = a))|

= |EDi [yi|ui = a]− EDi [cfi(x
i)|ui = a]|

≤ EDi [|yi − cfi(x
i)||ui = a]

= PrDi(yi ̸= cfi(x
i)|ui = a)

≤ CEui=a(y
i, cfi(x

i)), (14)
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where we use the fact that cross-entropy loss is an upper bound of the binary loss in the last inequality.

Finally, by combining Equation 11-Equation 14, we have:

∆yi|ui ≤ CEui=0(y
i, cfi(x

i)) + 2R · CL · AdvDi(A) + CEui=1(y
i, cfi(x

i)) (15)

Hence, erri = CEui=0(y
i, c(ri)) + CEui=1(y

i, c(ri)) ≥ ∆yi|ui − 2R · CL · AdvDi(A),.

A.2 PROOF OF THEOREM 2

The following lemma about the inverse binary entropy will be useful in the proof of Theorem 2:
Lemma 4 ((Calabro, 2009) Theorem 2.2). Let H−1

2 (p) be the inverse binary entropy function for p ∈ [0, 1],
then H−1

2 (p) ≥ p
2 log2(

6
p )

.

Lemma 5 (Data processing inequality). Given random variables X , Y , and Z that form a Markov chain
in the order X → Y → Z, then the mutual information between X and Y is greater than or equal to the
mutual information between X and Z. That is I(X;Y ) ≥ I(X;Z).

With the above lemma, we are ready to prove Theorem 2 as below.
Theorem 2. Let Θi

∗ (resp. ri∗ ) be the learnt optimal feature extractor parameters (resp. optimal represen-
tations) by Equation (6) for device Ci’s data. Define Hi

∗ = H(ui|ri∗). Then, for any attribute inference

adversary A = {A : ri → ui}, Pr(A(ri∗) = ui) ≤ 1− Hi
∗

2 log2(
6

H∗
i
)
.

Proof. With loss of generality, we only prove the privacy guarantees for the device Ci. For ease of descrip-
tion, we set ri = ri∗ and Hi = Hi

∗. Let si be an indicator that takes value 1 if and only if A(ri) ̸= ui, and
0 otherwise, i.e., si = 1[A(ri) ̸= ui]. Now consider the joint entropy H(A(ri),ui, si) of A(ri), ui, and si.
By decomposing it, we have

H(si,ui|A(ri)) = H(ui|A(ri)) +H(si|ui,A(ri)) = H(si|A(ri)) +H(ui|si,A(ri)), (16)

Note that H(si|ui,A(ri)) = 0 as when ui and A(ri) are known, Si is also known. Similarly,

H(ui|si,A(ri)) = Pr(si = 1)H(ui|si = 1,A(ri)) + Pr(si = 0)H(ui|si = 0,A(ri)) = 0 + 0 = 0,

because when we know si’s value and A(ri), we also actually knows ui.

Thus, Equation 16 reduces to H(ui|A(ri)) = H(si|A(ri)). As conditioning does not increase entropy, i.e.,
H(si|A(ri)) ≤ H(si), we further have

H(ui|A(ri)) ≤ H(si). (17)

On the other hand, using mutual information and entropy properties, we have I(ui;A(ri)) = H(ui) −
H(ui|A(ri)) and I(ui; ri) = H(ui)−H(ui|ri). Hence,

I(ui;A(ri)) +H(ui|A(ri)) = I(ui; ri) +H(ui|ri). (18)

Notice A(ri) is a random variable such that ui ⊥ A(ri)|zi. Hence, we have the Markov chain ui → zi →
A(ri). Based on the data processing inequality in Lemma 5, we know I(ui;A(ri)) ≤ I(ui; ri). Combining
with Equation 18, we have

H(ui|A(ri)) ≥ H(ui|ri) = Hi. (19)
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Combing Equations 17 and 19, we have H(si) = H2(Pr(si = 1)) ≥ H(ui|ri), which implies

Pr(A(ri) ̸= ui) = Pr(si = 1) ≥ H−1
2 (H(ui|ri)) = H−1

2 (Hi), (20)

where H2(t) = −t log2 t− (1− t) log2(1− t).

Finally, by applying Lemma 4, we have

Pr(A(ri) ̸= ui) ≥ Hi

2 log2(
6
Hi )

.

Hence the attribute privacy leakage is bounded by Pr(A(ri) = ui) ≤ 1− Hi

2 log2(
6

Hi )
.

B DATASETS AND NETWORK ARCHITECTURES

B.1 DETAILED DATASET DESCRIPTIONS

CIFAR-10 dataset (Krizhevsky, 2009). The CIFAR-10 (Canadian Institute For Advanced Research)
dataset contains 60,000 colored images of 32x32 resolution, which is split into the training set with 50,000
images, and the testing set with 10,000 images. It is obtained from the torchvision.datasets module, which
provides a wide variety of built-in datasets. The dataset consists of images belonging to 10 classes: airplane,
automobile, bird, cat, deer, dog, frog, horse, ship and truck. There are 6,000 images per class.

For this dataset, the primary FL task has been established in accurately predicting the label of the image.
The attribute to protect has been generated by the author, creating a binary attribute that is 1 if the image
belongs to an animal and 0 otherwise.

Loans dataset (Hardt et al., 2016). This dataset is originally extracted from the loan-level Public Use
Databases. The Federal Housing Finance Agency publishes these databases yearly, containing information
about the Enterprises single family and multifamily mortgage acquisitions. Specifically, the database used in
this project is a single-family dataset and has a variety of features related to the person asking for a mortgage
loan. All the attributes in the dataset are numerical, so no preprocessing from this side was required. On the
other hand, in order to create a balanced classification problem, some of the features were modified to have
a similar number of observations belonging to all classes. We use 80% data for training and 20% for testing.

The utility under this scope was measured in the system accurately predicting the affordability category of
the person asking for a loan. This attribute is named Affordability, and has three possible values: 0 if the
person belongs to a mid-income family and asking for a loan in a low-income area, 1 if the person belongs to
a low-income family and asking for a loan in a low-income area, and 2 if the person belongs to a low-income
family and is asking for a loan not in a low-income area. The private attribute was set to be binary Race,
being White (0) or Not White (1).

Adult Income dataset (Dua & Graff, 2017). This is a well-known dataset available in the UCI Machine
Learning Repository. The dataset contains 32,561 observations each with 15 features, some of them nu-
merical, other strings. Those attributes are not numerical were converted into categorical using an encoder.
Again, we use the 80%-20% train-test split.

The primary classification task is predicting if a person has an income above $50,000, labeled as 1, or below,
which is labeled as 0. The private attributes to predict are the Gender, which is binary, and the Marital
Status, which has seven possible labels: 0 if Divorced, 1 if AF-spouse, 2 if Civil-spouse, 3 if Spouse absent,
4 if Never married, 5 if Separated, and 6 if Widowed.
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Table 3: Network architectures for the used datasets

Feature Extractor Privacy Protection Network Utility Preservation Network
CIFAR-10

2xconv3-64 3xconv3-256 conv3-16
MaxPool MaxPool MaxPool
2xconv3-128 3xconv3-512 conv3-32
MaxPool MaxPool MaxPool

3xconv3-512 2xconv3-128
MaxPool MaxPool
2xlinear-4096 3xconv3-256

MaxPool
linear-#labels 3xconv3-512

MaxPool
3xconv3-512
MaxPool
linear-4096
linear-512
linear-#labels

Loans and Adult Income
linear-64 linear-64 linear-16
linear-128 linear-128 linear-32

linear-4 2xlinear-128
linear-#labels 3xlinear-256

6xlinear-512
linear-4096
linear-512
linear-#labels

B.2 NETWORK ARCHITECTURES

The used network architectures for the three neural networks are in Table 3.
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