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ABSTRACT

Large Multimodal Models (LMMs) have ushered in a new era in artificial intelli-
gence, merging capabilities in both language and vision to form highly capable
Visual Foundation Agents that are postulated to excel across a myriad of tasks.
However, existing benchmarks fail to sufficiently challenge or showcase the full po-
tential of LMMs as visual foundation agents in complex, real-world environments.
To address this gap, we introduce VisualAgentBench (VAB), a comprehensive
and unified benchmark specifically designed to train and evaluate LMMs as vi-
sual foundation agents across diverse scenarios in one standard setting, including
Embodied, Graphical User Interface, and Visual Design, with tasks formulated to
probe the depth of LMMs’ understanding and interaction capabilities. Through
rigorous testing across 9 proprietary LMM APIs and 9 open models (18 in total), we
demonstrate the considerable yet still developing visual agent capabilities of these
models. Additionally, VAB explores the synthesizing of visual agent trajectory
data through hybrid methods including Program-based Solvers, LMM Agent Boot-
strapping, and Human Demonstrations, offering insights into obstacles, solutions,
and trade-offs one may meet in developing open LMM agents. Our work not only
aims to benchmark existing models but also provides an instrumental playground
for future development into visual foundation agents. Code, train, and test data are
available at https://github.com/THUDM/VisualAgentBench.
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Figure 1: Overview of Proprietary and Open LMMs on VISUALAGENTBENCH. After Behavior
Cloning (BC) on trajectories, Open LMMs demonstrate potential to serve as visual foundation agents.
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Figure 2: VISUALAGENTBENCH is the first systematic benchmark for training and evaluating LMM-
as-Visual-Foundation-Agent with both proprietary and open LMMs across a diverse set of practical
challenges. Based on created tasks, we unify the benchmarking of both proprietary LMM APIs via
prompting and open LMMs via behavior cloning training in interactive environments.

1 INTRODUCTION

Recent advancements in Foundation Models, particularly Large Language Models (LLMs) (Brown
et al., 2020; Chowdhery et al., 2022; Touvron et al., 2023; Zeng et al., 2022) and Large Multimodal
Models (LMMs) (Liu et al., 2024c; OpenAI, 2023; 2024a; Anthropic, 2024), have showcased their
profound capabilities in understanding and processing vast amounts of world knowledge, factual
information, and common sense reasoning. Notably, these models have demonstrated potential as
intelligent agents (Searle, 1970; Maes, 1994; Wooldridge & Jennings, 1995), addressing a broad
spectrum of real-world challenges (Liu et al., 2023a). LMMs, in particular, enhance the capabilities of
these agents by integrating visual inputs, thereby expanding the scope of intelligent agent applications.

This progress has given rise to the concept of Foundation Agents—generalist agents adept at
mastering a plethora of skills across various virtual and embodied environments, mirroring human
versatility. These agents, especially those powered by LMMs, are envisioned to excel in multitask
environments without the need for task-specific fine-tuning, a paradigm already set by LLM-based
language agents. The burgeoning field of visual foundation agents offers promising pathways toward
achieving AGI, with the potential to significantly elevate human productivity and creativity.

However, the setup for LMM-as-Visual-Foundation-Agent remains underdeveloped. Most existing
evaluations on LMMs focus on traditional vision tasks (Singh et al., 2019; Lu et al., 2022; Liu et al.,
2023b; Kazemzadeh et al., 2014), or on performance in standardized human exams (Yue et al., 2023;
Lu et al., 2023). They rarely measure the models’ higher-level planning abilities or specific strengths
as visual agents. In contrast, the role of LLMs as agents in text environments has been extensively
explored and validated as a reliable measure of their capabilities (Yao et al., 2023; Liu et al., 2023a).

Recent benchmarks for multimodal agents, while valuable, inadequately address the comprehensive
multitask evaluation required for LMM-as-Visual-Foundation-Agent. Their focuses are often limited
to single environments such as Household (Shridhar et al., 2020a;b), Gaming (Fan et al., 2022; Wu
et al., 2023), Web (Deng et al., 2024; Zhou et al., 2023; Koh et al., 2024), or Desktop (Xie et al.,
2024; Kapoor et al., 2024). The narrow scope and varied settings prevents a holistic assessment of
LMMs’ multitask agent capabilities. Furthermore, the prevalent prompting-only evaluation in existing
benchmarks does not suffice for open LMMs (Liu et al., 2024c; Bai et al., 2023), which typically
show limited instruction-following capabilities so far, thus hindering a comprehensive evaluation.

To bridge this gap, we introduce VISUALAGENTBENCH (VAB)—the first systematic benchmark
to multitask train and evaluate visual foundation agents across a diverse array of realistic vision-
centric tasks. We present three representative scenarios and develop five distinct datasets for this
study: Embodied (VAB-OmniGibson, VAB-Minecraft), Graphical User Interface (GUI) (VAB-
AndroidLab (Xu et al., 2024), VAB-WebArena-lite (Zhou et al., 2023)), and Visual Design (VAB-
CSS), enabling comprehensive testing and development of agents that can navigate complex spaces,
interact with digital interfaces (Liu et al., 2024d), and understand aesthetic and functional aspects of
visual design. This diversity not only challenges the agents’ capabilities across different settings but
also enhances their adaptability and utility in practical applications, paving the way for more robust
and versatile visual foundation agents.
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Contributions. Our main contributions in VAB are as follow: Standardized Environments, LMM-
oriented Test Data Creation, Train Data Synthesis, Extensive Benchmarking, and Analytical Insights.

• Standardized Environments. VAB standardizes the interfaces, prompting, and data formats
to facilitate a consistent evaluation of LMM agents across environments. The efforts include
adapting previously LMM-irrelevant environment and creating the new. Each task is assessed
through interactive evaluation, where LMMs engage directly with the environment, and their
performance is measured by specific judge functions. The feature substantially distinguishes
VAB from many other benchmarks (Deng et al., 2024; Rawles et al., 2024; Kapoor et al., 2024)
based on offline human-annotated trajectories.

• LMM-oriented Test Data Creation. Test set queries and judge functions are newly created
for all environments except for WebArena. To acquire massive tasks, we develop a “Prototype-
Instantiation” method to evolve valid task instructions and judge functions grounded on environ-
ments. We refer to task categories and prototypes in some previous study (Li et al., 2023; Zhu
et al., 2023) which unsatisfies the practical use for evaluating LMM agents or has no public data.

• Train Data Synthesis. VAB strives to offer the first multitask multi-environment trajectory train
set for developing LMM agents, containing 4,482 high-quality training trajectories spanning 5
environments. It explores and investigate how to synthesize multimodal agent task instructions
and trajectory data via hybrid strategies of Program-based Solvers, LMM Agent Bootstrapping,
and Human Demonstrations. Thereby, it also for the first time enables a holistic agent evaluation
that includes many open LMMs with valid scores for meaningful comparison.

• Extensive Benchmarking & Analysis. Our extensive testing over 18 LMMs, including 9
proprietary LMM APIs and 9 open LMMs, demonstrates the impressive progress of LMM-
as-Visual-Foundation-Agent. Top proprietary LMMs, such as gpt-4o, are solving 36.2%
of challenging problems with mere prompting. Behavior cloning (BC) on the VAB train set
remarkedly enhances the capabilities of open LMMs as visual foundation agents, with most
surpassing the performance of weaker proprietary LMMs and approaching close towards the
strong gemini-1.5-pro.

• Analytical Insights. VAB provides deep insights into the general status quo and detailed
dimensions of grounding and planning for LMM agents. For grounding, we quantitatively analyze
the use of object labels, set-of-marks, and visual difference ability. For planning, we study the
actual impact of Chain-of-Thought and error recovering ability for LMM agents.

2 VISUALAGENTBENCH: TASKS AND ENVIRONMENTS

In this section, we will first introduce the problem definition of LMM-as-Visual-Foundation-Agent,
and then the detailed description of each environment and dataset.

LMM-as-Visual-Foundation-Agent. An agentic problem could be generally formulated as a
Partially Observable Markov Decision Process (POMDP) problem, where S denotes the state space,
A denotes the action space, T denotes the transition function, R refers to the reward function, I refers
to the instruction space, and O refers to the observation space. Compared to LLM-as-Agent (Liu
et al., 2023a), the observation space O must incorporate visual inputs (e.g., images or videos) in
LMM-as-Visual-Foundation-Agent, significantly extending the application scope but also casting a
substantial challenge for LMMs to reconcile their multimodal understanding and high-level reasoning.

Overview of VAB. In VAB, we carefully select the most representative and promising tasks that
could be enabled by LMM-based agents. These tasks generally fall into three categories: embodied
agents, including household and game environments; GUI agents, covering mobile and web apps; and
visual design agents, focusing on frontend CSS debugging (Figure 2). They span diverse domains and
feature unique challenges, providing an ideal testbed for a comprehensive evaluation of LMM-based
agents. When constructing VAB, we strictly follow the principles outlined in Appendix A.1. Our
efforts focus on addressing gaps in evaluating LMM-based agents while leveraging existing resources
to avoid redundancy, ensuring all our work is meaningful and avoids reinventing the wheel. For 4 out
of 5 tasks, we collect new data from scratch. For web agents, we adapt and clean WebArena (Zhou
et al., 2023) as our test set, as it is already suitable for LMM-based evaluation. For household agents,
we use the OmniGibson environment from Behavior-1k (Li et al., 2023) and create new tasks based
on high-level actions we defined, which are crucial for evaluating LMM-based agents and absent in
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Table 1: Comparison between VAB and related benchmarks. VAB is the first comprehensive multi-
domain agent benchmark offering interactive environments, supporting multimodal agent evaluation,
and providing a large and diverse set of training trajectories for visual agent tuning. “#Test Ins.”
refers to the number of test instances; “#Train Traj.” refers to the number of training trajectories
for SFT, “RL” means no training trajectory is available and only a reinforcement learning setup is
provided; “#Avg. Turns” refers to the average number of turns per training trajectory.

Category #Env. #Test Ins. #Train Traj. #Avg. Turns Multimodal Interactive Env.

ALFWorld (Shridhar et al., 2020b) Household 1 134 6,374 7.54 ✗ ✓
Alfred (Shridhar et al., 2020a) Household 1 1,529 6,574 7.51 ✓ ✓
Behavior-1K (Li et al., 2023) Household 1 1,000 RL - ✓ ✓
MineDojo (Fan et al., 2022) Game 1 3,141 RL - ✓ ✓
SmartPlay (Wu et al., 2023) Game 6 20 - - ✗ ✓
Mind2Web (Deng et al., 2024) Web 1 1,341 1,009 7.71 ✓ ✗
WebArena (Zhou et al., 2023) Web 1 812 - - ✓ ✓
VisualWebArena (Koh et al., 2024) Web 1 910 - - ✓ ✓
META-GUI (Sun et al., 2022) Mobile 1 483 3,692 7.64 ✓ ✗
OSWorld (Xie et al., 2024) Desktop 1 369 - - ✓ ✓
OmniACT (Kapoor et al., 2024) Desktop & Web 2 9,802 - - ✓ ✗
AgentBench (Liu et al., 2023a) Multi-domain 8 1,091 - - ✗ ✓

VISUALAGENTBENCH Multi-domain 5 746 4,482 11.22 ✓ ✓

existing datasets. We similarly construct our tasks in Minecraft using the MineRL environment1 with
our self-defined high-level actions. Finally, for our mobile app and CSS debugging tasks, we create
new interactive environments due to the lack of suitable resources in the literature and collect data
based on these environments. An overview of VAB is shown in Table 1.

2.1 EMBODIED AGENT

Embodied agents have been a central topic in AI, naturally involving multimodal sensory data,
including language and vision signals. The multimodal capabilities of LMMs could enable new
possibilities for embodied agents.

VAB-OmniGibson. One of the most actively researched environments in embodied AI is the
household environment due to its complexity and range of everyday tasks (Huang et al., 2022; Song
et al., 2023; Shridhar et al., 2020a). We build the household environment for embodied agents using
OmniGibson, a high-fidelity simulator based on Nvidia Omniverse that features diverse scenes and
realistic physical effects.2 An example activity in VAB-OmniGibson would be “Put all 8 plates from
the countertops into the cabinet in the kitchen”, where agents should accomplish the tasks using
provided high-level actions (e.g.,“grasp”, “put inside”). We adopt the task success rate as the
evaluation metric. (Cf. Appendix B).

VAB-Minecraft. Minecraft has become a popular open-world environment for developing generalist
embodied agents due to its diverse tasks (e.g., survival, harvesting, crafting, combat, and creative
tasks), varied environments, and interactive mobs, necessitating generalized agent abilities (Fan et al.,
2022; Lifshitz et al., 2024). In VAB-Minecraft, the agent is expected to accomplish a wide range
of tasks, including item collection and killing hostile mobs. An example task in VAB-Minecraft
would be “Get a fishing rod in your inventory”, and the LMM agent need to interact with the game
environment using provided scripts (e.g.,“craft”, “smelt”) or calling a low-level controller Steve-
1 (Lifshitz et al., 2024) with prompt. We adopt the task success rate as metric. (Cf. Appendix C)

2.2 GUI AGENT

GUI is another typical scenario where LMM agents may excel. Compared to embodied environments,
GUI environments are more information-intensive and require a good understanding of UI elements
and layouts. We provide two interactive and reproducible GUI environments, Mobile (i.e., Android)
and WebArena, to evaluate LMM GUI agents in a practical manner.

1https://minerl.readthedocs.io
2https://www.nvidia.com/en-us/omniverse/
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VAB-AndroidLab (Xu et al., 2024). Automated agents on Android GUI are instrumental. Although
pioneer works like (Burns et al., 2022; Rawles et al., 2024) have explored training and evaluating
these agents, they typically use Step Success Rate evaluated offline. Recent works (Yang et al., 2023b;
Wang et al., 2024a) leverage LMMs as Android GUI agents but lack reproducible executive evaluation
frameworks. We address this by creating tasks for LMM agents to perform human-like actions (e.g.,
Tap, Swipe) on smartphones using Android Virtual Device (AVD). For example, “Find a hotpot
restaurant nearby and make a reservation for me tonight.” Agents must understand the Android GUI
and make decisions based on screen observations (Cf. Appendix D). The visual SoM-based prototype
developed in VAB for benchmark was later enriched with XML-based text setting, both text and
multimodal training, and further detailed metrics and analysis on more models in (Xu et al., 2024).

VAB-WebArena-Lite (Zhou et al., 2023). Web browsing is an ideal testbed for evaluating LMMs
as GUI agents. Previous works (Shi et al., 2017; Liu et al., 2018; Deng et al., 2024; Yao et al.,
2022) mainly focus on offline evaluation. We adopt WebArena (Zhou et al., 2023), a benchmark for
text-based web GUI agents with 812 tasks across 5 websites. LMMs perform tasks based on user
instructions, such as finding and summarizing customer reviews on OneStopShop. We use HTML
SoM (Koh et al., 2024) to annotate operable HTML elements, enabling LMMs to generate actions
via playwright. WebArena-Lite is a subset of 165 tasks, refined and adapted for multimodal
evaluation, removing cross-website tasks and fixing implausible conditions. (Cf. Appendix E)

2.3 VISUAL DESIGN AGENT

Visual design tasks demand a nuanced understanding of visual signals, which text-only LLMs cannot
handle with any easy augmentation, unlike embodied or GUI agent tasks that can rely on external
object detectors (Song et al., 2023) or textual representations like accessibility trees (Xie et al., 2024).

VAB-CSS. We create a new task to evaluate LMMs on web frontend design, focusing on CSS style
adjustments. Fixing CSS styles is a labor-intensive task that often requires engineers to iteratively
adjust an element through trial and error. Such a task inherently entails fine-grained visual grounding
and reasoning across a series of rendering outcomes resulting from iterative CSS edits. In VAB-CSS,
the agent iteratively edits the CSS style using provided tools until it thinks the rendering matches
a given target design. We adopt success rate (SR) as the metric, which evaluates whether the final
rendering matches the target design. (Cf. Appendix F)

3 METHODOLOGY FOR VAB DATA COLLECTION

For agent tasks, it is known to be very challenging to design practical and verifiable task instances;
let alone creating high-quality training trajectories on top of them later. In constructing VAB, we
not only aim to deliver a high-quality agent benchmark but also endeavor to develop a systematic
methodology for the problem of LMM-as-Visual-Foundation-Agent data curation. For task instance
collection, we follow a two-stage paradigm (prototyping and instantiation) for each new task instance
to ensure data quality and executability. Additionally, we harness a suite of hybrid strategies to
collect training trajectories that can be used to tune open LMMs into better visual foundation agents.
Our rigorous data collection process in VAB is crucial for presenting a high-quality resource for
LMM-based agents (Figure 3). The statistics of different tasks in VAB are shown in Table 2.

3.1 TASK INSTANCE COLLECTION: PROTOTYPING AND INSTANTIATION

Curating meaningful and testable task instances for LMM agent tasks can be difficult. On one hand,
they should be diverse and useful to cover real-world applications. On the other hand, they should be
grounded to environments carefully to ensure feasibility and practicality. As a result, we collect all
our task instances in a two-stage paradigm:

• Prototyping: We gather many task prototypes representing high-level goals based on the func-
tionality provided by the environment. Related items are temporarily set to placeholders.

• Instantiation: Task prototypes are grounded to concrete items and conditions collected from the
environment. Judging functions are thereby set up by instantiated tasks. Instructions are then
rephrased by LLMs to enhance expression diversity.
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Figure 3: Data collection process in VAB. We follow a principled two-stage paradigm to collect task
instances and then adopt various methods to further collect training trajectories for them.

Table 2: Statistics of all datasets in VAB.
VAB-OmniGibson VAB-Minecraft VAB-AndroidLab VAB-WebArena-Lite VAB-CSS

#Action Space 20 6 7 12 4
#Test Instance 181 116 119 165 165
#Train Trajectory 872 382 1,213 1,186 829
#Train Step 20,153 5,197 10,175 9,522 5,250
#Max Round Limit 100 100 25 20 10

Following the mentioned principles, we develop diverse task sets for all VAB environments. For
VAB-OmniGibbon, we source 89 prototypes of general household activities, instantiating them in
various scenes to create 992 instances, with 181 reserved for testing. In VAB-Minecraft, we focus
on object-collecting tasks, generating 628 instances from our defined prototypes, allocating 116 for
testing. For VAB-AndroidLab, we select 8 Android applications and create 119 test instructions,
while developing approximately 70 task prototypes from 18 common apps for training. In WebArena-
Lite, we refine 165 test samples and generate 1186 training instances from 40 task prototypes across
various web applications. For VAB-CSS, we design tasks around CSS rule corruptions, creating 1210
instances with 165 for testing, each annotated with natural language descriptions of visual changes.
This comprehensive approach ensures a rich and varied task environment across our selected domains.
For more details, please refer to Appendix A.3.

3.2 TRAINING TRAJECTORY COLLECTION: 3-LEVELED STRATEGIES

Recently, there has been a rise in benchmarks for interactively evaluating LLM or LMM agents (Liu
et al., 2023a; Zhou et al., 2023; Xie et al., 2024). Despite showcasing the substantial potential of LLM
and LMM as agents, they usually only provide the test set and thus fail to facilitate the improving of
open LLMs and LMMs on agent tasks. In light of the challenge, in VAB we are devoted to offering a
preliminary behavior cloning (BC) (Nakano et al., 2021; Zeng et al., 2023) setup for training open
LMM agents. In VAB, we summarize our trajectory collecting into 3-leveled strategies:

1. Program-based Solvers: Trajectories are collected by prototype-specific programs written by
human experts (e.g., Playwright scripts for automating web browsing tasks).

2. LMM Agent Bootstrapping: Trajectories are collected by prompted LMM agents (e.g.,
gpt-4o), with optional memory augmentations (Wang et al., 2023c). For instance, in Minecraft
we allow agent to access memories for solving easier sub-goals (e.g., how to collect a stick) when
constructing trajectories for more complex goals (e.g., how to collect a hammer).

3. Human Demonstrations: Trajectories are annotated by human experts. It is necessary for
scenarios where humans are indispensable (e.g., mobile apps require logged-in human accounts).

These strategies are quite different from each other and present their own unique advantages in certain
environments. We summarize their recommendation levels on 4 dimensions (Cf. Table 3):

• Average Cost: The most important dimension. Program-based solvers are most cost-effective,
followed by human demonstrations. LMM bootstrapping is currently the most expensive due to
proprietary API costs, but this may decrease as open LMMs improve.

• Adaptability: It indicates how easy we can implement a strategy to an environment. LMM
bootstrapping is highly adaptable with good prompts. Program-based solvers require moderate
implementation time. Human demonstrations need training and may face accessibility issues.
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Table 3: Recommendation levels for 3 strategies used in curating VAB’s agent-tuning trajectory data
on different dimensions. (Cf. Section 3.2 for detailed explanation on each dimension)

Strategy Avg. Cost Adaptability Versatility Flexibility Adoption

Program-based Solvers VAB-OmniGibson, VAB-WebArena-Lite
LMM Agent Bootstrapping VAB-Minecraft, VAB-AndroidLab, VAB-CSS
Human Demonstrations VAB-AndroidLab

• Versatility: It refers to how versatile tasks a strategy could deal with. Human annotators can
handle the widest range of tasks, followed by LMM agents. Program-based solvers are limited to
predefined prototypes.

• Flexibility: It denotes the trial and error process in the solution trajectories. LMM bootstrapping
naturally incorporates trial-and-error processes. Program-based solvers struggle with this, while
human annotators are often discouraged from it for quality control reasons.

Considering all mentioned dimensions and their trade-offs, we adopt a hybrid set of strategies for
each of the 5 environments in VAB as shown in Table 3. We employ diverse strategies tailored to
each domain’s unique characteristics. For VAB-OmniGibson, we utilize program-based solvers due
to high hardware requirements and need for cost-effective, adaptable solutions. In VAB-Minecraft,
we opt for LMM agent bootstrapping to handle inherent randomness and exploration requirements.
For VAB-AndroidLab, we primarily rely on human demonstrations, supplemented by LMM agent
bootstrapping for offline apps, addressing XML legibility and app-specific login challenges. In VAB-
WebArena-Lite, we choose program-based solvers, leveraging mature Playwright automation tool
and addressing difficulties faced by human annotators with unfamiliar interfaces. For VAB-CSS, we
implement LMM agent bootstrapping to accommodate iterative CSS debugging, using gpt-4o for
initial trajectories with hints to improve success rates. For more details, please refer to Appendix A.4.

4 BASELINE EXPERIMENT

4.1 SETUP

Baselines. We evaluate on both proprietary LMM APIs and selected open LMMs. For proprietary
LMMs, we include models from OpenAI GPT (OpenAI, 2024a; 2023; 2024b), Anthropic Claude (An-
thropic, 2024), Google Gemini (Reid et al., 2024; Team et al., 2023), and Qwen-VL-Max (Bai et al.,
2023). For open LMMs, we select nine state-of-the-art models as representative fine-tuning baselines
in VAB: InternVL-2 (Chen et al., 2024), Qwen2-VL (Wang et al., 2024b), GLM-4V (GLM et al.,
2024), CogVLM2 (Wang et al., 2023b), CogAgent (Hong et al., 2023), CogVLM (Wang et al., 2023b),
LLaVA-NeXT (Liu et al., 2024b), LLaVA-1.5 (Liu et al., 2024a), Qwen-VL (Bai et al., 2023).

Prompting & Open LMM Training. We format agent interactions as user-assistant conversations
with system prompts containing task descriptions and action spaces. For most environments, only the
latest visual input is provided to reduce costs, except for CSS agents which require comparing multiple
screenshots. During fine-tuning of open LMMs, we remove few-shot demonstrations, concatenate
history with role tokens, and vertically combine multiple images for CSS agents when needed. All
models undergo full-parameter fine-tuning for 5k steps with batch size 64, with CSS data duplicated
to improve adaptation to the screenshot format. See details in Appendix A.5.

4.2 MAIN RESULTS

Table 4 shows the main results on VAB, including both prompting proprietary LMMs and fine-
tuned open LMMs. We have several important observations on the status quo of LMM-as-Visual-
Foundation-Agent.

VAB is challenging for existing LMMs. We observe that existing LMMs face significant challenges
when evaluated on VAB. The majority of proprietary LMMs, with mere prompting, achieve an overall
success rate above 20%, demonstrating their multimodal understanding and reasoning abilities.
The most capable LMM, gpt-4o, achieves an overall success rate of 36.2%. However, these
performances are still far from satisfactory and not yet qualified for direct deployment. Notably,
despite its superiority on existing benchmarks, claude-3.5-sonnet still falls significantly
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Table 4: Main results on VISUALAGENTBENCH. The metric reported is success rate (SR), which
measures the proportion of successful tasks in all evaluated tasks. Open LMMs are evaluated using
multitask fine-tuning rather than direct prompting, as they were unable to effectively follow system
prompts from VAB in our preliminary trials. For # Params of open LMMs, we report the sizes of
their language and vision part respectively.

Type Model #Params AVG
Embodied GUI Visual Design

OmniGibson Minecraft AndroidLab WebArena-Lite CSS

Proprietary
LMMs

(Prompting)

gpt-4o-2024-05-13 N/A 36.2 41.4 55.2 31.9 18.2 34.5

gpt-4-vision-preview N/A 31.7 36.5 47.4 26.9 18.8 29.1

gpt-4-turbo-0409 N/A 29.9 26.5 50.0 26.9 18.2 27.9

claude-3.5-sonnet N/A 26.9 24.3 56.0 31.1 7.2 15.8

claude-3-opus N/A 21.9 14.9 51.7 15.1 7.9 20.0

gpt-4o-mini-2024-07-18 N/A 20.5 12.2 30.2 22.7 20.6 17.0

gemini-1.5-pro N/A 19.8 22.1 41.4 16.8 7.9 10.9

gemini-1.0-pro N/A 6.3 4.4 11.2 11.8 4.2 0.0

qwen-vl-max N/A 2.7 0.0 6.0 2.5 3.0 1.8

Open LMMs
(Fine-tuning)

InternVL-2 (Chen et al., 2024) 7B + 0.3B 16.0 16.0 28.4 3.4 7.9 24.2

Qwen2-VL (Wang et al., 2024b) 7B + 0.3B 15.6 13.8 24.1 5.9 6.7 27.3

GLM-4V (GLM et al., 2024) 9B + 4B 12.0 8.8 19.8 2.5 5.5 23.6

LLaVA-NeXT (Liu et al., 2024b) 8B + 0.3B 10.5 3.3 23.3 3.4 4.2 18.2

CogVLM2 (Hong et al., 2024) 8B + 12B 10.3 3.3 25.9 1.7 3.0 17.6

CogAgent (Hong et al., 2023) 7B + 11B 8.9 6.6 20.7 2.5 0.6 13.9

CogVLM (Wang et al., 2023b) 7B + 10B 8.4 3.3 19.8 4.2 4.2 10.3

LLaVA-1.5 (Liu et al., 2024a) 13B + 1B 7.7 1.7 25.9 0.8 2.4 7.9

Qwen-VL (Bai et al., 2023) 7B + 2B 5.7 1.7 18.1 1.7 2.4 4.8

behind gpt-4o. Additionally, we present the first systematic evaluation of gpt-4o-mini on
agent tasks, which reveals that its performance is considerably inferior to gpt-4o but comparable to
claude-3-opus and gemini-1.5-pro.

Trajectory SFT can improve LMM agents. For open LMMs, we find they can rarely follow the sys-
tem prompt’s instruction without fine-tuning in preliminary trials, resulting in 0% success rates. After
training on VAB, open LMMs present significant improvements. The strongest one, InternVL-2,
even outperforms gemini-1.0-pro on all evaluated environments and claude-3-opus on
CSS agent task. These results suggest that learning from trajectories would be a promising direction
for us to build visual foundation agents.

Gaps between top proprietary and open LMMs are huge but likely to be narrowed. Despite
training improvements, the gap between proprietary and tested open LMMs is wider than expected.
While many claim performance comparable to gpt-4-vision-preview on traditional vision
benchmarks like image captioning and VQA, their fundamental ability to function as practical visual
foundation agents remains far from comparable, even after fine-tuning on VAB datasets. This
demonstrates that VAB could serve as an ideal testbed for benchmarking practical LMM performance.
With larger backbone LLMs (insufficiently tested here due to computing resource limitations) and
more high-quality trajectory data, open LMMs may eventually match or surpass proprietary ones.

5 ANALYSIS

Multimodal agent tasks encompass two critical challenges: visual grounding and planning. We
conduct fine-grained analyses to gain deeper insights into performance in these two aspects and offer
valuable perspectives for the future development of visual foundation agents based on LMMs.

5.1 VISUAL GROUNDING ANALYSIS

Visual grounding refers to the ability to associate language concepts with content in visual percep-
tion (Fukui et al., 2016; Zheng et al., 2024), which is crucial for LMM-as-Visual-Foundation-Agent.
We look into 3 typical design choices in VAB related to visual grounding to show its current status
and challenges.

The use of object labels in embodied environment. Despite the strong image caption and object
recognizing ability of LMMs, they seem not to play well in the context of an embodied agent task.
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w/ Object Label w/o Object Label

Figure 4: Compare w/ and w/o Object Labels.

Figure 5: Compare SoM and REC in
GUI agent tasks, trained on CogVLM2.
VAB-AndroidLab∗ here is an earlier ver-
sion different from the one in Table 4.

Table 5: LMM performances drop drastically on VAB-CSS when the language description is removed.

gpt-4o-2024-05-13 gpt-4-turbo-0409 gpt-4-vision-preview

w/ NL 34.5 27.9 29.1
w/o NL 24.2 ↓10.3% 1.9 ↓26.1% 2.4 ↓26.7%

In VAB-OmniGibson, we compare the LMM-as-Visual-Foundation-Agent performance with and
without object labels annotated in the vision input. The result in Figure 4 shows that LMM agents
significantly underperform without object labels. It indicates that notwithstanding LMMs’ strong
performance on downstream benchmarks, they can still struggle in the same task in agent context.

The use of Set-of-Marks (SoM) in GUI environment. For GUI tasks, we augment image input with
SoM by default as eliciting accurate bounding box coordinates from LMMs is difficult, representing a
referring expression comprehension (REC) task (Qiao et al., 2020). Using our training trajectories, we
evaluate whether LMMs can perform visual grounding by directly outputting bounding boxes without
SoMs. We fine-tuned CogVLM2 with and without SoM, and results in Figure 5 show that it struggles
to directly output bounding boxes, highlighting SoM’s instrumental role in visual grounding.

Visual difference grounding. Our new frontend design task examines visual difference grounding,
which unlike traditional single-scene visual grounding, requires the LMM to ground ”layout differ-
ences” (Cf. Appendix F.5) between two images through comparison. Current VAB-CSS results in
Table 4 use a lenient setting where we provide explicit language descriptions of adjustments needed to
match the images, rather than requiring direct perception of differences (Cf. Table 5 and Appendix F.2
for examples).

5.2 PERFORMANCE ON PLANNING

The role of thought in ReAct. ReAct (Yao et al., 2023) is one of the most commonly used
frameworks for language agents. The central concept emphasizes the importance of integrating the
agent’s reasoning and actions by intertwining the output with both thought and action components.
However, in our study, we find that the thought step may not be essential. When using gpt-4o and
claude-3.5-sonnet as the backbone of the agents, directly outputting an action field can yield
comparable or even superior performance compared to using the ReAct framework (see Table 6).

Recovering from errors during planning. In real-world applications, agents require the error
recovery ability to dynamically adjust their actions and plans based on environmental feedback.
To understand it in LMMs, we analyze two representative models: gpt-4o, the most powerful
model currently available, and glm-4v, a prominent open LMM. Their performance, illustrated
in Figure 6, reveals that gpt-4o exhibits robust error recovery across most tasks, with GUI tasks
being an exception due to their often irreversible nature. Importantly, we find that incorporating error
recovery scenarios in training data significantly enhances the performance of fine-tuned open LMMs,
as observed in VAB-OmniGibson and VAB-CSS (Cf. Appendix B.1 and Appendix F.2).

6 RELATED WORK

LMM-as-Visual-Agent. In pre-LMM era, most visual agents are built with task specific train-
ing (Shridhar et al., 2020a) and reinforcement learning (Kempka et al., 2016). With the rapid
development of LMMs (OpenAI, 2024a; Reid et al., 2024; OpenAI, 2023; Bai et al., 2023; Anthropic,
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Table 6: ReAct (w/ CoT) has varied (potentially positive or negative) impacts on visual agent tasks.

Model Prompting VAB-Minecraft VAB-AndroidLab VAB-CSS

gpt-4o
w/ Thought 55.2 30.4 34.5
w/o Thought 48.3 ↓6.9% 31.9 ↑1.5% 38.2 ↑3.7%

claude-3.5-sonnet
w/ Thought 56.0 29.0 15.8
w/o Thought 55.2 ↓0.8% 31.1 ↑2.1% 17.6 ↑1.8%

0 10 20 30 40 50 60
Success Rate

34.5

18.2

31.9

55.2

41.4

13.6
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3.6

46.4
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VAB-Mobile
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19.8
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14.4

2.5

0.0
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5.7

GLM-4v
SR
SR w/ error

Figure 6: Comparison of overall success rates and success rates when incorrect actions are present in
trajectories for various tasks.

2024; Team et al., 2023; GLM et al., 2024), the study of LMM-based visual agents begins to thrive.
Leveraging the general capabilities of LMMs, these visual agents have the potential to perform com-
plex tasks in various scenarios, including embodied and game tasks (Brohan et al., 2022; Yang et al.,
2023a; Driess et al., 2023; Tan et al., 2024), GUI interaction (Zheng et al., 2024; Zhou et al., 2023;
Koh et al., 2024; Xie et al., 2024; Kapoor et al., 2024; Yang et al., 2023b), and visual design tasks (Si
et al., 2024; Laurençon et al., 2024). However, these complex scenarios pose several challenges
for LMM-based visual agents: basic visual understanding and grounding (Zheng et al., 2024; Yue
et al., 2023), vision-text information comprehension (Kil et al., 2024), instruction following, and
long-term planning ability (Wu et al., 2023; Liu et al., 2023a). Most general-purpose LMMs still lack
strong zero-shot capabilities, leading to different application paradigms when deploying LMMs as
visual agents. While prompting methods offer great convenience, they may not achieve satisfactory
performance in many areas (Zhou et al., 2023; Drouin et al., 2024). Consequently, task-specific
training and alignment remain common practices in these applications (Lai et al., 2024). In response,
VAB aims to establish a comprehensive benchmark for LMM-based visual agents, covering a wide
range of typical applications. In the meantime, VAB seeks to provide an in-depth evaluation of both
prompting and training approaches, ultimately fostering the development of LMM visual agents.

Benchmarking LMM-based visual agents. With the rapid development of LMM agents and their
impressive performance in various scenarios (Xie et al., 2024; Kapoor et al., 2024; Yang et al.,
2023b;a; Si et al., 2024; Mu et al., 2024), it has made the evaluation of LMM agent an urgent problem.
In the GUI interaction domain, recent works have proposed static datasets (Deng et al., 2024; Rawles
et al., 2024; Sun et al., 2022) and interactive environments (Zhou et al., 2023; Koh et al., 2024; Xie
et al., 2024) to evaluate LMM agents in different applications, including web (Zhou et al., 2023;
Koh et al., 2024; Deng et al., 2024), mobile phone (Rawles et al., 2024; Sun et al., 2022), and
desktop (Xie et al., 2024). In the embodied domain, previous works have proposed various game
environments (Guss et al., 2019; Fan et al., 2022) and household environments (Li et al., 2023),
but few works have explored benchmarking LMM agents on these environments. Most existing
benchmarks are designed for relatively narrow domains and lack a comprehensive evaluation across
different applications of LMM agents. Additionally, many benchmarks focus solely on the prompting
evaluation of LMM agents. VAB aims to provide a training set for open-source foundation LMMs,
offering a new perspective on benchmarking these models and advancing their diverse applicabilition.

7 CONCLUSION

We present VisualAgentBench (VAB), a comprehensive benchmark for evaluating Large Multimodal
Models as visual foundation agents across diverse scenarios. Our testing of 18 LMM models reveals
their developing capabilities in this domain. VAB also explores methods for synthesizing visual
agent trajectory data, providing insights for future advancements.
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A OVERVIEW

A.1 DESIGN FEATURES OF VAB

Given that LMMs are still evolving rapidly, we adhere to several principles in our design of VAB to
accommodate the current capabilities and limitations of LMMs.

• Vision-Centric: VAB agent tasks are designed to primarily rely on visual inputs to solve problems.
While additional text inputs could be beneficial, VAB aims to evaluate how LMMs perform when
perceiving the environment as humans do in agent tasks. For example, while HTML is shown
useful for Web GUI Agent (Zhou et al., 2023; Deng et al., 2024), humans typically browse the
internet from screens without reading HTMLs.

• High-Level Decision Making: VAB focuses on evaluating LMMs’ high-level decision-making
abilities. Compared to prior smaller visual-language models that specifically target low-level
policies (Lynch & Sermanet, 2020; Brohan et al., 2022; Lifshitz et al., 2024), LMMs excel at high-
level planning and interacting (Driess et al., 2023) in text response thanks to their commonsense,
knowledge, and flexible instruction following with mere prompting. Therefore, in VAB, we
simplify the low-level control by providing convenient action interfaces, and ask tested LMMs to
concentrate on delivering high-level decision sequences in text.

• Interactive Evaluation: Evaluating LLMs or LMMs on real-world agent tasks is challenging, as
task goals can be achieved by various means. As a result, it becomes a mainstream practice to
evaluate in an interactive manner (Liu et al., 2023a; Zhou et al., 2023; Jimenez et al., 2023; Xie
et al., 2024). VAB also adheres to this principle.

• Trajectories for Behavior Cloning: Many previous execution-based agent benchmarks for
LLMs and LMMs, despite being realistic and challenging, often fail to provide effective training
sets for the community to use for improvement. LLMs and LMMs need behavior cloning training
on trajectories for better performance (Nakano et al., 2021; Zeng et al., 2023; Lai et al., 2024).
However, creating such datasets consisting of valid instructions, trajectories, and reward functions
is costly and requires annotators’ good understanding of the environment. In response to the
challenge, for each VAB environment we endeavor to deliver instructions created with a hybrid
set of strategies (Cf. Section 3.2). Experiments show that our constructed training sets can
effectively improve the performance of open LMMs on VAB.

Note that as the field advances, some of the above principles may become obsolete and irrelevant.
We will continuously update VAB to accommodate the progress of LMMs.

A.2 DETAILS ON USE OF VISUAL INFORMATION IN EACH ENVIRONMENT

Vision-centric design is a crucial feature for VAB with regard to planning and grounding. Here we
will give a brief look at the specific use of vision from both perspectives.

• VAB-OmniGibson: The agent perceives the simulated environment through egocentric vision.
It must interpret visual information to identify the affordances of objects within its view and
understand their spatial relationships (e.g., whether an object is reachable).

• VAB-Minecraft: Similar to VAB-OmniGibson, the agent must interpret the current scene in the
game environment to determine its next action. In addition, VAB-Minecraft includes moving
elements such as animals and monsters, which places greater demands on the agent’s visual
understanding to complete tasks.

• VAB-AndroidLab: The agent operates on the graphical interface of an Android system to
complete tasks without access to system APIs and relies solely on visual inputs. At each step, it
analyzes the current screenshot to predict an action—identifying interactive elements such as app
icons or buttons based solely on the screenshot. Executing the action generates a new screenshot
for the next iteration.

• WebArena-Lite: Similar to VAB-AndroidLab, WebArena-Lite is also a GUI-based environment.
In the original paper of WebArena (Zhou et al., 2023), they use HTML/Accessibility Tree as the
input, whereas in VAB, we focus on visual inputs and mainly focus on screenshots to predict
actions at each step.
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• VAB-CSS: The agent must carefully adjust the CSS style file until the rendering matches the
given screenshot. It needs to perceive fine-grained visual differences between two screenshots,
which can often be minimal. This makes VAB-CSS a highly vision-intensive task.

A.3 DETAILS ON TASK INSTANCE COLLECTION

For VAB-OmniGibson, a prototype is a general household activity, such as recycling office papers.
We source these prototypes either by sampling from Behavior-1K or by annotating them ourselves.
Instantiating a prototype involves grounding it in a specific scene (e.g., specific rooms with office
papers and recycling bins) generated in OmniGibson. To increase task diversity, we instantiate each
prototype with multiple random scenes and various initializations of object positions in the room. In
total, we collect 992 instances using 89 prototypes. We sample 181 out of them as our test set.

For VAB-Minecraft, we target high-level task prototypes related to object collecting and then
instantiate them with game configurations using different world seeds or spawn points. We manually
check to ensure that each high-level goal is achievable within its configuration. In total, we collect
628 task instances using high-quality prototypes defined by us, with 116 instances designated as the
test set. Additionally, we sample 132 task prototypes from JARVIS-1, resulting in 596 task instances
that could be leveraged to collect our training trajectories later.

For VAB-AndroidLab, we first select 8 typical Android applications, from system services to third-
party applications (e.g., Maps, Music, etc.) that could be evaluated offline. We come up with 119
test instructions for them and prepare valid groundings in the AVD snapshot (e.g., an MP3 file to
play in the Music APP). For the training task construction, we filter 18 commonly used APPs and
summarize their major functions to around 70 task prototypes.

For WebArena-Lite, we filtered and cleaned 165 test samples from the original WebArena dataset and
collected new task instances for web applications to use in training trajectory collection. Specifically,
we summarize each website’s basic functions and valid items for synthetic queries, created 40 task
prototypes, and fill them with valid and invalid items (e.g., product categories, prices) to
generate specific instructions, resulting in 1,186 training task instances.

For VAB-CSS, a task prototype simply corresponds to one possible corruption of a CSS rule such as
adding or altering a CSS property. To instantiate a task for a specific website, we randomly select a
corruption that results in noticeable visual changes, determined by an SSIM (Wang et al., 2004) score
below 0.8.3 In addition, we manually annotate each instance with a natural language description of
the difference between the two images as an additional clue to the agent. In total, we collect 1,210
instances and use 165 to form the test set.

A.4 DETAILS ON TRAINING TRAJECTORY COLLECTION

For VAB-OmniGibson, we adopt the program-based solvers focusing on the cost and adaptability.
OmniGibson has no friendly interface for humans to operate on, and requires high-end laptops with
GPUs supporting ray tracing and large main memory (> 10 GB) to run. Thus it is unlikely for us to
find a large number of qualified annotators to label for OmniGibson. LMM agent bootstrapping is fine
but uneconomical, as the task usually takes more steps than others (i.e., up to 100). Program-based
solvers, instead, are suitable for collecting massive high-quality trajectories in OmniGibson.

For VAB-Minecraft, we adopt LMM agent bootstrapping considering adaptability. Minecraft requires
some flexible explorations (as environments are generated randomly), which is beyond the scope
of program-based solvers. Humans need to be well-trained for some time on playing Minecraft
before becoming qualified annotators. Since previous work has explored the usage of memory
augmentation (Wang et al., 2023c) for improving LMM agents in Minecraft, it becomes practical to
leverage the bootstrapping strategy by LMM APIs such as gpt-4o for creating training trajectories.

For VAB-AndroidLab, we primarily adopt human demonstrations, accompanied with some LMM
Agent Bootstrapping considering the versatility and flexibility. As android XMLs are less legible
and operable than HTMLs on web with existing automation tools, program-based solvers are not
applicable. Additionally, for many apps require login and internet connection, human demonstration

3This is an empirical choice based on our own experience.
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is the best solution. LMM agent bootstrapping is employed in some offline APPs such as system
settings to enhance trajectory flexibility.

For VAB-WebArena-Lite, we adopt program-based solvers due to cost and adaptability. On the
one hand, there have been a mature web automation tool Playwright that supports Python. On
the other hand, although WebArena (Zhou et al., 2023) is adopting some mirror websites for their
real-world counterparts, their interfaces could be vastly different (e.g., OpenStreetMap in WebArena
vs. Google Maps in real-world). Consequently, human annotators struggle to label demonstrations
on these websites efficiently in our preliminary trials. For LMM agents, they tend to perform too
poorly under mere prompting on WebArena (with success rate less than 20%) for efficient trajectory
construction.

For VAB-CSS, we adopt LMM agent bootstrapping, mostly owing to concerns on flexibility. A
critical challenge for the agent in debugging CSS styles is to iteratively adjust the CSS rules through
a trial and error process, which can be flexibly achieved using the LMM agent bootstrapping scheme.
In particular, we first use gpt-4o to collect trajectories that finally resolve the CSS issue. However,
gpt-4o can only achieve a success rate lower than 40%. To collect additional trajectories, we hint
the agent with the target CSS rule to edit, after 5 steps of trials, on tasks where the agent initially
fails.

A.5 DETAILS ON PROMPTING AND TRAINING OPEN LMMS IN EXPERIMENTS

Prompting. We format LMM-as-Visual-Foundation-Agent as two roles (i.e., user and
assistant) interacting in multiple rounds. The task description, action spaces, few-shot demon-
strations, and important notices for each environment are formatted as the system prompt at the
beginning of the conversation. Task instruction is given in the first user round. Environmental
observations and feedback are passed via user in later rounds. Considering current LMM APIs’
poorer support of multi-image and outrageous cost when interaction rounds soar up, in Embodied
and GUI agents we only offer the vision input of the latest user round (following (Koh et al., 2024))
while reserving history text contents. An exception is the CSS agent in Visual Design. In this case,
comparing differences in visual inputs is essential, and the interaction rounds are typically fewer than
10. Therefore, we retain all image inputs in the conversation history for this task.

Training for Open LMMs. We generally follow the prompting format of proprietary LMM APIs in
each environment to organize our training trajectories, and make several minor modifications. In the
system prompt we remove the few-shot demonstrations as we would fine-tune models. In addition,
during fine-tuning, since open LMMs perform poorly on multi-image input (especially for CogVLM
and CogAgent, whose expert architecture disallows simple implementation of multi-image input),
we only use the vision input of the latest user turn, and concatenate histories together using role
tokens (i.e., “<|user|>”) and linebreaks. For CSS agent where multi-image input is necessary, we
concatenate history images vertically into one as the input. To benchmark the potential of LMMs
to serve as visual foundation agents, we conduct multitask fine-tuning over the dataset aggregation
of all environments. To optimize performance, all LMMs undergo full-parameter fine-tuning, with
a batch size of 64 and 5k training steps. Other hyperparameters are configured using the default
ones provided by the model’s original repository or the third-party’s integrated training framework.
For data composition, we uniformly combine all training samples except for VAB-CSS, which we
duplicate an additional 2 times as the preliminary experiments show that the task requires more
extensive training for open LMMs to adapt to the screenshot concatenation format.

A.6 ANALYSIS ON AGENT ERROR MODES

Here we provide some statistics about major types of errors we observe, by sampling around 20 error
traces in each environment for gpt-4o and internvl-2 (in Table 7 and Table 8).

• Visual Grounding Error: Wrong detection or recognition of objects/elements in the visual
observation.

• Invalid Action: Outputting wrong formats of actions.
• Loop: Agent repeats generating the same actions without quitting.
• Task Limit Exceed: The agent does not accomplish the goal within reasonable maximum steps.
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• Hallucinated Task Completion: Agent makes wrong judgment on whether it has accomplished
the task.

Table 7: Statistics on gpt-4o agent error modes.

Tasks Visual Grounding Error Invalid Action Loop Task Limit Exceed Hallucinated Task Completion

VAB-OmniGibson 0.30 0.04 0.17 0.17 0.30
VAB-Minecraft N/A 0.00 0.24 0.76 0.00
WebArena-Lite 0.15 0.10 0.40 0.05 0.30
VAB-AndroidLab 0.10 0.00 0.65 0.15 0.10
VAB-CSS N/A 0.00 0.05 0.55 0.40

Table 8: Statistics on internvl-2 agent error modes.

Tasks Visual Grounding Error Invalid Action Loop Task Limit Exceed Hallucinated Task Completion

VAB-OmniGibson 0.00 0.00 0.25 0.50 0.25
VAB-Minecraft N/A 0.00 0.76 0.24 0.00
WebArena-Lite 0.05 0.00 0.40 0.10 0.45
VAB-AndroidLab 0.05 0.05 0.60 0.05 0.25
VAB-CSS N/A 0.00 0.45 0.30 0.25

A.7 PROXY METRICS FOR EVALUATING PROGRESS OF TASK COMPLETION

For embodied and visual design problems in VAB (including 3 environments: VAB-OmniGibson,
VAB-Minecraft, and VAB-CSS), we are setting up proxy metrics for evaluating progress of task
completion (in Table 9).

• VAB-OmniGibson: To complete a task, the LMM agent must achieve multiple subgoals (e.g.,
opening a specific door). Upon task termination, we compute the percentage of successfully
achieved subgoals to provide an intermediate score.

• VAB-Minecraft: To acquire the goal item, the LMM agent must gather a series of items as
ingredients. Consequently, we allocate intermediate scores to the agent as they collect these
ingredients.

• VAB-CSS: To fix the CSS style to match the target screenshot, we can use screenshot similarity
as a proxy metric for measuring progress of completion.

Table 9: Proxy Metrics for Evaluating Progress

Models VAB-OmniGibson VAB-Minecraft VAB-CSS

gpt-4o-2024-05-13 62.6 61.9 46.7
gpt-4-vision-preview 58.4 55.9 38.2
gpt-4-turbo-0409 50.6 59.7 37.6
claude-3.5-sonnet-20240620 59.7 63.6 20.6
claude-3-opus 33.8 60.1 24.8
gpt-4o-mini-2024-07-18 41.5 37.3 23.6
gemini-1.5-pro 46.3 49.4 13.9
gemini-1.0-pro 12.7 15.3 0.0
qwen-vl-max 1.3 9.0 3.0

InternVL-2 41.6 35.5 32.7
Qwen2-VL 24.1 29.8 34.5
GLM-4V 32.2 29.4 29.7
LLaVA-NeXT 17.3 30.5 23.6
CogVLM2 26.9 32.6 20.6
CogAgent 33.0 32.2 17.0
CogVLM 17.1 32.3 11.5
LLaVA-1.5 14.9 33.5 9.1
Qwen-VL 18.8 26.5 4.8
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A.8 ANALYSIS ON ERROR RECOVERY BEHAVIORS

we analyze the average steps needed for agents to recover from error to the correct directions (as below
in Table 10, based on proprietary gpt-4o and opened glm-4v, only for those finally successful
tasks). We find that GUI tasks usually require more steps to recover, as the action spaces for them are
very large (e.g., any clickable elements on the web pages). And fine-tuned glm-4v has shorter mean
error recovery steps compared to gpt-4o, probably because it can only recover from simpler errors.

Table 10: Statistics on average steps to recover from error.

Models VAB-OmniGibson VAB-Minecraft Webarena-Lite VAB-AndroidLab VAB-CSS

gpt-4o-2024-05-13 2.5 3.3 6.0 8.3 2.6
glm-4v 2.3 2.3 4.0 N/A 2.2

B VAB-OMNIGIBSON

In this section, we provide additional details about VAB-OmniGibson that are not covered in the
main paper due to space limitations.

B.1 DETAILED DESCRIPTION

Current household datasets or benchmarks are not originally designed for LMMs, making them
less suitable for evaluating today’s LMMs. Behavior-1K (Li et al., 2023) offers an action space
focused on low-level physical control over the robot (e.g., joint angles), while Alfred (Shridhar et al.,
2020a) requires actions to output masks on images, which may not be practical for most LMMs.
The ThreeDWorld Transport Challenge (Gan et al., 2022) provides high-level action APIs, but the
simulator environment is less realistic and the tasks may not fully challenge LMMs. The recent
work Octopus (Yang et al., 2023a) sets up household tasks for LMMs in the OmniGibson simulator.
However, in this setting, vision input is less critical as the observed objects are also listed in text input
for LMMs.

In order to set up a realistic and challenging benchmark for testing LMMs’ embodied planning ability,
we select the recent household simulator OmniGibson (Li et al., 2023) as the interactive environment,
and build a pipeline for LMM to serve as a high-level planner on everyday household activities.
An example of the task is shown in Fig. 7: The ego-centric image with annotated bounding boxes,
high-level activity instruction and environment feedback are fed into the LMM, and it is tasked with
reasoning over the current progress to decide on the next low-level action. It must interact with
objects using the corresponding tags attached to the bounding boxes.

Test Set. We select 45 activity instances from Behavior-1K, and manually adapt some of them
to ensure these activities are solvable within our provided action space and suitable for evaluating
current LMMs’ embodied planning ability. We instantiate each activity in several scenes, resulting in
a total of 181 test task instances. All the activity instructions are manually annotated by us.

Training Set. We provide a set of successful trajectories using both program-based solving and
LMM bootstrapping. We newly design 47 activities, each instantiated in several different scenes with
various initializations of object positions, resulting in a total of 901 task instances. To solve these
tasks, we develop a program-based solver that decomposes the long-horizon activities into subtasks
and solves them sequentially. Running the program-based solver on the 901 training task instances
yields 785 successful trajectories. Then we manually add a type of error recovery process (agent fails
to place an object into a closed container, and then opens the container) into these trajectories, aiming
to enhance LMMs’ capability to rectify errors. Additionally, we select 464 training instances and
utilize gpt-4-vision-preview to bootstrap 87 successful trajectories, resulting in a total of
872 training trajectories.

Metrics. We adopt task success rate as the metric of VAB-OmniGibson. In Behavior-1K, each
activity is defined in the form of BEHAVIOR Domain Definition Language (BDDL) (Srivastava et al.,
2022), which describes the concrete initial and goal conditions of a specific activity. Only when all
the goal conditions are met within the limit of 100 turns, the task is judged as successfully completed.
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B.2 ACTIONS

In VAB-OmniGibson, we provide the LMM agent with 20 low-level actions to interact with objects
and navigate the household environment. The actions marked with an asterisk (*) are adapted from
OmniGibson, while the others are newly defined and implemented by us. With these provided actions,
the LMM agent is possible to solve all the testing instances.

• grasp: Grasp a specific object into the robot’s hand.
• move: Move towards a specific object.
• move to room: Move to a specific room in the house.
• turn left: Turn the robot left 90 degrees.
• turn right: Turn the robot right 90 degrees.
• raise camera: Raise the camera of the robot to see higher objects.
• lower camera: Lower the camera of the robot to see lower objects.
• put inside: Place the object from the robot’s hand inside another object.
• put on top: Place the object from the robot’s hand on top of another object.
• put under: Place the object from the robot’s hand under another object.
• put next to: Place the object from the robot’s hand next to another object.
• get fridge view: Obtain the view inside a nearby fridge.
• cook*: Cook a specific object.
• burn*: Burn a specific object.
• freeze*: Freeze a specific object.
• heat*: Heat a specific object.
• open*: Open a specific object.
• close*: Close a specific object.
• toggle on*: Turn on a specific object.
• toggle off*: Turn off a specific object.

B.3 PROGRAM-BASED SOLVER FOR TRAINING TRAJECTORY COLLECTION

BDDL task goals. Among activities of VAB-OmniGibson, each of the BDDL task goal can be
decomposed into a sequence of subgoals (e.g., a specific door should be open, or a specific bottle
should be on a specific countertop). All subgoals can be categorized into 2 types: identifying the
state of a specific object, or the positional relationship between two objects.

Method of program-based solver. To achieve the BDDL task goal of a VAB-OmniGibson activity,
the program-based solver need to sequentially fulfill all the subgoals. For the first type of sub-
goal, the program-based solver can navigate (move to room, move, turn left, turn right,
raise camera, lower camera, get fridge view) to find the specific object; and then
move towards it (move) and change its state (cook, burn, freeze, heat, open, close,
toggle on, toggle off). For positional relationships, the solver should find and approach an ob-
ject, grasp it (grasp), move to the other object, and finally complete the subgoal with put inside,
put on top, put under or put next to.

B.4 PROMPT EXAMPLE

The system message that describes the detailed task information to the agent is shown as follows:

# Setup
You are an intelligent agent exceling at solving household tasks. You are

in a household environment given a task to finish.
You can interact with the environment by performing actions using python-

style pseudo code. For each turn, please call exactly one predefined
action.

# Valid Actions
## Predefined Action List:
‘‘‘
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Figure 7: This is an example task of VAB-OmniGibson. The task asks the agent to bring all 4 bottles
from the countertop into the fridge. The agent should grasp one bottle, navigate to find the fridge,
open the fridge, put the grasped bottle into the fridge, and then repeat this process for the remaining
bottles.

def grasp(obj):
’’’Grasp the object in your hand.
Args:

:param obj: the digital identifier of the object to grasp.
Returns:

A string message of the environment feedback.
’’’

def move(obj):
’’’Move yourself towards the object.
Args:

:param obj: the digital identifier of the object to move towards.
Returns:

A string message of the environment feedback.
’’’

def move_to_room(room):
’’’Move yourself to a random position in the room.
Args:

:param room: the name of the room to move to.
Returns:

A string message of the environment feedback.
’’’

def turn_left():
’’’Turn the robot left 90 degrees.
Returns:

A string message of the environment feedback.
’’’

def turn_right():
’’’Turn the robot right 90 degrees.
Returns:

A string message of the environment feedback.
’’’

def raise_camera():
’’’Raise the camera to see objects that are higher.
Returns:

A string message of the environment feedback.
’’’

def lower_camera():

24



Published as a conference paper at ICLR 2025

’’’Lower the camera to see objects that are lower.
Returns:

A string message of the environment feedback.
’’’

def put_inside(obj1, obj2):
’’’Put obj1 within your hand inside obj2. If obj2 is openable, make

sure it is open before putting obj1 inside.
Args:

:param obj1: the digital identifier of the object to put inside.
:param obj2: the digital identifier of the object to put inside

of.
Returns:

A string message of the environment feedback.
’’’

def put_on_top(obj1, obj2):
’’’Put obj1 within your hand to the top of obj2.
Args:

:param obj1: the digital identifier of the object to put on top.
:param obj2: the digital identifier of the object to put on top

of.
Returns:

A string message of the environment feedback.
’’’

def put_under(obj1, obj2):
’’’Put obj1 within your hand to the bottom of obj2.
Args:

:param obj1: the digital identifier of the object in your hand.
:param obj2: the digital identifier of the object to put obj1

under.
Returns:

A string message of the environment feedback.
’’’

def put_next_to(obj1, obj2):
’’’Put obj1 within your hand next to obj2.
Args:

:param obj1: the digital identifier of the object in your hand.
:param obj2: the digital identifier of the object to put obj1

next to.
Returns:

A string message of the environment feedback.
’’’

def get_fridge_view():
’’’Get the image captured by a camera in the fridge. This function is

only valid when you are near a fridge and the fridge is open.
Returns:

A string message of the environment feedback.
’’’

def cook(obj):
’’’Cook the object.
Args:

:param obj: the digital identifier of the object to cook.
Returns:

A string message of the environment feedback.
’’’

def burn(obj):
’’’Burn the object.
Args:

:param obj: the digital identifier of the object to burn.
Returns:

A string message of the environment feedback.
’’’

def freeze(obj):
’’’Freeze the object.
Args:

:param obj: the digital identifier of the object to freeze.
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Returns:
A string message of the environment feedback.

’’’
def heat(obj):

’’’Heat the object.
Args:

:param obj: the digital identifier of the object to heat.
Returns:

A string message of the environment feedback.
’’’

def open(obj):
’’’Open the object.
Args:

:param obj: the digital identifier of the object to open.
Returns:

A string message of the environment feedback.
’’’

def close(obj):
’’’Close the object.
Args:

:param obj: the digital identifier of the object to close.
Returns:

A string message of the environment feedback.
’’’

def toggle_on(obj):
’’’Toggle on the object.
Args:

:param obj: the digital identifier of the object to toggle on.
Returns:

A string message of the environment feedback.
’’’

def toggle_off(obj):
’’’Toggle off the object.
Args:

:param obj: the digital identifier of the object to toggle off.
Returns:

A string message of the environment feedback.
’’’

def done():
’’’Call this function if you think the task is completed. Note that

you have no chance to take any actions after calling this
function.

Returns:
None. The environment will check whether the task is completed

and check your score.
’’’

‘‘‘
## Reminder
1. You can only hold one object at a time.
2. When moving to a new position, you can always turn left, turn right,

raise camera or lower camera to see around before making a decision.
3. You can only interact with objects within your reach; if not, first

try moving towards it or something close to it.
4. You can only interact with objects that are visible to you (annotated

with a bounding box in the image); if it’s not visible, try to move
inside the room or other rooms and look around to find it. You can
open refrigerators or other enclosures to see inside them.

5. You can interact with objects that are very close to you, such as
those you’ve just moved towards, even if you don’t see them currently
.

6. When you are out of the room and see nothing useful, try moving to a
room.

7. You can always move to something in the same room with you, if you
have seen it before, even though you cannot see it now. So when you
are in a new room, try to move around and see around to record more
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objects in your observation so that you can move to them flexibly
afterwards.

8. Don’t repeat the failed action in the next round. Try to understand
what went wrong and make a different decision.

9. If you can’t complete the task, you can do as much as you can and call
‘done()‘ to finish the task.

# Input
For each dialog, you will be given the following information at the

beginning.
1. Task Goal: The task is finished only when these conditions are met.
2. Reachable Rooms: Rooms you can move to. Please refer to them with

their names provided here.
For each turn, you will be given the following information.
1. Action Feedback: Environment feedback of the last action.
2. At Hand Object: The object you are currently holding.
3. Current Room: The room you are currently in.
4. Vision Input: the image you see from your perspective (or inside the

fridge). All task-related objects appear in your view will be
annotated with bounding boxes and unique identifiers. Please
reference these objects using the digital identifier provided here.
Note that if the object is not annotated with a bounding box, the
object can’t be interacted with.

# Output
Now, given these information, you need to think and call the action

needed to proceed with the task. Your response should include 3 parts
in the following format in each turn:

OBSERVATION: <What you observe in the image> Note that the Vision Input
image won’t be kept in the dialog, so make sure you capture all the
key information (eg, the identifier of the object you see) here for
future use.

THOUGHT: <Your step-by-step thoughts>
ACTION: <The action code> Note that only one function is allowed in each

dialog turn! Only one line of code is allowed in each dialog turn! If
your output contains multiple actions or multiple turns of actions,

only the first one will be executed!

Here is a concrete example of the task input shown in Fig. 7, where the image is enclosed within
”{{}}”:

Your task is: There are 4 beer bottles on a countertop in the kitchen.
Please put all of them into the fridge.

The reachable rooms during the task are: corridor_0, dining_room_0,
kitchen_0, living_room_0, pantry_room_0, storage_room_0.

Action Feedback: None actions before.
At Hand Object: None.
Current Room: kitchen_0.
Vision Input: {{Image}}

C VAB-MINECRAFT

In this section, we provide additional details about VAB-Minecraft that are not covered in the main
paper due to space limitations.

The game Minecraft has become a popular open-world environment for developing generalist embod-
ied agents (Fan et al., 2022; Lifshitz et al., 2024) due to its diverse tasks (e.g., survival, harvest, craft,
combat, and creative tasks), varied environments, and interactive mobs, necessitating generalized
agent abilities. Recent pioneering works (Zhu et al., 2023; Wang et al., 2023a;c) have integrated
LLMs into embodied agents to tackle Minecraft tasks. However, these efforts did not focus on a
standardized pipeline for evaluating LMMs’ planning abilities. So we adapt the JARVIS-1 (Wang
et al., 2023c) pipeline to assess LMMs’ high-level action planning abilities in item-obtaining tasks.
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C.1 DETAILED DESCRIPTION

In VAB-Minecraft, we adapt the action space of JARVIS-1 (Wang et al., 2023c) to develop a pipeline
for LMM, enabling it to function as a high-level embodied planner. Additionally, we also use
item-obtaining tasks to benchmark LMMs’ high-level embodied planning abilities. These tasks are
comprehensive, requiring task analysis and decomposition, as well as ingredient collection. Each
aspect respectively challenges an LMM agent’s planning skills and its ability to interact with the
environment.

Test Set. We manually annotate 116 different tasks, each with a specific target item and a cor-
responding initial configuration to ensure the task is solvable. For example, Fig. 8 illustrates the
VAB-Minecraft task of obtaining a cake, where we have set up the initial configuration of necessary
surrounding resources and inventory items. These 116 test tasks span the Minecraft tech tree, covering
items across 6 material levels (wood, stone, iron, gold, diamond and netherite) and involving a diverse
range of raw ingredients from various resources: 11 types of plants, 4 types of animals, and 6 types
of hostile mobs. This diversity greatly challenges the agent’s ability to interact with the environment.

Training Set. Training trajectories are collected using bootstrapping from two sources: pure
gpt-4-turbo bootstrapping on newly designed tasks, and gpt-4o bootstrapping with JARVIS-1
memory on tasks from JARVIS-1. For the first type, we design 40 new tasks instantiated in different
world seeds or spawn points, resulting in 512 task instances, and gpt-4-turbo bootstraps 176
successful trajectories. For the second type, we use 132 tasks from JARVIS-1, set up in 596 task
instances, and run with memory using gpt-4o, resulting in 206 successful trajectories. In total, we
gain 382 successful trajectories.

Metrics. We adopt success rate as the evaluation metric in VAB-Minecraft. For a specific item-
obtaining task, if the agent can obtain the specific item within the limitation of 100 rounds, the task is
regarded as successfully completed.

C.2 ACTIONS

In VAB-Minecraft, we provide 6 types of actions for the LMM agent. 4 actions, marked with an
asterisk (*), are adapted from the JARVIS-1 pipeline (Wang et al., 2023c), while the remaining 2 are
newly implemented by us to enhance the LMM agent’s capability to solve a wider range of tasks.

• craft*: Utilize the inventory or crafting table to craft a specific item.
• smelt*: Utilize a furnace to smelt a specific item.
• equip*: Equip a specific item in the agent’s hand.
• teleport to spawn: Teleport the agent back to the spawn point. As we will prepare necessary

ingredients around the agent’s spawn point, this action enables the agent to conveniently collect
these ingredients. This function is also helpful if the agent stuck somewhere (e.g., underground).

• look up: Look up the crafting/smelting information about a specific item. This reference guides
the agent to make a plan on how to accomplish the task.

• execute*: Use natural language prompt to instruct a low-level minecraft planner, Steve-1 (Lifshitz
et al., 2024). With proper prompting, it can solve most basic tasks, like mining common blocks,
collecting plants, interacting with animals and hostile mobs, and navigating between different
biomes.

C.3 PROMPT EXAMPLE

The system message that describes the detailed task information to the agent is shown as follows:

# Setup
You are a skilled Minecraft player. You are born in the survival mode and

asked to obtain a specific item.
You can interact with the game environment by outputing actions using

python-style pseudo code. For each turn, please call exactly one
predefined function.

# Valid Actions
## Predefined Function List:
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Figure 8: This is an example of VAB-Minecraft task. This task asks the agent to obtain a cake in the
inventory. Initially, we provide 3 buckets and 64 logs in the inventory. Additionally, we grow mature
wheat and sugar cane in front of the agent and spawn a few chickens and cows around it, ensuring
that the agent can conveniently find the necessary ingredients.

‘‘‘
def craft(item: str, num: int = 1):

’’’Craft specified number of items. Please ensure that you get enough
ingredients and a craft_table in your inventory.

Args:
obj: the name of the item to craft.
num: the number of items to craft. Default is 1.

Returns:
A string message about whether the crafting is successful.

Examples:
>>> craft("wooden_pickaxe")
Successfully crafted 1 wooden_pickaxe.
>>> craft("bookshelf", 2)
Not enough materials for 2 bookshelf. # You don’t have 12

planks and 6 books in your inventory.
’’’

def smelt(item: str, num: int = 1):
’’’Smelt specified number of items. Please ensure that you get enough

fuels, ingredients, a furnace and a **wooden_pickaxe** in your
inventory.

Args:
obj: the name of the item to smelt.
num: the number of items to smelt. Default is 1.

Returns:
A string message about whether the smelting is successful.

Examples:
>>> smelt("iron_ingot", 2)
Successfully smelted 2 iron_ingot.
>>> smelt("glass")
Not enough fuels. # You don’t have enough coals, logs or planks

as fuel.
’’’

def equip(item: str):
’’’Select an item from your inventory to your hand. Note that if you

want to use some item, you must equip it first!
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Args:
item: the name of the item to equip.

Returns:
A string message about whether the equipping is successful.

Examples:
>>> equip("diamond_sword")
Successfully equipped diamond_sword.
>>> equip("diamond_axe")
Can not find diamond_axe in inventory. # You must have the item

in your inventory before equipping it.
’’’

def teleport_to_spawn():
’’’teleport yourself to the spawn position.
Args:

None.
Returns:

A string message about whether the teleportation is successful.
Examples:

>>> teleport_to_spawn()
Successfully teleported.

def look_up(item: str):
’’’Look up the information about crafting the item.
Args:

item: the name of the item/tag to look up.
Returns:

A string message about the information of the item. Note that if
the argument is a tag, information about all possible items
will be returned.

Examples:
>>> look_up("iron_pickaxe")
iron_pickaxe: Crafting iron_pickaxe needs 2 stick, 3 iron_ingot.

Every time you craft iron_pickaxe with the ingredients above,
you will get 1 iron_pickaxe.

>>> look_up("stone_tool_materials")
stone_tool_materials is a tag. Following items belong to this tag

: cobblestone, blackstone.
cobblestone: It is a raw item you can mine from the environment.
blackstone: It is a raw item you can mine from the environment.

’’’

def execute(prompt: str, goal_item: Optional[str] = None, num: Optional[
int] = None)
’’’Instruct a lower-level executor model to perform some simple tasks

, like mine something, collect something, move to some place.
Args:

prompt: the prompt to instruct the lower-level executor model. It
should be a simple **verb-object phrase**.

goal_item (optional): the name of the item to obtain during the
execution. If the item is obtained, the executor model will
stop.

num (optional): the number of items to obtain.
Returns:

A string message about the execution.
Negative Examples: # examples that may cause failure

Your Inventory: Now your inventory has 1 stone_pickaxe, 2 stick.
Equipped Item: Now you hold the stone_pickaxe in your hand.
>>> execute("break iron_ore blocks", "iron_ore", 64)
The executor has reached the maximum number of steps for this

turn without completing your subgoal. # Each turn is limited
in time, 64 iron_ore is too much for one turn.

Your Inventory: Now your inventory has 1 wooden_axe, 12 logs, 4
stick, 1 seed, 1 iron_pickaxe.
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Equipped Item: Now you hold the wooden_axe in your hand.
>>> execute("find and mine diamond", "diamond_ore", 1)
The executor has reached the maximum number of steps for this

turn without completing your subgoal. # You are not holding
the right tool for mining diamonds. You should equip the
iron_pickaxe first.

Your Inventory: Now your inventory has 64 dirt.
Equipped Item: Now you hold nothing in your hand.
>>> execute("climb on a tree")
The executor has attempted to execute the action according to

your prompt. You should check whether your intention has been
fulfilled. # The executor can’t plan for complex tasks; you

have to break down complex tasks into simple ones. For
example, break down the task of ‘climb on a tree‘ into ‘find
a tree‘, ‘use dirt blocks to elevate‘, and ‘jump on the tree
‘.

Your Inventory: Now your inventory has nothing.
Equipped Item: Now you hold nothing in your hand.
>>> execute("dig a hole and jump in")
Error: No complex sentences allowed. Keep the prompt a simple **

verb-object phrases**. # Your prompt contains multiple tasks
that may be confusing to the executor.

Your Inventory: Now your inventory has 4 logs.
Equipped Item: Now you hold nothing in your hand.
>>> execute("craft a wooden_axe", "wooden_axe", 1)
Error: You cannot use ‘execute‘ to craft items. Use ‘craft‘

instead. # The executor cannot craft or smelt items, call ‘
craft‘ for ‘smelt‘ function instead.

Your Inventory: Now your inventory has 4 logs, 1 crafting_table.
Equipped Item: Now you hold nothing in your hand.
>>> execute("place crafting_table")
Error: You cannot use ‘execute‘ to craft items or place the

crafting_table. Directly use ‘craft‘ instead. No need to
place the crafting_table. # The ‘craft‘ function will
automatically place the crafting_table during crafting.

Your Inventory: Now your inventory has nothing.
Equipped Item: Now you hold nothing in your hand.
>>> execute("hold down left button to punch the tree to collect

wood", "logs", 1)
The executor has reached the maximum number of steps for this

turn without completing your subgoal. # The description of
the task is too complex, it should be a **verb-object phrase
**.

Positive Examples: # good examples for reference
Your Inventory: Now your inventory has stone_pickaxe, stick.
Equipped Item: Now you hold the stone_pickaxe in your hand.
>>> execute("break iron_ore blocks", "iron_ore", 2)
Your subgoal has been successfully completed by the executor. #

You have seen the iron_ore and you are using the correct tool
. Note that if you haven’t seen the iron_ore, you’d better
use ‘break stone, obtain iron ore‘ as your prompt.

Your Inventory: Now your inventory has nothing.
Equipped Item: Now you hold nothing in your hand.
>>> execute("collect wood", "logs", 1)
Your subgoal has been successfully completed by the executor. #

The executor can only understand the instructions of simple
**verb-object phrases**.

31



Published as a conference paper at ICLR 2025

Your Inventory: Now your inventory has nothing.
Equipped Item: Now you hold nothing in your hand.
>>> execute("dig a hole", "dirt", 4)
Your subgoal has been successfully completed by the executor. #

Your instructions are simple and easy to understand.

Your Inventory: Now your inventory has 1 wooden_axe, 2 stick.
Equipped Item: Now you hold the wooden_axe in your hand.
>>> execute("find a river")
The executor has attempted to execute the action according to

your prompt. You should check whether your intention has been
fulfilled. # The executor has the ability to find the

environment you are looking for, despite the possibility of
failure.

Prompt Examples: # some simple prompts for reference
"chop down the tree", "break leaves", "collect seeds", "break a

flower", "dig down", "break stone, obtain iron ore", "break
gold_ore blocks", "mine diamond ore", "kill sheep", "milk cow", "
combat spider", "find a river", "break stones", "break sand
blocks", "move out of the cave".

’’’
‘‘‘
## Reminder
1. You can only call one function in each turn.
2. If you have no idea on how to solve the task or are unfamiliar with

some items, please call the ‘look_up‘ function to check the item.
3. For some items that you can not mine or obtain with your bare hand,

try to equip a pickaxe (wooden_pickaxe, stone_pickaxe, ...) before
mining it.

4. Some necessary resources (e.g., mobs, plants) might be prepared for
you near the spawn point. If you’re struggling to find certain
ingredients or find yourself stuck somewhere, you can use the ‘
teleport_to_spawn‘ function to return there.

5. When calling the executor, keep the positive examples and negative
examples in mind! If the executor cannot complete your subgoal, check
whether you have the right item in your hand, and try to break your

prompt into smaller steps and adjust your subgoal, modify the prompt,
or carefully repeat the prompt.

6. Do not repeat the failed action in the next round. Try to understand
what went wrong and make a different decision.

# Input
For each dialog, you will be given the following information at the

beginning.
- Task Goal: The item you should obtain in your inventory.
For each turn, you will be given the following information.
1. Feedback on the Action: The feedback on the action you output in the

last turn.
2. Your Inventory: The items in your inventory.
3. Equipped Item: The item you are currently holding in your hand.
4. Location and Orientation: including X, Y, Z, Pitch and Yaw. X and Z

are horizontal coordinates; Y is the height. Pitch measures the tilt
of the player’s view: 0, positive values and negative values mean the
player is looking horizontally, downward, and upward, respectively.

Yaw measures the rotation around the player’s vertical axis: 0 or 360
degrees north, 90 degrees east, 180 degrees south, and 270 degrees

west.
5. Vision Input: What you see from your perspective.

# Output
Now, given these information, you need to think and call the action

needed to proceed with the task. Your response should include 3 parts
in the following format in each turn:
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OBSERVATION: <What you observe in the image> Note that the Vision Input
image won’t be kept in the dialog, so make sure you capture all the
key information (eg, the biome or items you see) here for future use.

THOUGHT: <Your step-by-step thoughts>
ACTION: <The action code> Note that only one function is allowed in each

dialog turn! Only one line of code is allowed in each dialog turn! If
your output contains multiple functions or multiple turns of

functions, only the first one will be executed!

Here is a concrete example of the task input shown in Fig. 8, where the image is enclosed within
”{{}}”:

Your task is to get a cake in your inventory.
Feedback on the Action: No action before.
Your Inventory: Now your inventory has 64 oak_log, 3 bucket.
Equipped Item: Now you hold the oak_log in your hand.
Location and Orientation: Now you locate in X: 431.50, Y: 65.00, Z:

-158.50, Pitch: 0.00, Yaw: 0.00.
Vision Input: {{Image}}

D VAB-ANDROIDLAB

In this section, we provide additional details regarding VAB-AndroidLab that are not covered in the
main text due to space limitations.

D.1 DETAILED DESCRIPTION

To introduce the Android Eval benchmark, we developed a framework including an operational
environment and a benchmark tailored for agents interacting with Android.

Android Eval benchmark comprises 119 tasks across 8 different apps, offering evaluation suites
considering the device’s and screen’s state. It implements evaluation frameworks for both the
ReAct (Yao et al., 2023) and SeeAct (Zheng et al., 2024) methods. For reproducibility, the Android
virtual device provides standard evaluation virtual machines preloaded with various apps’ operation
histories and offline data, ensuring that network or temporal factors do not affect evaluations. To
simulate real-world tasks, we offer Android virtual machine images with randomized operations,
ensuring evaluations do not have to start from an initial usage state and enabling more complex task
completion recognition based on the machine and current page state.

D.2 ACTIONS

In VAB-AndroidLab, agents are required to accomplish diverse user tasks through predefined actions.

• tap: Tap element with specific id.
• type: Type the message into the input box and press enter if needed.
• long press: Tap element with specific id for a long duration.
• swipe: Swipe with distance and direction.
• finish: Finish the task with optional message.
• press back: Press back button.
• press home: Press home button.

D.3 METRICS

The metric we designed is directly oriented towards task completion. We can directly assess the
task’s success rate by checking whether the operation sequence includes necessary screens or device
states that indicate task completion. For example, in setting an alarm time, we sequentially check if
the task sequence includes the correctly set alarm time and if the alarm is turned on. Specifically, the
metrics we designed are as follows:
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• Success Rate: We measure the success rate by device state and screen state for the operation
task.We measure the success rate for the query task by comparing the model answer with the
ground truth.

D.4 PROMPT EXAMPLE

Here is the system prompt we use.

You are an agent that is trained to complete certain tasks on a
smartphone. You will be

given a screenshot of a smartphone app. The interactive UI elements on
the screenshot are labeled with numeric tags

starting from 1.

You can call the following functions to interact with those labeled
elements to control the smartphone:

1.tap(index: int)

Taps the UI element labeled with the given number.
Example: tap(5)

2.text(input_str: str)

Inserts the given text into an input field.
Example: text("Hello, world!")
Since we use ADB keyboard, if ADB keyboard ON is displayed on the bottom

of the screen, you can use this function.
If you think that the keyboard is displayed after your previous operation

, you can try to use this function to input text.

3.long_press(index: int)

Long presses the UI element labeled with the given number.
Example: long_press(5)

4. swipe(index: int, direction: str, dist: str)

Swipes the UI element in the specified direction and distance. "direction
" is a string that

represents one of the four directions: up, down, left, right. "dist"
determines the distance of the swipe and can be one

of the three options: short, medium, long.
Example: swipe(21, "up", "medium")

5. back()

Simulates a back button press on the smartphone.

6. home()

Simulates a home button press on the smartphone.

7. wait(interval: int)

Pauses the execution for the given number of seconds. Default is 5 second
.

8. finish(message: str)

Ends the task and provides the final output. You can return the final
output of the task as a string.

Example: finish("Task completed")
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Now, given the following labeled screenshot, you need to think and call
the function needed to proceed with the task.

Your output should include only action part in the given format:

Action: <The function call with the correct parameters to proceed with
the task. If you believe the task is completed or

there is nothing to be done, you should use finish function. You cannot
output anything else except a function call

in this field.>

Whenever you think the task is finished, you should use finish function
to avoid extra operations.

If you found yourself in a loop or the task is not proceeding as expected
, you might consider changing your operation and try other methods.

If you operate same action 5 times, the program will automatically stop.
If tap operation is not working, you can try long press operation.

You can only take one action at a time, so please directly call the
function.

E WEBARENA-LITE

In this section, we provide additional details regarding WebArena-Lite that are not covered in the
main text due to space limitations.

E.1 DETAILED DESCRIPTION

WebArena (Zhou et al., 2023) is designed to evaluate the ability of agents to perform complex user
tasks described in high-level natural language in a realistic, interactive web environment. To achieve
this goal, WebArena presented a highly simulated and interactive web environment, which consists
of five common websites, including Gitlab, map, forum, online shopping, and content management
platform. It is also equipped with external tools such as sketch pad and calculator, which enhance
the ability of the agents to perform user tasks. In contrast to other benchmarks where the agents are
constrained to act as website users, WebArena proposed innovative ways to simulate different user
roles. For instance, they constructed a content management platform (CMS) and granted the agent
full administrative privileges. This assesses the agent’s capacity to assume various roles in complex
scenarios.

• Task Description: As web GUI agents, LMMs are asked to accomplish user instructions on
certain websites. For example, on OneStopShop website, an instruction would be “What do
customers say about brush from sephora”, and LMM agents should search for
the product, enter the review section, and summarize the customer reviews (or turn out finding no
review). To enable the action of LMM agents with visual input, we implement HTML SoM (Koh
et al., 2024) to annotate operable HTML elements with ids on the screenshot, we also provide a
list of textual information for all clickable elements. LMM agents generate actions and the id of
elements being operated by playwright.

• Test Set: We build WebArena-Lite, a subset of 165 representative tasks by selection, refinement,
and adaptation to multimodality evaluation (i.e., screenshot). Our refinement focuses on resolving
implausible judge conditions, where 30 tasks are being manually fixed (Cf. Appendix E.4). The
implausibility may involve wrong answers, too-strict criteria (e.g., exact match), impossible
tasks due to environment bugs, etc. Additionally, we remove cross-website tasks for simplicity of
testing.

• Training Set: Creating environment-dependent task instructions and trajectories for training
on web could be challenging. In VAB, for each website we first summarize the basic functions
and valid items for synthetic queries to condition on. Based on summarized functions, we come
up with an array of task prototypes (with item placeholders) and manually write playwright
scripts as rule-based solvers for each task prototype. We fill task prototypes with both valid
and invalid items to yield detailed instructions (later being rephrased by LLMs for expression
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Figure 9: This is an example of WebArena-Lite task where we use the SoM approach to highlight
actionable elements. This task requires the agent to modify the user’s status information. To
accomplish this, the agent initially clicks on the user’s avatar, which directs them to the status shown
in the figure. At this point, the agent should select the option labeled ”(21) Edit Status” in
order to access the modification page and complete the task.

diversity), and run corresponding solvers on the website to collect groundtruth trajectories with
screenshots and operations. 5 authors create around 40 task prototypes with corresponding solvers,
and generating 1,186 valid training samples (i.e., instruction, trajectory, and reward function) for
WebArena-Lite.

E.2 ACTIONS

In WebArena-Lite, agents are required to accomplish diverse user tasks through a series of predefined
actions. However, real-world webpages are often complex, and thus, we provide these actions in
order to ensure simplicity and practicality.

• click: Click element with specific id.
• hover: Hover element with specific id.
• type: Type the message into the input box with a specific id and press enter if needed.
• press: Emulates a keyboard key combination.
• scroll: Scrolls the page up or down.
• new tab: Opens a new tab in the current browser.
• tab focus: Switches to the tab with specific index.
• close tab: Closes the current tab.
• goto: Go to specific URL.
• go back: Go back to the previous page.
• go forward: Go to the next page if it exists.
• stop: Terminates the operation, returns the response, and exits.

E.3 METRICS

In real-world web browsing scenarios, there can be multiple ways for an agent to accomplish a task.
Consequently, WebArena-Lite only considers whether the task has been completed or not, without
considering the execution trajectory of the agent, therefore, the metric used in WebArena-Lite is
Success Rate (SR). We maintain the evaluation method described by WebArena (Zhou et al., 2023),
which can be categorized into three categories based on task type.
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• Question Answering: Agent needs to give an answer and the score depends on the string-
matching result.

• Webpage Navigation: Agent must navigate to a specific web page. The completion of the task is
dependent on the URL of the page on which the agent terminated.

• Content modification: Agent needs to interact with the environment to modify the configuration
of the webpage, and the evaluation will extract the content of the page and match it to check
whether the content meets the expectations.

In light of the aforementioned considerations, string-matching patterns can be classified into three
distinct categories:

• exact match: The response of the agent is scored when it exactly matches the token sequence
corresponding to the answer.

• must include: Answers that contain a specific token sequence are considered a match.
• fuzzy match: Utilizes LLMs such as GPT-4 to assist in determining whether an answer is correct.

The selection of appropriate evaluation metrics for distinct types of tasks enables the construction of
a comprehensive and relatively accurate test set.

E.4 TASK AMENDMENT

Some tasks in WebArena have typos, incorrect answers, and inaccurate scoring criteria. Therefore, we
selected 165 tasks from WebArena with different templates and then corrected 39 of them, as shown
in Table E.4. Considering that the model uses natural language to answer the questions, we change
the tasks that require exact match to must include or fuzzy match, and also correct the answers.

Table 11: Task instructions fixed in WebArena-Lite

ID Website Task Before After
7 Map Tell me the full address of all international airports that

are within a driving distance of 50 km to Carnegie
Mellon University.

exact match fuzzy match

33 Map I will arrive Pittsburgh Airport soon. Provide the name
of a Hilton hotel in the vicinity, if available. Then, tell
me the the shortest walking distance to a supermarket
from the hotel.

must include fuzzy match

37 Map Check if the police station in pittsburgh can be reached
in one hour by car from gates building at CMU.

must include fuzzy match

43 CMS List the top 3 search terms in my store. hollister, Joust
Bag, Antonia
Racer Tank

hollister, Joust
Bag, nike

65 CMS Which customer has completed the fifth most number of
orders in the entire history?

Jane Doe Matt Baker

71 Map What is the zip code of Chatham University? exact match must include
82 Map What is the duration required to first walk from

Massachusetts Institute of Technology to Harvard
University, and then drive to Boston Logan International
Airport?

63 min 64 min

97 Map Tell me the distance to drive from Carnegie Mellon
University to the top computer science school in
massachusetts.

must include fuzzy match

98 Map Where is the nearest tea cafe to University of Pittsburgh,
and what is the walking distance to it?

must include fuzzy match

103 Gitlab Display the list of issues in the
kkroening/ffmpeg-python repository that have labels
related to questions.

URL: sort by
created date,
state is opened
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Table 11: Task instructions fixed in WebArena-Lite

ID Website Task Before After
109 CMS Presents the monthly count of successful orders

{{period}} in MM:COUNT format.
January: 11
orders, February:
16 orders

01:11, 02:16

127 CMS What brands appear most frequently among the top
search terms?

Hollister, Joust,
Antonia

Hollister

135 Gitlab How many commits did Eric and Kilian make to
a11yproject on 1/3/2023?

1 0

167 OSS What are the main criticisms of this product? Please
extract the relevant sentences.

must include fuzzy match

215 CMS What are the key aspects that the customers don’t like
about Circe ice fleece.

fuzzy match
(“Material
quality, . . . ”)

exact match
(“N/A”)

225 OSS What do customers say about brush from sephora. N/A No reviews
available

235 OSS Get the order number of my most recent under delivery
order.

fuzzy match must include

236 Map Where is the nearest pharmacy from Carnegie Mellon I
can walk within 20mins.

must include fuzzy match

240 OSS I am doing a market survey for one stop market, show
me the most expensive product from competative
swimwear category.

URL

254 Map What is the phone number of Western Pennsylvania
Hospital.

exact match fuzzy match

259 Gitlab Get me my RSS feed token. exact match must include
287 Map How much time does it take from Pittsburgh to

Philadelphia by car?
5h 47m 8h 33m

288 CMS Tell me the name of the customer who has the most
cancellations in the history.

exact match must include

296 Gitlab Show me the command to clone the best GAN python
implementation with SSH.

metis.lti.
cs.cmu.edu

localhost

311 Gitlab Tell me who has made the most contributions, in terms
of number of commits, to the Pytorch GAN project.

exact match must include

348 CMS How many reviews our shop received in May 2023? must include fuzzy match
349 Gitlab Who else have access to my repo gimmiethat.space,

show me their usernames.
exact match must include

367 Map Measure distance between Carnegie Mellon University
and CVS (closet one) by walking.

exact match fuzzy match

376 OSS Summarize customer reviews for Amazon Echo Dot 3rd
generation.

N/A fuzzy match
(“Serena: it. . . ”)

392 Gitlab Post \”Good idea\” for the merge request related to
color ulitity in a11yproject.com project”.

URL

528 OSS Draft a refund message via their \”contact us\” form
for the phone screen protector I bought March 2023. It
broke after three days of use. The shop requires the
order id, the reason and the amount to refund in the
message. Don’t submit yet.

must include fuzzy match

538 CMS Modify the address of order #299 to 456 Oak Avenue,
New York, NY, 10001.

. . . 456 Oak
Avenue,
Apartment 5B,
New York. . .

. . . 456 Oak
Avenue, New
York. . .

641 Reddit Post a notice on a virtual meetup for Harry Potter
enthusiasts on July 8th in the books subreddit.

must include fuzzy match

645 Reddit Post in books subreddit about what could machine
learning help the correpong field.

must include fuzzy match
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Table 11: Task instructions fixed in WebArena-Lite

ID Website Task Before After
657 OSS Fill the \”contact us\” form in the site for a refund on

the speaker I bought, stating that it broke after just three
days of use. Also, ensure to include the order number
#148 and the product SKU. Don’t submit yet, I will
check.

must include fuzzy match

668 Gitlab Submit a merge request for a11yproject.com/redesign
branch to be merged into master branch, assign Roshan
Jossy as the reviewer.

Justin Armstrong Roshan Jossy

693 OSS Draft an email to the shop owner via their contact us
function for a coupon as my refund is suppoed to be
replaced by a coupon.

program match url match

798 OSS Change the delivery address for my most recent order to
77 Massachusetts Ave, Cambridge, MA.

fuzzy match must include

E.5 PROMPT EXAMPLE

Here is the system prompt we use, you can find more prompt examples in VisualWebArena (Koh
et al., 2024).

You are an autonomous intelligent agent tasked with navigating a web
browser. You will be given web-based tasks. These tasks will be
accomplished through the use of specific actions you can issue.

Here’s the information you’ll have:
The user’s objective: This is the task you’re trying to complete.
The current web page’s accessibility tree: This is a simplified

representation of the webpage, providing key information.
The current web page’s URL: This is the page you’re currently navigating.
The open tabs: These are the tabs you have open.
The previous action: This is the action you just performed. It may be

helpful to track your progress.

The actions you can perform fall into several categories:

Page Operation Actions:
```click [id]```: This action clicks on an element with a specific id on

the webpage.
```type [id] [content]```: Use this to type the content into the field

with id. By default, the "Enter" key is pressed after typing unless
press_enter_after is set to 0, i.e., ```type [id] [content] [0]```.

```hover [id]```: Hover over an element with id.
```press [key_comb]```: Simulates the pressing of a key combination on

the keyboard (e.g., Ctrl+v).
```scroll [down]``` or ```scroll [up]```: Scroll the page up or down.

Tab Management Actions:
```new_tab```: Open a new, empty browser tab.
```tab_focus [tab_index]```: Switch the browser’s focus to a specific tab

using its index.
```close_tab```: Close the currently active tab.

URL Navigation Actions:
```goto [url]```: Navigate to a specific URL.
```go_back```: Navigate to the previously viewed page.
```go_forward```: Navigate to the next page (if a previous ’go_back’

action was performed).

Completion Action:
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```stop [answer]```: Issue this action when you believe the task is
complete. If the objective is to find a text-based answer, provide
the answer in the bracket.

Homepage:
If you want to visit other websites, check out the homepage at http://

homepage.com. It has a list of websites you can visit.
http://homepage.com/password.html lists all the account name and password

for the websites. You can use them to log in to the websites.

To be successful, it is very important to follow the following rules:
1. You should only issue an action that is valid given the current

observation
2. You should only issue one action at a time.
3. You should follow the examples to reason step by step and then issue

the next action.
4. Generate the action in the correct format. Start with a "In summary,

the next action I will perform is" phrase, followed by action inside
``````. For example, "In summary, the next action I will perform is
```click [1234]```".

5. Issue stop action when you think you have achieved the objective. Don’
t generate anything after stop.

F VAB-CSS

In this section, we provide additional details regarding VAB-CSS that are not covered in the main
text due to space limitations.

F.1 DETAILED DESCRIPTION

Existing datasets for frontend design have two major shortcomings: 1) They focus mainly on single-
round interactions, and 2) They do not provide definitive success metrics for individual tasks. Instead,
these benchmarks assess using continuous metrics like CLIP score (Si et al., 2024) or qualitative
analysis only (Laurençon et al., 2024). The reason is that they expect the model to output an
entire HTML file replicating the target web design, which is too challenging and unrealistic for
current LMMs. Therefore, employing a definitive success rate as the metric is meaningless for them.
Consequently, they may fail to adequately assess LMMs’ potential in serving as adaptive agents
that can make new decisions based on varying observations. Also, a binary success rate is often
more decisive and crucial to determine whether agents can faithfully execute human instructions,
which is essential for practical use. To address these issues, we introduce a VAB-CSS, which is
better tailored for evaluating multimodal agents. In VAB-CSS, an agent is expected to strictly take a
sequence of actions using our provided toolkit to accomplish a task (Section. F.3). Specifically, it
needs to iteratively refine the CSS definition based on the rendering outcomes it receives. The more
constrained action space based on our toolkit, compared to outputting an entire HTML file, along
with a more practical goal for current LMMs (i.e., CSS bug-fixing), makes it possible to evaluate a
definitive success rate for a given task. Additionally, VAB-CSS makes minimal assumptions in terms
of simplifying the task environment, such as embedding all CSS definitions within a single HTML
page or replacing images with placeholders in existing datasets. Instead, the agent directly operates
over the entire web frontend project to fix the CSS style. See a comprehensive checklist in Table 12.

F.2 DATA COLLECTION

Random CSS Corruption. To ensure the task is manageable for LMMs, each task instance involves
corrupting a single categorical property of a random CSS rule by either altering its value or removing
it entirely. Note that, even fixing a single corruption is already highly challenging for current LMMs,
and a tiny corruption can often lead to a drastic change in visual effect (see Figure 10). We can increase
the task’s complexity in the future by involving multiple corruptions once the single-corruption task
has been mastered.
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Table 12: A fine-grained comparison of VAB-CSS with existing datasets on web frontend develop-
ment. VAB-CSS provides both training and test data. Additionally, its multi-round nature, definitive
success rate metric, and multi-file environment make it well-suited as a practical multimodal agent
task.

Train Test Multi Round Definitive Eva. Multi-File Env.

WebSight (Laurençon et al., 2024) ✓ ✗ ✗ ✗ ✗
Design2Code (Si et al., 2024) ✗ ✓ ✗ ✗ ✗
VAB-CSS ✓ ✓ ✓ ✓ ✓

Target Design Corrupted Web Page

Figure 10: This is an example of our annotation task. Authors are shown the target design and
a corrupted web page side by side to prompt them to describe necessary adjustments in natural
language. In this example, the instruction is: “Correct the background color of the footer and main
section, and adjust the positioning of elements, including centering the website logo in the header by
moving it downward.” The two screenshots, along with the HTML code and annotated instruction,
will collectively serve as the initial task input for the agent.

Human Annotations. Existing LMMs struggle to identify the difference between the current
rendering and the target design, so we manually annotate each instance with a natural language
description of the difference between the two images. Such natural language descriptions could
serve as additional clues for the agent to perceive the visual difference (see a concrete example of
annotation in Figure 10).

Training Trajectories. To collect training trajectories, we primarily sample from the predictions
of gpt-4o on our training instances, retaining the successful trajectories for training. Given the
success rate of gpt-4o is around 35%, we also sample its trajectories in a more lenient setting where
the target CSS rule to edit is provided as input. For task instances where gpt-4o succeeds in the
lenient setting, we combine its successful trajectory with its failure trajectory in the standard setting
to create a more realistic trial-and-error trajectory.

F.3 ACTIONS

In VAB-CSS, the agent is expected to interact with a practical frontend project, potentially with
numerous CSS files, to fix its style issues. Inputting the entire project directly into the agent is
impractical and inefficient. Instead, the agent has access only to screenshots and the current HTML
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code. To facilitate effective navigation and editing within the project, we provide the agent with a
toolkit. This toolkit allows the agent to locate and edit incorrect CSS definitions seamlessly, without
needing to know the specific file containing the CSS rule.

• get selectors by html element: This function allows the agent to locate a list of CSS selectors,
potentially from various files, associated with an HTML element whose style appears to be
incorrect.

• select rule: This function allows the agent to check the definition of a CSS rule by specifying a
CSS selector.

• edit rule: This function enables the agent to update the property value of a CSS rule for a
specified CSS selector.

• revert last edit: During the trial and error, the agent can revert an edit it later determines to be
incorrect.

F.4 METRICS

As discussed earlier, a critical feature of VAB-CSS, compared with existing benchmarks, is its
definitive success rate evaluation. The most straightforward way to determine whether a task is
successfully handled is to check whether the SSIM similarity between the target design and the final
rendering is 1.0. However, we have observed that this can be too strict. Typically, an SSIM greater
than 0.9 indicates minimal differences that are hard for humans to perceive.4 Therefore, we define
a task as successful if the final similarity is greater than 0.9. Finally, we adopt two metrics on our
entire test set.

• Success Rate (SR): This is the primary metric indicating the ratio of tasks in the test set that have
been successfully fixed based on our definition.

• Improve Rate (IR): This metric evaluates the ratio of tasks where the final rendering is more
similar to the target design than the initial rendering. It serves as a complementary soft metric to
the success rate.

F.5 PROMPT EXAMPLE

The system message that describes the detailed task information to the agent is shown as follows:

You are a CSS agent. You will be given a target screenshot and an html
file. Your job is to correct perceive the layout difference between
the current rendering and the target screenshot, then accordingly fix
the css rules used in the html file to match the target screenshot.

To facilitate the process, you can use the following tools provided by
the system:

1. get_selectors_by_html_elements
Sometimes, the exact selector of the rule you want to edit is not clear.

This tool takes the html element specification that could be directly
passed to soup.find_all as input and returns the matched selectors.

For example, get_selectors_by_html_elements("’a’, {’data-custom’: ’
custom-value’}, string=’haha’, class_=’xxx’"). The argument should be
the string representation of valid arguments of the find_all method

in BeautifulSoup, which means we can directly do eval(f"soup.find_all
({argument})"). Please strictly stick to the usage of BeautifulSoup.
Make sure the arguments are valid (e.g., the tag name must be wrapped
with quotes, attributes should be a dictionary). You can use this

tool to first find the selector of the rule of a specific html
element whose style you want to fix.

2. select_rule
This takes the css rule’s selectorText as input and returns the rule. You

can use this tool to view the properties of a rule, which may help
you to decide which rule to edit. Usually, it’s recommended to first
use this tool to view the rule before deciding which rule to edit.

3. edit_rule

4This threshold of 0.9 is an empirical choice based on our observations.
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This takes the css rule’s selectorText, the property name, and the value
of the property as input. You can use this tool to change the value
of a property of a rule or insert a new property to the rule, if you
believe this change would make the rule closer to the target
screenshot. Note that, most of the layout issues are related to the
categorical properties, such as border, float, display, overflow,
position, etc.

4. revert_last_edit
This tool reverts the last single edit you made. You can use this tool to

undo the last edit, if you believe it was a mistake. This action
takes no arguments.

Make sure the selectorText is valid based on the html file, i.e., it’s
from the class or id of the html elements. In addition, please focus
on the major layout issue! Ignore the font size, font family, and
color of the text, even if you believe they are not perfect.

You can only take ONE action at a time!! For each step, you may first
state your thought, then take an action following the format of
Thought: ...

Action: ... (do not add any linebreak after the colon).
For example, you may output
"Thought: I think I should adjust the alignment property of the rule,

because the target screenshot shows the text should be centered.
Action: edit_rule(’.templatemo_menu li’, ’text-align’, ’center’)".

After editing a rule or inserting a rule, you will see the updated
screenshot of the html file. You should decide your next action (e.g
., to revert the last edit or keep adjusting the css) based on the
updated screenshot. If you think you have already fixed the css style
, please say exactly "I have fixed the css style".

Please strictly follow the format specified above, and please don’t
repeat the same action in multiple rounds. Also note that, you don’t
need to worry about how these tools are executed, your job is just to
correctly predict the tool invocation.

Here is a concrete example of the task input shown in Fig. 10, where variables are enclosed within
“{{}}”:

Here is a screenshot of the target design:
{{Image 1}}
Here is the screenshot of the current web page:
{{Image 2}}
Here is the HTML code of the current web page:
{{HTML file}}

Correct the background color of the footer and main section, and adjust
the positioning of elements, including centering the website logo in
the header by moving it downward.

G CASE STUDIES

G.1 VAB-OMNIGIBSON CASES

In this section, we show successful and failed examples of gpt-4o and InternVL-2 in Figure 11,
Figure 12, Figure 13 and Figure 14.
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Round 1 [Env] Action Feedback: None actions before.
At Hand Object: None.
Current Room: grocery_store_0.
[Agent] OBSERVATION: I see two cartons (1.carton) and a checkout 
counter (5.checkout) in the grocery store. There is also a cart (4.cart) 
nearby.
THOUGHT: I need to first grasp one of the cartons and then move to 
the checkout counter to place it there. After that, I will need to return for 
the second carton and the money.
ACTION: grasp(1.carton)

Round 2 [Env] Action Feedback: The last action is `grasp(1.carton)`, the 
feedback is "Grasped successfully!".
At Hand Object: 1.carton.
Current Room: grocery_store_0.
[Agent] OBSERVATION: I am currently holding the first carton (1.carton). 
The checkout counter (5.checkout) is visible and within reach.
THOUGHT: I need to move towards the checkout counter to place the 
carton there.
ACTION: move(5.checkout)

Round 3 [Env] Action Feedback: The last action is `grasp(1.carton)`, the 
feedback is "Grasped successfully!".
At Hand Object: 1.carton.
Current Room: grocery_store_0.
[Agent] OBSERVATION: I have successfully moved to the checkout 
counter (5.checkout) while holding the first carton (1.carton). The 
second carton (2.carton) and the money (3.money) are also visible 
nearby.
THOUGHT: I will now place the first carton on the checkout counter and 
then return to grasp the second carton.
ACTION: put_on_top(1.carton, 5.checkout)

Round 4 [Env] Action Feedback: The last action is `put_on_top(1.carton, 
5.checkout)`, the feedback is "Put on top successfully!".
At Hand Object: None.
Current Room: grocery_store_0.
[Agent] OBSERVATION: The first carton (1.carton) is successfully 
placed on the checkout counter (5.checkout). The second carton 
(2.carton) and the money (3.money) are still visible and within reach.
THOUGHT: I will now grasp the second carton and then place it on the 
checkout counter.
ACTION: grasp(2.carton)

Round 5 [Env] Action Feedback: The last action is `grasp(2.carton)`, the 
feedback is "Cannot grasp! The object is not within reach of the robot!".
At Hand Object: None.
[Agent] OBSERVATION: I cannot grasp the second carton (2.carton) 
because I am not within reach. The money (3.money) is also visible on 
the checkout counter.
THOUGHT: I need to move closer to the second carton to grasp it. After 
that, I can place it on the checkout counter.
ACTION: move(2.carton)

Round 6 [Env] Action Feedback: The last action is `move(2.carton)`, the 
feedback is "Moved successfully!".
At Hand Object: None.
Current Room: grocery_store_0.
[Agent] OBSERVATION: I have successfully moved closer to the 
second carton (2.carton). It is now within reach.
THOUGHT: I will now grasp the second carton and then proceed to 
place it on the checkout counter.
ACTION: grasp(2.carton)

Round 7 [Env] Action Feedback: The last action is `grasp(2.carton)`, the 
feedback is "Grasped successfully!".
At Hand Object: 2.carton.
Current Room: grocery_store_0.
[Agent] OBSERVATION: I have successfully grasped the second carton 
(2.carton). The checkout counter (5.checkout) is still visible, and I can 
place the carton there.
THOUGHT: I will now move to the checkout counter to place the 
second carton on top.
ACTION: move(5.checkout)

Round 8 [Env] Action Feedback: The last action is `move(5.checkout)`, 
the feedback is "Moved successfully!".
At Hand Object: 2.carton.
Current Room: grocery_store_0.
[Agent] OBSERVATION: I have successfully moved to the checkout 
counter (5.checkout) while holding the second carton (2.carton). The 
checkout counter is now in view.
THOUGHT: I will place the second carton on the checkout counter.
ACTION: put_on_top(2.carton, 5.checkout)

Round 9 [Env] Action Feedback: The last action is `put_on_top(2.carton, 
5.checkout)`, the feedback is "Put on top successfully!".
At Hand Object: None.
Current Room: grocery_store_0.
[Agent] OBSERVATION: The money (3.money) is not visible to me at 
the moment. I can see both cartons (1.carton and 2.carton) on the 
checkout counter (5.checkout).
THOUGHT: I need to move around to find the money. I will explore the 
grocery store to locate it.
ACTION: move(4.cart)

Round 10 [Env] Action Feedback: The last action is `move(4.cart)`, the 
feedback is "Moved successfully!".
At Hand Object: None.
Current Room: grocery_store_0.
[Agent] OBSERVATION: I can now see the money (3.money) inside the 
cart (4.cart). It is visible and within reach.
THOUGHT: I will grasp the money and then return to the checkout 
counter to place it there.
ACTION: grasp(3.money)

Round 11 [Env] Action Feedback: The last action is `grasp(3.money)`, 
the feedback is "Grasped successfully!".
At Hand Object: 3.money.
Current Room: grocery_store_0.
[Agent] OBSERVATION: I have successfully grasped the money 
(3.money). The checkout counter (5.checkout) is visible, and I can now 
return to place the money there.
THOUGHT: I will move back to the checkout counter to place the 
money on top.
ACTION: move(5.checkout)

Round 12 [Env] Action Feedback: The last action is `move(5.checkout)`, 
the feedback is "Moved successfully!".
At Hand Object: 3.money.
Current Room: grocery_store_0.
[Agent] OBSERVATION: I have successfully moved to the checkout 
counter (5.checkout) while holding the money (3.money). Both cartons 
(1.carton and 2.carton) are already on the counter.
THOUGHT: I will now place the money on the checkout counter to 
complete the task.
ACTION: put_on_top(3.money, 5.checkout)

Figure 11: This is an example of gpt-4o successfully completing a VAB-OmniGibson task. Task
instruction: “Place the two cartons and the money on the checkout counter in the grocery store.”
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Round 1 [Env] Action Feedback: None actions before.
At Hand Object: None.
Current Room: living_room_0.
[Agent] OBSERVATION: In the current view, I can see a book labeled 
as "4.book" on the floor near a cabinet and a carton labeled as 
"9.carton" on top of the cabinet.
THOUGHT: To start the task, I need to put 3 books into the carton and 
3 books on top of the carton. I will begin by picking up the book labeled 
"4.book" that is visible on the floor.
ACTION: grasp(4)

Round 2 [Env] Action Feedback: The last action is `grasp(4)`, the 
feedback is "Grasped successfully!".
At Hand Object: 4.book.
Current Room: living_room_0.
[Agent] OBSERVATION: In the current view, I can see the carton 
labeled as "9.carton" on top of the cabinet.
THOUGHT: I am currently holding a book, and I need to put 3 books 
into the carton. Since the carton is on top of the cabinet, I need to move 
closer to the cabinet to be able to reach the carton.
ACTION: move(9)

Round 3 [Env] Action Feedback: The last action is `move(9)`, the 
feedback is "Moved successfully!".
At Hand Object: 4.book.
Current Room: living_room_0.
[Agent] OBSERVATION: In the current view, I can see the carton 
labeled as "9.carton" and two other books labeled as "6.book" and 
"8.shelf_book". The carton is close to me, and the other books are on a 
shelf and a table.
THOUGHT: I am currently holding a book and standing near the carton. 
I should put this book into the carton as part of the task requirement to 
place 3 books inside the carton.
ACTION: put_inside(4, 9)

9 rounds are omitted here.

Round 4 [Env] Action Feedback: The last action is `put_inside(4, 9)`, the 
feedback is "Put inside successfully!".
At Hand Object: None.
Current Room: living_room_0.
[Agent] OBSERVATION: In the current view, I can see two books: one 
labeled as "6.book" on a table and another labeled as "8.shelf_book" on 
a shelf.
THOUGHT: I need to continue placing books into the carton. I will grasp 
the book labeled "6.book" on the table next, as it is easily accessible.
ACTION: grasp(6)

Round 5 [Env] Action Feedback: The last action is `grasp(6)`, the 
feedback is "Cannot grasp! The object is not within reach of the robot!".
At Hand Object: None.
Current Room: living_room_0.
[Agent] OBSERVATION: In the current view, I can see the book labeled 
as "6.book" on a table and another book labeled as "8.shelf_book" on a 
shelf. The carton labeled as "9.carton" is also visible.
THOUGHT: I attempted to grasp the book labeled "6.book" but was too 
far away. I need to move closer to the table where "6.book" is located 
to grasp it successfully.
ACTION: move(6)

Round 15 [Env] Action Feedback: The last action is `turn_right()`, the 
feedback is "Turned right successfully!".
At Hand Object: None.
Current Room: living_room_0.
[Agent] OBSERVATION: In the current view, I can see a sofa, a coffee 
table with a book labeled as "10.book", a chair, and a door leading to 
another room. There is also a plant and a lamp in the room.
THOUGHT: I see a book labeled as "10.book" on the coffee table. This 
book can be used to start placing books on top of the carton. I need to 
move closer to the coffee table to grasp the book.
ACTION: move(10)

Round 16 [Env] Action Feedback: The last action is `move(10)`, the 
feedback is "Invalid object id 10! The corresponding object does not 
exist.".
At Hand Object: None.
Current Room: living_room_0.
[Agent] OBSERVATION: In the current view, I can see a book labeled 
as "10.book" on the coffee table. There is also a sofa, a chair, and a 
door leading to another room. A plant and a lamp are visible in the room.
THOUGHT: My previous attempt to move towards the book was 
unsuccessful due to an incorrect object identifier. Now that I can see 
the book labeled as "10.book" clearly on the coffee table, I will attempt 
to move towards it correctly.
ACTION: move(10.book)

Round 17 [Env] Action Feedback: The last action is `move(10.book)`, 
the feedback is "Invalid object id 10! The corresponding object does not 
exist.".
At Hand Object: None.
Current Room: living_room_0.
[Agent] OBSERVATION: In the current view, I can see a sofa, a coffee 
table with a book labeled as "10.book", a chair, and a door leading to 
another room. There is also a plant and a lamp in the room.
THOUGHT: My previous attempts to move towards the book labeled 
"10.book" were unsuccessful due to an incorrect object identifier. I will 
now correctly reference the book by its identifier and attempt to grasp it.
ACTION: grasp(10.book)

Round 18 [Env] Action Feedback: The last action is `grasp(10.book)`, 
the feedback is "Invalid object id 10! The corresponding object does not 
exist.".
At Hand Object: None.
Current Room: living_room_0.
[Agent] OBSERVATION: In the current view, I can see a sofa, a coffee 
table with a book labeled as "10.book", a chair, and a door leading to 
another room. There is also a plant and a lamp in the room.
THOUGHT: My previous attempts to interact with the book labeled 
"10.book" were unsuccessful due to an incorrect object identifier. Now 
that I can see the book clearly labeled as "10.book" on the coffee table, 
I will attempt to grasp it correctly using the proper identifier.
ACTION: grasp(10.book)

Round 19 [Env] Action Feedback: The last action is `grasp(10.book)`, 
the feedback is "Invalid object id 10! The corresponding object does not 
exist.".
At Hand Object: None.
Current Room: living_room_0.
[Agent] OBSERVATION: In the current view, I can see a sofa, a coffee 
table, a chair, and a door leading to another room. There is also a plant 
and a lamp in the room. There is a book labeled as "10.book" on the 
coffee table.
THOUGHT: My previous attempts to interact with the book labeled 
"10.book" were unsuccessful due to an incorrect object identifier. Now 
that I can see the book clearly labeled as "10.book" on the coffee table, 
I will attempt to grasp it correctly using the proper identifier.
ACTION: grasp(10)

Round 20 [Env] Action Feedback: The last action is `grasp(10)`, the 
feedback is "Invalid object id 10! The corresponding object does not 
exist.".
At Hand Object: None.
Current Room: living_room_0.
[Agent] OBSERVATION: In the image, I can see a living room setting 
with a sofa, a coffee table, a chair, and a door leading to another room. 
There is a plant and a lamp in the room. On the coffee table, there is a 
book labeled as "10.book".
THOUGHT: The book labeled as "10.book" is clearly visible on the 
coffee table. I will attempt to grasp it correctly using the proper identifier, 
ensuring to use the correct format for the identifier.
ACTION: grasp(10)

Figure 12: This is an example of gpt-4o failing to complete a VAB-OmniGibson task. Task
instruction: “There are 7 books in the living room. Please put 3 books into the carton, and 3 books on
top of the carton.” gpt-4o incorrectly identified the presence of “10.book” in the image, and the
erroneous actions are highlighted in red.

Round 1 [Env] Action Feedback: None actions before.
At Hand Object: None.
Current Room: private_office_0.
[Agent] OBSERVATION: I see 5.table in the image. Until now, I have seen 5.table.
THOUGHT: Currently I am going to put the document inside the bin. I will look around to find the 
document. 
ACTION: turn_right()

Round 2 [Env] Action Feedback: The last action is `turn_right()`, the feedback is "Turned right 
successfully!".
At Hand Object: None.
Current Room: private_office_0.
[Agent] OBSERVATION: I see 1.bin in the image. Until now, I have seen 1.bin, 5.table.
THOUGHT: Currently I am going to put the document inside the bin. I will look around to find the 
document. 
ACTION: turn_right()

Round 3 [Env] Action Feedback: The last action is `turn_right()`, the feedback is "Turned right 
successfully!".
At Hand Object: None.
Current Room: private_office_0.
[Agent] OBSERVATION: I see 1.bin, 2.document in the image. Until now, I have seen 1.bin, 
2.document, 5.table.
THOUGHT: Currently I am going to put the document inside the bin. I am closed to 2.document, 
so grasp it next. 
ACTION: grasp(2.document)

Round 4 [Env] Action Feedback: The last action is `grasp(2.document)`, the feedback is "Grasped 
successfully!".
At Hand Object: 2.document.
Current Room: private_office_0.
[Agent] OBSERVATION: I see 1.bin in the image. Until now, I have seen 1.bin, 2.document, 
5.table.
THOUGHT: Currently I am going to put the document inside the bin. I'm close to 1.bin now, and I 
should put 2.document inside 1.bin. 
ACTION: put_inside(2.document, 1.bin)

Round 5 [Env] Action Feedback: The last action is `put_inside(2.document, 1.bin)`, the feedback 
is "Cannot put inside! The container is closed!".
At Hand Object: 2.document.
Current Room: private_office_0.
[Agent] OBSERVATION: I see 1.bin in the image. Until now, I have seen 1.bin, 2.document, 
5.table.
THOUGHT: Currently I am going to put the document inside the bin. I'm close to 1.bin now, and I 
should open 1.bin first. 
ACTION: open(1.bin)

Round 6 [Env] Action Feedback: The last action is `open(1.bin)`, the feedback is "Opened 
successfully!".
At Hand Object: 2.document.
Current Room: private_office_0.
[Agent] OBSERVATION: I see 1.bin in the image. Until now, I have seen 1.bin, 2.document, 
5.table.
THOUGHT: Currently I am going to put the document inside the bin. I have opened 1.bin, and 
now I should put 2.document into it.
ACTION: put_inside(2.document, 1.bin)

Figure 13: This is an example of InternVL-2 successfully completing a VAB-OmniGibson task.
Task instruction: “Pick up a document from the breakfast table or the floor, and then throw it into the
recycling bin in the private office.”
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Round 1 [Env] Action Feedback: None actions before.
At Hand Object: None.
Current Room: living_room_0.
[Agent] OBSERVATION: I see 1.basket, 7.candle in the image. Until 
now, I have seen 1.basket, 7.candle.
THOUGHT: Currently I am going to put the candle inside the basket. I 
will look around to find the candle. 
ACTION: turn_right()

Round 2 [Env] Action Feedback: The last action is `turn_right()`, the 
feedback is "Turned right successfully!".
At Hand Object: None.
Current Room: living_room_0.
[Agent] OBSERVATION: I see 1.candle, 2.table, 7.candle, 8.candle, 
9.cheese in the image. Until now, I have seen 1.basket, 1.candle, 
2.table, 7.candle, 8.candle, 9.cheese.
THOUGHT: Currently I am going to put the candle inside the basket. I 
am closed to 1.candle, so grasp it next. 
ACTION: grasp(1.candle)

Round 3 [Env] Action Feedback: The last action is `grasp(1.candle)`, the 
feedback is "ID 1 doesn't match object 'candle'. Maybe you take the 
wrong object id.".
At Hand Object: None.
Current Room: living_room_0.
[Agent] OBSERVATION: I see 1.candle, 2.table, 7.candle, 8.candle, 
9.cheese in the image. Until now, I have seen 1.basket, 1.candle, 
2.table, 7.candle, 8.candle, 9.cheese.
THOUGHT: Currently I am going to put the candle inside the basket. I 
have found 1.candle, so move to it next. 
ACTION: move(1.candle)

30 rounds are omitted here.

Round 4 [Env] Action Feedback: The last action is `move(1.candle)`, the 
feedback is "ID 1 doesn't match object 'candle'. Maybe you take the 
wrong object id.".
At Hand Object: None.
Current Room: living_room_0.
[Agent] OBSERVATION: I see 1.candle, 2.table, 7.candle, 8.candle, 
9.cheese in the image. Until now, I have seen 1.basket, 1.candle, 
2.table, 7.candle, 8.candle, 9.cheese.
THOUGHT: Currently I am going to put the candle inside the basket. I'm 
close to 1.candle, and I should grasp it next. 
ACTION: grasp(1.candle)

Round 5 [Env] Action Feedback: The last action is `grasp(1.candle)`, the 
feedback is "ID 1 doesn't match object 'candle'. Maybe you take the 
wrong object id.".
At Hand Object: None.
Current Room: living_room_0.
[Agent] OBSERVATION: I see 1.candle, 2.table, 7.candle, 8.candle, 
9.cheese in the image. Until now, I have seen 1.basket, 1.candle, 
2.table, 7.candle, 8.candle, 9.cheese.
THOUGHT: Currently I am going to put the candle inside the basket. I 
have found 5.candle, so move to it next. 
ACTION: move(5.candle)

Round 36 [Env] Action Feedback: The last action is 
`put_inside(15.cheese, 3.basket)`, the feedback is "Put inside 
successfully!".
At Hand Object: None.
Current Room: None.
[Agent] OBSERVATION: I see 1.basket, 2.table, 3.basket, 4.basket, 
8.candle in the image. Until now, I have seen 1.basket, 2.basket, 
3.basket, 4.basket, 5.candle, 6.candle, 7.candle, 8.candle, 9.cheese, 
10.candle, 14.cheese, 15.cheese, 16.cheese, 20.bowl.
THOUGHT: Currently I am going to put the cheese inside the basket. 
16.cheese is in living_room_0, so I will move to the room first.
ACTION: move_to_room(living_room_0)

Round 37 [Env] Action Feedback: The last action is 
`move_to_room(living_room_0)`, the feedback is "Moved successfully!".
At Hand Object: None.
Current Room: living_room_0.
[Agent] OBSERVATION: Nothing is annotated in the image. Until now, I 
have seen 1.basket, 2.basket, 3.basket, 4.basket, 5.candle, 6.candle, 
7.candle, 8.candle, 9.cheese, 10.candle, 14.cheese, 15.cheese, 
16.cheese, 20.bowl.
THOUGHT: Currently I am going to put the cheese inside the basket. I 
have found 16.cheese, so move to it next. 
ACTION: move(16.cheese)

Round 38 [Env] Action Feedback: The last action is `move(16.cheese)`, 
the feedback is "Moved successfully!".
At Hand Object: None.
Current Room: living_room_0.
[Agent] OBSERVATION: I see 2.table, 5.candle, 6.candle, 9.cheese, 
20.bowl in the image. Until now, I have seen 1.basket, 2.basket, 
3.basket, 4.basket, 5.candle, 6.candle, 7.candle, 8.candle, 9.cheese, 
10.candle, 14.cheese, 15.cheese, 16.cheese, 20.bowl.
THOUGHT: Currently I am going to put the cheese inside the basket. 
I'm close to 16.cheese, and I should grasp it next. 
ACTION: grasp(16.cheese)

Round 39 [Env] Action Feedback: The last action is `grasp(16.cheese)`, 
the feedback is "Grasped successfully!".
At Hand Object: 16.cheese.
Current Room: living_room_0.
[Agent] OBSERVATION: I see 2.table, 5.candle, 9.cheese, 20.bowl in 
the image. Until now, I have seen 1.basket, 2.basket, 3.basket, 4.basket, 
5.candle, 6.candle, 7.candle, 8.candle, 9.cheese, 10.candle, 14.cheese, 
15.cheese, 16.cheese, 20.bowl.
THOUGHT: Currently I am going to put the cheese inside the basket. I 
have found 4.basket, so move to it next. 
ACTION: move(4.basket)

Round 40 [Env] Action Feedback: The last action is `move(4.basket)`, 
the feedback is "Moved successfully!".
At Hand Object: 16.cheese.
Current Room: living_room_0.
[Agent] OBSERVATION: I see 1.basket, 2.table, 3.basket, 4.basket, 
5.candle, 7.candle, 8.candle in the image. Until now, I have seen 
1.basket, 2.basket, 3.basket, 4.basket, 5.candle, 6.candle, 7.candle, 
8.candle, 9.cheese, 10.candle, 14.cheese, 15.cheese, 16.cheese, 
20.bowl.
THOUGHT: Currently I am going to put the cheese inside the basket. 
I'm close to 4.basket now, and I should put 16.cheese inside 4.basket. 
ACTION: put_inside(16.cheese, 4.basket)

Round 41 [Env] Action Feedback: The last action is 
`put_inside(16.cheese, 4.basket)`, the feedback is "Put inside 
successfully!".
At Hand Object: None.
Current Room: living_room_0.
[Agent] OBSERVATION: I see 1.basket, 2.table, 3.basket, 4.basket, 
5.candle, 7.candle, 8.candle in the image. Until now, I have seen 
1.basket, 2.basket, 3.basket, 4.basket, 5.candle, 6.candle, 7.candle, 
8.candle, 9.cheese, 10.candle, 14.cheese, 15.cheese, 16.cheese, 
20.bowl.
THOUGHT: I have finished all the subtasks. 
ACTION: done()

Figure 14: This is an example of InternVL-2 failing to complete a VAB-OmniGibson task.
Task instruction: “There are 4 candles, 4 cheeses and 4 baskets in the living room. Please place
5.candle and 13.cheese into 1.basket, 6.candle and 14.cheese into 2.basket, 7.candle and 15.cheese
into 3.basket, 8.candle and 16.cheese into 4.basket.” InternVL-2 didn’t put “5.candle” into the
basket, but terminated the task with action “done()”.
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Round 6 [Env] Feedback on the Action: Your last action 
"craft("crafting_table")" has been executed. Successfully crafted 1 
crafting_table.
Your Inventory: Now your inventory has 3 white_wool, 4 mutton, 3 
wheat_seeds, 4 dirt, 1 oak_sapling, 1 crafting_table.
Equipped Item: Now you hold the white_wool in your hand.
Location and Orientation: Now you locate in X: 467.70, Y: 67.00, Z: -
174.56, Pitch: 40.81, Yaw: 267.10.
[Agent] OBSERVATION: I am currently surrounded by leaves and 
standing on a log. I do not have any oak logs or planks in my 
inventory.
THOUGHT: I need to collect more wood to craft the necessary 
wooden planks for the white bed.
ACTION: execute("collect wood", "logs", 1)

Round 7 [Env] Feedback on the Action: Your last action 
"execute("collect wood", "logs", 1)" has been executed. Your 
subgoal has been successfully completed by the executor.
Your Inventory: Now your inventory has 3 white_wool, 4 mutton, 3 
wheat_seeds, 12 dirt, 1 oak_sapling, 1 crafting_table, 1 apple, 1 
dandelion, 1 oak_log.
Equipped Item: Now you hold the white_wool in your hand.
Location and Orientation: Now you locate in X: 479.81, Y: 67.00, Z: -
229.70, Pitch: -39.14, Yaw: -252.70.
[Agent] I have successfully collected 1 oak log. I am currently 
standing near a tree.
THOUGHT: I need to craft the oak log into wooden planks and then 
use the planks and wool to craft a white bed.
ACTION: craft("planks", 4)

Round 1 [Env] Feedback on the Action: No action before.
Your Inventory: Now your inventory has nothing.
Equipped Item: Now you hold the air in your hand.
Location and Orientation: Now you locate in X: 431.50, Y: 65.00, Z: -
158.50, Pitch: 0.00, Yaw: 0.00.
[Agent] OBSERVATION: I see a group of sheep nearby, which can 
provide wool for crafting a bed. There are also trees in the distance, 
which can provide wood for crafting.
THOUGHT: To craft a white bed, I need 3 wool and 3 wooden planks. 
First, I need to collect wool from the sheep. I will start by collecting wool 
from the sheep.
ACTION: execute("collect wool", "wool", 3)

Round 2 [Env] Feedback on the Action: Your last action 
"execute("collect wool", "wool", 3)" has been executed. Your subgoal 
has been successfully completed by the executor.
Your Inventory: Now your inventory has 3 white_wool, 4 mutton.
Equipped Item: Now you hold the white_wool in your hand.
Location and Orientation: Now you locate in X: 442.67, Y: 65.00, Z: -
149.04, Pitch: 67.08, Yaw: 75.55.
[Agent] OBSERVATION: I have successfully collected 3 white wool and 
4 mutton. I see a spider nearby, which could be dangerous. I also see 
some trees in the distance.
THOUGHT: I need to collect wood to craft wooden planks for the bed. I 
will collect logs from the trees.
ACTION: execute("collect wood", "logs", 1)

Round 3 [Env] Feedback on the Action: Your last action 
"execute("collect wood", "logs", 1)" has been executed. The executor 
has reached the maximum number of steps for this turn without 
completing your subgoal.
Your Inventory: Now your inventory has 3 white_wool, 4 mutton, 3 
wheat_seeds, 4 dirt.
Equipped Item: Now you hold the white_wool in your hand.
Location and Orientation: Now you locate in X: 405.12, Y: 71.02, Z: -
196.23, Pitch: 23.02, Yaw: 188.31.
[Agent] OBSERVATION: I have not yet collected any logs. I see a group 
of trees in the distance, which can provide the wood I need.
THOUGHT: I need to collect logs from the trees to craft wooden planks. 
I will try again to collect wood.
ACTION: execute("collect wood", "logs", 1)

Round 4 [Env] Feedback on the Action: Your last action 
"execute("collect wood", "logs", 1)" has been executed. Your subgoal 
has been successfully completed by the executor.
Your Inventory: Now your inventory has 3 white_wool, 4 mutton, 3 
wheat_seeds, 4 dirt, 1 oak_sapling, 1 oak_log.
Equipped Item: Now you hold the white_wool in your hand.
Location and Orientation: Now you locate in X: 467.70, Y: 67.00, Z: -
174.56, Pitch: 40.81, Yaw: 267.10.
[Agent] OBSERVATION: I have successfully collected 1 oak log. I am 
currently surrounded by leaves, indicating that I am near or inside a tree.
THOUGHT: I need to craft the oak log into wooden planks and then use 
the planks and wool to craft a white bed. First, I will craft the wooden 
planks.
ACTION: craft("planks", 4)

Round 5 [Env] Feedback on the Action: Your last action "craft("planks", 
4)" has been executed. Successfully crafted 4 planks.
Your Inventory: Now your inventory has 3 white_wool, 4 mutton, 3 
wheat_seeds, 4 dirt, 1 oak_sapling, 4 oak_planks.
Equipped Item: Now you hold the white_wool in your hand.
Location and Orientation: Now you locate in X: 467.70, Y: 67.00, Z: -
174.56, Pitch: 40.81, Yaw: 267.10.
[Agent] OBSERVATION: I am currently surrounded by leaves and 
standing on a log. I have 3 white wool and 4 oak planks in my inventory, 
but I need a crafting table to craft the white bed.
THOUGHT: I need to craft a crafting table first using the oak planks. 
Then, I can use the crafting table to craft the white bed.
ACTION: craft("crafting_table")

Round 8 [Env] Feedback on the Action: Your last action "craft("planks", 
4)" has been executed. Successfully crafted 4 planks.
Your Inventory: Now your inventory has 3 white_wool, 4 mutton, 3 
wheat_seeds, 12 dirt, 1 oak_sapling, 1 crafting_table, 1 apple, 1 
dandelion, 4 oak_planks.
Equipped Item: Now you hold the white_wool in your hand.
Location and Orientation: Now you locate in X: 479.79, Y: 67.00, Z: -
229.70, Pitch: -39.14, Yaw: -252.70.
[Agent] OBSERVATION: I have successfully crafted 4 oak planks. I am 
currently standing near a tree.
THOUGHT: I now have all the materials needed to craft a white bed. I 
will proceed to craft the white bed using the crafting table.
ACTION: craft("white_bed")

Figure 15: This is an example of gpt-4o successfully completing a VAB-Minecraft task. Task
instruction: “Your task is to get a white bed in your inventory.”

G.2 VAB-MINECRAFT CASES

In this section, we show successful and failed examples of gpt-4o and InternVL-2 in Figure 15,
Figure 16, Figure 17 and Figure 18.
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Round 1 [Env] Feedback on the Action: No action before.
Your Inventory: Now your inventory has nothing.
Equipped Item: Now you hold the air in your hand.
Location and Orientation: Now you locate in X: 431.50, Y: 65.00, Z: -
158.50, Pitch: 0.00, Yaw: 0.00.
[Agent] OBSERVATION: I see a plains biome with grass blocks, a 
few trees in the distance, and a small body of water to the right. 
There are also some dark blocks on the ground which could be a 
cave entrance or a small hole.
THOUGHT: To craft a fishing rod, I need 3 sticks and 2 strings. I can 
obtain sticks by crafting them from wood planks, which in turn can 
be crafted from logs. I can get logs by chopping down trees. For 
strings, I need to kill spiders or find a cobweb to break. Since I 
have nothing in my inventory, my first step should be to collect 
wood from the trees. I'll start by executing an action to collect 
wood.
ACTION: execute("collect wood", "logs", 3)

Round 2 [Env] Feedback on the Action: Your last action 
"execute("collect wood", "logs", 3)" has been executed. The executor 
has reached the maximum number of steps for this turn without 
completing your subgoal.
Your Inventory: Now your inventory has 2 oak_log, 1 oak_sapling.
Equipped Item: Now you hold the oak_log in your hand.
Location and Orientation: Now you locate in X: 465.27, Y: 65.00, Z: -
177.69, Pitch: -13.33, Yaw: 224.76.
[Agent] OBSERVATION: The image shows a plains biome with a clear 
sky, indicating it is daytime. There are grass blocks, a few trees, and a 
hill in the distance. There are no visible spiders or cobwebs for string, 
and no immediate threats are apparent.
THOUGHT: I have 2 oak logs in my inventory, which is enough to 
craft the sticks needed for a fishing rod, but I still need one more 
log to have enough planks for crafting a crafting table. Since I 
didn't complete the subgoal of collecting 3 logs in the last turn, I 
should try to collect at least one more log. After that, I can craft a 
crafting table and then sticks from the logs.
ACTION: execute("collect wood", "logs", 1)

Round 3 [Env] Feedback on the Action: Your last action 
"execute("collect wood", "logs", 1)" has been executed. Your subgoal 
has been successfully completed by the executor.
Your Inventory: Now your inventory has 3 oak_log, 1 oak_sapling.
Equipped Item: Now you hold the oak_log in your hand.
Location and Orientation: Now you locate in X: 478.28, Y: 68.00, Z: -
229.70, Pitch: 36.71, Yaw: 188.95.
[Agent] OBSERVATION: The image shows a first-person view of the 
player standing in front of a recently chopped oak log block, with grass 
and foliage around. The player's health bar is visible, indicating that 
they are in survival mode.
THOUGHT: Now that I have 3 oak logs, I can craft them into planks 
and then create a crafting table. With the crafting table, I can then 
craft the sticks needed for the fishing rod. However, I still need to 
obtain string, which typically comes from spiders or cobwebs. For 
now, I will focus on crafting the necessary items from the logs I 
have collected.
ACTION: craft("crafting_table")

Round 4 [Env] Feedback on the Action: Your last action 
"craft("crafting_table")" can not be executed. Not enough materials for 1 
crafting_table.
Your Inventory: Now your inventory has 3 oak_log, 1 oak_sapling.
Equipped Item: Now you hold the oak_log in your hand.
Location and Orientation: Now you locate in X: 478.28, Y: 68.00, Z: -
229.70, Pitch: 36.71, Yaw: 188.95.
[Agent] OBSERVATION: The image shows the player's perspective 
looking down at an oak log block on the ground, with grass and other 
foliage around. The player's hand is visible, holding an oak log.
THOUGHT: It seems there was a misunderstanding in my previous 
action. I need to first craft the oak logs into planks before I can 
craft a crafting table. Each oak log can be crafted into 4 planks, 
and I need 4 planks to make a crafting table. I will craft the planks 
first and then proceed to craft the crafting table.
ACTION: craft("planks", 3)

Round 5 [Env] Feedback on the Action: Your last action "craft("planks", 
3)" has been executed. Successfully crafted 3 planks.
Your Inventory: Now your inventory has 2 oak_log, 1 oak_sapling, 4 
oak_planks.
Equipped Item: Now you hold the oak_log in your hand.
Location and Orientation: Now you locate in X: 478.28, Y: 68.00, Z: -
229.70, Pitch: 36.71, Yaw: 188.95.
[Agent] OBSERVATION: The image shows the player's perspective in 
Minecraft, looking at an oak log block on the ground with grass and 
foliage around. The player's health bar and hotbar are visible, with oak 
logs and oak planks in the hotbar. The environment appears to be a 
forest or plains biome.
THOUGHT: Now that I have 4 oak planks, I can craft a crafting table. 
After crafting the crafting table, I will be able to use it to craft sticks, 
which are one of the components needed for a fishing rod. 
However, I still need to obtain string, which I can get from spiders 
or cobwebs. For now, I will proceed with crafting the crafting table.
ACTION: craft("crafting_table")

Round 6 [Env] Feedback on the Action: Your last action 
"craft("crafting_table")" has been executed. Successfully crafted 1 
crafting_table.
Your Inventory: Now your inventory has 2 oak_log, 1 oak_sapling, 1 
crafting_table.
Equipped Item: Now you hold the oak_log in your hand.
Location and Orientation: Now you locate in X: 478.28, Y: 68.00, Z: -
229.70, Pitch: 36.71, Yaw: 188.95.
[Agent] OBSERVATION: The image shows the player's perspective in 
Minecraft, looking down at an oak log block on the ground with grass 
and foliage around. The player's health bar and hotbar are visible, with 
oak logs and a crafting table in the hotbar. The environment appears to 
be a forest or plains biome.
THOUGHT: With the crafting table now in my inventory, I can craft 
sticks from the remaining oak logs. I need to craft these sticks in 
order to eventually make a fishing rod. However, I still need to 
obtain string, which I can get from spiders or cobwebs. For now, I 
will focus on crafting the sticks.
ACTION: craft("stick", 4)

Round 7 [Env] Feedback on the Action: Your last action "craft("stick", 
4)" can not be executed. Not enough materials for 4 stick.
Your Inventory: Now your inventory has 2 oak_log, 1 oak_sapling, 1 
crafting_table.
Equipped Item: Now you hold the oak_log in your hand.
Location and Orientation: Now you locate in X: 478.28, Y: 68.00, Z: -
229.70, Pitch: 36.71, Yaw: 188.95.
[Agent] OBSERVATION: The image shows the player's perspective in 
Minecraft, looking down at an oak log block on the ground with grass 
and foliage around. The player's health bar and hotbar are visible, with 
oak logs and a crafting table in the hotbar. The environment appears to 
be a forest or plains biome.
THOUGHT: It seems I made an error in the quantity of sticks I 
attempted to craft. I need to convert the remaining oak logs into 
planks first before I can craft the sticks. Each oak log can be 
crafted into 4 planks, and I need 2 planks to craft 4 sticks. I will 
craft more planks from the oak logs and then proceed to craft the 
sticks.
ACTION: craft("planks", 2)

Round 8 [Env] Feedback on the Action: Your last action "craft("planks", 
2)" has been executed. Successfully crafted 2 planks.
Your Inventory: Now your inventory has 1 oak_log, 1 oak_sapling, 1 
crafting_table, 4 oak_planks.
Equipped Item: Now you hold the oak_log in your hand.
Location and Orientation: Now you locate in X: 478.28, Y: 68.00, Z: -
229.70, Pitch: 36.71, Yaw: 188.95.
[Agent] OBSERVATION: The image shows the player's first-person 
view in Minecraft, looking at an oak log block on the ground with grass 
and foliage around. The player's health bar and hotbar are visible, with 
an oak log and oak planks in the hotbar. The cursor is pointing at the 
oak log, indicating the player is ready to interact with it or place it.
THOUGHT: Now that I have a total of 8 oak planks, I can craft the 
sticks needed for the fishing rod. I will craft these sticks and then 
focus on obtaining string, which I can get from spiders or cobwebs. 
Since it is still daytime, spiders may be difficult to find, so I may 
need to wait until night or explore dark areas like caves to find 
them.
ACTION: craft("stick", 4)

Round 9 [Env] Feedback on the Action: Your last action "craft("stick", 
4)" has been executed. Successfully crafted 4 stick.
Your Inventory: Now your inventory has 1 oak_log, 1 oak_sapling, 1 
crafting_table, 2 oak_planks, 4 stick.
Equipped Item: Now you hold the oak_log in your hand.
Location and Orientation: Now you locate in X: 478.28, Y: 68.00, Z: -
229.70, Pitch: 36.71, Yaw: 188.95.
[Agent] OBSERVATION: The image shows the player's first-person 
view in Minecraft, looking down at a placed oak log block on the ground 
with grass and foliage around. The player's health bar and hotbar are 
visible, with an oak log, oak planks, sticks, and a crafting table in the 
hotbar. The environment appears to be a forest or plains biome during 
the daytime.
THOUGHT: With the sticks now crafted, the next step is to obtain 
string to complete the fishing rod. Since it is daytime, spiders will 
be rare to find. I could look for a cave or a dark area where spiders 
might spawn, or I could wait until night when spiders will spawn 
naturally in the overworld. However, since I cannot control the time, 
I should try to find a cave or dark area to look for spiders. Before I 
do that, I should equip a tool to defend myself and to break 
cobwebs if I find any.
ACTION: equip("oak_log")

Round 10 [Env] Feedback on the Action: Your last action 
"equip("oak_log")" has been executed. Successfully equipped oak_log.
Your Inventory: Now your inventory has 1 oak_sapling, 1 crafting_table, 
2 oak_planks, 4 stick, 1 oak_log.
Equipped Item: Now you hold the oak_log in your hand.
Location and Orientation: Now you locate in X: 478.28, Y: 68.00, Z: -
229.70, Pitch: 36.71, Yaw: 188.95.
[Agent] OBSERVATION: The image shows the player's first-person 
view in Minecraft, looking down at an oak log block placed on the 
ground with grass and foliage around. The player's health bar and 
hotbar are visible, with an oak log equipped in the player's hand, and 
oak planks, sticks, and a crafting table in the hotbar. The environment 
appears to be a forest or plains biome during the daytime.
THOUGHT: Now that I have equipped an oak log, I can use it as a 
rudimentary weapon or tool. However, it would be more effective to 
craft a wooden sword for defense and to fight spiders. Before I go 
looking for spiders, I should craft a wooden sword using the planks 
and sticks I have. This will improve my chances of successfully 
obtaining string from spiders.
ACTION: craft("wooden_sword")

Round 11 [Env] Feedback on the Action: Your last action 
"craft("wooden_sword")" has been executed. Successfully crafted 1 
wooden_sword.
Your Inventory: Now your inventory has 1 wooden_sword, 1 
oak_sapling, 1 crafting_table, 3 stick, 1 oak_log.
Equipped Item: Now you hold the wooden_sword in your hand.
Location and Orientation: Now you locate in X: 478.39, Y: 67.00, Z: -
229.70, Pitch: 90.00, Yaw: 188.95.
[Agent] OBSERVATION: The image shows the player's first-person 
view looking directly down at the ground, with redstone dust on the 
grass blocks. The player's health bar and hotbar are visible, with a 
wooden sword equipped in the player's hand, and other items including 
a crafting table and sticks in the hotbar.
THOUGHT: The presence of redstone dust suggests that I might be 
near a redstone contraption or that it was placed there for some 
reason. However, this does not directly help with my current task of 
obtaining a fishing rod. I need to find spiders to collect string. Since 
I am now equipped with a wooden sword, I should look for a cave 
or a dark area where spiders are likely to spawn. I will execute an 
action to find a cave or dark area in hopes of encountering spiders.
ACTION: execute("find a cave")

Round 12 [Env] Feedback on the Action: Your last action 
"execute("find a cave")" has been executed. The executor has 
attempted to execute the action according to your prompt. You should 
check whether your intention has been fulfilled.
Your Inventory: Now your inventory has 1 wooden_sword, 1 
oak_sapling, 1 crafting_table, 3 stick, 1 oak_log.
Equipped Item: Now you hold the wooden_sword in your hand.
Location and Orientation: Now you locate in X: 336.35, Y: 63.92, Z: -
120.27, Pitch: 33.91, Yaw: 408.51.
[Agent] OBSERVATION: The image shows the player's first-person 
view in Minecraft, looking at a swamp biome with water, lily pads, and 
grass. In the distance, there is a cave entrance visible with some lava 
flowing out of it. There are also some sheep visible on the right side of 
the image.
THOUGHT: The cave entrance in the distance is a promising 
location to find spiders, which can drop string when defeated. 
Since I am equipped with a wooden sword, I am prepared to fight 
any spiders I encounter. I should head towards the cave and look 
for spiders inside or around the entrance.
ACTION: execute("move to cave entrance")

Round 13 [Env] Feedback on the Action: Your last action 
"execute("move to cave entrance")" has been executed. The executor 
has attempted to execute the action according to your prompt. You 
should check whether your intention has been fulfilled.
Your Inventory: Now your inventory has 1 wooden_sword, 1 
oak_sapling, 1 crafting_table, 3 stick, 1 oak_log.
Equipped Item: Now you hold the wooden_sword in your hand.
Location and Orientation: Now you locate in X: 381.75, Y: 68.00, Z: -
47.65, Pitch: 21.41, Yaw: 354.53.
[Agent] OBSERVATION: The image shows the player's first-person 
view in Minecraft, looking at a swamp biome with various trees and 
grass. The player is standing on a block with a snowy texture, which 
could be either snow or a white wool block. The player's health bar and 
hotbar are visible, with a wooden sword equipped in the player's hand.
THOUGHT: The player seems to have moved from the previous 
location but does not appear to be at the cave entrance yet. Since 
the goal is to find spiders to obtain string for the fishing rod, I 
should continue to move towards the cave entrance that was 
previously spotted. Once there, I can search for spiders inside or 
near the cave.
ACTION: execute("move to cave entrance")

Wander for another 25 rounds 
without finding a spider...

Round 39 [Env] Feedback on the Action: Your last action 
"execute("search for spiders")" has been executed. The executor has 
attempted to execute the action according to your prompt. You should 
check whether your intention has been fulfilled.
Your Inventory: Now your inventory has 2 lily_pad, 1 oak_sapling, 1 
crafting_table, 2 rotten_flesh, 3 stick, 1 wooden_sword, 1 oak_log.
Equipped Item: Now you hold the wooden_sword in your hand.
Location and Orientation: Now you locate in X: 432.30, Y: 66.02, Z: 
74.21, Pitch: -16.11, Yaw: 1888.90.
[Agent] OBSERVATION: The image shows the player's first-person 
view in Minecraft, looking at a dirt block wall, likely part of a hill or 
mountain. The player's health bar and hotbar are visible, with a wooden 
sword equipped in the player's hand, and there are three sticks and two 
lily pads in the hotbar. The player's health is slightly reduced, and there 
are two pieces of rotten flesh, which suggests a recent combat 
encounter, possibly with a zombie.
THOUGHT: The player seems to have been in combat recently, as 
indicated by the rotten flesh in the inventory, which is dropped by 
zombies. However, my goal is to obtain string from spiders to craft 
a fishing rod. Since the current view is obstructed by the dirt wall, I 
need to move to an open area to continue searching for spiders.
ACTION: execute("move out of the cave")

Round 40 [Env] Feedback on the Action: Your last action 
"execute("move out of the cave")" has been executed. The executor 
has attempted to execute the action according to your prompt. You 
should check whether your intention has been fulfilled.
Your Inventory: Now your inventory has 2 lily_pad, 1 oak_sapling, 1 
crafting_table, 2 rotten_flesh, 3 stick, 1 wooden_sword, 1 oak_log.
Equipped Item: Now you hold the wooden_sword in your hand.
Location and Orientation: Now you locate in X: 443.46, Y: 63.04, Z: 
64.78, Pitch: 46.22, Yaw: -228.66.
[Agent] OBSERVATION: The image shows the player's first-person 
view in Minecraft, looking at the surface of a body of water. The player 
is partially submerged, as indicated by the water overlay on the screen. 
The player's health bar and hotbar are visible, with a wooden sword 
equipped in the player's hand, and there are three sticks and two lily 
pads in the hotbar. There is no immediate sign of spiders or string.
THOUGHT: The player is in the water, which is not an ideal location 
to find spiders. I need to get back on land and continue searching 
for spiders to obtain string. Since it is still daytime, I should look for 
shaded areas under trees or other dark spots where spiders might 
be hiding.
ACTION: execute("move to land")

Figure 16: This is an example of gpt-4o failing to complete a VAB-Minecraft task. Task instruction:
“Your task is to get a fishing rod in your inventory.” gpt-4o didn’t notice the spiders near the spawn
point and couldn’t find any other spiders elsewhere. Instead of wandering around (actions marked as
red), it should “teleport to spawn” to find spiders.
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Round 1 [Env] Feedback on the Action: No action before.
Your Inventory: Now your inventory has nothing.
Equipped Item: Now you hold the air in your hand.
Location and Orientation: Now you locate in X: -0.50, Y: 63.00, Z: -
295.50, Pitch: 0.00, Yaw: 0.00.
[Agent] OBSERVATION: I am standing in a lush forest biome in 
Minecraft, surrounded by tall oak trees and dense foliage.
THOUGHT: I will first check the information about oak_fence_gate, and 
then make a plan on the task.
ACTION: look_up("oak_fence_gate")

Round 2 [Env] Feedback on the Action: Your last action 
"look_up("oak_fence_gate")" has been executed. oak_fence_gate: 
Crafting oak_fence_gate needs 4 stick, 2 oak_planks. Every time you 
craft oak_fence_gate with the ingredients above, you will get 1 
oak_fence_gate.
Your Inventory: Now your inventory has nothing.
Equipped Item: Now you hold the air in your hand.
Location and Orientation: Now you locate in X: -0.50, Y: 63.00, Z: -
295.50, Pitch: 0.00, Yaw: 0.00.
[Agent] OBSERVATION: I am standing in a lush forest biome in 
Minecraft, surrounded by tall oak trees and dense foliage.
THOUGHT: In order to get a oak_fence_gate, I should reach the 
following subgoals step by step: 3 oak_log, 12 oak_planks, 1 
crafting_table, 4 stick, 1 oak_fence_gate. Now I should focus on the 
subgoal of getting 3 oak_log. To obtain oak logs, the direct method is to 
chop down an oak tree.
ACTION: execute("chop down the oak tree", "oak_log", 3)

Round 3 [Env] Feedback on the Action: Your last action 
"execute("chop down the oak tree", "oak_log", 3)" has been executed. 
The executor has reached the maximum number of steps for this turn 
without completing your subgoal.
Your Inventory: Now your inventory has 2 oak_log, 1 oak_sapling.
Equipped Item: Now you hold the oak_log in your hand.
Location and Orientation: Now you locate in X: -2.16, Y: 64.00, Z: -
290.47, Pitch: -77.57, Yaw: 268.91.
[Agent] OBSERVATION: I am chopping down a tree, looking up at a 
block of wood surrounded by green leaves. The sky is visible through 
the gaps in the foliage.
THOUGHT: The task is to obtain oak_log, and the observation indicates 
that I am already in the process of chopping down a tree. Since I am 
already engaged in the task and using the correct method, I should 
continue chopping down the tree to obtain the oak_log.
ACTION: execute("chop down the oak tree", "oak_log", 1)

Round 4 [Env] Feedback on the Action: Your last action 
"execute("chop down the oak tree", "oak_log", 1)" has been executed. 
Your subgoal has been successfully completed by the executor.
Your Inventory: Now your inventory has 3 oak_log, 1 oak_sapling.
Equipped Item: Now you hold the oak_log in your hand.
Location and Orientation: Now you locate in X: -1.67, Y: 64.42, Z: -
290.53, Pitch: -84.80, Yaw: 285.72.
[Agent] OBSERVATION: I am looking up at a block of wood from a tree, 
surrounded by green leaves. The sky is visible through the gaps in the 
leaves.
THOUGHT: Now I should focus on the subgoal of getting 12 
oak_planks. I have got enough ingredients and tools, I will craft 12 
oak_planks.
ACTION: craft("oak_planks", 12)

Round 5 [Env] Feedback on the Action: Your last action 
"craft("oak_planks", 12)" has been executed. Successfully crafted 12 
oak_planks.
Your Inventory: Now your inventory has 12 oak_planks, 1 oak_sapling.
Equipped Item: Now you hold the oak_planks in your hand.
Location and Orientation: Now you locate in X: -1.69, Y: 64.00, Z: -
290.42, Pitch: -84.80, Yaw: 285.72.
[Agent] OBSERVATION: I am looking up at an oak log block 
surrounded by oak leaves. The sky is visible through the gaps in the 
leaves. I'm holding oak planks in my hand.
THOUGHT: I have got enough ingredients and tools, I will craft 1 
crafting_table.
ACTION: craft("crafting_table", 1)

Round 6 [Env] Feedback on the Action: Your last action 
"craft("crafting_table", 1)" has been executed. Successfully crafted 1 
crafting_table.
Your Inventory: Now your inventory has 8 oak_planks, 1 oak_sapling, 1 
crafting_table.
Equipped Item: Now you hold the oak_planks in your hand.
Location and Orientation: Now you locate in X: -1.69, Y: 64.00, Z: -
290.42, Pitch: -84.80, Yaw: 285.72.
[Agent] OBSERVATION: I am looking up at an oak log block 
surrounded by oak leaves. The sky is visible through the gaps in the 
leaves. I'm holding oak planks in my hand.
THOUGHT: I have got enough ingredients and tools, I will craft 4 stick.
ACTION: craft("stick", 4)

Round 7 [Env] Feedback on the Action: Your last action "craft("stick", 
4)" has been executed. Successfully crafted 4 stick.
Your Inventory: Now your inventory has 6 oak_planks, 1 oak_sapling, 1 
crafting_table, 4 stick.
Equipped Item: Now you hold the oak_planks in your hand.
Location and Orientation: Now you locate in X: -1.69, Y: 64.00, Z: -
290.42, Pitch: -84.80, Yaw: 285.72.
[Agent] OBSERVATION: I am looking up at an oak log block 
surrounded by oak leaves. The sky is visible through the gaps in the 
leaves. I'm holding oak planks in my hand.
THOUGHT: I have got enough ingredients and tools, I will craft 1 
oak_fence_gate.
ACTION: craft("oak_fence_gate", 1)

Figure 17: This is an example of InternVL-2 successfully completing a VAB-Minecraft task.
Task instruction: “Your task is to get a oak fence gate in your inventory.”
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Round 1 [Env] Feedback on the Action: No action before.
Your Inventory: Now your inventory has nothing.
Equipped Item: Now you hold the air in your hand.
Location and Orientation: Now you locate in X: 431.50, Y: 65.00, Z: -
158.50, Pitch: 0.00, Yaw: 0.00.
[Agent] OBSERVATION: I am standing on a grassy plain with some tall 
grass and patches of dirt. There are several sheep grazing around me. 
The sky is clear with a few clouds.
THOUGHT: I will first check the information about wooden_shovel, and 
then make a plan on the task.
ACTION: look_up("wooden_shovel")

Round 2 [Env] Feedback on the Action: Your last action 
"look_up("wooden_shovel")" has been executed. wooden_shovel: 
Crafting wooden_shovel needs 2 stick, 1 planks (tag). Every time you 
craft wooden_shovel with the ingredients above, you will get 1 
wooden_shovel.
Your Inventory: Now your inventory has nothing.
Equipped Item: Now you hold the air in your hand.
Location and Orientation: Now you locate in X: 431.50, Y: 65.00, Z: -
158.50, Pitch: 0.00, Yaw: 0.00.
[Agent] OBSERVATION: I am standing on a grassy plain with some tall 
grass and patches of dirt.
THOUGHT: In order to get a wooden_shovel, I should reach the 
following subgoals step by step: 1 logs, 4 planks, 1 crafting_table, 8 
stick, 1 wooden_pickaxe, 11 cobblestone, 1 furnace, 1 
stone_pickaxe, 1 iron_pickaxe, 1 iron_ore, 1 iron_ingot, 1 iron_axe. 
Now I should focus on the subgoal of getting 1 logs.
ACTION: execute("chop down the tree", "logs", 1)

Round 3 [Env] Feedback on the Action: Your last action 
"execute("chop down the tree", "logs", 1)" has been executed. Your 
subgoal has been successfully completed by the executor.
Your Inventory: Now your inventory has 1 oak_log.
Equipped Item: Now you hold the oak_log in your hand.
Location and Orientation: Now you locate in X: 424.86, Y: 69.00, Z: -
183.13, Pitch: -24.82, Yaw: -208.31.
[Agent] OBSERVATION: I am standing in front of a large tree with thick, 
green leaves and a brown trunk. The sky is clear with a few clouds 
visible. The surrounding area is grassy with some tall grass patches.
THOUGHT: Now I should focus on the subgoal of getting 4 planks. I 
have got enough ingredients and tools, I will craft 4 planks.
ACTION: craft("planks", 4)

Round 4 [Env] Feedback on the Action: Your last action "craft("planks", 
4)" has been executed. Successfully crafted 4 planks.
Your Inventory: Now your inventory has 4 oak_planks.
Equipped Item: Now you hold the oak_planks in your hand.
Location and Orientation: Now you locate in X: 424.97, Y: 69.00, Z: -
183.19, Pitch: -24.82, Yaw: -208.31.
[Agent] OBSERVATION: I am standing next to an oak tree, looking up 
at its trunk and leaves. I am holding oak planks in my hand. The sky is 
clear with a few clouds visible.
THOUGHT: Now I should focus on the subgoal of getting 1 
crafting_table. I have got enough ingredients and tools, I will craft 1 
crafting_table.
ACTION: craft("crafting_table", 1)

Round 5 [Env] Feedback on the Action: Your last action 
"craft("crafting_table", 1)" has been executed. Successfully crafted 1 
crafting_table.
Your Inventory: Now your inventory has 1 crafting_table.
Equipped Item: Now you hold the crafting_table in your hand.
Location and Orientation: Now you locate in X: 424.97, Y: 69.00, Z: -
183.19, Pitch: -24.82, Yaw: -208.31.
[Agent] OBSERVATION: I am standing next to a large tree with a thick 
trunk and dense green leaves. I am holding a crafting table in my hand. 
The sky is clear with a few clouds visible, and there are more trees in 
the background.
THOUGHT: Now I should focus on the subgoal of getting 8 stick. I have 
got enough ingredients and tools, I will craft 8 stick.
ACTION: craft("stick", 8)

Round 6 [Env] Feedback on the Action: Your last action "craft("stick", 
8)" can not be executed. Not enough materials for 8 stick.
Your Inventory: Now your inventory has 1 crafting_table.
Equipped Item: Now you hold the crafting_table in your hand.
Location and Orientation: Now you locate in X: 424.97, Y: 69.00, Z: -
183.19, Pitch: -24.82, Yaw: -208.31.
[Agent] OBSERVATION: I am standing next to a large tree with a thick 
trunk and dense green leaves. I am holding a crafting table in my hand. 
The sky is clear with a few clouds visible, and there are more trees in 
the background.
THOUGHT: To obtain sticks, I need to chop down the tree first. Since I 
am already next to a large tree, I should chop it down to obtain sticks.
ACTION: execute("chop down the tree", "stick", 8)

Round 7 [Env] Feedback on the Action: Your last action 
"execute("chop down the tree", "stick", 8)" has been executed. The 
executor has reached the maximum number of steps for this turn 
without completing your subgoal.
Your Inventory: Now your inventory has 1 crafting_table, 4 oak_log.
Equipped Item: Now you hold the crafting_table in your hand.
Location and Orientation: Now you locate in X: 362.33, Y: 69.50, Z: -
205.94, Pitch: -5.50, Yaw: -228.89.
[Agent] OBSERVATION: I am standing in a grassy plain with some dirt 
patches. In front of me, there is a large tree with green leaves and a 
brown trunk. To the right, there is a river with water flowing through it. 
Across the river, I can see a hilly terrain with more trees and some 
exposed stone. The sky is clear with a few clouds.
THOUGHT: To obtain sticks, I need to chop down the tree first. I am 
already near a tree and holding a crafting table, which is not suitable for 
chopping. So I should use the appropriate skill to chop down the tree.
ACTION: execute("chop down the tree", "stick", 8)

Round 8 [Env] Feedback on the Action: Your last action 
"execute("chop down the tree", "stick", 8)" has been executed. The 
executor has reached the maximum number of steps for this turn 
without completing your subgoal.
Your Inventory: Now your inventory has 1 crafting_table, 4 oak_log.
Equipped Item: Now you hold the crafting_table in your hand.
Location and Orientation: Now you locate in X: 340.00, Y: 63.00, Z: -
243.70, Pitch: -48.95, Yaw: -90.73.
[Agent] OBSERVATION: I am looking up at a steep hillside covered 
with grass and dirt blocks. There are several trees growing on the hill, 
some of which are floating in the air. The sky is clear with a few clouds 
visible.
THOUGHT: To obtain sticks, I need to chop down a tree. I am already 
near some trees, so I should proceed to chop down one of them.
ACTION: execute("chop down the tree", "stick", 8)

Round 16 [Env] Feedback on the Action: Your last action 
"execute("chop down the tree", "stick", 8)" has been executed. The 
executor has reached the maximum number of steps for this turn 
without completing your subgoal.
Your Inventory: Now your inventory has 5 oak_sapling, 13 oak_log, 1 
apple, 1 crafting_table, 2 dirt.
Equipped Item: Now you hold the oak_sapling in your hand.
Location and Orientation: Now you locate in X: 332.96, Y: 65.25, Z: -
245.70, Pitch: -90.00, Yaw: -182.17.
[Agent] OBSERVATION: I am standing on a dirt block, looking up at a 
tree in the rain. The tree has green leaves and a brown trunk. There are 
more trees and foliage visible around me on the hillside. The sky is dark, 
indicating it might be night or an overcast day.
THOUGHT: To obtain sticks, I need to chop down the tree. I am already 
near a tree and holding an oak sapling, which is not suitable for 
chopping. So I should use the appropriate skill to chop down the tree.
ACTION: execute("chop down the tree", "stick", 8)

Round 15 [Env] Feedback on the Action: Your last action 
"execute("chop down the tree", "stick", 8)" has been executed. The 
executor has reached the maximum number of steps for this turn 
without completing your subgoal.
Your Inventory: Now your inventory has 5 oak_sapling, 12 oak_log, 1 
apple, 1 crafting_table, 1 dirt.
Equipped Item: Now you hold the oak_sapling in your hand.
Location and Orientation: Now you locate in X: 333.11, Y: 65.02, Z: -
245.70, Pitch: -85.14, Yaw: -210.84.
[Agent] OBSERVATION: I am looking up at a tree on a grassy hillside. It 
is raining, and I can see the raindrops falling on the leaves and ground. 
The tree has a mix of exposed wood blocks and leaf blocks. In the 
background, there are more trees and a glimpse of a city skyline with 
tall buildings.
THOUGHT: To obtain sticks, I need to chop down the tree. I am already 
near a tree and holding an oak sapling, which is not suitable for 
chopping. So I should use the appropriate skill to chop down the tree.
ACTION: execute("chop down the tree", "stick", 8)

Round 9 [Env] Feedback on the Action: Your last action 
"execute("chop down the tree", "stick", 8)" has been executed. The 
executor has reached the maximum number of steps for this turn 
without completing your subgoal.
Your Inventory: Now your inventory has 4 oak_log.
Equipped Item: Now you hold the air in your hand.
Location and Orientation: Now you locate in X: 331.53, Y: 64.42, Z: -
245.70, Pitch: -76.03, Yaw: -177.64.
[Agent] OBSERVATION: I am looking up at a dirt and grass hillside with 
a tree at the top. The sky is clear with a few clouds visible. I am holding 
nothing in my hand.
THOUGHT: To obtain sticks, I need to chop down the tree. I am already 
near a tree and holding nothing in my hand. So I should chop down the 
tree.
ACTION: execute("chop down the tree", "stick", 8)

Repeating `execute("chop down the 
tree", "stick", 8)` for 5 rounds...

Figure 18: This is an example of InternVL-2 failing to complete a VAB-Minecraft task. Task
instruction: “Your task is to get a wooden shovel in your inventory.” InternVL-2 made a wrong
plan for it (marked as red in Round 2), and persistently tried to obtain sticks by chopping down trees,
which is infeasible (actions marked as red from Round 7 to 16).
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G.3 VAB-ANDROIDLAB CASES

In this section, we show successful and failed examples of gpt-4o in Figure 19 and Figure 20.

Figure 19: This is an example of gpt-4o successfully completing a VAB-AndroidLab task. Task
instruction: “Check my default browser and change it to firefox”
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Figure 20: This is an example of gpt-4o failing to complete a VAB-AndroidLab task. Task
instruction: “Check the walking distance and time between Bus Stop of Stanford Campus Oval and
Bus Stop of Oxford Street & University Avenue” gpt-4o repeated doing typing without noticing
the success of previous typing.

52



Published as a conference paper at ICLR 2025

G.4 WEBARENA-LITE CASES

In this section, we show successful and failed examples of gpt-4o in Figure 21 and Figure 22.

Figure 21: This is an example of gpt-4o successfully completing a WebArena-Lite task. Task
instruction: “What is the phone number of Western Pennsylvania Hospital”
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Figure 22: This is an example of gpt-4o failing to complete a WebArena-Lite task. Task instruction:
“Promote auth0/angular-storage to subreddit technology with the description from the repo itself.”
gpt-4o repeated doing typing without noticing the success of previous typing.
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G.5 VAB-CSS CASES

We show successful and failed cases of both gpt-4o and InternVL-2 in Figure 23, Figure 24,
Figure 25 and Figure 26.

Round 1:
THOUGHT: I need to adjust the layout of the image 
placeholders under "The Portfolio" to be arranged in 
a horizontal row. This can be achieved by modifying 
the CSS rule for the `ul.img  ̀or its child l̀i  ̀elements to 
use a horizontal layout, such as setting the `display  ̀
property to ìnline-block  ̀or using `float .̀

ACTION: get_selectors_by_html_elements('ul', 
{'class': 'img’})

Round 2:
THOUGHT: The most specific selector for the `ul.img  ̀
element is `#body #content ul.img .̀ I will check the 
properties of this rule to see if it needs adjustments 
to arrange the image placeholders in a horizontal 
row.

ACTION: select_rule('#body #content ul.img')

Round 3:
THOUGHT: The current rule for `#body #content 
ul.img  ̀does not include any properties that would 
arrange the list items horizontally. I will add a 
`display: flex  ̀property to this rule to arrange the 
image placeholders in a horizontal row.

ACTION: edit_rule('#body #content ul.img', 'display', 
'flex')

Round 4:
I have fixed the css style.

Target Effect

Figure 23: This is an example of gpt-4o successfully completing a VAB-CSS task.

Round 1:
THOUGHT: The issue seems to be with the layout of 
the columns. The `#colOne  ̀and `#colTwo  ̀divs should 
be displayed side by side to form two columns. I will 
first find the selectors for these divs to check their 
current CSS rules.

ACTION: get_selectors_by_html_elements('div', {'id': 
'colOne'})

Round 2:
THOUGHT: Now that I have the selector for the 
`#colOne  ̀div, I will check its current CSS rules to 
understand how it is being styled.

ACTION: select_rule('#colOne')

Round 3:
THOUGHT: The `#colOne  ̀div has a width and padding 
defined, but it is not floated or positioned to be side 
by side with `#colTwo .̀ I will now find the selector for 
the `#colTwo  ̀div to check its current CSS rules.

ACTION: get_selectors_by_html_elements('div', {'id': 
'colTwo'})

Round 4:
THOUGHT: Now that I have the selector for the 
`#colTwo  ̀div, I will check its current CSS rules to 
understand how it is being styled.

ACTION: select_rule('#colTwo')

Round 5:
THOUGHT The `#colTwo  ̀div is already floated to the 
left, but the `#colOne  ̀div is not floated. To make the 
columns appear side by side, I need to float the 
`#colOne  ̀div to the left as well.

ACTION: edit_rule('#colOne', 'float', 'left')

Round 6:
I have fixed the css style.

Target Effect

Figure 24: This is an example of gpt-4o failing to complete a VAB-CSS task.

Round 1:
THOUGHT: The three images in the "Fresh 
Movies" section should be aligned horizontally. 
This can be achieved by setting the display 
property of the list items in the movies section 
to inline-block or using a flexbox layout. First, I 
will identify the CSS selector for the list items in 
the movies section.

ACTION: get_selectors_by_html_elements('li')

Round 2: 
THOUGHT: The selector .̀movies li  ̀seems 
to be the most appropriate for targeting the 
list items in the movies section. I will now 
inspect the properties of the .̀movies li  ̀
rule to understand its current layout 
settings.

ACTION: select_rule('.movies li')

Round 3: 
THOUGHT: The .̀movies li  ̀rule currently 
only specifies the width and margin-right 
properties. To align the list items 
horizontally, I need to set the display 
property to inline-block or use a flexbox 
layout. I will add the `float: left  ̀property to 
the .̀movies li  ̀rule to align the list items 
horizontally.

ACTION: edit_rule('.movies li', 'float', 'left')

Round 4: I have fixed the css style.

Target Effect

Figure 25: This is an example of InternVL-2 successfully completing a VAB-CSS task.
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Round 1: 
THOUGHT: I think I should adjust the float 
property of the rule with the selector "#iphone" 
to align it properly with the main content of the 
page.

ACTION: edit_rule('#iphone', 'float', 'left')

Round 2:
THOUGHT: The edit did not align the iPhone 
image properly with the main content. I will 
revert the last edit.

ACTION: revert_last_edit

Round 3:
THOUGHT: I think I should adjust the padding 
property of the rule with the selector "#iphone" 
to align it properly with the main content of the 
page.

ACTION: edit_rule('#iphone', 'padding', '0')

Round 4:
THOUGHT: I think I should adjust the display 
property of the rule with the selector "#iphone" 
to align it properly with the main content of the 
page.

ACTION: edit_rule('#iphone', 'display', 'inline-
block')

Round 5:
THOUGHT: I think I should adjust the float 
property of the rule with the selector "#iphone" 
to align it properly with the main content of the 
page.

ACTION: edit_rule('#iphone', 'float', 'left')

Round 6:
THOUGHT: I think I should adjust the padding 
property of the rule with the selector "#iphone" 
to align it properly with the main content of the 
page.

ACTION: edit_rule('#iphone', 'padding', '0')

Round 7:
THOUGHT: I think I should adjust the display 
property of the rule with the selector "#iphone" 
to align it properly with the main content of the 
page.

ACTION: edit_rule('#iphone', 'display', 'inline-
block')

Target Effect

Figure 26: This is an example of InternVL-2 failing to complete a VAB-CSS task.
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G.6 ERROR RECOVERY CASES

In this section, we show examples of error recovery in each environment, as illustrated in Figure 27,
Figure 28, Figure 29, Figure 30, Figure 31.

Round 3 [Env] Action Feedback: The last action is `grasp(2.document)`, the 
feedback is "Grasped successfully!".
At Hand Object: 2.document.
Current Room: private_office_0.
[Agent] OBSERVATION: I see 1.bin in the image. Until now, I have seen 
1.bin, 2.document, 5.table.
THOUGHT: Currently I am going to put the document inside the recycling 
bin. I'm close to 1.bin now, and I should put 2.document inside 1.bin. 
ACTION: put_inside(2.document, 1.bin)

Round 4 [Env] Action Feedback: The last action is `put_inside(2.document, 
1.bin)`, the feedback is "Cannot put inside! The container is closed!".
At Hand Object: 2.document.
Current Room: private_office_0.
[Agent] OBSERVATION: I see 1.bin in the image. Until now, I have seen 
1.bin, 2.document, 5.table.
THOUGHT: Currently I am going to put the document inside the recycling 
bin. I'm close to 1.bin now, and I should open 1.bin first.
ACTION: open(1.bin)

Round 5 [Env] Action Feedback: The last action is `open(1.bin)`, the 
feedback is "Opened successfully!".
At Hand Object: 2.document.
Current Room: private_office_0.
[Agent] OBSERVATION: I see 1.bin in the image. Until now, I have seen 
1.bin, 2.document, 5.table.
THOUGHT: Currently I am going to put the document inside the recycling 
bin. I have opened 1.bin, and now I should put 2.document into it.
ACTION: put_inside(2.document, 1.bin)

Figure 27: In VAB-OmniGibson, the agent encounters a failure when attempting to place the
document into a closed bin. Upon receiving feedback from the environment, the agent first opens the
bin and successfully deposits “2.document” into it.

Round 2 [Env] Feedback on the Action: Your last action 
"execute("collect wood", "logs", 1)" has been executed. 
Your subgoal has been successfully completed by the 
executor.
Your Inventory: Now your inventory has 1 oak_log.
Equipped Item: Now you hold the oak_log in your hand.
Location and Orientation: Now you locate in X: 424.28, 
Y: 69.00, Z: -183.29, Pitch: 35.08, Yaw: -209.08.
[Agent] OBSERVATION: I see a tree stump in front of 
me, indicating that I have successfully collected some 
wood.
THOUGHT: I need to convert the oak log into wooden 
planks and then craft a crafting table. After that, I can 
use the crafting table to make a wooden pickaxe.
ACTION: craft("crafting_table")

Round 3 [Env] Feedback on the Action: Your last action 
"craft("crafting_table")" can not be executed. Not 
enough materials for 1 crafting_table.
Your Inventory: Now your inventory has 1 oak_log.
Equipped Item: Now you hold the oak_log in your hand.
Location and Orientation: Now you locate in X: 424.32, 
Y: 69.00, Z: -183.30, Pitch: 35.08, Yaw: -209.08.
[Agent] OBSERVATION: I see an oak log in my hand 
and another tree stump in front of me. I need to convert 
the oak log into wooden planks first.
THOUGHT: I need to convert the oak log into wooden 
planks before crafting a crafting table.
ACTION: craft("wooden_planks")

Round 4 [Env] Feedback on the Action: Your last action 
"craft("wooden_planks")" can not be executed. Recipe 
not found for wooden_planks.
Your Inventory: Now your inventory has 1 oak_log.
Equipped Item: Now you hold the oak_log in your hand.
Location and Orientation: Now you locate in X: 424.32, 
Y: 69.00, Z: -183.30, Pitch: 35.08, Yaw: -209.08.
[Agent] OBSERVATION: I see an oak log in my hand 
and a grassy plain with some trees in the distance. 
THOUGHT: I need to convert the oak log into wooden 
planks. The correct term might be "planks" instead of 
"wooden_planks".
ACTION: craft("planks")

Round 5 [Env] Feedback on the Action: Your last action 
"craft("planks")" has been executed. Successfully 
crafted 1 planks.
Your Inventory: Now your inventory has 4 oak_planks.
Equipped Item: Now you hold the oak_planks in your 
hand.
Location and Orientation: Now you locate in X: 424.36, 
Y: 69.00, Z: -183.31, Pitch: 24.14, Yaw: -500.06.
[Agent] OBSERVATION: I see that I have successfully 
crafted 4 oak planks. I am holding the oak planks in my 
hand. The environment is a grassy plain with some trees 
in the distance.
THOUGHT: Now that I have oak planks, I can craft a 
crafting table. This will allow me to craft more complex 
items, such as a wooden pickaxe.
ACTION: craft("crafting_table")

Figure 28: In VAB-Minecraft, the agent initially attempts to craft a crafting table without the required
ingredients. Upon receiving feedback, the agent first attempts to craft “wooden planks”, which is an
incorrect ingredient name. Subsequently, it corrects its approach by crafting “planks” and is then able
to successfully craft the crafting table.

57



Published as a conference paper at ICLR 2025

Figure 29: In VAB-AndroidLab, the agent initially clicks on the correct alarm to be deleted. However,
a popup unexpected appears and trigger a wrong clicking of the agent. After the wrong action, it
realizes the error and again perform the correct action.

Figure 30: In WebArena-Lite, the agent initially searches for the target repository that need it to
create. After realizing the problem, it struggles to return to the repository creating page to finally
perform the correct action.

Target Effect
Round 1:
THOUGHT: I need to adjust the layout of the 
`#content  ̀div to ensure it aligns correctly with the 
`#side_menu  ̀div. This might involve changing the 
float or display properties.

ACTION: get_selectors_by_html_elements('div', 
{'id': 'content'})

Round 2:
THOUGHT: The `#content  ̀div is currently floated to 
the left. To align it correctly with the `#side_menu  ̀
div, I will change the float property to `right .̀

ACTION: edit_rule('#content', 'float', 'right')

Round 3:
THOUGHT: The adjustment did not resolve the issue. I 
will revert the last edit and then consider adjusting 
the float property of the `#side_menu  ̀div to ensure it 
aligns correctly with the `#content  ̀div.

ACTION: revert_last_edit

Round 4:
THOUGHT: I will now inspect the properties of the 
`#side_menu  ̀div to understand its current layout 
settings and determine what needs to be adjusted.

ACTION: get_selectors_by_html_elements('div', {'id': 
'side_menu'})

Round 5:
THOUGHT: I will change the float property to l̀eft  ̀to 
ensure it aligns correctly with the `#content  ̀div.

ACTION: edit_rule('#side_menu', 'float', 'left')

Round 6: I have fixed the css style.

Figure 31: In VAB-CSS, the agent initially edits a wrong CSS rule. After rendering the new webpage,
the agent realizes that this is not the correct change to make so it decides to revert the last edit and
makes a new edit that finally fixes the layout.
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