DoTAT: A Domain-oriented Text Annotation Tool

Anonymous ACL submission

Abstract

We propose DoTAT, a domain-oriented
text annotation tool. The tool designs and
implements functions heavily in need in
domain-oriented information extraction.
Firstly, the tool supports a multi-person
collaborative process with automatically
merging and review, which can greatly
improve the annotation accuracy. Secondly,
the tool provides annotation of event, nested
event and nested entity, which are frequently
required in domain-related text structuring
tasks. Finally, DoTAT provides visualized
annotation specification definition, automatic
batch annotation and iterative annotation to
improve annotation efficiency. Experiments
on the ACE2005 dataset show that DoTAT
can reduce the event annotation time by
19.7% compared with existing annotation
tools. The accuracy without review is 84.09%,
1.35% higher than Brat and 2.59% higher
than Webanno. The accuracy of DoTAT even
reaches 93.76% with review. The demonstra-
tion video can be accessed from https://
ecust—-nlp-docker.oss—-cn-shanghai.
aliyuncs.com/dotat_demo.mp4.

A live demo website is available at
https://github.com/FXLP/MarkTool.

1 Introduction

A high-quality corpus is a prerequisite in su-
pervised machine learning, especially for neural
network-based model. Currently more and more
domain-oriented information extraction tasks are
proposed, therefore annotation tools should be re-
designed to meet the requirements.

* Multiple specifications support There are
many document types in each domain, and
the schema of the target structured data are
different. Therefore normally different annota-
tion specification is defined for each document
type. For example, in the medical domain,

Raw text:

20XXEF1 A28 1289, BEE (5, 205, RBEPATA) BEEHRN LEXARBRE
B3 (13436788888) , ERBEALFERTHMERTT, FERSRBDBEIEQQ (HF
S 2093988888) HifXF, FEAKLINATASHEAFNBORTRE, KABSHBEL
[_E4RAT K 1709970 F 6228480178504288888 (FF A% HER) FRIWIER.

Annotation instance:

Fraud event : -+ Victim event
Trigger © KIFR / W2 (Trigger) © PREZR
AR RITHIK e P REAREHA
FEAN BRX
BREEAL WREE
WiIkEH: 170997T
AR 20XXEF1 {28 121 ;
HRFR: BRALBXXARBRE |

| | Suspect event

WA (Triggen): KRR

QQS: 2093988888

$RITRS: 6228480178504288888
BiESHD: 13436788888

................ Nested victim sub- Nested suspect sub-event

Figure 1: An example of nested events in the public
security domain.

document types many include discharge sum-
mary, admission record, examination report,
and operation record. In the public security
domain, document types include fraud, theft,
robbery, disputes and so on.

Nested event Domain-oriented information
extraction tasks often require event and nested
event annotation. As shown in Figure 1, two
separate sub-events (“victim” and “suspect”)
are nested in the top “fraud” event. Tradition-
ally event is defined as n-tuples and the trigger
word is a verb, such as fraud event in Figure 1.
In this paper, we take n-tuples of all forms
as events, the trigger word can be a noun as
a subject, and the arguments may be the at-
tributes of the subject. For example, subject
“victim” has multiple attribute-value pairs in
Figure 1.

* Multi-person support with merging and re-
viewing Single-person annotation often leads
to missing and wrong annotation due to hu-
man errors, the ambiguity of the words, or par-
ticular language phenomenon not covered by
the specifications. In later experiment in Sec-
tion 5.2, the accuracy may be less than 60%
for new annotators. When there are multiple
annotation specifications in domain-oriented

https://ecust-nlp-docker.oss-cn-shanghai.aliyuncs.com/dotat_demo.mp4
https://ecust-nlp-docker.oss-cn-shanghai.aliyuncs.com/dotat_demo.mp4
https://ecust-nlp-docker.oss-cn-shanghai.aliyuncs.com/dotat_demo.mp4
https://ecust-nlp-docker.oss-cn-shanghai.aliyuncs.com/dotat_demo.mp4
https://ecust-nlp-docker.oss-cn-shanghai.aliyuncs.com/dotat_demo.mp4
https://github.com/FXLP/MarkTool

annotation tasks, more errors may appears
since specifications vary and more annota-
tors are required. Therefore, Multi-person col-
laborative annotation is required to improve
the annotation quality. Furthermore the di-
vergence between multiple annotators should
be detected and the improved result can be
achieved by automatically merging and hu-
man reviewing.

Among the existing text annotation tools, only
Brat (Stenetorp et al., 2012) and Webanno (Yimam
etal., 2013) support event annotation. However, the
two do not design event annotation as a core func-
tion and do not contain enough features for specifi-
cation management and quality improvement. To
address the challenges above, we propose DoTAT,
a domain-oriented text annotation tool for com-
plex event annotation tasks. Besides the ordinary
function such as visualized entity and relation an-
notation, its main features are as follows:

* Visualized annotation specifications defini-
tion The annotation specifications are defined
by a visual interface instead of manual con-
figuration so that administrators can easily de-
fine multiple specifications and annotators can
dynamically select the specification to match
their documents.

* Merge and review It provides pairwise con-
sistency checking and automatic merging of
content annotated by multiple people. The
reviewer can also manually edit the merged
content.

* Iterative annotation Annotators can re-load
previous exported result file for further anno-
tation. The function is frequently used in the
situation that new version of a domain specifi-
cation is designed and existing annotation file
should be reused and revised. The above three
features forms the basis of DoTAT annotation
process and help to improve the quality of the
annotation.

* Nested event and nested entity The tool not
only supports nested event but also supports
nested entity. Nested Entity means that one
entity is inside another entity.

* Automatic batch annotation The tool pro-
vides automatic batch annotation by text

Figure 2: Typical workflow using DoTAT.

matching based on regular expressions and
dictionaries.

In the following section, we summarize annota-
tion tools. Section 3 describes the overall workflow
of DoTAT and its functions. Section 4 introduces
the implementation of DoTAT. Section 5 illustrates
the comparative experiment. Section 6 shows the
case study in the medical and public security do-
mains. Section 7 concludes this paper and gives
further directions.

2 Related Work

There are various text annotation tools for dif-
ferent scenarios, but most of them do not sup-
port event annotation, including Knowtator (Ogren,
2006), WordFreak (Morton and LaCivita, 2003),
Anafora (Chen and Styler, 2013), Atomic (Druskat
et al., 2014), GATE Teamware (Bontcheva et al.,
2013), Doccano and YEDDA (Yang et al., 2018).
Each tool has their own special features, e.g., Word-
Freak supports constituent parse structure and de-
pendent annotations as well as ACE named-entity
and coreference annotation. Doccano and YEDDA
support the use of shortcut keys for entity annota-
tion, and YEDDA can perform batch annotation
through the command line.

Currently only Brat (Stenetorp et al., 2012) and
Webanno (Yimam et al., 2013) support event anno-
tation. However, it is difficult for them to annotate
nested event. The method used by Brat and We-
bAnno for event annotation is to connect multiple
entities through directed arcs. If the number of en-
tities is numerous or the distance between entities
is far, abundant arcs and intersections will appear
on the whole page, resulting in an inferior visu-
alization effect. Except for WordFreak, Anafora
and Atomic, most tools declare to support multi-
person collaborative annotation. GATE Teamware
provides the adjudication interfaces to compare an-
notations. However, only Webanno provides the
curation with automatic merging function.

Compared to these tools, event annotation in

Create: BiHtASEMt @ Delete: XZRIEAE7352
Event ID Event name Entity in the event
« G R[]
© 7351 SRS 7351 o B[SH 2

o EJRER 20

1

1

1

'

'

1

1

1

1

i

H o A RERHER | SHASSOSSE I]
H o {OF[XFE]
1 O 7352 RAMEABIT52
! - BEAETS [SRS I)
! - BB [F2hEiE))

i
'

« FTBBHERR [SASSISEAS I)

=)

H, R EMFRIRR
AR, DAEAP AR,

o A REHERER [B SRSIESERS I]

BRSNS |

1T &)
FAEIIRR), AehtHmeoomi, K, A .
%, WAETIEE20SE RE. BT .
00|l : OllShelE: 2500|iFALME: %t -

(2) Event list panel

More details

Show

R—h SR TaAEkRER, TARBahhH. }kféi

ST, FEARTMBLE. LMEXE, BERRE—IR.
TESBAIETR, SIRESIRKRTE. EFNFACIERKR, ZE
fiE, SEMAERAMERSIRESIR. |IRPEGE: TFAHME: 2

Figure 3: The event annotation of DoTAT. Top: event list panel, bottom: annotation panel.

DoTAT is much easier to use. Furthermore DoTAT
designs an iterative process from specification defi-
nition to merging and review, which can help the
annotation team gradually increase the quality of
annotated corpus.

3 DoTAT Features Description

DoTAT is a web-based multilingual text annotation
tool. There are three types of user roles: adminis-
trator, annotator, and reviewer. The fundamental
annotation types include entity annotation, relation
annotation, event annotation, and text classification.
As shown in Figure 2, a typical annotation process
using DoTAT may include the following five steps:

* Define annotation specifications: The ad-
ministrator selects the annotation type and
visually defines event types, entity types, re-
lation types or text categories in annotation
specifications.

* Create and assign tasks: Administrator cre-
ates and assigns tasks. Each task contains an
annotation specification and several raw texts.
It is recommended that two annotators and
one reviewer are assigned to each task.

* Annotate: Before the annotators interactively
annotate events or entities, they can use auto-
matic batch annotation to accelerate the speed.

* Merge and Review: The reviewer starts con-
sistency checking and automatic merging of

the annotated content by multiple annotators.
The reviewer can visually analyze the errors
according to the merged events list. When
there are too many similar errors, the reviewer
can give feedback for administrator to redefine
the annotation specification. With iterative an-
notation function, all existing annotations can
be reused.

* Export results: After the review process, the
annotated content can be exported by admin-
istrator to a result file and saved in JSON for-
mat.

3.1 Event Annotation

The annotation interface of DoTAT contains an-
notation panel and event list panel, as shown in
Figure 3. Users can interactively annotate in the
former panel, and the results are summarized in the
later one. Users can also select an event in the event
list panel and view this event in another panel.
When a user begins annotation, he can use dic-
tionary matching or regular expression matching
to automatically annotate entities to reduce manual
efforts. For example, in the scenario of Figure 3,
we use a medical organs dictionary to automatically
annotate “lung” in the text. Then the user begins
annotate events. He firstly selects the event type,
then uses the mouse to pick a text span in the an-
notation panel, and then all arguments of this event
type will appear immediately, the user can select
an argument to annotate. As shown in Figure 3, the

annotator selects the argument “5 & 4514 (body
structure)” to annotate. The user repeatedly selects
each span and corresponding argument to finish the
event annotation. For the nested events, when the
key of one event becomes an argument of another
event, DoTAT considers the former as the internal
event of the later one. As shown in Figure 3, the
key argument “lung” of the body structure event
(7531) is nested in the event (7532) as an argument.
For the nested entity annotation, theoretically the
internal entity overlaps the outer entity. In order
to make both entities displayed well, we make the
shadow of the internal entity a little smaller and put
it in the top layer, the effects is shown on bottom
left of Figure 3.

Algorithm 1 Automatically merge event annota-
tions by using the Kuhn-Munkres Algorithm.

Input: A, : the n events of annotator-A; B,,: the
m events of annotator-B
Output: C' the set of merged events; K: the con-
sistency checking score
1: Calculating the similarity matrix S, ,, of 4,
and B,,. Let s; ; denote the element in the i-th
row and j-th column of the matrix Sy, ;,, and
its value represents the similarity between the
event a; of A, and the event b; of B,,.
2: Using Kuhn-Munkres Algorithm to find the
optimal event merging strategy W, in matrix
Sn,m

3: for each event a; in A,, do

4: if a; € W,, then

5: merge W;

6: if the original entities in the two events

are the same then the state is ‘Consistent’

7: else the state is ‘Inconsistent’

8: end if

9: add the merged event to the set C
10: else
11: add a; to the set C with state ‘Only A’
12: end if
13: end for

14: for each event b; in B,,, do
15: ifb; ¢ W, then

16: add b; to the set C' with state ‘Only B’
17: end if
18: end for

19: K =3 s;/n, where a; € W, and b; € W,
20: return C,K;

3.2 Review of Event Annotation

The review procedure supports consistency check-
ing, automatic merging, and manual revision. Be-
fore the review, the system will check the consis-
tency of the annotated content of the two annotators.
The problem is to find matched events between two
annotated text, the detail is shown in Algorithm 1.
1) We calculate the similarity between each event.
The event similarity is calculated as the number of
matched entities divided by the number of all enti-
ties. The result is recorded as matrix Sy, ,,. 2) Then
the problem is defined as the maximum weight
matching of weighted bipartite graphs. We apply
the Kuhn-Munkres Algorithm to find optimized
matching pairs. The consistency checking score
is the sum of similarity values of matched pairs
divided by the maximum number of events. When
consistency checking score reaches the threshold,
the system can start the merging process. 3) The
merge criteria depends on the state, and there are
four states for each event, “Consistent”, “Only A”,
“Only B” and “Inconsistent”. The system auto-
matically merges all the arguments for events in
“Inconsistent” state. For the other three states, the
system will only keep the larger event.

In the review procedure, the reviewer can view
the merged annotations. If the reviewer doubts
on the merged event, he can trace the source to
view the original annotated event by clicking role
switching bar to change current view. The reviewer
can also perform manual modification. Typically
they should modify the the events in “Inconsistent”
state. The whole annotation process finishes after
the reviewer submit the refined result.

4 Implementation

DoTAT is a web-based text annotation tool with the
software license Apache-2.0. We uses the Vue.js
and Element Ul to build the user interface. The core
of Vue.js is a responsive data binding framework,
which makes it pretty easy to synchronize data with
the DOM (Document Object Model). Therefore,
Vue.js is particularly suitable for real-time visual-
ization of text annotations. The server side utilizes
the Python-based open-source Django framework
to build RESTful web services. MySQL database
is adopted to organize, store and manage data. The
code is available at the GitHub repository https:
//github.com/FXLP/MarkTool, which also con-
tains a live demo website.

https://github.com/FXLP/MarkTool
https://github.com/FXLP/MarkTool
https://github.com/FXLP/MarkTool

Annotation Time (seconds)

Group Tool 20% 40% 60% 80% 100% Timegsg
WebAnno 1703 3493 5123 6704 8359 418
Group-1 Brat 1870 3113 4303 5456 6374 319
DoTAT 1340 2497 3937 5007 5887 295
WebAnno 1518 3138 4589 6055 7516 386
Group-2 Brat 1767 3239 4755 6077 7513 375
DoTAT 1210 2385 3845 4956 5645 282
WebAnno 1321 2771 4119 5314 6704 335
Group-3 Brat 1503 3055 4218 5293 7174 358
DoTAT 1156 2167 3446 4592 5387 269

Table 1: Annotation time comparison of annotation tools in ACE2005 Dataset. The average annotation time of
annotation tool is arithmetic mean value of Time,,q in three group. The average annotation time of Webanno is
380s. The average annotation time of Brat is 351s. The average annotation time of DoTAT is 282s.

5 Experiments

5.1 Annotation time

We compare DoTAT with the other two text annota-
tion tools (Brat and WebAnno) on the event anno-
tation task. We randomly select 20 news texts from
the ACE2005 dataset (Consortium, 2005), and each
text contains at least four sentences. Six students
randomly divided into three groups are invited to
annotate those texts. For each user, if a tool is used
first, more time may be spent since the user is not
familiar with the text. To eliminate the influences,
each student is given extra time to view the text
before the annotation, and each is assigned a dif-
ferent tool using sequences. We separately record
the time (in seconds) spent by each group using the
three tools when completing 20%, 40%, 60%, 80%,
and 100% of the texts. As we can calculate from
Table 1, the average annotation time of DoTAT is
reduced by 19.7% compared with Brat and 25.8%
compared with WebAnno. DoTAT spends less time,
since it is time consuming for Brat and Webanno to
connect arcs between the trigger and multiple argu-
ments. The mouse movements in the process may
be forward and backward. However, DoTAT only
needs to select the arguments from a pop up menu
on a text span, and the mouse move is typically
from left to right.

5.2 Accuracy

We also evaluate the accuracy by comparing with
the golden results from ACE20005 data set. The

accuracy is computed as:

Z?:l (Trigicorrect + 27]71:11 Argicsrrect)
Z:‘L:l (1 +m;)
(D

where n is the total number of golden events, and
my; 1s total number of arguments in event 7. In event
i, Trig® e = 1 when trigger is correct, and if
argument j is correct then Argﬁ‘;””“t = 1. Since
annotation quality is too low in real projects with
new annotation specifications or new annotators,
we often add a particular training process in real
application scenarios. Therefore in this paper we
design two rounds of experiments, first round is
for training and the second round is formal annota-
tion. After round-1, we have a meeting to discuss
with annotators about the error-prone events and
entities. In Round-2, we select five other most
error-prone texts from ACE 2005. As we can see
from Table 2, the average accuracy of unreviewed
annotations is less than 60% in experiment Round-
1. The main reason is that annotators often missed
a whole event or missed particular arguments. For
example, when using Brat, the proportion of miss-
ing events is 33.67% and The proportion of missing
arguments is 14.38%. The accuracy of DoTAT is
better since it is less possible for DoTAT to miss
arguments. When a text span is picked, DoTAT
will show all arguments, the pop menu reminds the
annotator about the arguments. DoTAT also per-
forms better than Brat and Webanno in Round-2.
Besides, the overall accuracy increase in Round-2,
which shows that the training process has effects.
In experiment Round-1, the average accuracy
of DoTAT’s reviewed annotations reaches 76.2%,
which is an increase of 20.9% compared to the aver-

acc =

Accuracy

Round Tool Group-1 Group-2 Group-3 Average
WebAnno 44.5% 49.0% 51.7% 48.4%
Round-1 Brat 34.5% 44.9% 47.8% 42.4%
DoTAT-U 45.4% 55.7% 64.8% 55.3%
DoTAT-R 67.7% 72.6% 88.3% 76.2%
WebAnno 75.48% 82.58% 86.45% 81.5%
Round-2 Brat 79.19% 83.87% 85.16% 82.74%
DoTAT-U 78.71% 86.45% 87.1% 84.09%
DoTAT-R 93.54% 92.9% 94.84 % 93.76 %

Table 2: Accuracy comparison of annotation tools in ACE2005 Dataset. DoTAT-U denotes the unreviewed anno-
tation content of DoTAT. DoTAT-R denotes the reviewed annotation content of DoTAT.

Domain Task Annotated
Public security 10 types 6 types
10,000 texts 6,000 texts
20,000 events
80,000 entities
Medical 4 types 6,000 events
300 long texts 18,000 entities

Table 3: Application of DoTAT.

age accuracy of DoTAT’s unreviewed annotations.
In experiment Round-2, the average accuracy of
DoTAT’s reviewed annotations has also increased
by 9.67%. It indicates that the review procedure
can effectively improve the accuracy. The review
procedure not only can complement the missing
events and entities, but also reduce the erroneous
annotations often caused by the ambiguity of the
annotators’ understanding of annotation specifica-
tions.

6 Case Study

DoTAT has been used in the annotation projects of
three different domains. The details in the public
security and medical domains are shown in Table
3. For the criminal case type “fraud” which con-
tains 5 event types and altogether 23 arguments
in public security domain, the training process be-
fore formal annotation involves four original files
and eight annotators. Each file contains 20 texts,
which are assigned to two annotators. Consistency
checking is performed to inspect the specification
understanding of each annotator, and part of the
results are shown in Figure 4. We found that the ar-
gument “fraud method” scored less than 50% in the
four files, because the text span of this argument is
not fixed. In the example of Figure 4, some annota-

Fraud file-1 Fraud file-2 Fraud file-3 Fraud file-4

Victim name 86 84.85 69.77 59.09
Suspect phone 100 88.89 66.67 94.12
Fraud method 39.39 28.77 46.25 48.76
Example:

Raw Text Annotator-1 Annotator-2

BRETERAS, MIEym, |Fraudmethod: DUIEWAMH | Fraud method: HERE

JRENEU3007T

Figure 4: The fraud case annotation example.

tor annotated “claim settlement(FE/%)” and some
annotated “on the ground of claim settlement(}4
FHIGE N H)”. Besides, we also found that some
simple arguments (such as “name” and “telephone
number”) did not reach consistency score of 100%.
There are two reasons for this, one is binding an
argument to wrong event, e.g. take the “name” of
victims as suspects, the other is missing annotation,
e.g. “name” of victims appears more than once, but
only one place is annotated. Therefore further train-
ing is required to solve the disagreement between
annotators.

7 Conclusions

The demands for annotation corpus in different
domains are rapidly increasing with the develop-
ment of deep learning. We propose a web-based
text annotation tool, DoTAT, which is suitable for
domain-oriented complex event annotation. We
demonstrate the powerfulness of our tool with ex-
periments and real-world scenarios. We also find
training and reviewing are valuable steps to im-
prove the quality of corpus. In the future, we plan to
integrate the active learning algorithm into DoTAT
to reduce the manual annotation work.

References

Kalina Bontcheva, Hamish Cunningham, Ian Roberts,
Angus Roberts, Valentin Tablan, Niraj Aswani,
and Genevieve Gorrell. 2013. Gate teamware:
a web-based, collaborative text annotation frame-
work. Language Resources and Evaluation,
47(4):1007°A“S1029.

Wei-Te Chen and Will Styler. 2013. Anafora: A web-
based general purpose annotation tool. In Proceed-
ings of the 2013 NAACL HLT Demonstration Ses-
sion, pages 14-19, Atlanta, Georgia. Association for
Computational Linguistics.

L. D. Consortium. 2005. Ace (automatic content ex-
traction) english annotation guidelines for entities.

Stephan Druskat, Lennart Bierkandt, Volker Gast,
Christoph Rzymski, and Florian Zipser. 2014.
Atomic: an open-source software platform for multi-
level corpus annotation.

Thomas Morton and Jeremy LaCivita. 2003. WordF-
reak: An open tool for linguistic annotation. In Com-
panion Volume of the Proceedings of HLT-NAACL
2003 - Demonstrations, pages 17-18.

Philip V. Ogren. 2006. Knowtator: A protégé plug-in
for annotated corpus construction. In Proceedings
of the Human Language Technology Conference of
the NAACL, Companion Volume: Demonstrations,
pages 273-275, New York City, USA. Association
for Computational Linguistics.

Pontus Stenetorp, Sampo Pyysalo, Goran Topié,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 2012. brat: a web-based tool for NLP-assisted
text annotation. In Proceedings of the Demonstra-
tions at the 13th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 102-107, Avignon, France. Association for
Computational Linguistics.

Jie Yang, Yue Zhang, Linwei Li, and Xingxuan Li.
2018. YEDDA: A lightweight collaborative text
span annotation tool. In Proceedings of ACL 2018,
System Demonstrations, pages 31-36, Melbourne,
Australia. Association for Computational Linguis-
tics.

Seid Muhie Yimam, Iryna Gurevych, Richard
Eckart de Castilho, and Chris Biemann. 2013.
WebAnno: A flexible, web-based and visually
supported system for distributed annotations. In
Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics: Sys-
tem Demonstrations, pages 1-6, Sofia, Bulgaria.
Association for Computational Linguistics.

https://doi.org/10.1007/s10579-013-9215-6
https://doi.org/10.1007/s10579-013-9215-6
https://doi.org/10.1007/s10579-013-9215-6
https://doi.org/10.1007/s10579-013-9215-6
https://doi.org/10.1007/s10579-013-9215-6
https://www.aclweb.org/anthology/N13-3004
https://www.aclweb.org/anthology/N13-3004
https://www.aclweb.org/anthology/N13-3004
https://www.aclweb.org/anthology/N03-4009
https://www.aclweb.org/anthology/N03-4009
https://www.aclweb.org/anthology/N03-4009
https://www.aclweb.org/anthology/N06-4006
https://www.aclweb.org/anthology/N06-4006
https://www.aclweb.org/anthology/N06-4006
https://www.aclweb.org/anthology/E12-2021
https://www.aclweb.org/anthology/E12-2021
https://www.aclweb.org/anthology/E12-2021
https://doi.org/10.18653/v1/P18-4006
https://doi.org/10.18653/v1/P18-4006
https://doi.org/10.18653/v1/P18-4006
https://www.aclweb.org/anthology/P13-4001
https://www.aclweb.org/anthology/P13-4001
https://www.aclweb.org/anthology/P13-4001

