Under review as a conference paper at ICLR 2025

STRUCTDROP: A STRUCTURED RANDOM ALGO-
RITHM TOWARDS EFFICIENT LARGE-SCALE GRAPH
TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Training GNNs over large graphs is a long-standing challenge due to the inef-
ficiency of the message passing mechanism. Message passing, typically repre-
sented as the production between sparse adjacency matrix and node features, is
difficult to be accelerated with commodity hardware, such as GPUs. Prior drop-
ping based mechanism (e.g., edge or node dropping), can be adopted to reduce the
computation cost of sparse matrix multiplication. However, two under-explored
pain points still persist in this paradigm: @ Inefficiency. Dropping-based meth-
ods lack hardware efficiency. Such mechanism randomly remove non-zero en-
tries from edge indices, which later needs to be converted into sparse matrix for-
mat for computational ease. This conversion may counteract the speedup gained
from reducing FLOPs. @ Poor generalization. Previous sampling-based method
utilizes a fixed subset of nodes or edges to emphasize on efficiency, but sacri-
fice generalizability due to under-fitting on the remaining subgraph. Aiming to
promote the accuracy-efficiency trade-off, we propose Structured Dropout, a.k.a,
StructDrop. Specifically, we remove a set of selected columns directly from
the sparse adjacency matrix format, hence bypassing the sparse matrix recon-
struction and data access. To further mitigate the training shifting due to ran-
dom column-row pair dropping, we adopt instance normalization following the
sparse production. Comprehensive experiments on four benchmark datasets and
four popular GNNs validate the superiority of our framework: StructDrop
achieves up to 5.29x end-to-end speedup with negligible accuracy loss or even
better accuracy compared with vanilla GNNs.

1 INTRODUCTION

Graph Neural Networks (GNNs) have made significant advancements in various graph-related tasks
Hamilton et al.| (2017a); |Hu et al.| (2020); Ying et al.| (2018); Jiang et al.| (2022); Zhou et al.| (2022;
2023). Specifically, GNNs process the underlying graph structure and node features in a layer-
wise manner with two interleaved phases: aggregation and update. During the aggregation phase,
each node accumulates messages from its direct neighbors, which is computationally realized by
sparse matrix-based operations to multiply the set of node features with a sparse adjacency matrix.
Following this, in the update phase, nodes transform the aggregated features with a differentiable
layer (e.g., multi-layer perceptron) dominated by dense matrix-based operations.

Despite their strong performance, training GNNs is time-inefficient, especially on large graphs.
As shown in Figure [1} we analyze the fine-grained time cost of GNNs where SpMM and MatMul
represents the sparse and dense operators, respectively. Notably, the neighborhood aggregations
included at forward and backward propagations consume 70-90% of the total GNN training time, as
supported by Han et al.|(2023)). This inefficiency stems from the nature of sparse matrix operations,
which require numerous random memory accesses with minimal data reuse. Several works have
highlighted that community hardware (e.g., CPUs and GPUs) designed on the single-instruction
multiple-data (SIMD) principle will struggle in efficiently accessing neighborhood features with
discontinuous indexes |Duan et al. (2022)); [Han et al.|(2016); |Liu et al.| (2023b).

Existing work towards reducing the time cost of neighborhood aggregation mainly adopt randomized
dropping algorithms, which can be roughly grouped into two categories. Firstly, edge-oriented

Under review as a conference paper at ICLR 2025

dropping methods Rong et al| (2019); Eppstein et al| (1997); [Liu et al| (2023b) remove part of
the edges randomly during training, or deterministically in preprocessing stage. Secondly, node-
oriented dropping methods |Feng et al.[(2020); Chiang et al.| (2019); [Hamilton et al.|(2017b)) prune
certain nodes and their associated edges from the input graph. However, from the efficiency aspect,
an issue with both approaches is that the overhead from removing edges or nodes may counteract
the speedup from the FLOPS reduction. Specifically, this is due to the need to reconstruct the sparse
adjacency matrix after removing edges or nodes from the input graph, which involves processing
the whole graph and is notably time-consuming.

A less explored method to speed up the aggregation phase is to use a fast but approximated version of
the SpMM instead of the exact one. To illustrate, consider a linear operation involving two matrices,
A € R™™ and B € R™*9. We first create reduced matrices A’ € R"*¥ and B’ € RF*x4
(k < m) by choosing k representative columns from A and their corresponding rows from B,
referred to as column-row pairs. This approximation, AB ~ A’B’, aims to reduce both the number
of floating-point operations (FLOPs) and the data that needs to be accessed, as only k/m of the
column-row pairs are processed. This method avoids the need to reconstruct a sparse matrix by
structurally selecting entire columns and rows. Although this approach has shown promise in other
fields |Adelman et al.| (2021), our tests reveal that it significantly reduces the accuracy of GNNs,
leading to even a 8% loss in accuracy (as shown in Table[I]) on standard datasets and models, which
is impractical for real-world applications.
Time Breakdown

In this work, we promote the accuracy- 55
. . . . I Other
efficiency trade-off via approximating the B Matmul(forward)
sparse matrix production in both the forward 6001 o Matmul(backward)
and backward processes of GNNs. Based on B SpMM(forward)
[SpMM(backward)

the column-row pair sampling, our core idea
is to adapt the sampling policy and normal-
ize the result of SpMM to stably approximate 200
the neighbor aggregation. Specifically, prior

research suggests the probability of choosing o . S
each column-row pair should be in proportion Reddit ogbn-Arxiv ogbn-Products

to the production of the respective row norm) Dataset
and column norm Drineas et al) (2006). In- Figure 1: The time profiling of a three-layer

terestingly, we observed that the column-row GCNs on different datasets. SpMM may take
pairs selected in the forward pass exhibited a re- 70~90% of the total time. Our me‘th.od
markable consistency across nearby iterations. (SEructDrop) can reduce the total training

We hypothesize that this consistency will cause time'by 5.29x as shown in table |} We measure
under-fitting problem as they only utilize the the time on a NVIDIA A40 GPU. The detailed

same subset of nodes and edges during train- software and hardware information can be found

ing. Drawing from this insight, we propose I Appendlx
a straightforward strategy: the uniform selec-
tion of column-row pairs. Namely, we assign the same probability to be sampled for each column-
row pair and term such structured dropping as St ructDrop. Surprisingly, we found that this sim-
ple strategy can often outperform the complicated norm-based one in the graph learning problem.
To further reduce the negative impact of the variance from uniform sampling, we propose to utilize
instance normalization following the approximated production to stabilize the training process. In
summary, our contributions are summarized as follows:
* We explore to speedup GNN training from a novel randomized dropping perspective. We
approximate sparse matrix multiplication at forward and backward paths with sampling a
subset of the column-row pairs to reduce FLOPs and data access with accuracy preserved.

Latency (ms)
s
=3
(=]

* We propose a hybrid solution of random dropping and normalization to maintain general-
izability with efficiency. We design a straightforward yet effective strategy, uniform sam-
pling, which overcomes underfitting in global graph. Additionally, we recommend incor-
porating instance normalization into the sampling process so as to mitigate the embedding
shift resulted from sampling.

* We conduct comprehensive experiments on seven popular GNNs and four large graphs.
Compared with vanilla GNN, our achieve up to 5.29x speedup with negligible accuracy
loss or better accuracy. We obtain a superior efficiency or accuracy while keeping the other
metric comparable with other baselines.

Under review as a conference paper at ICLR 2025

2 PRELIMINARIES AND BACKGROUND

2.1 GRAPH NEURAL NETWORKS

We consider an undirected graph G = (V,), where V and £ denote the sets of nodes and edges,
respectively, of size N = |V| and E = |£]. Let A € R"*" denote the adjacency matrix, A; ; =
1if (v;,v5) € Eelse A;j = 0, and let X € R™*4 denotes the feature matrix. Based on the
spatial message passing, GNNs learn the node representation through aggregating the neighbors’
embeddings and combining with itself layer by layer. For example, the node embedding learning at
the 8 layer of Graph Convolutional Network (GCN) Kipf & Welling (2017)) is defined as:

HO = AXDw® xO = ReLUHWY), 1)

where X () € RV*4 is the node embedding matrix at the *" layer and X () = X; A=D= (A+
I)f)*% is normalized adjacency matrix, D is the diagonal degree matrix of A+ I; W) ¢ R?*? is
trainable weight. In practice, A is often stored in sparse matrix format like compressed sparse row
(CSR) to save the computation cost|Fey & Lenssen|(2019). Each training step has two phases, i.e.,
forward and backward passes. From the implementation perspective, its computation can be written
as:

Forward Pass J® =MatMmul (XD W),
HY = spvm(A, JY), (2a)
Backward Pass VJW = spmm(AT VHW), (2b)
VXD = MatMul (VIO w®),
VWO = Matmul (XD vg®),

where SpMM(-, -) is the Sparse-Dense Matrix Multiplication and MatMul(-, -) is the normal Dense-
Dense Matrix Multiplication. From above, we can see that each training step has exactly two
SpMM operations. In practice, although using a sparse matrix format can reduce memory cost
compared to using a dense representation of the adjacency matrix, it is still notoriously inefficient
on commodity hardware due to the cache miss problem |[Han et al.| (2016). As shown in Figure[I] we
observed that SpMM can take a large fraction of the training time.

2.2 FAST MATRIX MULTIPLICATION WITH SAMPLING

Given matrices X € R™"*™ and Y € R™*9, our goal is to efficiently estimate the matrix product
XY . The Truncated Singular Value Decomposition (SVD) offers an optimal low-rank approxi-
mation of the product XY |Adelman et al.| (2021), but its computational cost is almost equivalent
to matrix multiplication. To address the challenge, sampling algorithms have been introduced as a
means of approximating the matrix product XY . Such methods sample % columns from X and the
corresponding rows from Y, resulting in smaller matrices. These matrices are then multiplied in the
traditional manner Drineas et al.[(2006). Such an approach cuts down the computational complexity
from O(mnq) to O(kngq). Mathematically, the approximation is given by:

k
1
XY ~Y» —X.,Y,, . =approx(XY), (3)
=1 ot

where X ; and Y . represent the i*® column of X and the i** row of Y, respectively. Within this
context, we define the (X i Y;,:) as the 7" column-row pair. The term k denotes the number of
samples. {p;}7 represents a probability distribution across the column-row pairs. i; € {1,---m}
is the index of the sampled column-row pair at the ¢*? trial. s; is the scale factor. Drineas et al.

(2006) indicates that setting s; = ﬁ guarantees the expectation of low-rank approximation equals
it
to the results of actual matrix multiplication. Furthermore, the approximation error is minimized
when the sampling probabilities are proportional to the product of the norms of column-row pairs:
X il 1Yl

Pi = =m . “4)
2= 12Xz Y52

Under review as a conference paper at ICLR 2025

Though the above sampling method effectively accelerates matrix multiplication [Drineas et al.
(2006), its direct application to neural networks might not be optimal. This is because it over-
looks the unique distribution of neural network weights. Observations indicate that neural network
weight distributions tend to remain centered around zero during training (Glorot & Bengio| (2010);
Han et al.|(2015). Using this insight, Adelman et al.|(2021)) introduced the Top-% sampling method:
deterministically selecting the k column-row pairs that have the highest values according to Equa-
tion] without any scaling. This equates to setting the probability p; of the top k column-row pairs
to 1, and to O for the others, with the scale factor s;, being consistently 1.

Furthermore, Liu et al.| (2023a)) adapted the top-k sampling technique to the domain of graph learn-
ing. To guarantee gradient unbiasedness, they restricted the use of randomized matrix multi-
plication to the backward pass only, i.e., VJ) = spMM(AT VH®) in Equation This
decision was influenced by the understanding that the non-linear activation functions can alter the
expected outcome of the approximated matrix multiplication|Liu et al.| (2023a). While this approach
preserves the final model accuracy, its potential for computational speedup is limited at 2x, given
that it optimizes only the backward computations.

In the following sections, we investigate the feasibility to employ randomized matrix multiplica-
tion throughout the entire training process with better acceleration while effectively addressing the
challenge of preserving accuracy.

3 METHODOLOGY

We propose St ructDrop as an efficient yet accurate graph training scheme. We first present an in-
teresting finding, that the sound theoretical guarantee of minimal error in Top-k sampling might not
be the most robust algorithm. We analyze and conduct experiments to answer why Top-k sampling
cannot maintain the accuracy in Sec[3.1} Based on this observation, we propose St ructDrop in
Section which uniformly select the column-row pairs during graph training. In Sec we
further suggest integrating instance normalization to further enhance the stability of training process
when working with sampling based scheme.

3.1 THE UNDER-FITTING PROBLEM IN TOP-k SAMPLING
We first investigate the potential for expediting the SpMM

operations in both the forward (Equation [2a) and backward

(Equation[2b) passes with Top-k sampling. More specifically,

we substitute the forward and backward SpMM with their ap-

proximated counterparts in Equation [3] In this experiment,

we set the k as 0.1]V| across different layers. We detail the

model configuration in Appendix

o

o
%

o
o

—— Top-k Sampling
StructDrop

e
~

e
o

The performance results are presented in Table [T} As indi-
cated by the results, we observed a substantial decrease in
accuracy. This outcome is both surprising and intriguing,
considering that theory Drineas et al.| (2000) has previously

Similarity between sampled cols/rows

o

100 200 300 400 500
Epoch

demonstrated that Top-k sampling should yield a satisfactory
approximation with minimal reconstruction error to the orig-
inal matrix multiplication. To dig in further, we examine the
Jaccard similarity for the selected column/row pairs. We con-
duct this analysis using GCN training with the ogbn-Arxiv
dataset as an example, and present the results in Figure [2]
Upon closer inspection, we discovered that the Top-k sam-
pling consistently selects nearly identical column-row pairs
in adjacent iterations. Specifically, the Jaccard similarity be-

Figure 2: The Jaccard Similar-
ity of selected column-row pairs
across the iterations in Top-k Sam-
pling. Top-k incurs greatly repeta-
tive col/row pairs causing under-
fitting problem.

tween iterations in close proximity is approximately 90%. This suggests that the Top-k sampling
consistently utilizes the same subset of nodes and edges throughout graph learning. Consequently,
a substantial portion of the graph information will be excluded during message aggregation, which
leads to under-fitting problem.

Under review as a conference paper at ICLR 2025

To validate our hypothesis, we plot the
training and test accuracy of a three-layer
GCN model on ogbn-Products using vari-
ous training schemes, as shown in Figure
The under-fitting hypothesis finds sup-
port in Figure[3al where the training accu-
racy using Top-k sampling is significantly
lower compared to the baseline. As a con-
sequence, Figure [3b|shows that the test ac-
curacy of GNNs trained with Top-k sam-
pling is also substantially inferior to the
baseline.

Testing accuracy %

Vanilla 4 —— Vanilla
[Top-k Sampling 20 [Top-k Sampling
StructDrop | — StructDrop

0 100 200

Epoch

300 400 0 100 200

Epoch

300 400

(a) Training Accuracy (b) Test Accuracy
Figure 3: Training and testing accuracy comparison be-
tween different baselines on GCN with ogbn-Product.

3.2 StrucTDROP: AN EFFICIENT SAMPLING SCHEME WITH INCREASED GENERALIZABILITY

Motivated by the observation that
Top-k sampling leads to under-fitting
due to the consistent selection of
the same graph information during
training, we explore a straightforward
strategy: uniform selection of each
column-row pair. In other words,

Table 1: Preliminary results on three datasets. “+Top-k
Sampling” means we replace both the forward and back-
ward SpMM with their approximated version. Here we set
the k as 0.1|V| across different layers. All reported results
are averaged over six random trials.

each column-row pair has an equal

Reddit ogbn-Arxiv ogbn-Product

probability of being sampled, and GON Baseline 9530 £005 72094026 7605+ 0.10
we Sample a total of £ column- +Top-k Sampling 93.53 + 044 7033 £0.86 74.73 + 1.81
row pairs without replacement. We GraphSAGE Baseline 96.59 +0.03 70.44 £0.31 78.05 & 0.90
+Top-k Sampling 90.35 +1.22 62.10+0.52 70.17 £ 0.32

call this simple yet effective strategy

StructDrop, structurally sampling the whole graph. Experiments result in section [4.3] show that
this structured sampling method yields better performance compared to the unstructured dropout
approach. Here we analyze the potential of our method from a generalizability and efficiency per-
spective.

Generalizability Analysis As demonstrated in Figure |2} St ructDrop employs a varied set of
column-row pairs throughout the training process, indicating that St ructDrop effectively inte-
grates information from the entire graph. From a different perspective, St ructDrop eliminates
entire columns in the adjacency matrix while leaving rows unchanged. This results in the removal
of all outgoing edges for a specific set of nodes. The operation applied to such a sampled adjacency
matrix and node embeddings introduces randomness during aggregation, which can be regarded as
a form of data augmentation. Consequently, there is increased randomness and variability in the
aggregated nodes, which enhances generalizability. As a result, both Figure |3al and Figure [3b|illus-
trate that the training and test accuracy of St ructDrop closely match those of the baseline. This
suggests that St ructDrop effectively mitigates the under-fitting issue.

Efficiency Analysis Previous approaches have utilized edge/node dropping as data augmentation
techniques to enhance generalizability. Such methods also appear to increase computing speed due
to the FLOPs reduction, which is achieved by dropping entries in the adjacency matrix. However,
these methods encounter efficiency challenges because the speedup gained from reducing FLOPs is
often offset by the complex operations involved in manipulating the adjacency matrix.

Digging deeper, a graph can usually be represented by two data structures: the sparse adjacency
matrix and edge index. The adjacency matrix can be viewed as a data structure optimized for
computation time, and employing the adjacency matrix often leads to much faster computations
compared to using the edge index format [spm; pyg (2023). Nonetheless, a gap emerges because
such computation-friendly data structure is usually represented in the Compress Sparse Row (CSR)
format |Arai et al.| (2016), which cannot be easily manipulated due to the compression of the row
indices. On the contrary, the edge index is an manipulation-friendly data structure that can be easily
modified. Thus, edge/node dropping operations are typically carried out on the edge index (dro| (aib)).
However, this process introduces time overhead because the data structure must be converted back
to the computation-friendly adjacency matrix for faster computation. This additional conversion
offsets the speed gains achieved through reduced FLOPs.

Under review as a conference paper at ICLR 2025

With the structured dropping approach, we can directly manipulate the computation-friendly adja-
cency matrix since we only drop the column-wise outgoing edges, which can be directly imple-
mented upon the CSR format. Consequently, our method bypasses the conversion from edge indices
to sparse adjacency matrix, resulting in fast sampling implementation. Our extensive experiment re-
sults in Sec demonstrates that our structured dropping method achieves a substantial increase in
efficiency when compared to the edge/node-oriented dropping methods. Importantly, this efficiency
boost introduced in our method is achieved without sacrificing accuracy during training.

3.3 INSTANCE NORMALIZATION MEETS THE SAMPLING SCHEME

While the fast matrix multiplication with random sampling brings notable efficiency benefits, a side
effect is the distribution shift of node embeddings during training. This shift arises due to the random
sampling of column-row pairs between epochs, leading to the entirely different node embeddings
learned from the diverse sets of neighbors. It is widely observed that such a sharp distribution
shift can impede the learning rate and even steer the model towards the convergence of suboptimal
points. Bjorck et al.|(2018); loffe & Szegedy|(2015); [Bjorck et al.|(2018]).

To mitigate the training shift which causes the unstable convergence, we apply instance normaliza-
tion at critical point following the approximated matrix multiplication. Mathematically, recalling
the forward pass in Equation we use H() = spMM(structDrop(A, J®)) to represent the
node embeddings after neighbor aggregation. These embeddings are obtained by uniformly drop-
ping the column-row pairs over matrices A and J® and then performing sparse matrix production

on them. Considering embedding vector hl(-l) € R? of node v, i.e., the i*® row in H®, the instance
normalization rescales it by Ulyanov et al.| (2016):

R = [p —E(h")] / Sart(Var(h{") + €) + v + B. 5)

E(-), Sqrt(+), and Var(-) denote operations of expectation, squared root, and variance, respectively;
~,3 € R? represents the trainable weights for the running variance and mean, respectively. Each
node embedding is rescaled to mitigate the effects of sampling randomness, thereby facilitating
the convergence of the model with improved generalization. Detailed experiments discussing node
embedding shifting and generalization performance are provided in the experimental section 4.3[to
substantiate our proposed approach.

4 EXPERIMENTS

In our experiments, we evaluate our proposed framework through answering the following research
questions: Q1: How effectively is StructDrop’s generalizability? Q2: To what extent does
StructDrop accelerate the training speed? Q3: How crucial is the role of instance normalization
within the sampling scheme?

4.1 IMPLEMENTATION DETAILS

Datasets, Backbones and Baselines To evaluate St ructDrop, we adopt four large scale graph
benchmarks which are commonly used in different domains: Reddit [Hamilton et al.| (2017a),
Reddit2 Zeng et al.| (2020) |'} ogbn-Arxiv Hu et al,| (2020) and ogbn-Products Hu et al.| (2020).
We evaluate StructDrop using both the full-batch and sub-batch training settings. We inter-
gate StructDrop with seven popular schemes in large graph training including GCN, Graph-
SAGE, GCNII, GIN and other subsampling based mechanism (GraphSAINT, GraphSAGE and
ClusterGCN). The comparison are made against four different baselines introduced in Sec
We detail our hyperparameter settings in Appendix

4.2 SUPERIOR GENERALIZABILITY AND EFFICIENCY

In this section, we first evaluate the generalizability and efficiency of St ructDrop in comparison
to different baselines. As mentioned in Sec[3.3] St ructDrop greatly accelerates the graph compu-
tation while simultaneously enhancing generalizability. This is evident from the negligible accuracy

I'This is a sparser version of the original Reddit dataset (23M edges instead of 114M edges), and is used in
paper GraphSAINT [Zeng et al.|(2020)

Under review as a conference paper at ICLR 2025

Table 2: Here we presents a comparison of efficiency and accuracy across different baseline meth-
ods using GCN, GraphSAGE, GIN, and sub-sampling based ClusterGCN. We observe that in most
experiments, Top-k Sampling experiences a significant accuracy drop (over 1%, and in most cases
exceeding 3%), which is highlighted in red. These accuracy reductions make it unsuitable for real-
world deployment. For the speedup comparison, we exclude results where the accuracy drop is too
severe (marked in red) and highlight the best speedup gains in bold. We note that St ructDrop
achieves the best speedup gain without accuracy loss compared to the other baselines. We provide
additional results for GCNII and other subgraph sampling methods including GraphSAINT and
GraphSAGE in Table[10]located in Appendix

nodes 232,965 232,965 169,343 2,449,029
edges 114,615,892 23,213,838 1,166,243 61,859,140
Reddit Reddit2 ogbn-Arxiv ogbn-Products
Model Methods
Accuracy Speedup Accuracy Speedup Accuracy Speedup Accuracy Speedup
Vanilla 95.3 +0.05 1 x 95.38 & 0.06 1 x 72.09 &+ 0.26 1 x 76.05 £ 0.10 1 x
Top-k Sampling 93.21 £0.15 699 x 9421 £0.25 272x 70.84+0.63 133 x 77.94+£247 1.96 x
GCN DropEdge 95.444+£001 1.87x 95474+0.02 1.72x 72554033 121 x 78.96 £ 0.60 1.2 x
DropNode 95.34+0.06 207 x 9535+£0.05 1.7 x 7236+020 123 x 78294215 117 x
StructDrop 9547 +£0.05 3.87 x 9546 £ 0.03 2.4 x 7246+023 129 x 79.244+0.74 1.8 x
Vanilla 96.59 + 0.03 1 x 96.67 £ 0.03 1 x 70.44 + 0.31 1 x 78.05 4 0.90 1 x

Top-k Sampling 92.73 £0.33 9.66 x 93.84 £0.28 3.08 x 63.75+042 139x 7322+023 331 x

GraphSAGE DropEdge 96.65+0.03 2.65x 96554+0.03 154x 7023+£0.19 081 x 7857+£0.09 1.33x
DropNode 9636+ 0.06 272 x 9633+0.01 1.78x 69.99+£029 1.02x 7893+020 1.32x

StructDrop 96.65+0.04 426 x 96.56+0.03 233x 7003+026 115x 7897+0.17 247 x

Vanilla 94.39 +0.08 1 x 94.76 £ 0.03 1x 70.86 £ 0.18 1 x 78.02 £+ 0.15 1x
Top-k Sampling 91.21 £0.22 245 x 91.77+£034 233 x 7082+£0.10 116 x 7559 £0.08 134 x
GIN DropEdge 9454+0.07 294 x 9483+008 231x 71.11+£015 1.18x 78.65+0.13 1.18 x

DropNode 94414+005 373x 9469+001 259x 7064+012 123x 7816+0.19 1.16 x
StructDrop 9448 £0.07 529 x 9486+0.03 3.06x 70.64+0.10 128 x 7873+0.05 212 x
Vanilla 95.77 £ 0.16 1 x 95.85 £ 0.14 1 x 71.12 £ 0.09 1 x 78.88 +0.12 1 x
Top-k Sampling 89.14 £ 1.21 1.61 x 9059 £1.03 125x 6548+£035 1.16x 69.64+£0.13 1.17 x
ClusterGCN DropEdge 95734+£0.09 053x 9562+0.11 074x 71.07+036 051 x 78724002 041 x
DropNode 95714+£0.05 056x 95724007 0.76x 70.62+0.19 0.63 x 76364043 042 x
StructDrop 95.69+£0.14 136 x 95.60 £ 0.05 1.2 x 71.04 £0.44 112 x 7834 +£0.03 1.1 x

loss observed, coupled with significantly faster training speeds, as illustrated in our experimental
results. We provide a detailed experimental findings below.

4.2.1 OPERATIONAL LEVEL ACCELERATION

We first evaluate the speed improvements at the operation level introduced by St ructDrop. Fig-
ure [I] illustrates the speed improvements at the operation level achieved by StructDrop. We
measured the wall clock completion time of various operators across different datasets. With
StructDrop, the computational complexity in sparse matrix multiplication is significantly re-
duced in a hardware-friendly way, resulting in faster completion times. Across datasets, the forward
pass SpMM operation is accelerated by 1.9 to 5.5 times, while the backward pass SpMM is acceler-
ated by a factor of 2.62 to 4.8 times. Overall, St ructDrop achieves a maximum wall clock time
speedup of 5.29x compared to the vanilla baseline as shown in table[2]

4.2.2 END-TO-END PERFORMANCE ANALYSIS

Next, we assess the end-to-end training speedup and model accuracy of St ructDrop in compar-
ison to different methods. Specifically, we compare our approach against: /, Vanilla baseline with
the standard training process without any approximations; 2, Top-k sampling |Adelman et al.|(2021)
and 3, DropEdge [Rong et al.| (2019)) and DropNode |[Feng et al.|(2020). We conduct the experiments
with the same sampling ratio across all different baselines to ensure a fair comparison. We present
the results on GCN, GraphSAGE, GIN and subgraph sampling based ClusterGCN in Table 2] Due
to space limitation, we put additional results regarding GCNII and other subgraph sampling based
method (GraphSAINT, GraphSAGE) in Table [10{in Appendix for further details.

Under review as a conference paper at ICLR 2025

StructDrop achieves much faster speed with almost no accuracy drop or even better accuracy
StructDrop achieves remarkable speedup with negligible accuracy loss (within 0.5%) or even
better accuracy compared to vanilla training scheme. As discussed in Sec[3.2] the maintained or en-
hanced accuracy is attributed to St ructDrop’s random sampling during the message aggregation
phase. These samples introduce randomness, effectively acting as data augmentation, which en-
hances St ructDrop’s generalizability. We defer more discussion in generalizability in Sec[4.2.3]

In terms of efficiency, St ructDrop achieves an end-to-end wall clock training completion time
speedup of up to 5.29 times compared to the vanilla baseline as shown in Table[2] This speedup is de-
rived from the fast approximation operation during message aggregation, which significantly reduces
computational complexity without introducing additional overhead. In summary, StructDrop
represents a novel and effective acceleration scheme that enhances the efficiency of GNN training
while preserving accuracy. We now compare our training scheme with other baselines.

Notable accuracy improvement compared
to Top-k sampling: We now compare
StructDrop with Top-k sampling. We o4
highlight the significant accuracy improvement
achieved by StructDrop here. As shown

in table [2| Top-k sampling results in an unac- o
ceptable performance loss compared to both the | —— Topk Sampling
vanilla baseline and St ructDrop. This per- L N o,
formance degradation is attributed to Euclidean GCN 1 b) GraphSAGE 1
norm-based sampling, which tends to overly (@) ayers (b) Grap ayers
concentrate on a few columns and rows, as ev-
ident in our profiled Jaccard similarity analysis
shown in Figure 2| Consequently, this leads to the loss of global graph information during message
aggregation and contributes to the underfitting behavior.

°

—— Vanilla

o
=
S

StructDrop

>
%

[| — Top-k Sampling

1,
Ak Uy \ﬂ.j‘ aln ;‘
Usy

e
Y

/
!
/

s
=

Embedding sparsity
o
o
Embedding sparsity

e
°
o

e
>

Figure 4: Embedding sparsity during training

In contrast, the uniform random sampling strategy employed in St ructDrop results in the collec-
tion and utilization of global graph knowledge during message aggregation, as every column-row
pair has the potential to be involved. This approach facilitates more comprehensive graph learning.

Another significant factor to the poor performance of Top-k sampling is the information loss that
occurs during training. We conducted profiling of the embedding sparsity after message aggrega-
tion with vanilla, Top-k and St ructDrop shown in Figure 4l We found that after sampling and
message passing, the embeddings obtained through the Top-k sampling exhibit a high rate of zero
entries. Although Euclidean norm-based sampling maintains minimal reconstruction error when
compared to vanilla sparse matrix multiplication, it tends to select cols/rows with lower degrees |Liu
et al.| (2023a). This selection results in higher sparsity and consequently leads to more significant
information loss during aggregation, exacerbating the underfitting problem.

As depicted in Figure] the embedding sparsity of StructDrop is comparable to that of the
vanilla scheme, resulting in less information loss during message passing. In Appendix|C] we further
demonstrate that under the same accuracy requirements, St ruct Drop achieves better accuracy and
speedup compared to Top-k sampling. In summary, St ructDrop outperforms the Top-k sampling
scheme with significantly better accuracy.

Considerably faster training speed compared to DropEdge and DropNode: DropEdge Rong et al.
(2019) is a method designed to address overfitting and oversmoothing issues in GNN training. On
the other hand, DropNode|Feng et al.[(2020) utilizes node feature random dropouts as a form of data
augmentation to enhance robust training. DropEdge and DropNode randomly sample edges or nodes
in the input graph based on certain probabilities. As indicated in Table[2] St ructDrop achieves
comparable accuracy (within 0.5%) to both DropEdge and DropNode across different datasets. This
highlights the effectiveness of data augmentation through sampled message passing.

However, StructDrop’s true strength lies in Table3: StructDrop’s speedup benefit vs.
its substantial efficiency gains compared to the DropEdge and DropNode

other two baselines. Table [3] shows the speedup] . .

gain of StructDrop on GraphSAGE. Overall —; propmag Reddit Reddit? _oghn-Ardv_oghn-Products
StructDrop can achieve up to 2.07x and 2.42x _vs. DropNode 157x 131x T13x 187 x
speedup compared to DropEdge and DropNode re-

Under review as a conference paper at ICLR 2025

spectively, primarily driven by hardware efficiency. While the number of preserved edges during
training remains consistent, DropEdge and DropNode exhibit significantly smaller dropping gran-
ularity compared to St ructDrop. Manipulating such sampling operations incurs additional con-
version overhead, as discussed in Sec[3.2] In contrast, St ructDrop’s random dropping operation
on all the outgoing edges in the entire columns can be applied directly to the computation-friendly
adjacency matrix. This faster sampling introduces almost no additional performance overhead while
expediting graph training with much faster computation, ultimately translating into speed improve-
ments.

StructDrop acceleration effect on full-graph and subgraph training. St ructDrop is a mech-
anism for column and row sampling during graph training, which can be seamlessly integrated into
both full-graph and subgraph-based training. We observe that St ructDrop achieves more sig-
nificant speedup in full-graph training. Additionally, the speedup effect scales as the size of the
subgraph increases. More details from our ablation study can be found in Table[TT]in Sec[B.2] In
real-world scenarios, subgraphs are typically large to retain more global information and improve
hardware efficiency. Nevertheless, St ructDrop can substantially accelerate graph training for
both full-graph and subgraph-based approaches.

In general, StructDrop achieves superior speedup (up to 5.29x) with negligible drop or even
more exciting results on accuracy, as shown in Table [2] and [T0] While the ratio of speedup varies,
the speedup effect remains consistent across all different architectures and datasets, and we provide
a detailed discussion of these variations in speedup gain in Appendix

4.2.3 GENERALIABILITY STUDY OF STRUCTDROP

In this section, we aim to gain a deeper understanding of St ructDrop’s generalizability. We begin
by using ogbn-Products as an example to plot the training loss and generalization gap for different
baselines and GNN architectures in Figure [5] and The generalization gap is quantified as the
difference between the training and testing loss, with a higher loss gap indicating better generaliz-
ability. Despite the Top-k sampling mechanism exhibiting the highest training loss and underfitting
during training with the GCN, StructDrop achieves the largest generalization gap. These re-
sults are consistent with previous analysis, suggesting that randomness and diversity introduced by
StructDrop act as a form of data augmentation, thereby enhancing the model’s generalizability.

4.2.4 ABLATION STUDIES OF DROPPING RATIO

In this section, we provide a comprehensive analysis of St ructDrop with respect to the dropping
ratio using GCN as an example. We also included the results of other backbones in Appendix

Table 4| presents StructDrop’s performance across different sampling ratios and datasets on
GCN. The impact of the sample ratio on accuracy varies depending on the datasets. For smaller
datasets like ogbn-Arxiv which contain a small number of edges, higher sample ratios tend to lead to
higher accuracy, as there is less information loss. Conversely, for larger datasets like ogbn-Products
which potentially have more information redundancy due to the large number of edges, accuracy is
inversely proportional to the sample ratio. This is because redundant edges can cause the node em-
beddings to be smoothed by their neighbors, resulting in a loss of node features with the converged
embeddings. Regarding efficiency, lower sampling ratios result in higher computation speeds. The
trends for GraphSAGE and other model architectures are similar.

Table 4: Accuracy and speedup on different sample ratios

Reddit Reddit2 ogbn-Arxiv ogbn-Products
Accuracy Speedup Accuracy Speedup Accuracy Speedup Accuracy Speedup
0.1 95.44+0.04 5.63 x 95.39 £ 0.05 2.81 x 72.16 £0.21 135 x 79.51 £ 1.07 2.04 x
0.2 9547 +£0.05 3.87 x 95.46 £0.03 2.40 x 72.46 £0.23 129 x 7924 £0.74 1.8 x

0.3 9547 £0.04 289 x 9548 £0.03 2.05 x 7244 £024 122 x 78.95+0.46 1.6 x
0.4 9543 £0.04 2.26 x 9546 £0.04 1.78 x 72.66 £0.23 1.17 x 78.63 £0.29 1.43 x

Model Ratio

GCN

4.3 BENEFITS OF INSTANCE NORMALIZATION IN SAMPLING

Under review as a conference paper at ICLR 2025

We further evaluate the advantages with —— Topk Sampling 10 — Topk Sampling
incorporating instance normalization dur- ! ‘ b os L ymerop
ing sampling. Instance norm serves as a %? \ —— DropEdge ~ Dropkdee

£ —— DropNode —— DropNode

mitigator of distribution shifts, reducing
the shifts in embeddings induced by ran-
dom sampling between epochs. The re-

Generalization gap

0 100 200 300 400 0 100 200 300 400

sults presented in Figure [6] demonstrate Epoch Epoch

that instance norm serves as an effective (a) Training loss on GCN (b) Gen. gap on GCN
factor in smoothing the training process,

ultimately leading to improved accuracy. Figure 5: Training curve on ogbn-Products dataset
Ablation Study of Instance Norm Table 5: Ablation study of instance normalization.
We evaluate the accuracy improve-

ment resulting from the inclusion of Reddit oghn-Arxiv __ogbn-Products
instance norm. We Summarize the ac- GCN w/ instance norm 9547 £ 0.05 7246 £0.23 79.24 +0.74

. w/o instance norm 94.01 +1.04 6930 £ 1.19 74.55 £3.51
curacy using GCN and GraphSAGE
y g p w/ instance norm 96.65 £0.04 70.03 £0.26 78.97 £ 0.17

as examples on different datasets w/o ~ GraphSAGE e norm 96,52 £ 004 69.00 £045 7825 + 021
instance norm applied. As depicted
in Table[5] the accuracy with instance
norm applied is consistently higher than that without it across datasets. Instance norm is beneficial
for random sampling, resulting in improved accuracy.

Effect for Smooth Training Next we deep
dive into why instance norm helps boost
the accuracy. We plot the distribution shift
of the embedding after message aggrega-
tion with sampled columns/rows in Fig-
ure [l We use the norm difference of the

x10° 3%10

w

o
3

—— W/ instance norm —— W/ instance norm

W/o instance norm W/o instance norm

Embedding norm shift
\
Embedding norm shift

embedding between subsequent epochs to 6=10'| [yiiiLLIIILLLLLLLLLLLLALLAMIL | 6 v0){ygpunnn AL EEEEFLELLLEELEERLL
measure the training smoothness. As 0 w0 2000 w0 o 0 w0 a0 w0 a0
shown in Figure [6] training without in-

(a) GCN (b) GraphSAGE

stance norm causes much larger embed-
ding shifts, making the training process
not smooth as the model needs to con-
stantly adapt to new inputs distribution. This effect exacerbates as the random samples causes
message aggregation in different epochs varies drastically. Instance norm successfully lowers the
embedding shifts, thus stabilize the training process and leads to better accuracy.

Figure 6: Embedding shifts between epochs

5 RELATED WORK

Large-scale Graph Learning Massage passing over graph can described by sparse matrix multi-
plication. Such operation is resource consuming, where the memory and time complexities depend
on the amounts of nodes and edges, respectively. To address the scalability issue, numerous fami-
lies of algorithms have been explored, including the subgraph-based GNN training [Hamilton et al.
(2017a); Huang et al.| (2018) , graph precomputation [Wu et al.| (2019); |[Klicpera et al.| (2018); |Yu
et al.| (2020), and distributed training|Zha et al.| (2023; 2022); |Yuan et al.|(2022)); Wang et al.|(2022).
The common merit of them is to divide the large graph into pieces, each of which could be handled
by the resource-limited GPU.

Related work on Efficient Training Algorithms, Subgraph Sampling, Random Dropout, Graph
Condensation and other topics are also important. Due to space limitations, we defer the discussion
on them to Appendix

6 CONCLUSIONS

In our work, we introduce StructDrop to replace time-consuming message passing with fast
sparse matrix multiplication (SpMM) during whole training process of GNNs. StructDrop uni-
formly samples column-row pairs in the adjacency matrix, reducing computational complexity in
SpMM. To address distribution shifts resulting from random sampling, we apply instance norm after
SpMM to rescale node embeddings and stabilize the training. Extensive experiments on benchmarks
confirm the effectiveness of our approach that achieves a superior performance on efficiency and
generalization.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Pytorch-Geometric dropedge implementation. https://pytorch—-geometric.
readthedocs.io/en/latest/modules/utils.htmlftorch_geometric.
utils.dropout_edge, a.

Pytorch-Geometric dropnode implementation. b. https://pytorch—-geometric.
readthedocs.io/en/latest/modules/utils.html#ftorch_geometric.
utils.dropout_nodel

Pytorch-Sparse sparse matrix multiplication cuda kernel. https://github.com/rustyls/
pytorch_sparse/blob/master/csrc/cuda/spmm_cuda.cu.

Pytorch-Geometric memory efficient aggregation. https://pytorch-geometric.
readthedocs.io/en/latest/notes/sparse_tensor.html) 2023.

Menachem Adelman, Kfir Levy, Ido Hakimi, and Mark Silberstein. Faster neural network training
with approximate tensor operations. Advances in Neural Information Processing Systems, 34:
27877-27889, 2021.

Junya Arai, Hiroaki Shiokawa, Takeshi Yamamuro, Makoto Onizuka, and Sotetsu Iwamura. Rabbit
order: Just-in-time parallel reordering for fast graph analysis. In 2016 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), pp. 22-31, 2016. doi: 10.1109/IPDPS.2016.
110.

Nils Bjorck, Carla P Gomes, Bart Selman, and Kilian Q Weinberger. Understanding batch normal-
ization. Advances in neural information processing systems, 31, 2018.

Benjamin Paul Chamberlain, Sergey Shirobokov, Emanuele Rossi, Fabrizio Frasca, Thomas
Markovich, Nils Hammerla, Michael M Bronstein, and Max Hansmire. Graph neural networks
for link prediction with subgraph sketching. arXiv preprint arXiv:2209.15486, 2022.

Jianfei Chen, Jun Zhu, and Le Song. Stochastic training of graph convolutional networks with
variance reduction. In International conference on machine learning. PMLR, 2017.

Jie Chen, Tengfei Ma, and Cao Xiao. Fastgen: fast learning with graph convolutional networks via
importance sampling. arXiv preprint arXiv:1801.10247, 2018.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn: An
efficient algorithm for training deep and large graph convolutional networks. In Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
257-266, 2019.

Petros Drineas, Ravi Kannan, and Michael W Mahoney. Fast monte carlo algorithms for matrices i:
Approximating matrix multiplication. STAM Journal on Computing, 36(1):132-157, 2006.

Keyu Duan, Zirui Liu, Pethao Wang, Wenqing Zheng, Kaixiong Zhou, Tianlong Chen, Xia Hu,
and Zhangyang Wang. A comprehensive study on large-scale graph training: Benchmarking and
rethinking. 2022.

David Eppstein, Zvi Galil, Giuseppe F Italiano, and Amnon Nissenzweig. Sparsification—a tech-
nique for speeding up dynamic graph algorithms. Journal of the ACM (JACM), 44(5):669-696,
1997.

Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian Xu, Qiang Yang, Evgeny
Kharlamov, and Jie Tang. Graph random neural networks for semi-supervised learning on graphs.
Advances in neural information processing systems, 33:22092-22103, 2020.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

Matthias Fey, Jan E Lenssen, Frank Weichert, and Jure Leskovec. Gnnautoscale: Scalable and ex-
pressive graph neural networks via historical embeddings. In International conference on machine

learning, 2021.

11

https://pytorch-geometric.readthedocs.io/en/latest/modules/utils.html#torch_geometric.utils.dropout_edge
https://pytorch-geometric.readthedocs.io/en/latest/modules/utils.html#torch_geometric.utils.dropout_edge
https://pytorch-geometric.readthedocs.io/en/latest/modules/utils.html#torch_geometric.utils.dropout_edge
https://pytorch-geometric.readthedocs.io/en/latest/modules/utils.html#torch_geometric.utils.dropout_node
https://pytorch-geometric.readthedocs.io/en/latest/modules/utils.html#torch_geometric.utils.dropout_node
https://pytorch-geometric.readthedocs.io/en/latest/modules/utils.html#torch_geometric.utils.dropout_node
https://github.com/rusty1s/pytorch_sparse/blob/master/csrc/cuda/spmm_cuda.cu
https://github.com/rusty1s/pytorch_sparse/blob/master/csrc/cuda/spmm_cuda.cu
https://pytorch-geometric.readthedocs.io/en/latest/notes/sparse_tensor.html
https://pytorch-geometric.readthedocs.io/en/latest/notes/sparse_tensor.html

Under review as a conference paper at ICLR 2025

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249-256. JMLR Workshop and Conference Proceedings, 2010.

William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, pp. 1025-1035, 2017a.

William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. arXiv preprint arXiv:1706.02216, 2017b.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015.

Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz, and William J
Dally. Eie: Efficient inference engine on compressed deep neural network. ACM SIGARCH
Computer Architecture News, 44(3):243-254, 2016.

Xiaotian Han, Tong Zhao, Yozen Liu, Xia Hu, and Neil Shah. Mlpinit: Embarrassingly simple gnn
training acceleration with mlp initialization. ICLR, 2023.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. arXiv
preprint arXiv:2005.00687, 2020.

Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. Adaptive sampling towards fast graph
representation learning. In Advances in Neural Information Processing Systems, 2018.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448-456.
pmlr, 2015.

Zhimeng Jiang, Xiaotian Han, Chao Fan, Zirui Liu, Na Zou, Ali Mostafavi, and Xia Hu. Fmp:
Toward fair graph message passing against topology bias. arXiv preprint arXiv:2202.04187, 2022.

Wei Jin, Lingxiao Zhao, Shichang Zhang, Yozen Liu, Jiliang Tang, and Neil Shah. Graph conden-
sation for graph neural networks. arXiv preprint arXiv:2110.07580, 2021.

Wei Jin, Xianfeng Tang, Haoming Jiang, Zheng Li, Danqing Zhang, Jiliang Tang, and Bing Yin.
Condensing graphs via one-step gradient matching. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 720-730, 2022.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In International Conference on Learning Representations, 2017. URL https://
openreview.net/forum?id=SJU4ayYgl.

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Giinnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. In International Conference on Learning

Representations, 2018.

Zirui Liu, Kaixiong Zhou, Fan Yang, Li Li, Rui Chen, and Xia Hu. Exact: Scalable graph neural
networks training via extreme activation compression. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=vkaMaq95_rX.

Zirui Liu, Chen Shengyuan, Kaixiong Zhou, Daochen Zha, Xiao Huang, and Xia Hu. Rsc: Ac-
celerate graph neural networks training via randomized sparse computations. In International
Conference on Machine Learning, pp. 21951-21968. PMLR, 2023a.

Zirui Liu, Kaixiong Zhou, Zhimeng Jiang, Li Li, Rui Chen, Soo-Hyun Choi, and Xia Hu. Dspar:
An embarrassingly simple strategy for efficient gnn training and inference via degree-based spar-
sification. Transactions on Machine Learning Research, 2023b.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph
convolutional networks on node classification. arXiv preprint arXiv:1907.10903, 2019.

12

https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=vkaMaq95_rX

Under review as a conference paper at ICLR 2025

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The missing in-
gredient for fast stylization. arXiv preprint arXiv:1607.08022, 2016.

Zhuang Wang, Zhaozhuo Xu, Xinyu Wu, Anshumali Shrivastava, and TS Eugene Ng. Dragonn:
Distributed randomized approximate gradients of neural networks. In International Conference
on Machine Learning, pp. 23274-23291. PMLR, 2022.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying graph convolutional networks. In International conference on machine learning, pp.
6861-6871. PMLR, 2019.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 974—
983, 2018.

Lingfan Yu, Jiajun Shen, Jinyang Li, and Adam Lerer. Scalable graph neural networks for hetero-
geneous graphs. arXiv preprint arXiv:2011.09679, 2020.

Binhang Yuan, Cameron R. Wolfe, Chen Dun, Yuxin Tang, Anastasios Kyrillidis, and Chris Jer-
maine. Distributed learning of fully connected neural networks using independent subnet train-
ing. Proc. VLDB Endow., 15(8):1581-1590, 2022. URL https://www.v1ldb.org/pvldb/
voll5/pl581-wolfe.pdfl

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
saint: Graph sampling based inductive learning method. arXiv preprint arXiv:1907.04931, 2019.

Hanging Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
saint: Graph sampling based inductive learning method. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=BJe8pkHFwS,

Daochen Zha, Louis Feng, Qiaoyu Tan, Zirui Liu, Kwei-Herng Lai, Bhargav Bhushanam, Yuan-
dong Tian, Arun Kejariwal, and Xia Hu. Dreamshard: Generalizable embedding table place-
ment for recommender systems. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and
Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=_atSgd9Np52.

Daochen Zha, Louis Feng, Liang Luo, Bhargav Bhushanam, Zirui Liu, Yusuo Hu, Jade Nie, Yuzhen
Huang, Yuandong Tian, Arun Kejariwal, and Xia Hu. Pre-train and search: Efficient embedding
table sharding with pre-trained neural cost models. CoRR, abs/2305.01868, 2023. doi: 10.48550/
arXiv.2305.01868. URL https://doi.org/10.48550/arXiv.2305.01868.

Kaixiong Zhou, Zirui Liu, Rui Chen, Li Li, Soo-Hyun Choi, and Xia Hu. Table2graph: Transform-
ing tabular data to unified weighted graph. In Luc De Raedt (ed.), Proceedings of the Thirty-First
International Joint Conference on Artificial Intelligence, IJCAI 2022, Vienna, Austria, 23-29
July 2022, pp. 2420-2426. ijcai.org, 2022. doi: 10.24963/ijcai.2022/336. URL https:
//doi.org/10.24963/1ijcai.2022/336.

Kaixiong Zhou, Soo-Hyun Choi, Zirui Liu, Ninghao Liu, Fan Yang, Rui Chen, Li Li, and Xia Hu.
Adaptive label smoothing to regularize large-scale graph training. In Proceedings of the 2023
SIAM International Conference on Data Mining (SDM), pp. 55-63. SIAM, 2023.

Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quanquan Gu. Layer-dependent
importance sampling for training deep and large graph convolutional networks. arXiv preprint
arXiv:1911.07323, 2019.

13

https://www.vldb.org/pvldb/vol15/p1581-wolfe.pdf
https://www.vldb.org/pvldb/vol15/p1581-wolfe.pdf
https://openreview.net/forum?id=BJe8pkHFwS
https://openreview.net/forum?id=_atSgd9Np52
https://doi.org/10.48550/arXiv.2305.01868
https://doi.org/10.24963/ijcai.2022/336
https://doi.org/10.24963/ijcai.2022/336

Under review as a conference paper at ICLR 2025

A CONFIGURATION AND HYPERPARAMETER SETTING

StructDrop only has one hyperparameter which is the sampling ratio. We present comprehensive
sample ratio ablation study in Sec f.2.4] We adopt a similar approach to prior study [Liu et al.
(2023a) by sampling every ten training steps. Below tables show the configurations of different

model architectures (GCN, GraphSAGE, GCNII and GraphSAINT) in graph training.

Table 6: Configuration of Full-Batch GCN.

D Training Archtecture
ataset Learning Hidden
Rates Epochs Dropout | BatchNorm Layers Dimension
Reddit 0.01 400 0.5 No 3 256
Reddit2 0.01 400 0.5 No 3 256
‘;‘gb’?' 0.01 500 0.1 No 3 512
rxiv
ogbn-
Products 0.001 400 0.5 No 3 256
Table 7: Configuration of Full-Batch GraphSAGE.
Dataset Learning Training Archtecture Hidden
Rates Epochs Dropout | BatchNorm Layers Dimension
Reddit 0.01 400 0.5 No 3 256
Reddit2 0.01 400 0.5 No 3 256
b oo1 500 ol No 3 512
rXiv
ogbn-
Products 0.001 500 0.5 No 3 256
Table 8: Configuration of Full-Batch GCNIL.
Dataset Learning Training Archtecture Hidden
Rates Epochs Dropout | Alpha&Theta Layers Dimension
Reddit 0.01 400 0.5 0.1&0.5 4 256
Reddit2 0.01 400 0.5 0.1&0.5 4 256
Zgb’?' 0.01 500 0.1 0.1&0.5 4 512
rxiv
Pogb”' 0.001 500 0.1 0.1&0.5 3 128
roducts
Table 9: Configuration of GraphSAINT.
Dataset Learning Training Archtecture Hidden
Rates Epochs Dropout | Walk length Layers Dimension
Reddit 0.01 40 0.1 4 3 512
Reddit2 0.01 40 0.1 4 3 512
Zgb’?' 0.01 75 0.1 4 4 512
rXiv
ogbn-
Products 0.01 20 0.5 3 3 256

14

Under review as a conference paper at ICLR 2025

Table 10: We presents additional experiment results for comparison of efficiency and accuracy
across different baseline methods with GCNII and subsampling methods like GraphSAINT and
GraphSAGE. Consistent with the phenominon we observed in table 2} Top-k Sampling experiences
a significant accuracy drop (over 1%, and in most cases exceeding 3%), which is highlighted in red.
These accuracy reductions make it unsuitable for real-world deployment. For the speedup compar-
ison, we exclude results where the accuracy drop is too severe (marked in red) and highlight the
best speedup gains in bold. Consistently, St ructDrop achieves the best speedup gain without
accuracy loss compared to the other baselines.

#nodes 232,965 232,965 169,343 2,449,029
edges 114,615,892 23,213,838 1,166,243 61,859,140
Reddit Reddit2 ogbn-Arxiv ogbn-Products
Model Methods
Accuracy Speedup Accuracy Speedup Accuracy Speedup Accuracy Speedup

Vanilla 96.81 £ 0.03 1 x 96.80 £ 0.02 1 x 7212 +£0.24 1 x 76.70 £ 0.12 1 x
Top-k Sampling 91.46 +1.00 5.14 x 9351 +0.58 211 x 71.09+0.09 121 x 7427+034 174 x
GCNII DropEdge 96.81 £0.07 2.02x 96.72+0.01 1.61x 7224+030 1.14x 77.49+£0.09 1.02 x
DropNode 96.39+£0.05 216 x 96314+0.03 1.63x 7235+001 1.13x 77.72+0.18 1.01 x
StructDrop 96.82+£0.02 343 x 96724+0.03 197 x 7216+0.12 1L19x 77.55+£031 1.62 x

Vanilla 95.85+0.13 1x 96.22 £ 0.05 1 x 70.72 £ 0.17 1 x 78.67 £0.23 1 x
Top-k Sampling 90.36 +0.84 1.56 x 91.274+0.50 1.08 x 6577 +041 1.11x 7559 +037 133 x
GraphSAINT DropEdge 95924+ 0.06 0.7 x 96.12+0.03 0.67 x 69.56+0.06 0.79 x 79.50+0.18 0.53 x
DropNode 9573 +£0.08 073 x 96.05+0.11 0.68x 6947+ 1.08 0.82x 7927+033 0.52 x
StructDrop 9587 £0.05 133 x 96.094+0.03 1.05x 6940+094 107 x 7959 +£037 127 x

Vanilla 96.47 £ 0.10 1 x 96.53 £ 0.04 1 x 70.49 £+ 0.29 1x 78.67 £ 0.16 1 x

Top-k Sampling 93.19 +1.42 123 x 94.04+0.10 126x 6285+234 1.11x 7647 +£0.34 1.2 x
GraphSAGE DropEdge 94.57+0.13 092x 95924+0.11 089 x 6857+0.18 087 x 79.40+021 049 x
DropNode 95.12+0.15 092x 96.114+0.09 092x 6934+061 088 x 7881+£044 0.52x
StructDrop 9634 +£0.08 128 x 96494+0.02 1.23 x 6924+056 112x 7890+£0.17 1.21 x

B EFFICIENCY AND ACCURACY COMPARISON BETWEEN BASELINES ON
GCNII AND SUBSAMPLING MECHANISMS

B.1 PERFORMANCE ANALYSIS ON EFFICIENCY AND ACCURACY

Here we presents additonal results regarding St ructDrop’s accuracy and efficiency. The com-
parison between our St ructDrop with other backbones with GCNII and subsampling mechanism
(GraphSAINT, GraphSAGE) is shown in Table [I0] The results shown in the table are consistent
with the discussion in Sec f.2.2] Take GCNII result as an example, StructDrop achieves a
3.43x speedup without compromising accuracy compared to the vanilla training scheme. Moreover,
in subsampling-based experiments, our method achieves a 1.33x speedup in GraphSAINT AND a
1.28x speedup with GraphSAGE. The Top-k method experiences a significant accuracy drop com-
pared to all baselines. Additionally, St ructDrop surpasses both DropEdge and DropNode meth-
ods in terms of speedup due to its computation-friendly dropping approach. These findings are
consistent with other experiments presented in the main paper, elaborated in Sec f.2.2]

B.2 DETAILED ANALYSIS OF STRUCTDROP’S PERFORMANCE IN SUBGRAPH TRAINING

For the subgraph sampling scheme,
we found the subgraph size af-
fects the speedup gain. we con-
duct a further ablation study on in-
put subgraph size and show the

Table 11: Ablation study on StructDrop’s acceleration
effects with random walk length in GraphSAINT. Larger
walk length will result in larger subgraph in GraphSAINT.

results in Table The input Walk length 2 3 16
subsampled graph size is Propor- “Reqgi T Speedup 1.33x 1.47x 1.6x
tional to some hyper-parameters such Accuracy 95.87%0.05 9632%0.02 95.97 % 0.08
as random walk length and batch -

sizes in GraphSAINT. We use Red- Reddit2 Speedup 1.05x 1.24x 1.43x
dit/Reddit2 dataset and train the Accuracy 96.09 £0.03 96.47 £0.06 96.20 £ 0.02

model based on the GraphSAINT-

15

Under review as a conference paper at ICLR 2025

based method. We study the speedup gain with different random walk lengths. In this experiment,
a larger random walk length leads to a larger subgraph, maintaining more global information dur-
ing training. As shown in below table, we see that the speedup gain increased from 1.33 to 1.6 on
Reddit, and respectfully 1.05 to 1.43 on Reddit2 when the walk length is larger. That being said,
the StructDrop acceleration effect scales up when the subgraph is larger. Such speedup gain
enabled by St ructDrop is non-trivial. In the real-world setting, the size of the input subgraph is
typically large. There are two considerations: 1. From GNN training perspective, a larger subgraph
will preserve more global information, reducing information loss in the graph; 2. From the training
efficiency side, it needs sufficient batches to keep the hardware fully occupied. With large graph,
speeding up incurred in training will significantly save the training time and hardware resources,
which could bring benefits and bring down the costs during training.

B.3 SPEEDUP GAIN PERCENTAGE DIFFERENCE BETWEEN ARCHITECTURES AND DATASETS

As discussed in Sec[#.2.2] StructDrop’s consistently speedup the training among different archi-
tectures and datasets. There are percentage different in acceleration among datasets/architectures.
We detail the explanation here. St ructDrop’s operation-level acceleration (specifically, message
passing operation acceleration as mentioned in Sec {.2.1] which is an efficiency bottleneck during
training) remains consistent across different architectures. However, different backbones might in-
cur other operations other than the message passing (i.e. different linear layer dimensions). These
operations are not accelerated and their overheads varies between backbones. Consequently, the
percentage of acceleration differs across architectures. To further explain, if the operation-level ac-
celeration is p, the overall speedup gain can be denoted as (p * Overhead_OP + Overhead_Other) /
(Overhead_OP + Overhead_Other), which will vary depending on different architectures. Similarly,
different datasets with different size of the input graph will cause varying overhead. Nonetheless,
StructDrop is able to speed the most inefficient message aggregation as mentioned in Sec [#.2.1}
and the end to end speedup effect is consistent among different architectures and datasets as shown
in Table 2land

C DISCUSSION ON THE CHOICE OF TOP-k AND STRUCTDROP UNDER
RELAXED ACCURACY REQUIREMENTS.

As discussed in Sec Top-k method results in large accuracy drop (~8%) in some cases due to
the under-fitting problem. Novetheless, one might be curious how should Top-k and St ructDrop
be chosen under a relaxed accuracy requirements (~2%). Under a loose accuracy requirements,
although top-k method is in general faster (with lower accuracy), we would like to point out that the
practitioner can accelerate St ructDrop by reducing the percentage of columns/rows sampled in
computation. We provide some experimental results as a comparison in the below Table[I2] We use
Reddit2 and Arxiv dataset with GCN dataset as the demonstration. Note that the Top-k’s accuracy
is compromised a lot compared to Vanilla solution. We reduce the sample ratio of St ructDrop in
this experiment to check whether the speedup can catch up with the Top-k mechanism.

16

Under review as a conference paper at ICLR 2025

Table 13: Ablation study on accuracy and speedup with different sample ratios on GraphSAGE,
GCNII and GraphSAINT architecture

Model Ratio Reddit Reddit2 ogbn-Arxiv ogbn-Products
Acc. Speedup Acc. Speedup Acc. Speedup Acc. Speedup
Vanilla 96.59 +0.03 1x 96.67 +0.03 1 x 70.44 £ 0.31 1 x 78.05 £ 0.90 1x
0.1 96.53+0.04 648 x 9642+0.04 293 x 6883+030 133x 79.29+£0.07 2.96 x

GraphSAGE 0.2 96.65+0.04 426x 96.56+£0.03 233 x 70.03+026 1.15x 7897£0.17 248 x
0.3 96.69+0.04 3.13x 96.63+£0.04 201 x 7035+024 1.12x 78.63£0.12 2.1 x
0.4 96.68 £0.02 242 x 96.67+0.03 179 x 70.65+034 1.06x 7831+0.09 1.81 x
Vanilla 96.81 +£0.03 1 x 96.80 + 0.02 1 x 72.12+£0.24 1x 76.70 +0.12 1 x
0.1 96.72+0.03 461 x 96.65+0.03 219x 71.52+0.07 124x 7750%£035 1.77 x
GCNII 0.2 96.82+0.02 343 x 96.72+£0.03 197 x 7216+0.12 1.19x 77.55£031 1.62 x

0.3 96.84+0.03 267 x 96.76+£0.03 1.77 x 7222+021 1.15x 77.50£031 149 x
0.4 96.85+0.01 216x 96.80+0.03 159 x 7220%0.15 1.11x 7725018 137 x
Vanilla 95.85+0.13 1x 96.22 +0.05 1 x 70.72 £0.17 1 x 78.67+0.23 1 x
0.1 95.775+0.08 147 x 95.89£0.01 1.1 x 68.94+0.62 1.13x 7942+0.12 134 x
GraphSAINT 0.2 95.87+0.05 133 x 96.09+£0.03 1.05x 6940+094 107 x 79.59+£037 127 x
0.3 95.88+0.03 123 x 9614005 1.03x 7025+092 1.05x 7941031 1.18x
0.4 96.01 £0.08 1.09x 96.19+£0.04 1.01 x 7049+0.58 1.0l x 79.21+0.29 1.1 x

From Table we can see that Table 12: Comparison on efficiency and accuracy between
by reducing the percentage of the Top-k and StructDrop under relaxed accuracy require-
columns/rows sampled during train- ments. Bold denotes the highest.

ing, StructDrop’s speedup gain

can be effectively increased. With Method Sample Ratio Accuracy Speedup compare to Vanilla
that’ StructD rop Successfully Reddit2 Top-k 0.1 94.21 £0.25 2.72 %
suppressed Top-k£ at speed while still StructDrop 02 95.39 £ 0.05 281 %
maintaining a much more superior ogbn-Arxiv Top-k 0.1 70.84 £ 0.63 1.33 x
StructDrop 0.2 72.16 £ 0.21 1.35 x

accuracy. That’s why a practitioner
should choose StructDrop under
a relaxed accuracy requirement.

At the same time, we believe the accuracy of the model is also important. StructDrop can
effectively increase the training speed, with negligible accuracy loss or even more exciting accuracy
in most cases. However, the model trained with top-k method suffers a lot (sometimes with ~8%)
for accuracy. Although faster, the experimental results (Table [2)) show that Top-k£ compromise the
accuracy too much, which will cause large trouble during inference/model serving time. This is why
we would like to advocate for training using St ructDrop even with relaxed accuracy requirement.

D ABLATION STUDY ON ACCURACY AND EFFICIENCY WITH RATIO

The relationship between sampling ratios with respect to accuracy and efficiency of StructDrop
is shown in Table[I3] The results is consistent with the elaboration in Sec[d.2.4] The impact of the
sample ratio on accuracy varies depending on the datasets. For smaller datasets, higher sample ratios
tend to lead to higher accuracy because of less information loss. On the other hand, larger datasets
like ogbn-Products which potentially have more information redundancy due to the large number of
edges, accuracy could be inversely proportional to the sample ratio because those redundant edges
can cause the node embeddings to be smoothed, which causes converged embeddings. For efficiency,
lower sampling ratios result in higher computation speeds, and the trends for GraphSAGE and other
model architectures are similar.

E GENERALIZATION ABILITY STUDY ON GRAPHSAGE

The training curve and generalization gap on GraphSAGE training on ogbn-Products dataset is
shown in Figure [7] Similar to the result discussed in Sec despite Top-k with the highest
training loss, St ructDrop achieves the highest generalization gap owing to the randomness and

17

Under review as a conference paper at ICLR 2025

1.0
4 —— Top-k Sampling —— Top-k Sampling
StructDrop o 05 StructDrop
93 —— Vanilla) —— Vanilla
?OD —— DropEdge 5 0.0 —— DropEdge
=p) —— DropNode 8 —— DropNode
Z § -0.5
(2]
1 2
-1.0
0
0 100 200 300 400 500 0 100 200 300 400 500
Epoch Epoch
(a) Training loss on GraphSAGE (b) Gen. gap on GraphSAGE

Figure 7: Training curve on GraphSAGE with ogbn-Products dataset.

diversity introduced by St ructDrop, which act as a form of data augmentation, and thereby en-
hancing the model’s generalizability.

F MORE RELATED WORK

Efficient Training Algorithms Another orthogonal line is to reduce the memory and time con-
sumption by approximating the message passing. This can be divided into two categories. First,
the adjacency matrix based approximation aims to compress the non-zero entries or matrix dimen-
sion. For example, Sketch-GNN sketch the graph adjacency matrix into a smaller one using hash-
ing |Chamberlain et al.| (2022); DSpar expurgates the non-zero elements based on node degrees to
obtain a sparse substitute [Liu et al.| (2023b)). Second, the node embedding based approximation tar-
gets at compress the memory storage of hidden representations. For example, EXACT stocastically
quantizes the node embeddings into low precision|Liu et al.|(2022)); GNNAutoScale stores the whole
list of node embeddings in CPU and retrieve them in forward propagation |Fey et al.| (2021]).

Random Dropout To improve the generalization performance on graph, there are two main cate-
gories of dropout. Edge-oriented dropout randomly samples a subset of edges to avoid over fitting
and over-smoothing, such as DropEdge|[Rong et al.|(2019), DropNode [Feng et al.|(2020), etc. On the
other hand, Node-oriented dropout removes node features and links connected to the dropped nodes.
The node-oriented dropout is originally motivated in sampling subgraph for scalable training and in
augmenting graphs for contrastive learning, such as DropNode |[Feng et al.| (2020), FastGCN [Chen
et al.[|(2018)), etc.

Subgraph-based GNN training This line of works focuses on training GNNs using sampled sub-
graphs to minimize the number of nodes stored in memory. Several sampling techniques have been
developed based on this concept, such as node-wise sampling Hamilton et al.| (2017a); |Chen et al.
(2017), layer-wise sampling |Huang et al.| (2018)); Zou et al.|(2019), and subgraph sampling Chiang
et al.[(2019); Zeng et al.|(2019). StructDrop is a technique that performs row and column sam-
pling on adjacency matrices during graph training, and it can be seamlessly combined with the pre-
viously mentioned subgraph sampling methods. Our experiments demonstrate that St ructDrop
improves computational efficiency while maintaining accuracy.

Graph Condensation Graph condensation involves condensing knowledge from a large graph
to create a smaller synthetic graph from scratch. However, the vanilla graph condensation often
involves solving a expensive bi-level optimization problem Jin et al.|(2021)). Jin et al.[(2022) further
reduces the cost of graph condensation through one step gradient matching. We note that the graph
condensation is orthogonal to our proposed method, as the final condensed graph still have the
expensive SpMM operations.

18

Under review as a conference paper at ICLR 2025

G LIMITATIONS

Although our proposed method can effectively reduce the training time by reducing the number
of active columns and rows for performing SpMM , it cannot directly reduce the memory usage
for storing the large graph, which is another major bottleneck for scaling GNNs onto large graphs.
When the memory is the major bottleneck, we recommend using our method jointly with other graph
reduction methods ,e,g., graph sparsification Liu et al.| (2023b).

H IMPACT STATEMENTS

This paper introduces research aimed at pushing the boundaries of Machine Learning. While our
work might have several potential societal consequences, we feel there is nothing specifically to
highlight here. You may include other additional sections here.

19

	Introduction
	Preliminaries and Background
	Graph Neural Networks
	Fast Matrix Multiplication with Sampling

	Methodology
	The Under-fitting Problem in Top-k Sampling
	StructDrop: An Efficient Sampling Scheme with Increased Generalizability
	Instance Normalization Meets the Sampling Scheme

	Experiments
	Implementation Details
	Superior Generalizability and Efficiency
	Operational level acceleration
	End-to-end performance analysis
	Generaliability Study of StructDrop
	Ablation Studies of Dropping Ratio

	Benefits of Instance Normalization in Sampling

	Related Work
	Conclusions
	Configuration and hyperparameter setting
	Efficiency and accuracy comparison between baselines on GCNII and subsampling mechanisms
	Performance analysis on efficiency and accuracy
	Detailed analysis of StructDrop's performance in subgraph training
	Speedup gain percentage difference between architectures and datasets

	Discussion on the choice of Top-k and StructDrop under relaxed accuracy requirements.
	Ablation study on accuracy and efficiency with Ratio
	Generalization ability study on GraphSAGE
	More related work
	Limitations
	Impact Statements

