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ABSTRACT

Training GNNs over large graphs is a long-standing challenge due to the inef-
ficiency of the message passing mechanism. Message passing, typically repre-
sented as the production between sparse adjacency matrix and node features, is
difficult to be accelerated with commodity hardware, such as GPUs. Prior drop-
ping based mechanism (e.g., edge or node dropping), can be adopted to reduce the
computation cost of sparse matrix multiplication. However, two under-explored
pain points still persist in this paradigm: ① Inefficiency. Dropping-based meth-
ods lack hardware efficiency. Such mechanism randomly remove non-zero en-
tries from edge indices, which later needs to be converted into sparse matrix for-
mat for computational ease. This conversion may counteract the speedup gained
from reducing FLOPs. ② Poor generalization. Previous sampling-based method
utilizes a fixed subset of nodes or edges to emphasize on efficiency, but sacri-
fice generalizability due to under-fitting on the remaining subgraph. Aiming to
promote the accuracy-efficiency trade-off, we propose Structured Dropout, a.k.a,
StructDrop. Specifically, we remove a set of selected columns directly from
the sparse adjacency matrix format, hence bypassing the sparse matrix recon-
struction and data access. To further mitigate the training shifting due to ran-
dom column-row pair dropping, we adopt instance normalization following the
sparse production. Comprehensive experiments on four benchmark datasets and
four popular GNNs validate the superiority of our framework: StructDrop
achieves up to 5.29x end-to-end speedup with negligible accuracy loss or even
better accuracy compared with vanilla GNNs.

1 INTRODUCTION

Graph Neural Networks (GNNs) have made significant advancements in various graph-related tasks
Hamilton et al. (2017a); Hu et al. (2020); Ying et al. (2018); Jiang et al. (2022); Zhou et al. (2022;
2023). Specifically, GNNs process the underlying graph structure and node features in a layer-
wise manner with two interleaved phases: aggregation and update. During the aggregation phase,
each node accumulates messages from its direct neighbors, which is computationally realized by
sparse matrix-based operations to multiply the set of node features with a sparse adjacency matrix.
Following this, in the update phase, nodes transform the aggregated features with a differentiable
layer (e.g., multi-layer perceptron) dominated by dense matrix-based operations.

Despite their strong performance, training GNNs is time-inefficient, especially on large graphs.
As shown in Figure 1, we analyze the fine-grained time cost of GNNs where SpMM and MatMul
represents the sparse and dense operators, respectively. Notably, the neighborhood aggregations
included at forward and backward propagations consume 70-90% of the total GNN training time, as
supported by Han et al. (2023). This inefficiency stems from the nature of sparse matrix operations,
which require numerous random memory accesses with minimal data reuse. Several works have
highlighted that community hardware (e.g., CPUs and GPUs) designed on the single-instruction
multiple-data (SIMD) principle will struggle in efficiently accessing neighborhood features with
discontinuous indexes Duan et al. (2022); Han et al. (2016); Liu et al. (2023b).

Existing work towards reducing the time cost of neighborhood aggregation mainly adopt randomized
dropping algorithms, which can be roughly grouped into two categories. Firstly, edge-oriented
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dropping methods Rong et al. (2019); Eppstein et al. (1997); Liu et al. (2023b) remove part of
the edges randomly during training, or deterministically in preprocessing stage. Secondly, node-
oriented dropping methods Feng et al. (2020); Chiang et al. (2019); Hamilton et al. (2017b) prune
certain nodes and their associated edges from the input graph. However, from the efficiency aspect,
an issue with both approaches is that the overhead from removing edges or nodes may counteract
the speedup from the FLOPS reduction. Specifically, this is due to the need to reconstruct the sparse
adjacency matrix after removing edges or nodes from the input graph, which involves processing
the whole graph and is notably time-consuming.

A less explored method to speed up the aggregation phase is to use a fast but approximated version of
the SpMM instead of the exact one. To illustrate, consider a linear operation involving two matrices,
A ∈ Rn×m and B ∈ Rm×q . We first create reduced matrices A′ ∈ Rn×k and B′ ∈ Rk×q

(k < m) by choosing k representative columns from A and their corresponding rows from B,
referred to as column-row pairs. This approximation, AB ≈ A′B′, aims to reduce both the number
of floating-point operations (FLOPs) and the data that needs to be accessed, as only k/m of the
column-row pairs are processed. This method avoids the need to reconstruct a sparse matrix by
structurally selecting entire columns and rows. Although this approach has shown promise in other
fields Adelman et al. (2021), our tests reveal that it significantly reduces the accuracy of GNNs,
leading to even a 8% loss in accuracy (as shown in Table 1) on standard datasets and models, which
is impractical for real-world applications.
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Figure 1: The time profiling of a three-layer
GCNs on different datasets. SpMM may take
70∼90% of the total time. Our method
(StructDrop) can reduce the total training
time by 5.29× as shown in table 2. We measure
the time on a NVIDIA A40 GPU. The detailed
software and hardware information can be found
in Appendix A.

In this work, we promote the accuracy-
efficiency trade-off via approximating the
sparse matrix production in both the forward
and backward processes of GNNs. Based on
the column-row pair sampling, our core idea
is to adapt the sampling policy and normal-
ize the result of SpMM to stably approximate
the neighbor aggregation. Specifically, prior
research suggests the probability of choosing
each column-row pair should be in proportion
to the production of the respective row norm
and column norm Drineas et al. (2006). In-
terestingly, we observed that the column-row
pairs selected in the forward pass exhibited a re-
markable consistency across nearby iterations.
We hypothesize that this consistency will cause
under-fitting problem as they only utilize the
same subset of nodes and edges during train-
ing. Drawing from this insight, we propose
a straightforward strategy: the uniform selec-
tion of column-row pairs. Namely, we assign the same probability to be sampled for each column-
row pair and term such structured dropping as StructDrop. Surprisingly, we found that this sim-
ple strategy can often outperform the complicated norm-based one in the graph learning problem.
To further reduce the negative impact of the variance from uniform sampling, we propose to utilize
instance normalization following the approximated production to stabilize the training process. In
summary, our contributions are summarized as follows:

• We explore to speedup GNN training from a novel randomized dropping perspective. We
approximate sparse matrix multiplication at forward and backward paths with sampling a
subset of the column-row pairs to reduce FLOPs and data access with accuracy preserved.

• We propose a hybrid solution of random dropping and normalization to maintain general-
izability with efficiency. We design a straightforward yet effective strategy, uniform sam-
pling, which overcomes underfitting in global graph. Additionally, we recommend incor-
porating instance normalization into the sampling process so as to mitigate the embedding
shift resulted from sampling.

• We conduct comprehensive experiments on seven popular GNNs and four large graphs.
Compared with vanilla GNN, our achieve up to 5.29x speedup with negligible accuracy
loss or better accuracy. We obtain a superior efficiency or accuracy while keeping the other
metric comparable with other baselines.
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2 PRELIMINARIES AND BACKGROUND

2.1 GRAPH NEURAL NETWORKS

We consider an undirected graph G = (V, E), where V and E denote the sets of nodes and edges,
respectively, of size N = |V| and E = |E|. Let A ∈ Rn×n denote the adjacency matrix, Ai,j =
1 if (vi, vj) ∈ E else Ai,j = 0, and let X ∈ Rn×d denotes the feature matrix. Based on the
spatial message passing, GNNs learn the node representation through aggregating the neighbors’
embeddings and combining with itself layer by layer. For example, the node embedding learning at
the lth layer of Graph Convolutional Network (GCN) Kipf & Welling (2017) is defined as:

H(l) = ÃX(l−1)W (l),X(l) = ReLU(H(l)), (1)

where X(l) ∈ RN×d is the node embedding matrix at the lth layer and X(0) = X; Ã = D̃− 1
2 (A+

I)D̃− 1
2 is normalized adjacency matrix, D̃ is the diagonal degree matrix of A+I; W (l) ∈ Rd×d is

trainable weight. In practice, Ã is often stored in sparse matrix format like compressed sparse row
(CSR) to save the computation cost Fey & Lenssen (2019). Each training step has two phases, i.e.,
forward and backward passes. From the implementation perspective, its computation can be written
as:

Forward Pass J (l) = MatMul(X(l−1),W (l)),

H(l) = SpMM(Ã,J (l)), (2a)

Backward Pass ∇J (l) = SpMM(Ã⊤,∇H(l)), (2b)

∇X(l−1) = MatMul(∇J (l),W (l)),

∇W (l) = MatMul(X(l−1)⊤,∇J (l)),

where SpMM(·, ·) is the Sparse-Dense Matrix Multiplication and MatMul(·, ·) is the normal Dense-
Dense Matrix Multiplication. From above, we can see that each training step has exactly two
SpMM operations. In practice, although using a sparse matrix format can reduce memory cost
compared to using a dense representation of the adjacency matrix, it is still notoriously inefficient
on commodity hardware due to the cache miss problem Han et al. (2016). As shown in Figure 1, we
observed that SpMM can take a large fraction of the training time.

2.2 FAST MATRIX MULTIPLICATION WITH SAMPLING

Given matrices X ∈ Rn×m and Y ∈ Rm×q , our goal is to efficiently estimate the matrix product
XY . The Truncated Singular Value Decomposition (SVD) offers an optimal low-rank approxi-
mation of the product XY Adelman et al. (2021), but its computational cost is almost equivalent
to matrix multiplication. To address the challenge, sampling algorithms have been introduced as a
means of approximating the matrix product XY . Such methods sample k columns from X and the
corresponding rows from Y , resulting in smaller matrices. These matrices are then multiplied in the
traditional manner Drineas et al. (2006). Such an approach cuts down the computational complexity
from O(mnq) to O(knq). Mathematically, the approximation is given by:

XY ≈
k∑

t=1

1

st
X:,itYit,: = approx(XY ), (3)

where X:,i and Yi,: represent the ith column of X and the ith row of Y , respectively. Within this
context, we define the (X:,i,Yi,:) as the ith column-row pair. The term k denotes the number of
samples. {pi}mi=1 represents a probability distribution across the column-row pairs. it ∈ {1, · · ·m}
is the index of the sampled column-row pair at the tth trial. st is the scale factor. Drineas et al.
(2006) indicates that setting st =

1
kpit

guarantees the expectation of low-rank approximation equals
to the results of actual matrix multiplication. Furthermore, the approximation error is minimized
when the sampling probabilities are proportional to the product of the norms of column-row pairs:

pi =
||X:,i||2 ||Yi,:||2∑m
j=1 ||X:,j ||2 ||Yj,:||2

. (4)
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Though the above sampling method effectively accelerates matrix multiplication Drineas et al.
(2006), its direct application to neural networks might not be optimal. This is because it over-
looks the unique distribution of neural network weights. Observations indicate that neural network
weight distributions tend to remain centered around zero during training Glorot & Bengio (2010);
Han et al. (2015). Using this insight, Adelman et al. (2021) introduced the Top-k sampling method:
deterministically selecting the k column-row pairs that have the highest values according to Equa-
tion 4, without any scaling. This equates to setting the probability pi of the top k column-row pairs
to 1, and to 0 for the others, with the scale factor sit being consistently 1.

Furthermore, Liu et al. (2023a) adapted the top-k sampling technique to the domain of graph learn-
ing. To guarantee gradient unbiasedness, they restricted the use of randomized matrix multi-
plication to the backward pass only, i.e., ∇J (l) = SpMM(Ã⊤,∇H(l)) in Equation 2b. This
decision was influenced by the understanding that the non-linear activation functions can alter the
expected outcome of the approximated matrix multiplication Liu et al. (2023a). While this approach
preserves the final model accuracy, its potential for computational speedup is limited at 2×, given
that it optimizes only the backward computations.

In the following sections, we investigate the feasibility to employ randomized matrix multiplica-
tion throughout the entire training process with better acceleration while effectively addressing the
challenge of preserving accuracy.

3 METHODOLOGY

We propose StructDrop as an efficient yet accurate graph training scheme. We first present an in-
teresting finding, that the sound theoretical guarantee of minimal error in Top-k sampling might not
be the most robust algorithm. We analyze and conduct experiments to answer why Top-k sampling
cannot maintain the accuracy in Sec 3.1. Based on this observation, we propose StructDrop in
Section 3.2, which uniformly select the column-row pairs during graph training. In Sec 3.3, we
further suggest integrating instance normalization to further enhance the stability of training process
when working with sampling based scheme.

3.1 THE UNDER-FITTING PROBLEM IN TOP-k SAMPLING
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Figure 2: The Jaccard Similar-
ity of selected column-row pairs
across the iterations in Top-k Sam-
pling. Top-k incurs greatly repeta-
tive col/row pairs causing under-
fitting problem.

We first investigate the potential for expediting the SpMM
operations in both the forward (Equation 2a) and backward
(Equation 2b) passes with Top-k sampling. More specifically,
we substitute the forward and backward SpMM with their ap-
proximated counterparts in Equation 3. In this experiment,
we set the k as 0.1|V| across different layers. We detail the
model configuration in Appendix A.

The performance results are presented in Table 1. As indi-
cated by the results, we observed a substantial decrease in
accuracy. This outcome is both surprising and intriguing,
considering that theory Drineas et al. (2006) has previously
demonstrated that Top-k sampling should yield a satisfactory
approximation with minimal reconstruction error to the orig-
inal matrix multiplication. To dig in further, we examine the
Jaccard similarity for the selected column/row pairs. We con-
duct this analysis using GCN training with the ogbn-Arxiv
dataset as an example, and present the results in Figure 2.
Upon closer inspection, we discovered that the Top-k sam-
pling consistently selects nearly identical column-row pairs
in adjacent iterations. Specifically, the Jaccard similarity be-
tween iterations in close proximity is approximately 90%. This suggests that the Top-k sampling
consistently utilizes the same subset of nodes and edges throughout graph learning. Consequently,
a substantial portion of the graph information will be excluded during message aggregation, which
leads to under-fitting problem.
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Figure 3: Training and testing accuracy comparison be-
tween different baselines on GCN with ogbn-Product.

To validate our hypothesis, we plot the
training and test accuracy of a three-layer
GCN model on ogbn-Products using vari-
ous training schemes, as shown in Figure
3. The under-fitting hypothesis finds sup-
port in Figure 3a, where the training accu-
racy using Top-k sampling is significantly
lower compared to the baseline. As a con-
sequence, Figure 3b shows that the test ac-
curacy of GNNs trained with Top-k sam-
pling is also substantially inferior to the
baseline.

3.2 STRUCTDROP : AN EFFICIENT SAMPLING SCHEME WITH INCREASED GENERALIZABILITY

Table 1: Preliminary results on three datasets. “+Top-k
Sampling” means we replace both the forward and back-
ward SpMM with their approximated version. Here we set
the k as 0.1|V| across different layers. All reported results
are averaged over six random trials.

Reddit ogbn-Arxiv ogbn-Product

GCN Baseline 95.30 ± 0.05 72.09 ± 0.26 76.05 ± 0.10
+Top-k Sampling 93.53 ± 0.44 70.33 ± 0.86 74.73 ± 1.81

GraphSAGE Baseline 96.59 ± 0.03 70.44 ± 0.31 78.05 ± 0.90
+Top-k Sampling 90.35 ± 1.22 62.10 ± 0.52 70.17 ± 0.32

Motivated by the observation that
Top-k sampling leads to under-fitting
due to the consistent selection of
the same graph information during
training, we explore a straightforward
strategy: uniform selection of each
column-row pair. In other words,
each column-row pair has an equal
probability of being sampled, and
we sample a total of k column-
row pairs without replacement. We
call this simple yet effective strategy
StructDrop, structurally sampling the whole graph. Experiments result in section 4.3 show that
this structured sampling method yields better performance compared to the unstructured dropout
approach. Here we analyze the potential of our method from a generalizability and efficiency per-
spective.

Generalizability Analysis As demonstrated in Figure 2, StructDrop employs a varied set of
column-row pairs throughout the training process, indicating that StructDrop effectively inte-
grates information from the entire graph. From a different perspective, StructDrop eliminates
entire columns in the adjacency matrix while leaving rows unchanged. This results in the removal
of all outgoing edges for a specific set of nodes. The operation applied to such a sampled adjacency
matrix and node embeddings introduces randomness during aggregation, which can be regarded as
a form of data augmentation. Consequently, there is increased randomness and variability in the
aggregated nodes, which enhances generalizability. As a result, both Figure 3a and Figure 3b illus-
trate that the training and test accuracy of StructDrop closely match those of the baseline. This
suggests that StructDrop effectively mitigates the under-fitting issue.

Efficiency Analysis Previous approaches have utilized edge/node dropping as data augmentation
techniques to enhance generalizability. Such methods also appear to increase computing speed due
to the FLOPs reduction, which is achieved by dropping entries in the adjacency matrix. However,
these methods encounter efficiency challenges because the speedup gained from reducing FLOPs is
often offset by the complex operations involved in manipulating the adjacency matrix.

Digging deeper, a graph can usually be represented by two data structures: the sparse adjacency
matrix and edge index. The adjacency matrix can be viewed as a data structure optimized for
computation time, and employing the adjacency matrix often leads to much faster computations
compared to using the edge index format spm; pyg (2023). Nonetheless, a gap emerges because
such computation-friendly data structure is usually represented in the Compress Sparse Row (CSR)
format Arai et al. (2016), which cannot be easily manipulated due to the compression of the row
indices. On the contrary, the edge index is an manipulation-friendly data structure that can be easily
modified. Thus, edge/node dropping operations are typically carried out on the edge index dro (a;b).
However, this process introduces time overhead because the data structure must be converted back
to the computation-friendly adjacency matrix for faster computation. This additional conversion
offsets the speed gains achieved through reduced FLOPs.
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With the structured dropping approach, we can directly manipulate the computation-friendly adja-
cency matrix since we only drop the column-wise outgoing edges, which can be directly imple-
mented upon the CSR format. Consequently, our method bypasses the conversion from edge indices
to sparse adjacency matrix, resulting in fast sampling implementation. Our extensive experiment re-
sults in Sec 4.2 demonstrates that our structured dropping method achieves a substantial increase in
efficiency when compared to the edge/node-oriented dropping methods. Importantly, this efficiency
boost introduced in our method is achieved without sacrificing accuracy during training.

3.3 INSTANCE NORMALIZATION MEETS THE SAMPLING SCHEME

While the fast matrix multiplication with random sampling brings notable efficiency benefits, a side
effect is the distribution shift of node embeddings during training. This shift arises due to the random
sampling of column-row pairs between epochs, leading to the entirely different node embeddings
learned from the diverse sets of neighbors. It is widely observed that such a sharp distribution
shift can impede the learning rate and even steer the model towards the convergence of suboptimal
points. Bjorck et al. (2018); Ioffe & Szegedy (2015); Bjorck et al. (2018).

To mitigate the training shift which causes the unstable convergence, we apply instance normaliza-
tion at critical point following the approximated matrix multiplication. Mathematically, recalling
the forward pass in Equation 2a, we use H(l) = SpMM(StructDrop(Ã,J (l))) to represent the
node embeddings after neighbor aggregation. These embeddings are obtained by uniformly drop-
ping the column-row pairs over matrices Ã and J (l) and then performing sparse matrix production
on them. Considering embedding vector h(l)

i ∈ Rd of node vi, i.e., the ith row in H(l), the instance
normalization rescales it by Ulyanov et al. (2016):

h̃
(l)
i = [h

(l)
i − E(h

(l)
i )] / Sqrt(Var(h

(l)
i ) + ϵ) ∗ γ + β. (5)

E(·), Sqrt(·), and Var(·) denote operations of expectation, squared root, and variance, respectively;
γ,β ∈ Rd represents the trainable weights for the running variance and mean, respectively. Each
node embedding is rescaled to mitigate the effects of sampling randomness, thereby facilitating
the convergence of the model with improved generalization. Detailed experiments discussing node
embedding shifting and generalization performance are provided in the experimental section 4.3 to
substantiate our proposed approach.

4 EXPERIMENTS

In our experiments, we evaluate our proposed framework through answering the following research
questions: Q1: How effectively is StructDrop’s generalizability? Q2: To what extent does
StructDrop accelerate the training speed? Q3: How crucial is the role of instance normalization
within the sampling scheme?

4.1 IMPLEMENTATION DETAILS

Datasets, Backbones and Baselines To evaluate StructDrop, we adopt four large scale graph
benchmarks which are commonly used in different domains: Reddit Hamilton et al. (2017a),
Reddit2 Zeng et al. (2020) 1, ogbn-Arxiv Hu et al. (2020) and ogbn-Products Hu et al. (2020).
We evaluate StructDrop using both the full-batch and sub-batch training settings. We inter-
gate StructDrop with seven popular schemes in large graph training including GCN, Graph-
SAGE, GCNII, GIN and other subsampling based mechanism (GraphSAINT, GraphSAGE and
ClusterGCN). The comparison are made against four different baselines introduced in Sec 4.2.2.
We detail our hyperparameter settings in Appendix A.

4.2 SUPERIOR GENERALIZABILITY AND EFFICIENCY

In this section, we first evaluate the generalizability and efficiency of StructDrop in comparison
to different baselines. As mentioned in Sec 3.3, StructDrop greatly accelerates the graph compu-
tation while simultaneously enhancing generalizability. This is evident from the negligible accuracy

1This is a sparser version of the original Reddit dataset ( 23M edges instead of 114M edges), and is used in
paper GraphSAINT Zeng et al. (2020)

6
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Table 2: Here we presents a comparison of efficiency and accuracy across different baseline meth-
ods using GCN, GraphSAGE, GIN, and sub-sampling based ClusterGCN. We observe that in most
experiments, Top-k Sampling experiences a significant accuracy drop (over 1%, and in most cases
exceeding 3%), which is highlighted in red. These accuracy reductions make it unsuitable for real-
world deployment. For the speedup comparison, we exclude results where the accuracy drop is too
severe (marked in red) and highlight the best speedup gains in bold. We note that StructDrop
achieves the best speedup gain without accuracy loss compared to the other baselines. We provide
additional results for GCNII and other subgraph sampling methods including GraphSAINT and
GraphSAGE in Table 10 located in Appendix B.1.

# nodes 232,965 232,965 169,343 2,449,029
# edges 114,615,892 23,213,838 1,166,243 61,859,140

Model Methods
Reddit Reddit2 ogbn-Arxiv ogbn-Products

Accuracy Speedup Accuracy Speedup Accuracy Speedup Accuracy Speedup

GCN

Vanilla 95.3 ± 0.05 1 × 95.38 ± 0.06 1 × 72.09 ± 0.26 1 × 76.05 ± 0.10 1 ×
Top-k Sampling 93.21 ± 0.15 6.99 × 94.21 ± 0.25 2.72 × 70.84 ± 0.63 1.33 × 77.94 ± 2.47 1.96 ×

DropEdge 95.44 ± 0.01 1.87 × 95.47 ± 0.02 1.72 × 72.55 ± 0.33 1.21 × 78.96 ± 0.60 1.2 ×
DropNode 95.34 ± 0.06 2.07 × 95.35 ± 0.05 1.7 × 72.36 ± 0.20 1.23 × 78.29 ± 2.15 1.17 ×

StructDrop 95.47 ± 0.05 3.87 × 95.46 ± 0.03 2.4 × 72.46 ± 0.23 1.29 × 79.24 ± 0.74 1.8 ×

GraphSAGE

Vanilla 96.59 ± 0.03 1 × 96.67 ± 0.03 1 × 70.44 ± 0.31 1 × 78.05 ± 0.90 1 ×
Top-k Sampling 92.73 ± 0.33 9.66 × 93.84 ± 0.28 3.08 × 63.75 ± 0.42 1.39 × 73.22 ± 0.23 3.31 ×

DropEdge 96.65 ± 0.03 2.65 × 96.55 ± 0.03 1.54 × 70.23 ± 0.19 0.81 × 78.57 ± 0.09 1.33 ×
DropNode 96.36 ± 0.06 2.72 × 96.33 ± 0.01 1.78 × 69.99 ± 0.29 1.02 × 78.93 ± 0.20 1.32 ×

StructDrop 96.65 ± 0.04 4.26 × 96.56 ± 0.03 2.33 × 70.03 ± 0.26 1.15 × 78.97 ± 0.17 2.47 ×

GIN

Vanilla 94.39 ± 0.08 1 × 94.76 ± 0.03 1 × 70.86 ± 0.18 1 × 78.02 ± 0.15 1 ×
Top-k Sampling 91.21 ± 0.22 2.45 × 91.77 ± 0.34 2.33 × 70.82 ± 0.10 1.16 × 75.59 ± 0.08 1.34 ×

DropEdge 94.54 ± 0.07 2.94 × 94.83 ± 0.08 2.31 × 71.11 ± 0.15 1.18 × 78.65 ± 0.13 1.18 ×
DropNode 94.41 ± 0.05 3.73 × 94.69 ± 0.01 2.59 × 70.64 ± 0.12 1.23 × 78.16 ± 0.19 1.16 ×

StructDrop 94.48 ± 0.07 5.29 × 94.86 ± 0.03 3.06 × 70.64 ± 0.10 1.28 × 78.73 ± 0.05 2.12 ×

ClusterGCN

Vanilla 95.77 ± 0.16 1 × 95.85 ± 0.14 1 × 71.12 ± 0.09 1 × 78.88 ± 0.12 1 ×
Top-k Sampling 89.14 ± 1.21 1.61 × 90.59 ± 1.03 1.25 × 65.48 ± 0.35 1.16 × 69.64 ± 0.13 1.17 ×

DropEdge 95.73 ± 0.09 0.53 × 95.62 ± 0.11 0.74 × 71.07 ± 0.36 0.51 × 78.72 ± 0.02 0.41 ×
DropNode 95.71 ± 0.05 0.56 × 95.72 ± 0.07 0.76 × 70.62 ± 0.19 0.63 × 76.36 ± 0.43 0.42 ×

StructDrop 95.69 ± 0.14 1.36 × 95.60 ± 0.05 1.2 × 71.04 ± 0.44 1.12 × 78.34 ± 0.03 1.1 ×

loss observed, coupled with significantly faster training speeds, as illustrated in our experimental
results. We provide a detailed experimental findings below.

4.2.1 OPERATIONAL LEVEL ACCELERATION

We first evaluate the speed improvements at the operation level introduced by StructDrop. Fig-
ure 1 illustrates the speed improvements at the operation level achieved by StructDrop. We
measured the wall clock completion time of various operators across different datasets. With
StructDrop, the computational complexity in sparse matrix multiplication is significantly re-
duced in a hardware-friendly way, resulting in faster completion times. Across datasets, the forward
pass SpMM operation is accelerated by 1.9 to 5.5 times, while the backward pass SpMM is acceler-
ated by a factor of 2.62 to 4.8 times. Overall, StructDrop achieves a maximum wall clock time
speedup of 5.29× compared to the vanilla baseline as shown in table 2.

4.2.2 END-TO-END PERFORMANCE ANALYSIS

Next, we assess the end-to-end training speedup and model accuracy of StructDrop in compar-
ison to different methods. Specifically, we compare our approach against: 1, Vanilla baseline with
the standard training process without any approximations; 2, Top-k sampling Adelman et al. (2021)
and 3, DropEdge Rong et al. (2019) and DropNode Feng et al. (2020). We conduct the experiments
with the same sampling ratio across all different baselines to ensure a fair comparison. We present
the results on GCN, GraphSAGE, GIN and subgraph sampling based ClusterGCN in Table 2. Due
to space limitation, we put additional results regarding GCNII and other subgraph sampling based
method (GraphSAINT, GraphSAGE) in Table 10 in Appendix B.1 for further details.
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StructDrop achieves much faster speed with almost no accuracy drop or even better accuracy
StructDrop achieves remarkable speedup with negligible accuracy loss (within 0.5%) or even
better accuracy compared to vanilla training scheme. As discussed in Sec 3.2, the maintained or en-
hanced accuracy is attributed to StructDrop’s random sampling during the message aggregation
phase. These samples introduce randomness, effectively acting as data augmentation, which en-
hances StructDrop’s generalizability. We defer more discussion in generalizability in Sec 4.2.3.

In terms of efficiency, StructDrop achieves an end-to-end wall clock training completion time
speedup of up to 5.29 times compared to the vanilla baseline as shown in Table 2. This speedup is de-
rived from the fast approximation operation during message aggregation, which significantly reduces
computational complexity without introducing additional overhead. In summary, StructDrop
represents a novel and effective acceleration scheme that enhances the efficiency of GNN training
while preserving accuracy. We now compare our training scheme with other baselines.
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Figure 4: Embedding sparsity during training

Notable accuracy improvement compared
to Top-k sampling: We now compare
StructDrop with Top-k sampling. We
highlight the significant accuracy improvement
achieved by StructDrop here. As shown
in table 2, Top-k sampling results in an unac-
ceptable performance loss compared to both the
vanilla baseline and StructDrop. This per-
formance degradation is attributed to Euclidean
norm-based sampling, which tends to overly
concentrate on a few columns and rows, as ev-
ident in our profiled Jaccard similarity analysis
shown in Figure 2. Consequently, this leads to the loss of global graph information during message
aggregation and contributes to the underfitting behavior.

In contrast, the uniform random sampling strategy employed in StructDrop results in the collec-
tion and utilization of global graph knowledge during message aggregation, as every column-row
pair has the potential to be involved. This approach facilitates more comprehensive graph learning.

Another significant factor to the poor performance of Top-k sampling is the information loss that
occurs during training. We conducted profiling of the embedding sparsity after message aggrega-
tion with vanilla, Top-k and StructDrop shown in Figure 4. We found that after sampling and
message passing, the embeddings obtained through the Top-k sampling exhibit a high rate of zero
entries. Although Euclidean norm-based sampling maintains minimal reconstruction error when
compared to vanilla sparse matrix multiplication, it tends to select cols/rows with lower degrees Liu
et al. (2023a). This selection results in higher sparsity and consequently leads to more significant
information loss during aggregation, exacerbating the underfitting problem.

As depicted in Figure 4, the embedding sparsity of StructDrop is comparable to that of the
vanilla scheme, resulting in less information loss during message passing. In Appendix C, we further
demonstrate that under the same accuracy requirements, StructDrop achieves better accuracy and
speedup compared to Top-k sampling. In summary, StructDrop outperforms the Top-k sampling
scheme with significantly better accuracy.

Considerably faster training speed compared to DropEdge and DropNode: DropEdge Rong et al.
(2019) is a method designed to address overfitting and oversmoothing issues in GNN training. On
the other hand, DropNode Feng et al. (2020) utilizes node feature random dropouts as a form of data
augmentation to enhance robust training. DropEdge and DropNode randomly sample edges or nodes
in the input graph based on certain probabilities. As indicated in Table 2, StructDrop achieves
comparable accuracy (within 0.5%) to both DropEdge and DropNode across different datasets. This
highlights the effectiveness of data augmentation through sampled message passing.

Table 3: StructDrop’s speedup benefit vs.
DropEdge and DropNode

Reddit Reddit2 ogbn-Arxiv ogbn-Products
vs. DropEdge 1.61 × 1.51 × 1.42 × 1.86 ×
vs. DropNode 1.57 × 1.31 × 1.13 × 1.87 ×

However, StructDrop’s true strength lies in
its substantial efficiency gains compared to the
other two baselines. Table 3 shows the speedup
gain of StructDrop on GraphSAGE. Overall
StructDrop can achieve up to 2.07x and 2.42x
speedup compared to DropEdge and DropNode re-

8
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spectively, primarily driven by hardware efficiency. While the number of preserved edges during
training remains consistent, DropEdge and DropNode exhibit significantly smaller dropping gran-
ularity compared to StructDrop. Manipulating such sampling operations incurs additional con-
version overhead, as discussed in Sec 3.2. In contrast, StructDrop’s random dropping operation
on all the outgoing edges in the entire columns can be applied directly to the computation-friendly
adjacency matrix. This faster sampling introduces almost no additional performance overhead while
expediting graph training with much faster computation, ultimately translating into speed improve-
ments.

StructDrop acceleration effect on full-graph and subgraph training. StructDrop is a mech-
anism for column and row sampling during graph training, which can be seamlessly integrated into
both full-graph and subgraph-based training. We observe that StructDrop achieves more sig-
nificant speedup in full-graph training. Additionally, the speedup effect scales as the size of the
subgraph increases. More details from our ablation study can be found in Table 11 in Sec B.2. In
real-world scenarios, subgraphs are typically large to retain more global information and improve
hardware efficiency. Nevertheless, StructDrop can substantially accelerate graph training for
both full-graph and subgraph-based approaches.

In general, StructDrop achieves superior speedup (up to 5.29x) with negligible drop or even
more exciting results on accuracy, as shown in Table 2 and 10. While the ratio of speedup varies,
the speedup effect remains consistent across all different architectures and datasets, and we provide
a detailed discussion of these variations in speedup gain in Appendix B.3.

4.2.3 GENERALIABILITY STUDY OF STRUCTDROP

In this section, we aim to gain a deeper understanding of StructDrop’s generalizability. We begin
by using ogbn-Products as an example to plot the training loss and generalization gap for different
baselines and GNN architectures in Figure 5 and 7. The generalization gap is quantified as the
difference between the training and testing loss, with a higher loss gap indicating better generaliz-
ability. Despite the Top-k sampling mechanism exhibiting the highest training loss and underfitting
during training with the GCN, StructDrop achieves the largest generalization gap. These re-
sults are consistent with previous analysis, suggesting that randomness and diversity introduced by
StructDrop act as a form of data augmentation, thereby enhancing the model’s generalizability.

4.2.4 ABLATION STUDIES OF DROPPING RATIO

In this section, we provide a comprehensive analysis of StructDrop with respect to the dropping
ratio using GCN as an example. We also included the results of other backbones in Appendix D.

Table 4 presents StructDrop’s performance across different sampling ratios and datasets on
GCN. The impact of the sample ratio on accuracy varies depending on the datasets. For smaller
datasets like ogbn-Arxiv which contain a small number of edges, higher sample ratios tend to lead to
higher accuracy, as there is less information loss. Conversely, for larger datasets like ogbn-Products
which potentially have more information redundancy due to the large number of edges, accuracy is
inversely proportional to the sample ratio. This is because redundant edges can cause the node em-
beddings to be smoothed by their neighbors, resulting in a loss of node features with the converged
embeddings. Regarding efficiency, lower sampling ratios result in higher computation speeds. The
trends for GraphSAGE and other model architectures are similar.

Table 4: Accuracy and speedup on different sample ratios

Model Ratio Reddit Reddit2 ogbn-Arxiv ogbn-Products

Accuracy Speedup Accuracy Speedup Accuracy Speedup Accuracy Speedup

GCN

0.1 95.44 ± 0.04 5.63 × 95.39 ± 0.05 2.81 × 72.16 ± 0.21 1.35 × 79.51 ± 1.07 2.04 ×
0.2 95.47 ± 0.05 3.87 × 95.46 ± 0.03 2.40 × 72.46 ± 0.23 1.29 × 79.24 ± 0.74 1.8 ×
0.3 95.47 ± 0.04 2.89 × 95.48 ± 0.03 2.05 × 72.44 ± 0.24 1.22 × 78.95 ± 0.46 1.6 ×
0.4 95.43 ± 0.04 2.26 × 95.46 ± 0.04 1.78 × 72.66 ± 0.23 1.17 × 78.63 ± 0.29 1.43 ×

4.3 BENEFITS OF INSTANCE NORMALIZATION IN SAMPLING

9
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Figure 5: Training curve on ogbn-Products dataset

We further evaluate the advantages with
incorporating instance normalization dur-
ing sampling. Instance norm serves as a
mitigator of distribution shifts, reducing
the shifts in embeddings induced by ran-
dom sampling between epochs. The re-
sults presented in Figure 6 demonstrate
that instance norm serves as an effective
factor in smoothing the training process,
ultimately leading to improved accuracy.

Table 5: Ablation study of instance normalization.

Reddit ogbn-Arxiv ogbn-Products

GCN w/ instance norm 95.47 ± 0.05 72.46 ± 0.23 79.24 ± 0.74
w/o instance norm 94.01 ± 1.04 69.30 ± 1.19 74.55 ± 3.51

GraphSAGE w/ instance norm 96.65 ± 0.04 70.03 ± 0.26 78.97 ± 0.17
w/o instance norm 96.52 ± 0.04 69.00 ± 0.45 78.25 ± 0.21

Ablation Study of Instance Norm
We evaluate the accuracy improve-
ment resulting from the inclusion of
instance norm. We summarize the ac-
curacy using GCN and GraphSAGE
as examples on different datasets w/o
instance norm applied. As depicted
in Table 5, the accuracy with instance
norm applied is consistently higher than that without it across datasets. Instance norm is beneficial
for random sampling, resulting in improved accuracy.
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Figure 6: Embedding shifts between epochs

Effect for Smooth Training Next we deep
dive into why instance norm helps boost
the accuracy. We plot the distribution shift
of the embedding after message aggrega-
tion with sampled columns/rows in Fig-
ure 6. We use the norm difference of the
embedding between subsequent epochs to
measure the training smoothness. As
shown in Figure 6, training without in-
stance norm causes much larger embed-
ding shifts, making the training process
not smooth as the model needs to con-
stantly adapt to new inputs distribution. This effect exacerbates as the random samples causes
message aggregation in different epochs varies drastically. Instance norm successfully lowers the
embedding shifts, thus stabilize the training process and leads to better accuracy.

5 RELATED WORK

Large-scale Graph Learning Massage passing over graph can described by sparse matrix multi-
plication. Such operation is resource consuming, where the memory and time complexities depend
on the amounts of nodes and edges, respectively. To address the scalability issue, numerous fami-
lies of algorithms have been explored, including the subgraph-based GNN training Hamilton et al.
(2017a); Huang et al. (2018) , graph precomputation Wu et al. (2019); Klicpera et al. (2018); Yu
et al. (2020), and distributed training Zha et al. (2023; 2022); Yuan et al. (2022); Wang et al. (2022).
The common merit of them is to divide the large graph into pieces, each of which could be handled
by the resource-limited GPU.

Related work on Efficient Training Algorithms, Subgraph Sampling, Random Dropout, Graph
Condensation and other topics are also important. Due to space limitations, we defer the discussion
on them to Appendix F.

6 CONCLUSIONS
In our work, we introduce StructDrop to replace time-consuming message passing with fast
sparse matrix multiplication (SpMM) during whole training process of GNNs. StructDrop uni-
formly samples column-row pairs in the adjacency matrix, reducing computational complexity in
SpMM. To address distribution shifts resulting from random sampling, we apply instance norm after
SpMM to rescale node embeddings and stabilize the training. Extensive experiments on benchmarks
confirm the effectiveness of our approach that achieves a superior performance on efficiency and
generalization.
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A CONFIGURATION AND HYPERPARAMETER SETTING

StructDrop only has one hyperparameter which is the sampling ratio. We present comprehensive
sample ratio ablation study in Sec 4.2.4. We adopt a similar approach to prior study Liu et al.
(2023a) by sampling every ten training steps. Below tables show the configurations of different
model architectures (GCN, GraphSAGE, GCNII and GraphSAINT) in graph training.

Table 6: Configuration of Full-Batch GCN.

Dataset Training Archtecture
Learning

Rates Epochs Dropout BatchNorm Layers Hidden
Dimension

Reddit 0.01 400 0.5 No 3 256
Reddit2 0.01 400 0.5 No 3 256
ogbn-
Arxiv 0.01 500 0.1 No 3 512

ogbn-
Products 0.001 400 0.5 No 3 256

Table 7: Configuration of Full-Batch GraphSAGE.

Dataset Training Archtecture
Learning

Rates Epochs Dropout BatchNorm Layers Hidden
Dimension

Reddit 0.01 400 0.5 No 3 256
Reddit2 0.01 400 0.5 No 3 256
ogbn-
Arxiv 0.01 500 0.1 No 3 512

ogbn-
Products 0.001 500 0.5 No 3 256

Table 8: Configuration of Full-Batch GCNII.

Dataset Training Archtecture
Learning

Rates Epochs Dropout Alpha&Theta Layers Hidden
Dimension

Reddit 0.01 400 0.5 0.1&0.5 4 256
Reddit2 0.01 400 0.5 0.1&0.5 4 256
ogbn-
Arxiv 0.01 500 0.1 0.1&0.5 4 512

ogbn-
Products 0.001 500 0.1 0.1&0.5 3 128

Table 9: Configuration of GraphSAINT.

Dataset Training Archtecture
Learning

Rates Epochs Dropout Walk length Layers Hidden
Dimension

Reddit 0.01 40 0.1 4 3 512
Reddit2 0.01 40 0.1 4 3 512
ogbn-
Arxiv 0.01 75 0.1 4 4 512

ogbn-
Products 0.01 20 0.5 3 3 256
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Table 10: We presents additional experiment results for comparison of efficiency and accuracy
across different baseline methods with GCNII and subsampling methods like GraphSAINT and
GraphSAGE. Consistent with the phenominon we observed in table 2, Top-k Sampling experiences
a significant accuracy drop (over 1%, and in most cases exceeding 3%), which is highlighted in red.
These accuracy reductions make it unsuitable for real-world deployment. For the speedup compar-
ison, we exclude results where the accuracy drop is too severe (marked in red) and highlight the
best speedup gains in bold. Consistently, StructDrop achieves the best speedup gain without
accuracy loss compared to the other baselines.

# nodes 232,965 232,965 169,343 2,449,029
# edges 114,615,892 23,213,838 1,166,243 61,859,140

Model Methods
Reddit Reddit2 ogbn-Arxiv ogbn-Products

Accuracy Speedup Accuracy Speedup Accuracy Speedup Accuracy Speedup

GCNII

Vanilla 96.81 ± 0.03 1 × 96.80 ± 0.02 1 × 72.12 ± 0.24 1 × 76.70 ± 0.12 1 ×
Top-k Sampling 91.46 ± 1.00 5.14 × 93.51 ± 0.58 2.11 × 71.09 ± 0.09 1.21 × 74.27 ± 0.34 1.74 ×

DropEdge 96.81 ± 0.07 2.02 × 96.72 ± 0.01 1.61 × 72.24 ± 0.30 1.14 × 77.49 ± 0.09 1.02 ×
DropNode 96.39 ± 0.05 2.16 × 96.31 ± 0.03 1.63 × 72.35 ± 0.01 1.13 × 77.72 ± 0.18 1.01 ×
StructDrop 96.82 ± 0.02 3.43 × 96.72 ± 0.03 1.97 × 72.16 ± 0.12 1.19 × 77.55 ± 0.31 1.62 ×

GraphSAINT

Vanilla 95.85 ± 0.13 1 × 96.22 ± 0.05 1 × 70.72 ± 0.17 1 × 78.67 ± 0.23 1 ×
Top-k Sampling 90.36 ± 0.84 1.56 × 91.27 ± 0.50 1.08 × 65.77 ± 0.41 1.11 × 75.59 ± 0.37 1.33 ×

DropEdge 95.92 ± 0.06 0.7 × 96.12 ± 0.03 0.67 × 69.56 ± 0.06 0.79 × 79.50 ± 0.18 0.53 ×
DropNode 95.73 ± 0.08 0.73 × 96.05 ± 0.11 0.68 × 69.47 ± 1.08 0.82 × 79.27 ± 0.33 0.52 ×
StructDrop 95.87 ± 0.05 1.33 × 96.09 ± 0.03 1.05 × 69.40 ± 0.94 1.07 × 79.59 ± 0.37 1.27 ×

GraphSAGE

Vanilla 96.47 ± 0.10 1 × 96.53 ± 0.04 1 × 70.49 ± 0.29 1 × 78.67 ± 0.16 1 ×
Top-k Sampling 93.19 ± 1.42 1.23 × 94.04 ± 0.10 1.26 × 62.85 ± 2.34 1.11 × 76.47 ± 0.34 1.2 ×

DropEdge 94.57 ± 0.13 0.92 × 95.92 ± 0.11 0.89 × 68.57 ± 0.18 0.87 × 79.40 ± 0.21 0.49 ×
DropNode 95.12 ± 0.15 0.92 × 96.11 ± 0.09 0.92 × 69.34 ± 0.61 0.88 × 78.81 ± 0.44 0.52 ×
StructDrop 96.34 ± 0.08 1.28 × 96.49 ± 0.02 1.23 × 69.2 ± 0.56 1.12 × 78.90 ± 0.17 1.21 ×

B EFFICIENCY AND ACCURACY COMPARISON BETWEEN BASELINES ON
GCNII AND SUBSAMPLING MECHANISMS

B.1 PERFORMANCE ANALYSIS ON EFFICIENCY AND ACCURACY

Here we presents additonal results regarding StructDrop’s accuracy and efficiency. The com-
parison between our StructDrop with other backbones with GCNII and subsampling mechanism
(GraphSAINT, GraphSAGE) is shown in Table 10. The results shown in the table are consistent
with the discussion in Sec 4.2.2. Take GCNII result as an example, StructDrop achieves a
3.43x speedup without compromising accuracy compared to the vanilla training scheme. Moreover,
in subsampling-based experiments, our method achieves a 1.33x speedup in GraphSAINT AND a
1.28x speedup with GraphSAGE. The Top-k method experiences a significant accuracy drop com-
pared to all baselines. Additionally, StructDrop surpasses both DropEdge and DropNode meth-
ods in terms of speedup due to its computation-friendly dropping approach. These findings are
consistent with other experiments presented in the main paper, elaborated in Sec 4.2.2.

B.2 DETAILED ANALYSIS OF STRUCTDROP’S PERFORMANCE IN SUBGRAPH TRAINING

Table 11: Ablation study on StructDrop’s acceleration
effects with random walk length in GraphSAINT. Larger
walk length will result in larger subgraph in GraphSAINT.

Walk length 4 8 16

Reddit Speedup 1.33x 1.47x 1.6x

Accuracy 95.87 ± 0.05 96.32 ± 0.02 95.97 ± 0.08

Reddit2 Speedup 1.05x 1.24x 1.43x

Accuracy 96.09 ± 0.03 96.47 ± 0.06 96.20 ± 0.02

For the subgraph sampling scheme,
we found the subgraph size af-
fects the speedup gain. we con-
duct a further ablation study on in-
put subgraph size and show the
results in Table 11. The input
subsampled graph size is propor-
tional to some hyper-parameters such
as random walk length and batch
sizes in GraphSAINT. We use Red-
dit/Reddit2 dataset and train the
model based on the GraphSAINT-
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based method. We study the speedup gain with different random walk lengths. In this experiment,
a larger random walk length leads to a larger subgraph, maintaining more global information dur-
ing training. As shown in below table, we see that the speedup gain increased from 1.33 to 1.6 on
Reddit, and respectfully 1.05 to 1.43 on Reddit2 when the walk length is larger. That being said,
the StructDrop acceleration effect scales up when the subgraph is larger. Such speedup gain
enabled by StructDrop is non-trivial. In the real-world setting, the size of the input subgraph is
typically large. There are two considerations: 1. From GNN training perspective, a larger subgraph
will preserve more global information, reducing information loss in the graph; 2. From the training
efficiency side, it needs sufficient batches to keep the hardware fully occupied. With large graph,
speeding up incurred in training will significantly save the training time and hardware resources,
which could bring benefits and bring down the costs during training.

B.3 SPEEDUP GAIN PERCENTAGE DIFFERENCE BETWEEN ARCHITECTURES AND DATASETS

As discussed in Sec 4.2.2, StructDrop’s consistently speedup the training among different archi-
tectures and datasets. There are percentage different in acceleration among datasets/architectures.
We detail the explanation here. StructDrop’s operation-level acceleration (specifically, message
passing operation acceleration as mentioned in Sec 4.2.1, which is an efficiency bottleneck during
training) remains consistent across different architectures. However, different backbones might in-
cur other operations other than the message passing (i.e. different linear layer dimensions). These
operations are not accelerated and their overheads varies between backbones. Consequently, the
percentage of acceleration differs across architectures. To further explain, if the operation-level ac-
celeration is p, the overall speedup gain can be denoted as (p * Overhead OP + Overhead Other) /
(Overhead OP + Overhead Other), which will vary depending on different architectures. Similarly,
different datasets with different size of the input graph will cause varying overhead. Nonetheless,
StructDrop is able to speed the most inefficient message aggregation as mentioned in Sec 4.2.1,
and the end to end speedup effect is consistent among different architectures and datasets as shown
in Table 2 and 10.

C DISCUSSION ON THE CHOICE OF TOP-k AND STRUCTDROP UNDER
RELAXED ACCURACY REQUIREMENTS.

As discussed in Sec 4.2.2, Top-k method results in large accuracy drop (∼8%) in some cases due to
the under-fitting problem. Novetheless, one might be curious how should Top-k and StructDrop
be chosen under a relaxed accuracy requirements (∼2%). Under a loose accuracy requirements,
although top-k method is in general faster (with lower accuracy), we would like to point out that the
practitioner can accelerate StructDrop by reducing the percentage of columns/rows sampled in
computation. We provide some experimental results as a comparison in the below Table 12. We use
Reddit2 and Arxiv dataset with GCN dataset as the demonstration. Note that the Top-k’s accuracy
is compromised a lot compared to Vanilla solution. We reduce the sample ratio of StructDrop in
this experiment to check whether the speedup can catch up with the Top-k mechanism.
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Table 13: Ablation study on accuracy and speedup with different sample ratios on GraphSAGE,
GCNII and GraphSAINT architecture

Model Ratio Reddit Reddit2 ogbn-Arxiv ogbn-Products
Acc. Speedup Acc. Speedup Acc. Speedup Acc. Speedup

Vanilla 96.59 ± 0.03 1 × 96.67 ± 0.03 1 × 70.44 ± 0.31 1 × 78.05 ± 0.90 1 ×
0.1 96.53 ± 0.04 6.48 × 96.42 ± 0.04 2.93 × 68.83 ± 0.30 1.33 × 79.29 ± 0.07 2.96 ×

GraphSAGE
0.2 96.65 ± 0.04 4.26 × 96.56 ± 0.03 2.33 × 70.03 ± 0.26 1.15 × 78.97 ± 0.17 2.48 ×
0.3 96.69 ± 0.04 3.13 × 96.63 ± 0.04 2.01 × 70.35 ± 0.24 1.12 × 78.63 ± 0.12 2.1 ×
0.4 96.68 ± 0.02 2.42 × 96.67 ± 0.03 1.79 × 70.65 ± 0.34 1.06 × 78.31 ± 0.09 1.81 ×

GCNII

Vanilla 96.81 ± 0.03 1 × 96.80 ± 0.02 1 × 72.12 ± 0.24 1× 76.70 ± 0.12 1 ×
0.1 96.72 ± 0.03 4.61 × 96.65 ± 0.03 2.19 × 71.52 ± 0.07 1.24 × 77.50 ± 0.35 1.77 ×
0.2 96.82 ± 0.02 3.43 × 96.72 ± 0.03 1.97 × 72.16 ± 0.12 1.19 × 77.55 ± 0.31 1.62 ×
0.3 96.84 ± 0.03 2.67 × 96.76 ± 0.03 1.77 × 72.22 ± 0.21 1.15 × 77.50 ± 0.31 1.49 ×
0.4 96.85 ± 0.01 2.16 × 96.80 ± 0.03 1.59 × 72.20 ± 0.15 1.11 × 77.25 ± 0.18 1.37 ×

GraphSAINT

Vanilla 95.85 ± 0.13 1 × 96.22 ± 0.05 1 × 70.72 ± 0.17 1 × 78.67± 0.23 1 ×
0.1 95.75 ± 0.08 1.47 × 95.89 ± 0.01 1.1 × 68.94 ± 0.62 1.13 × 79.42 ± 0.12 1.34 ×
0.2 95.87 ± 0.05 1.33 × 96.09 ± 0.03 1.05 × 69.40 ± 0.94 1.07 × 79.59 ± 0.37 1.27 ×
0.3 95.88 ± 0.03 1.23 × 96.14 ± 0.05 1.03 × 70.25 ± 0.92 1.05 × 79.41 ± 0.31 1.18 ×
0.4 96.01 ± 0.08 1.09 × 96.19 ± 0.04 1.01 × 70.49 ± 0.58 1.01 × 79.21 ± 0.29 1.1 ×

Table 12: Comparison on efficiency and accuracy between
Top-k and StructDrop under relaxed accuracy require-
ments. Bold denotes the highest.

Method Sample Ratio Accuracy Speedup compare to Vanilla

Reddit2 Top-k 0.1 94.21 ± 0.25 2.72 ×

StructDrop 0.2 95.39 ± 0.05 2.81 ×
ogbn-Arxiv Top-k 0.1 70.84 ± 0.63 1.33 ×

StructDrop 0.2 72.16 ± 0.21 1.35 ×

From Table 12, we can see that
by reducing the percentage of the
columns/rows sampled during train-
ing, StructDrop’s speedup gain
can be effectively increased. With
that, StructDrop successfully
suppressed Top-k at speed while still
maintaining a much more superior
accuracy. That’s why a practitioner
should choose StructDrop under
a relaxed accuracy requirement.

At the same time, we believe the accuracy of the model is also important. StructDrop can
effectively increase the training speed, with negligible accuracy loss or even more exciting accuracy
in most cases. However, the model trained with top-k method suffers a lot (sometimes with ∼8%)
for accuracy. Although faster, the experimental results (Table 2) show that Top-k compromise the
accuracy too much, which will cause large trouble during inference/model serving time. This is why
we would like to advocate for training using StructDrop even with relaxed accuracy requirement.

D ABLATION STUDY ON ACCURACY AND EFFICIENCY WITH RATIO

The relationship between sampling ratios with respect to accuracy and efficiency of StructDrop
is shown in Table 13. The results is consistent with the elaboration in Sec 4.2.4. The impact of the
sample ratio on accuracy varies depending on the datasets. For smaller datasets, higher sample ratios
tend to lead to higher accuracy because of less information loss. On the other hand, larger datasets
like ogbn-Products which potentially have more information redundancy due to the large number of
edges, accuracy could be inversely proportional to the sample ratio because those redundant edges
can cause the node embeddings to be smoothed, which causes converged embeddings. For efficiency,
lower sampling ratios result in higher computation speeds, and the trends for GraphSAGE and other
model architectures are similar.

E GENERALIZATION ABILITY STUDY ON GRAPHSAGE

The training curve and generalization gap on GraphSAGE training on ogbn-Products dataset is
shown in Figure 7. Similar to the result discussed in Sec 4.2.3, despite Top-k with the highest
training loss, StructDrop achieves the highest generalization gap owing to the randomness and
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Figure 7: Training curve on GraphSAGE with ogbn-Products dataset.

diversity introduced by StructDrop, which act as a form of data augmentation, and thereby en-
hancing the model’s generalizability.

F MORE RELATED WORK

Efficient Training Algorithms Another orthogonal line is to reduce the memory and time con-
sumption by approximating the message passing. This can be divided into two categories. First,
the adjacency matrix based approximation aims to compress the non-zero entries or matrix dimen-
sion. For example, Sketch-GNN sketch the graph adjacency matrix into a smaller one using hash-
ing Chamberlain et al. (2022); DSpar expurgates the non-zero elements based on node degrees to
obtain a sparse substitute Liu et al. (2023b). Second, the node embedding based approximation tar-
gets at compress the memory storage of hidden representations. For example, EXACT stocastically
quantizes the node embeddings into low precision Liu et al. (2022); GNNAutoScale stores the whole
list of node embeddings in CPU and retrieve them in forward propagation Fey et al. (2021).

Random Dropout To improve the generalization performance on graph, there are two main cate-
gories of dropout. Edge-oriented dropout randomly samples a subset of edges to avoid over fitting
and over-smoothing, such as DropEdge Rong et al. (2019), DropNode Feng et al. (2020), etc. On the
other hand, Node-oriented dropout removes node features and links connected to the dropped nodes.
The node-oriented dropout is originally motivated in sampling subgraph for scalable training and in
augmenting graphs for contrastive learning, such as DropNode Feng et al. (2020), FastGCN Chen
et al. (2018), etc.

Subgraph-based GNN training This line of works focuses on training GNNs using sampled sub-
graphs to minimize the number of nodes stored in memory. Several sampling techniques have been
developed based on this concept, such as node-wise sampling Hamilton et al. (2017a); Chen et al.
(2017), layer-wise sampling Huang et al. (2018); Zou et al. (2019), and subgraph sampling Chiang
et al. (2019); Zeng et al. (2019). StructDrop is a technique that performs row and column sam-
pling on adjacency matrices during graph training, and it can be seamlessly combined with the pre-
viously mentioned subgraph sampling methods. Our experiments demonstrate that StructDrop
improves computational efficiency while maintaining accuracy.

Graph Condensation Graph condensation involves condensing knowledge from a large graph
to create a smaller synthetic graph from scratch. However, the vanilla graph condensation often
involves solving a expensive bi-level optimization problem Jin et al. (2021). Jin et al. (2022) further
reduces the cost of graph condensation through one step gradient matching. We note that the graph
condensation is orthogonal to our proposed method, as the final condensed graph still have the
expensive SpMM operations.
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G LIMITATIONS

Although our proposed method can effectively reduce the training time by reducing the number
of active columns and rows for performing SpMM , it cannot directly reduce the memory usage
for storing the large graph, which is another major bottleneck for scaling GNNs onto large graphs.
When the memory is the major bottleneck, we recommend using our method jointly with other graph
reduction methods ,e,g., graph sparsification Liu et al. (2023b).

H IMPACT STATEMENTS

This paper introduces research aimed at pushing the boundaries of Machine Learning. While our
work might have several potential societal consequences, we feel there is nothing specifically to
highlight here. You may include other additional sections here.
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