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Abstract

Real-to-Sim-to-Real frameworks enable data-efficient001
robot learning by leveraging realistic simulations, but ex-002
isting approaches struggle to reconstruct articulated ob-003
jects without manual interaction or dense multi-view ob-004
servations. We present ARTIST (Articulated Real-To-005
Interactive-Sim Twin), a framework that automatically006
builds digital twins of articulated objects from a single007
monocular video. ARTIST first reconstructs and decom-008
poses objects into parts by combining monocular 3D re-009
construction with open-vocabulary segmentation, and then010
estimates articulations by adapting an actor–critic vi-011
sion–language model to operate on reconstructed parts. On012
the ArtVIP dataset, ARTIST improves both 3D asset recon-013
struction and articulation estimation for previously unseen014
real-world objects. Finally, we demonstrate that ARTIST015
enables Real-to-Sim-to-Real transfer by replaying a single016
robot demonstration in simulation, highlighting its potential017
for scalable robot learning with minimal supervision.018

1. Introduction019

While recent advances in imitation learning have enabled020
robots capable of manipulating a variety of objects, they021
still struggle with long-term manipulation tasks, as these022
require a prohibitively large number of real-world inter-023
actions. Real-to-Sim-to-Real frameworks [1, 10, 21] aim024
to mitigate data requirements by reconstructing real-world025
scenes in physics-based simulators, which can then be used026
for demonstration augmentations [1] or fine-tuning [21].027
However, the automatic creation of articulated objects (e.g.,028
doors, drawers, laptops) in such frameworks still requires029
human intervention [1, 21].030

Two main challenges arise when reconstructing ar-031
ticulated objects. The first is estimating the 3D parts032
of the object, and the second is modeling the correct033
interactions between these parts. While recent advances034
in 3D generation enable the rapid creation of realistic035
meshes [2, 3, 7, 14, 16, 20, 25, 26], most methods are not036
part-aware [3, 14, 20, 25] or articulation-aware [2, 7, 16,037

26]. Specialized approaches for articulated object gener- 038
ation have been proposed [5, 9, 11, 12, 15, 17], but these 039
typically require dense multi-state observations [5, 11, 15] 040
or are limited to narrow domains [9, 12], making it difficult 041
to generalize to diverse object categories. More recently, 042
Articulate-Anything [8] demonstrated that vision-language 043
models (VLMs) can serve as actor-critics to estimate 044
articulations, but the method relies on a precomputed 045
dataset of 3D parts, limiting adaptability to novel objects. 046

In this work, we address these limitations by proposing 047
a framework for reconstructing articulated objects from 048
a single monocular video. Specifically, we perform 3D 049
part decomposition by combining monocular reconstruc- 050
tion [24] with 2D open-vocabulary segmentation [19]. 051
To estimate interactions between reconstructed parts, we 052
adapt the actor–critic mechanism from [8] to operate on 053
reconstructed assets. We introduce ARTIST (Articulated 054
Real-To-Interactive-Sim Twin), a framework that au- 055
tomatically reconstructs articulated objects suitable for 056
Real-to-Sim-to-Real pipelines. We evaluate ARTIST on 057
the ArtVIP dataset and further demonstrate its utility by 058
replaying robot demonstration trajectories in simulation. 059

In summary, our contributions are: 060
1. We introduce ARTIST, a novel framework for recon- 061

structing articulated Real-to-Sim-to-Real assets from 062
monocular video. 063

2. We propose a method for reconstructing 3D object 064
parts by combining monocular reconstruction with open- 065
vocabulary segmentation. 066

3. We adapt actor-critic VLMs to estimate interactions be- 067
tween reconstructed parts. 068

2. Method 069

The objective is to create an articulated digital twin of a 070
target object, represented in URDF file format, including 071
part-object meshes and detailed joint information. ARTIST 072
takes as input a video demonstration of interaction with an 073
articulated object and creates a manipulable digital twin that 074
can be used in simulation. It makes use of state-of-the-art 075
mesh generation, 3D mesh segmentation, articulation esti- 076
mation, and integrates with robot manipulation methods to 077
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Figure 1. Overview of the four main stages from ARTIST. First, the object is reconstructed using TRELLIS [24] using few views. Second,
the 3D asset is decomposed into 3D parts via DINO-X [19] and instance segmentation with SAM [18]. Then, estimation of articulated
joints is performed by prompting Gemini 2.5 Flash in an actor-critic way. Finally, the 3D asset can be used for trajectory replay in a physics
simulator, suitable for policy learning [1].

create a full pipeline from input views to interactable and078
realistic simulations for real-world articulated objects (see079
Figure 1 for details).080

2.1. 3D Generation for Real-to-Sim Assets081

A key requirement for real-to-sim transfer is the ability to082
reconstruct target objects with high fidelity from potentially083
limited observation. For articulated objects, this challenge084
is amplified by the presence of small movable parts such085
as dials, buttons, and sliders, as well as unique geometries086
not covered in existing annotated datasets. Retrieval-based087
reconstruction [22], even when paired with large-scale re-088
sources such as PartNet-Mobility [23], cannot generalize089
to the wide variety of objects encountered in practice, par-090
ticularly when unseen geometries or fine-scale components091
are present. To overcome these limitations, we propose to092
use generative models for asset generation, enabling high-093
quality mesh construction from real demonstrations. Given094
multiple views of an object in its resting state, sampled di-095
rectly from demonstration videos, we first obtain a target096
object description via a VLM and pre-process the frames to097
remove background and other objects potentially present in098
the scene. Using object-centric images, we reconstruct pre-099
cise textured meshes that preserve both global structure and100
fine details necessary for downstream manipulation.101

We address the real-to-sim gap by generating physi-102
cally plausible assets for policy learning. After benchmark-103
ing perceptual quality and Chamfer distance on PartNet-104
Mobility, we adopt TRELLIS [24] for its structurally accu-105
rate reconstructions needed for articulation estimation and106
multi-view conditioning support.107

2.2. 3D-aware Part Decomposition 108

As the generated object meshes represent the entire asset 109
and lack part-awareness, they need to be segmented into in- 110
dividual parts to later estimate their movement. The entire 111
process, from input image to part-wise segmented mesh, is 112
visualized in Figure A6. 113

2D Part Detection and Segmentation Since it is crit- 114
ical to correctly identify each of the movable parts, our 115
method grounds the segmentation targets on the observed 116
part movement given the input demonstration. A VLM de- 117
scribes each of the articulated parts in the input video and 118
outputs a list of parts which are used as the target in the 119
object detection step. (See Appendix A9 for the prompt). 120

As a next step, we render the generated asset from 121
multiple views and apply open-vocabulary object detection 122
combined with zero-shot segmentation to obtain 2D seg- 123
mentation masks. In particular, we use DINO-X [19] to 124
generate bounding boxes and SAM [18] to get instance- 125
wise segmentations for every rendered view. We choose 126
DINO-X as it outperformed Grounding DINO [13] and 127
peers in our zero-shot part detection tests, consistent with 128
LVIS rare-category benchmarks evaluation. As SAM pro- 129
duces semantic-agnostic masks, cross-view correspondence 130
breaks and results vary with viewpoint/lighting; we address 131
this in the next section by fusing 2D masks into aligned 3D 132
part segmentations. 133

3D Part Decomposition Using the camera parameters 134
and depth images, points are sampled from each segmen- 135

2



CoRL
#*****

CoRL
#*****

CoRL 2025 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

(a) Chamfer Distance for TRELLIS-generated vs.
Articulate-Anything retrieved full assets on ArtVIP.

ARTIST (Ours) Articulate-Anything

Category CD ↓ CD ↓

Household Items 0.28 (n=29) 0.91 (n=29)
Small Appliances 0.12 (n=17) 0.56 (n=15)
Major Appliances 0.39 (n=34) 0.89 (n=18)
Small Furniture 0.32 (n=21) 0.74 (n=21)
Large Furniture 0.98 (n=19) 1.31 (n=12)

Overall 0.41 (n=120) 0.86 (n=95)

(b) 3D Part Reconstruction on ArtVIP [6]. We compare ARTIST to Articulate-
Anything [22]. Predicted and ground-truth parts are matched with Hungarian Matching.

ARTIST (Ours) Articulate-Anything

Category Part Acc. ↑ Mean CD ↓ Recall ↑ Part Acc. ↑ Mean CD ↓ Recall ↑

Household Items 6.9% 0.60 (n=29) 43.6% 10.3% 1.72 (n=29) 31.6%
Large Furniture 10.5% 1.72 (n=19) 28.6% 0.0% 1.77 (n=12) 17.1%
Major Appliances 2.9% 0.79 (n=34) 12.6% 0.0% 1.35 (n=18) 9.8%
Small Appliances 0.0% 0.27 (n=17) 25.2% 0.0% 0.97 (n=15) 17.6%
Small Furniture 4.8% 0.56 (n=21) 33.3% 0.0% 1.29 (n=21) 22.0%

Overall 5.0% 0.78 (n=120) 20.9% 3.2% 1.44 (n=95) 18.5%

Table 1. Evaluation of ARTIST on ArtVIP dataset: (a) full-object reconstruction comparison; (b) 3D object parts reconstruction.

tation mask and reprojected into a shared 3D space. To136
ameliorate the multi-view segmentation issues, overlapping137
point clouds of the same label are merged based on point138
overlap calculated via KD clustering to avoid having mul-139
tiple clouds of the same instance, ending up with one seg-140
mented point cloud per object part.141

Since 2D object detectors will often highlight the entire142
object, segmentation masks may overlap, leading to frag-143
mented output part meshes. To solve this, we remove points144
from overlapping masks in 2D for the same view favoring145
fine-grained masks. For example, if the masks for the whole146
drawer, an individual drawer, and its handle overlap, then147
the mask of the handle would be erased from the other seg-148
mentations (see Fig. A4 for details).149

Since some parts might not be detected from a given150
view and thus overlap exists between separate views, we151
perform the same step in 3D by clustering the segmented152
point clouds and removing close enough points of larger153
masks (see Fig. A3). Finally, the mesh is clustered vertex-154
wise with each instance point cloud, then faces are assigned155
by majority vote. In this way, we transform individual 2D156
parts segmentations into a consistent decomposition of the157
3D assets into parts. In addition, the texture for each part158
mesh is preserved by creating a UV texture map and saving159
the face to UV coordinate assignments.160

2.3. Articulation Estimation161

To estimate joint articulation, we make use of parts of the162
Articulate Anything pipeline, which we adapt to use gen-163
erated meshes instead of part retrieval from the PartNet-164
Mobility [23] dataset.165

To create a full URDF detailing the object with part166
meshes and joint parameters, we need to first estimate the167
link placement, infer the joint type and finally predict the168
joint parameters matching the original movement. Since169
we are generating assets in the exact state as they were ob-170
served, we can directly use the coordinates of each mesh as171
a fixed link placement step.172

For the joint estimation, the VLM actor predicts python173
code, making use of pre-defined functions and in-context174

t = 40 t = 84 t = 115

Figure 2. Trajectory replay on Digital Twin. Top: Original
demonstration on ground truth RLBench [4] object. Bottom: Re-
play of robot trajectory using Digital Twin in the simulator.

examples. The resulting generated code is compiled into 175
URDF and rendered using Sapien renderer [23]. For each 176
movable joint, a video is rendered in simulation where the 177
joint is moved through its entire range. This predicted 178
video, along with the ground truth manipulation, are given 179
to the critic. The critics job is to give feedback in the form of 180
a rating, failure reasons and possible improvements. It also 181
receives in-context examples. This actor-critic loop con- 182
cludes once the realism rating assigned by the critic exceeds 183
a score of 9 out of 10. 184

2.4. Demonstration Replay 185

At this point the reconstructed object can be placed in sim- 186
ulation. To verify that it can be used for Real-To-Sim- 187
To-Real we start from a simulated demonstration, recon- 188
struct the object, place it inside the simulation, and replay 189
the same trajectory from the demonstration. With this ap- 190
proach, we can compare the final state of the reconstructed 191
and the original object. If manipulation of the twin leads 192
to task success in the same way as the original across many 193
different variations, it can be considered a good replica. In 194
such case, digital twins become useful for imitation learning 195
from few demonstrations [1]. 196
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3. Experiments197

We aim to answer the following questions: 1. How well198
ARTIST can generate and decompose novel objects into199
parts using only one RGB image. 2. What is the quality of200
articulation estimation. 3. How to exploit the reconstructed201
asset in simulation.202

3.1. Results for PartNet-Mobility Objects203

We used a pre-processed version of the PartNet-Mobility204
dataset, following the approach of Articulate-Anything. We205
passed the front-view images to TRELLIS to generate a206
mesh and the VLM to name the parts. The joint critic com-207
pares a rendered video of the predicted URDF with a ren-208
dered video of the ground-truth object having their joints209
moved from lower to upper limit.210

ARTIST achieves a 19.1% joint prediction success rate211
as shown in Figure A8. While lower than the Articulate-212
Anything baseline, we are generating meshes using213
TRELLIS [24], in contract to Articulate-Anything that also214
assumes known parts for retrival. A single front-view image215
conditioning often results in the generated meshes being216
either entirely flat, or having flat parts which should be the217
articulated parts. These generated meshes would not only218
cause the part decomposition to fail frequently, but also with219
separated part meshes the predicted joints would be outside220
of the threshold for correct joint origin predictions, thus re-221
sulting in failures. This especially seemed to be a problem222
for the Camera, Phone, and Remote categories, which made223
up a decent amount of all objects (together 56 objects).224

Accounting for a large portion of failures is the part225
decomposition, mainly limited by 2D segmentation, since226
zero-shot open-vocabulary object part detection perfor-227
mance is still inconsistent [19]. In Figure A8, failure cases228
are broken down. Since our method does not require the229
link placement step, failures are only divided into joint230
estimation errors. When comparing the percentages of joint231
estimation errors between ARTIST and the baseline, joint232
axis, origin, and limit errors roughly account for the same233
amount of errors, whereas there is a large difference in joint234
type errors (7.7% against 22.5%).235

3.2. Results for ArtVIP Objects236

To test the quality and success rate of ARTIST compared237
to the current state-of-the-art, we compare our complete238
method against Articulate-Anything with mesh retrieval239
on the ArtVIP dataset. Unlike in the previous experiment,240
where Articulate-Anything worked with already provided241
meshes, in this case, the adaptability to recreate completely242
unseen objects can be highlighted, and generalization per-243
formance between both approaches can be verified. Since244
ArtVIP objects are of high visual and annotation quality,245
this also marks an important experiment for objects that are246

close to real-life objects and thus have implications for real- 247
to-sim-to-real performance. To evaluate the success rate of 248
part decomposition of ARTIST, we present part-wise results 249
in Table 1. These highlight that ARTIST always predicts 250
better matching parts than Articulate-Anything, as shown 251
by higher recall across all categories. The structural preci- 252
sion and reconstruction quality of part meshes is also lower 253
across all categories for ARTIST compared to the baseline, 254
indicated by lower average Chamfer distance of parts. 255

3.3. Manipulation of Digital Twin in Simulation 256

To test whether the recreated objects can be used effec- 257
tively in simulation by replaying original trajectories on the 258
digital twin, we replayed 100 episodes with a randomized 259
initial state (object placement and rotation). Out of the 100 260
trajectories recorded by manipulating the original object 261
in RLBench [4], the replayed trajectories led to successful 262
task completions on the digital twin in all 100 cases. For 263
this initial test, we use the close laptoplid task, in which the 264
goal is to close the lid of a laptop positioned on a wooden 265
stand. The goal condition is reached when the revolute joint 266
connecting the lid to the base reaches its closed position. 267
Results of the replay of one demonstration is visualized 268
in Figure 2. This experiment shows that our generated 269
digital twins recreate the original object very closely, and 270
can be used in simulation to safely and efficiently learn 271
manipulation of the original object, thus proving useful for 272
a real-to-sim-to-real setting. 273

4. Conclusion and Future Work 274

We proposed ARTIST, a framework for articulated object 275
reconstruction that combines monocular 3D part decompo- 276
sition with articulation estimation using actor-critic VLM. 277
On the ArtVIP dataset, ARTIST demonstrated improved re- 278
construction of novel objects. Moreover, the high-quality 279
meshes produced were suitable for replaying robot trajecto- 280
ries in simulation. 281

Limitations. First, the reprojection of segmentation 282
masks can be inconsistent from certain views. Fine-tuning 283
the reconstruction method to be part-aware could solve the 284
issue. Second, the actor–critic VLM sometimes predicts in- 285
correct articulations. We believe that incorporating geomet- 286
ric supervision (e.g., by exploiting the differentiability of 287
Gaussian splatting in TRELLIS [24]) can mitigate this is- 288
sue. Finally, while we demonstrated trajectory replay, we 289
plan to show that policies trained through interaction with 290
such reconstructions can transfer back to the real world. 291

292
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APPENDIX401

A. Reproduction of Articulate-Anything results402

While the authors report a joint prediction success rate of 75%, with 15% of total predictions being failures due to link403
placement across the entire PartNet-Mobility data set, in my recreation we observed slightly lower success rates, with 59%404
joint prediction success and 30% of objects failing due to incorrect link placement. The observed difference in joint prediction405
performance can mainly be explained by the increased failure rate of link placement. One possible reason is the use of Gemini406
2.5 Flash, for which we have observed a higher tendency to not follow the prompt instructions precisely, especially when407
generating the predicted Python function, which leads to the prediction becoming unable to be compiled to URDF and thus408
rendered.409

We also break down the failure cases during joint placement in Figure A1. The joint placement failures (joint axis, type,410
origin, and limit) exhibit similar percentages to the results reported by Articulate-Anything, also in the order of most to least411
problematic with the joint axis making up the most errors and the joint limit the least, although the numbers we observed are412
slightly higher for each category.413

Additionally, we highlight the lack of flexibility of mesh retrieval when applied to unseen objects from the ArtVIP dataset414
[6] in Figure A2. In the first case (left), a completely different object is retrieved (left side of image) since no similar object415
to the ground truth (right side) exists in the retrieval dataset and the VLM object selector determined both objects as close416
enough. In the second case (middle & right), a somewhat similar object is retrieved, but the it the ground truth is still very417
low. The proposed objects contained visually more similar objects, but none of them matched the configuration of the ground418
truth (doors and shelves).419

Figure A1. Joint Estimation failure breakdown for Articulate Anything method on the PartNet-Mobility dataset. Since ground truth mesh
parts are used, only the actor-critic VLM is evaluated.

Figure A2. Failure of Mesh Retrieval to generalize to unseen objects.
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B. 3D Part Decomposition 420

Here we provide additional details about the decomposition process of generated 3D assets. In Figure A3, we highlight the 421
main parts of our decomposition method: Given an input image or video demonstration of the original object, use TRELLIS 422
to generate an object mesh and detect movable parts of the object via a VLM. Then, render the generated mesh from multiple 423
views in Blender. For each view, use DINO-X for zero-shot object detection and SAM for segmentation given the predicted 424
bounding boxes. Masks are projected into 3D, merged, and overlapping points are removed. Finally, the mesh vertices are 425
assigned to object part labels based on proximity to labeled points. After assigning mesh faces to labels by majority of 426
vertices, the generated mesh is completely decomposed into parts. 427

Figure A4 visualizes an important step for merging multiple 2D masks into 3D: Eliminating overlap between separate 428
masks. Since segmented pixels are projected into 3D and used to separate the object mesh by performing nearest-neighbour 429
matching with the mesh vertices, points with different labels overlapping with each other causes artifacts in the final mesh 430
segmentation. 431

We also highlight some common failure cases for open-vocabulary object part detection in Figure A5. In the first image, 432
segmentation of a scissor failed since it detected the blade and both handles as individual parts whereas it should have 433
instead separated both scissor arms which move against each other. Next, the entire object was labeled as a drawer which 434
semantically is not incorrect, however, the clearly visible doors were not detected. In the following case, some fine-grained 435
parts like caster wheels and the handle are detected, but instead of segmenting the actual doors, the whole object is detected 436
wrongly as a cabinet door. Finally, we show an example of successful segmentation. In this case, (almost) all movable parts 437
were detected in the given view. 438

In Figure A6, we visualize the segmentation process in more detail, starting from input image of simulated assets of the 439
RLBench dataset [4], which are used to generate 3D assets. These are rendered from multiple views and segmented in each 440
of them, as shown in the next step. Next, we project the 2D masks into 3D segmented point clouds, and finally, load the mesh 441
and partition it vertex-wise according to point label correspondence. 442

C. Additional Results for ARTIST on simulated objects 443

In this section, we provide further evaluation of our method against articulated object datasets. We generated a large number 444
of assets given a single render of PartNet-Mobility [23] objects and provide results for the quality of generated meshes in 445
Table A1. Figure A8 breaks down failures of ARTIST on recreating and articulating objects from PartNet-Mobility. 446

Figure A3. 3D Mesh Decomposition Process.

Original mask of mask of mask of Processed
Segmentation pull-out-shelf drawer louvered drawer pull-out-shelf

Figure A4. Process of cleaning overlapping masks to avoid 3D mesh segmentation problems.
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Figure A5. Failure cases of our open-vocabulary 2D part segmentation.

Table A1. Mesh quality evaluation using TRELLIS 3D generation on PartNet-Mobility assets using Chamfer Distance (lower is better).

Category Mean ↓
Household Items 0.32 (n=17)

• Tools 0.12 (n=7)
• Eyewear 0.31 (n=2)
• Containers 0.46 (n=5)
• Other 0.38 (n=3)

Small Appliances 0.22 (n=11)
• Kitchen 0.22 (n=4)
• Electronics 0.23 (n=7)

Major Appliances 0.33 (n=13)
• Kitchen 0.32 (n=8)
• Bathroom 0.23 (n=3)
• Other 0.62 (n=2)

Furniture 0.39 (n=18)
• Seating 0.36 (n=7)
• Tables 0.42 (n=4)
• Storage 0.39 (n=6)
• Other 0.43 (n=1)

Other Items 0.37 (n=24)
• Fixtures 0.33 (n=9)
• Electronics 0.39 (n=13)
• Misc 0.44 (n=2)

Overall Average 0.33 (n=83)

D. Implementation Details447

Here we provide the VLM prompt used for detecting movable parts given the input demonstration video, along with an448
example response of segmentation targets in Figures A9 and A10, respectively.449
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Input Image SAM Output Segmented Segmented
(one of many (one of many) Point Clouds Meshes

multi-view images)

Figure A6. Visualization of the segmentation and 3D reconstruction pipeline: input images (column 1), SAM outputs for multi-view
rendering of the object (column 2), segmented point clouds (column 3), and segmented meshes (column 4).
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Figure A7. Digital Twin creation and decomposition into 3D parts for real-world objects. Left: One of the input images. Left middle:
Rendered view of generated asset. Right middle: 2D Segmentation mask of rendered views. Right: Fully decomposed 3D point clouds.
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Figure A8. Joint estimation failure reasons for ARTIST on PartNet-Mobility [23] dataset.

Prompt

You have a good understanding of the structure of articulated objects. Your job is

to assist the user to analyze the structure of an object. Specifically, the user

will give you a video of an articulated object, and your task is to recognize the

main parts of that object.

Output format

(1) part name: name of the part; description: a brief description about the
part, and how it moves

(2) part name: name of the part; description: a brief description about the
part, and how it moves

Remember

(1) Do not answer anything not asked.
(2) Your answer should be purely based on the input video, do not imagine anything.

(3) If there are multiple parts with the same semantic, just add one part to the list. For example, if there are four
wheels, just add one part whose name is wheel.

(4) Your answer has to be based on the object being manipulated. If there is a robotic or a human arm interacting
with the object, ignore it and just describe the object.

Figure A9. Prompt given to VLM to detect articulated parts given the input video of the target object.

(1) part name: screen; description: The display part of the laptop, which is connected to
the base by a hinge and can be opened or closed.

(2) part name: key; description: One of the buttons on the keyboard that can be pressed
down to input characters or commands.

(3) part name: trackpad; description: A touch-sensitive surface used for controlling the
cursor, located below the keyboard.

(4) part name: power button; description: A button used to turn the laptop on or off,
which can be pressed.

Figure A10. Example object part descriptions for a laptop, generated by a VLM prompted with the demonstration input video.
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