Under review as a conference paper at ICLR 2026

EXCHANGEABILITY IN NEURAL NETWORKS AND ITS
APPLICATION TO DYNAMIC PRUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Modern neural networks (NN) contain an ever-growing number of parameters, sub-
stantially increasing the memory and computational cost of inference. Researchers
have explored various ways to reduce the inference cost of NNs by reducing the
model size before deployment and dynamically pruning the inference computation
at runtime. In this work, we present EXPRUNE, a general, dynamic pruning
optimization that enables multi-granularity partial computation on a per-input basis.
EXPRUNE requires no change to the model architecture or the training algorithm.
EXPRUNE is based on our theoretical results that the relationship between certain
model parameters and intermediate values can be described by a statistical property
called exchangeability. By identifying exchangeable parameters and values in the
model, we are able to first partially evaluate the network, analyze the statistics of the
partial results, and make pruning decisions on the fly. Because EXPRUNE is theory
grounded, it generalizes across model architectures in different problem domains.
We evaluate EXPRUNE on one computer vision models, one graph model and one
language model. EXPRUNE provides 10.98—17.33% reduction in FLOPs with
negligible accuracy drop and 21.61-27.16% reduction in FLOPs with at most 1%
accuracy drop. We also demonstrate that EXPRUNE composes with static magnitude
pruning. On models that have been aggressively statically pruned, EXPRUNE still
provides additional 10.24—11.11% reduction in FLOPs with negligible accuracy
drop and 13.91-14.39% reduction in FLOPs with at most 1% accuracy drop.

1 INTRODUCTION

Modern neural networks (NN) contain an ever-growing number of parameters, substantially increasing
the memory and computational cost of inference (Han et al.|2022). To tame resource usage, researchers
have developed a number of NN optimizations that statically reduce model size before deployment, in-
cluding static pruning (Cheng et al.,[2024)), quantization (Saha et al.,[2024)), knowledge distillation (Gou
et al.,[2021)), and neural architecture search (Elsken et al.,2019)). To a lesser extent, researchers have
also developed optimizations that dynamically prune the inference computation (Teerapittayanon et al.}
20165 Elkerdawy et al[2022). Dynamic pruning is a runtime optimization that allows parts of the
inference computation to be skipped on a per-input basis, enabling partial computation and improving
performance. Prior dynamic pruning methods are usually specialized to specific model architectures and
network granularities, and often require changes of the model architectures and the training algorithms.
These limitations make them harder to apply to a broad class of models and training strategies.

In this work, we present EXPRUNE, a general, dynamic pruning optimization that enables multi-
granularity (e.g., neuron/kernel/layer) partial computation on a per-input basis. EXPRUNE requires
no changes to the model architecture or the training algorithm, as it exploits structures already present
in the model. Specifically, EXPRUNE capitalizes on the presence of exchangeable model parameters
and intermediate values. Exchangeability is a statistical property that implies identical distribution and
symmetric interdependence among random variables (Dean & Verducci,[1990). By formalizing model
training as drawing a random model from a distribution of models with respect to random initialization,
we prove that certain model parameters have exchangeable marginal distributions, and so do the interme-
diate values computed with them. The property of exchangeability enables us to first partially evaluate
the network, analyze the statistics of the partial results, and prune some computation on the fly. Because
the EXPRUNE is grounded in these theoretical results, it can generalize across model architectures. We
identify exchangeable parameter/value patterns in a range of modern NN, including Convolution Neu-
ral Networks (CNNs), Graph Neural Networks (GNN5s) and transformer-based language models (LMs).

Under review as a conference paper at ICLR 2026

unoptimized inference inference with ExPrune :&Oﬁ
confident

prune

Statistics
Checker

O
. -
—O

confident

i
S

input input

compute

Figure 1: Dynamic pruning with EXPRUNE algorithm, grounded by our theory of exchangeability.

— Wi
W,
= b; (normalized)

©

¢, =ReLU(W, b, + W, b, + ..+ W, b,)

W, b aW, by s s W,y b
()CZ

exchangeable

s o

Probability Density

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
Value

Figure 2: MLP without bias. a,b,c are neuron activations. W’ Figure 3: Distributions of weights
and W are weight matrices. Parameters and values with the W/ ,’s, W3 ;’s, and values b;’s on one

same color are exchangeable, thus identically distributed. inpht over 500 trained models.

To demonstrate the efficacy of this method, we instantiate the EXPRUNE algorithm to prune two
common structures present in NNs. We evaluate EXPRUNE on CNNs, GNNs, and LMs. We find that
EXPRUNE can reduce the inference cost of these NNs by 10.98-17.33% with negligible drop on model
accuracy. EXPRUNE is more general and outperforms the most similar prior work while requiring
much less branching operations. We also empirically validate that EXPRUNE can compose with static
pruning, providing additional efficiency improvements.

Roadmap and Contributions: Section[2]presents a simple running example, providing intuitions
of our theory and algorithm. Section[3]and Section [present the formalism and details. Section|[3]
presents our evaluation. We present the following contributions:

* Analysis of statistical exchangeability in NNs (Section [3): To our knowledge, this work is both
the first to model the relationship among NN parameters with exchangeability and to perform
dynamic pruning exploiting this property. The formalism provides insights into symmetry-induced
redundancy identified by theoreticians (Lim et al.,[2024).

* Dynamic pruning algorithm (Section d): We present EXPRUNE, a general dynamic pruning
algorithm based on our theoretical formulation. EXPRUNE can be applied to various NN architectures
at various network granularities, and can compose with existing approaches for efficient inference.
We also present two instantiations of EXPRUNE that prunes two common structures in NNs.

e Evaluation (Section E]): We evaluate EXPRUNE on CNNs, GNNs, and LMs. We demonstrate
that EXPRUNE provides 10.98-17.33% reduction in FLOPs with negligible accuracy drop and
21.61-27.16% reduction in FLOPs with <1% accuracy drop. We also demonstrate that EXPRUNE
composes with static magnitude pruning. On models that have been aggressively statically pruned,
EXPRUNE provides additional 10.24—11.11% reduction in FLOPs with negligible accuracy drop
and 13.91-14.39% reduction in FLOPs with at most 1% accuracy drop.

2 RUNNING EXAMPLE: DYNAMIC PRUNING OF RELU-ACTIVATED MLP

In this section, we show how we use EXPRUNE to dynamically prune (Figure [I)) a simple
ReLU-activated multi-layer-perceptron (MLP) without bias (Figure [Z), and the theoretical
groundings behind it. In this example, we focus on two hidden layers (colored) with weights
W' and W. Denote the neuron activations of sequential layers shown as a, b, c. We have
b=ReLU(W’'a),c=ReLU(Wb)=ReLU(W ReLU(W"a)).

Dynamic pruning. Figure[I|shows an illustration of our EXPRUNE dynamic pruning algorithm. It
prunes the computation at runtime on a per-input basis. Assume that we are currently computing
1= ReLU(Z?ZOWMbi) atinference. Instead of computing all n terms W ;b; for i <n, EXPRUNE
first computes k terms, and decides whether computation of other terms can be skipped based on these

k terms. In this example, if zf’:owl,,»bi < 0, we can predict that the sum of all N terms is likely to

Under review as a conference paper at ICLR 2026

be negative, so c; likely equals 0, and we can prune the computation of the other terms. We can predict
the negativity of the final sum by simply comparing the partial sum with a threshold, or using more
sophisticated methods like conducting a statistical test on the computed terms. This dynamic pruning
techniques saves multiplication operations, translating to reduced compute and data movement.

In the above optimization, we use a partial sum to estimate the result of the full sum. We therefore
implicitly assume that the terms Wy ;b;’s can be regarded as samples drawn from the same distribution.
Only if this assumption holds can we infer information about the other terms from the computed k terms,
enabling us to approximate the full result with partial computation. We develop a theory, which proves
that these terms have exchangeable distributions, a stronger condition than the above assumption,
because it in addition entails that their statistical dependence among each other is symmetric.

Training as drawing a random model. Our theory is grounded in a statistical view of training as
arandom process, where the statistical properties of parameters are derived over the distribution of
trained models. At the beginning of training, parameters are randomly initialized — this serves as the
source of randomness in the training algorithm. Each random instantiation of the initialized model
yields a different trained model. By analyzing all possibilities, the trained model can be viewed as
a sample from a distribution of models, with respect to the random initializations. The distribution
of the trained models, and the marginal distribution of any parameter in the trained models, are highly
complex and intractable to derive precisely. Nonetheless, we can derive that certain parameters have
exchangeable marginal distributions, and so do values computed from them.

Exchangeable parameters. We develop a theory that analyzes the structure of the model and find
that certain weights have exchangeable marginal distributions. For the MLP example, we analytically
derive that for a fixed j and different i’s, W ;’s have exchangeable distributions, and so do W ;’s
(as shown in Figure[2). To illustrate, we empirically study the identical distribution property, a weaker
property entailed by exchangeability in Figure[3] We train 500 NNs (2-layer MLPs with 128 hidden
neurons that classify MNIST) from 500 random initializations, and plot over the 500 trained models,
the distribution of each W/ ,, and the distribution of each W ;, for 128 different i’s in Figure We
can clearly see that Wi/,l ’s are identically distributed, and W5 ;’s also follow an identical distribution,

which is different from the distribution of W ’s.

Exchangeable values. If we know certain parameters have exchangeable distributions, the values com-
puted from these parameters will also have exchangeable distributions, given any input. In the example
(Figure , b;’s have exchangeable distributions, and so do the terms W ;b;’s. In Figure we also plot
the distribution of each b; normalized to [—1,1] on a specific MNIST image over 500 tramed models to
show that b;’s are identically distributed. A large density of the distribution is near the minimum because
b;’s are ReLU activated and often 0. Specifically, the theoretical result that different terms W ;b;’s can
be viewed as samples from the same distribution grounds the dynamic pruning algorithm EXPRUNE.

3 EXCHANGEABILITY IN NEURAL NETWORKS

We formally define and derive exchangeability properties in the trained model. Note that this section is
a pure theoretical analysis and does not make any change to the training algorithm or NN architectures.

3.1 BACKGROUND: STATISTICAL EXCHANGEABILITY AND PARAMETER SPACE SYMMETRY

Let P be a n X m permutation matrix for some positive integer n. The following definition of
exchangeability is taken from Kuchibhotlal(2020) (assuming the probability density function exists).

Definition 1 (Exchangeability). Suppose (= ((1,...,(n) € X™ is a vector of random variables, ;s
are exchangeable iff their joint probability density function p(() is invariant to input permutations,
i.e., ¥ permutation matrix P and (o € X", p(PCo)=p(Co)-

Exchangeability is a stronger condition than identical distribution, as it in addition implies the
symmetric interdependence among (;’s, but it is weaker than #id (Chow & Teicher, |2003). The
following theorem states a condition under which a transformation on exchangeable random variables
preserves their exchangeability (Kuchibhotlal |2020; Dean & Verducci,[1990) (stronger condition).

Theorem 1 (Exchangeability Preservation). Let ¢ = ((1,...,(pn) € X™ be vector of exchangeable
random variables. Fix a transformation G : X" — X™. If G is permutation equivariant, i.e., ¥
permutation matrix P and (o € X", PG((o) = G(P(y), then G(() is also a vector of exchangeable
random variable.

Under review as a conference paper at ICLR 2026

Given a NN architecture with [V real-valued parameters, we denote the NN function parameterized
by 6 € RN as fg: X —), where X, are input and output spaces respectively. A parameter space
symmetry of the NN is defined as follows (Lim et al., 2024)).

Definition 2 (Parameter Space Symmetry). A function w:RYN —RY is a parameter space symmetry if
fuio)(@)=fo(x) Ve e X 0 RN, ie., fo(9) and fg are the same function for any parameters § € R .

3.2 EXCHANGEABLE PARAMETERS AND VALUES IN NEURAL NETWORKS

In this section, we view the trained model as a random model with respect to random initializations, and
thus each parameter is a random variable. We prove that certain groups of parameters (;’s are exchange-
able, and so are values &;’s computed with (;’s respectively. Below is the key insight of our proof.

Key Insight. In the initial model, (;’s have exchangeable distributions, as most popular NN
initialization schemes draw parameters from ¢id distributions. Some pose additional constraints on
orthogonality or unit variances (Saxe et al.||2013; Mishkin & Matas|, 2015)) that introduce dependence
but do not break exchangeability. Therefore, if each training step, as a transformation on the random
variables, preserves exchangeability of (;’s, (;’s have exchangeable distributions in the trained model.

Denote the parameters of interest as ¢ = (¢1,...,(n), where Vi,(; € R™,(€ (R™)™. For simple
notations, we use the same variable name to denote mn-long vector in R"" or n-long vector of m-long
vectors (R™)™ with the same elements in the row-major order. Assume that § =6’ ®(, where 6’ is other
parameters. Define a function wp : RY — RN as wp(0) =6’ @ P¢, where P(=®1_;(P(); € R™,
for some permutation matrix P. In other words, wp permutes (;’s in # with the permutation matrix P.

Theorem 2 (Exchangeable Parameters). Given an NN architecture with function fy, assume that
(;’s have exchangeable distributions in the initial model. If for any permutation matrix P, wp is a
parameter space symmetry, then (;’s have exchangeable distributions in the trained model.

Proof. Here we assume using gradient descent for supervised learning for simplicity, but the the
proof easily generalizes to other optimization algorithms. As we are only interested in (;’s, we
formalize a training step as a transformation on only the ¢ i’sﬂ Denote the NN loss function as
Le: XX YXRN-m™ R, parameterized by (. Le(z,y,0") =¢(fo(z),y) for some metric function
1 such as cross entropy. A training step Gg: (R™)™ — (R™)™ takes a training batch of B samples
S € (X xY)B, and does a gradient descent step Gs(¢) =¢ =V (eyyes VelLe(z,y,0"), where 7y is
the learning rate, and V¢ L¢ (z,y,0") is the gradient of L, with respective to ¢, evaluated at (z,y,6’).

According to Theorem [I} we only need to prove that each training step G is equivariant with
respect to any permutation P of (;’s, i.e., PGs(¢) =Gg(P(), for all {,0’,S. We have

PGs(Q)=P(C—y Y VeLe(zy0)=P(—y > PVcLc(z,y,0)

(z,y)€S (z,y)€S

Gs(PO=PC—v Y VecLpc(z,y,60').
(z,y)€s
Note that V p¢ L p¢ is not the same as V¢ L p¢, as the derivatives in the gradient vector of the former
case shall match the parameter order in P(rather than (. Since wp is a parameter space symmetry,
by deﬁnition V(e (R™)", foand f,,,. (9 are the same function, and thus L¢ and L p¢ are the same

function. Therefore, it is straightforward that V p¢ Lp¢ (2,y,0") = PV L¢(2,y,0") for all z,y,(,6'.
This directly leads to PGs(¢) =Gs(PC). O

Theorem 3 (Exchangeable Values). Under the conditions of Theorem|2| for any NN input x € X,
define £; = gor ¢, (x), where g is the function of a sub-network in the trained model, parameterized
by one (; and possibly 0. We have that £;’s have exchangeable distributions in the trained model.

Proof. Since ' is shared among &;’s, the only variable in &; is (;. ((1,...,Cn) — (€1,...,&n) is an
exchangeability preserving transformation by Theorem([I} Therefore, &;’s are exchangeable. O

Note that given a group of exchangeable parameters (;’s, there might be multiple groups of
exchangeable values &;’s in NN computation, each with a different sub-network g.

'In fact, one can prove that permuting ;s does not affect the update to other parameters in 6’

Under review as a conference paper at ICLR 2026

Q, V, K matrices

w w welght matrix
A c
- context vectors
) 7 E
. attention feed forward
(a) Exchangeable parameters in CNNs (b) Exchangeable parameters in transformers

Figure 4: Parameters with the same color have exchangeable distributions in the trained model.

=<> =<> f’=<>,scores:<0,0,...,0>
for i in range(n) do for i in range(n) do for i inrange(n) do
Compute §;, ¢’ =¢'®¢E; Compute &;, £’ =¢'®E; Compute §;, &' =& ©¢;
if confident(¢’) then if pred(¢’,w,b) then scores +=&;
return p(¢') return 0 if dom(¢’,scores) then
return p(¢) return ReLU(WY ", £;+b) return cur_winner

return argmax(scores
(a) EXPRUNE general algorithm. (b) ReLU instantiation & ()

(c) top-1 prediction head instantiation

Algorithm 1: Pseudocode for EXPRUNE algorithms. &1,...,£,, are exchangeable values to be computed.
p is invariant to input permutations and can be approximately evaluated with fewer than n input &;’s.

3.3 EXCHANGEABLE PARAMETERS AND VALUES IN POPULAR NEURAL NETWORKS

Using the insights from Theorems[2)and[3] we identify exchangeable parameters and values in popular
NN architectures. We omit the proof of parameter space symmetry when it is straightforward. The
exchangeable parameters (;’s can often be found in a “map-reduce” pattern, where (;’s map the input
into exchangeable values £;’s, which are then reduced with a permutation-invariant function.

MLP: Given two sequential fully-connected layers with weights and biases (W’,b") and (W,b), we
let n be the number of neurons in the middle, (; = W/ @b, @ W.; and §; = o(W] .a+b)W. ;, or
& =o(W/.a+1b}), where o is any activation function, and « is any input. Since handling of biases
in other NN structures is similar, we assume no bias in the following cases for simplicity.

Convolutions: We analyze 2D convolution in CNNs with 1 group as an example (Figure[da). The
analysis easily extends to 1D or multi-dimensional convolutions and grouped convolutions, covering
models such as GCNs. A,B,C has C;,C,C5 channels respectively. We use W, ; (similarly for W)
to denote the kernel weights mapping the j-th input channel to the ¢-th output channel. Define the
2D convolution function conv, such that B = conv(A,W’). We first consider one structure in CNNs as
follows. Refer to Appendix[A.T]|for the handling of other common structures in CNNs, normalization
layers, and skip connections. When instantiating ¢, the weight tensors are flattened when concatenated.

Two consecutive convolution layers. We instantiate n = Co, (; = Wi/,: ® W.; and
§i=conv(o(conv(A,W])),W.;),or&;=o(conv(A,W/)), for any activation function o.

Transformers We analyze a decoder-only transformer architecture due to its popularity in recent
LLMs (Touvron et al.,[2023};|Bai et al.| 2023)) (Fi gure@. We formalize single-head attention followed
by a fully connected layer. This basic analysis can be extended to include normalization layers and
skip connections similarly as in CNNs. Let X be the input, K,Q,V be the attention matrices, and W be
the weight of the fully connected layer. The function of these two layersis WV X a((QX T(KX)),
where o is column-wise softmax. We instantiate n=ds and (; =V, .®W., ; (or (; = K; .®Q; .®V; . P

W. ;). Permuting ¢;’s is a parameter space symmetry because (WPT)(PV)XU((QX)T(KX)) =
WV Xo((QX)T (K X)), for any permutation matrix P. &; can be instantiated as the attention layer’s
output; =V; . Xo((QX)T (K X)), or the final output &; =W. ; Vi . X o ((QX)T (K X)). Interestingly,
this indicates that the intermediate activations in every decoder layer are exchangeable.

4 EXPRUNE ALGORITHM

We next present EXPRUNE algorithm, a dynamic pruning algorithm exploiting exchangeability. We
first present the general EXPRUNE algorithm, and then two instantiations of it for specific structures.

Under review as a conference paper at ICLR 2026

Algorithm [Ta] presents the EXPRUNE general algorithm. Assume that we want to compute a
sub-network with function p(§), where &;’s are exchangeable values. The input to the sub-network
have been computed. p is invariant to permutations of &;’s, and can be approximated with k (k <n)
different &;’s as input, where larger k leads to more accurate approximation. The algorithm sequentially
computes &;’s, and prunes computation of the rest when certain statistics of the computed ones pass
a confidence check. We emphasize the following points about the general algorithm.

* Theoretically grounded. The algorithm only works when &;’s have exchangeable distributions,
because otherwise the statistics of some &;’s are not informative about the other &;’s.

* Generality. The algorithm can be instantiated to process sub-networks of different granularities (e.g.,
neurons, channels, layers) with different p function. We note that the algorithm usually achieves better
results for p functions with locally flat regions, as it tolerates small approximation errors in the input.

* Computation order. &; can be computed in any order with the same expected accuracy due to their
exchangeability. Optionally, they can be computed in certain heuristic orders.

* Checking frequency. For simplicity, we present the algorithm as checking confidence after
computing each ;. In practice, to reduce overhead, EXPRUNE can use less checks, e.g., check after
computing every 32 £;’s, or only check once at ¢ = 32.

* Composibility. The algorithm works with unmodified models and training algorithms. Therefore, it
can compose with techniques that optimize the model statically, e.g., quantization and static pruning.

4.1 INSTANTIATION 1: EARLY NEGATIVE PREDICTION FOR RELU

Algorithm [1b| presents an instantiation of EXPRUNE that prunes computation of each neuron’s
activation when p is the activation function ReLU. ReLLU is widely present in various NN architectures
across various application domains. Recent transformer models switch to other activation functions
(e.g., GELU (Hendrycks & Gimpel, |2023) and SiLU (Elfwing et al., 2017)) for faster training
convergence, but Mirzadeh et al.|(2024)) demonstrated that for efficient inference, ReLU can replace
them after training, leading to negligible accuracy loss and up to 90% sparsity with lightweight
finetuning. EXPRUNE exploits the property of ReLU that it outputs zero for negative input, and prunes
the computation if the final sum is predicted to be likely negative. In some cases, the sum of £;’s is
not directly processed by ReLU, but is first scaled and added biases, e.g., normalization layers, layer
biases, shortcut connections. They can all be taken into account by a scaling weight w and a bias term
b. We devise two negative prediction methods as follows (assuming w = 1,b=0 for simplicity).

* Threshold. Check if the current mean is below a predetermined threshold Zf:1§ L < KT. This
simple method requires only one more comparison, as the running sum is computed by NN already.
 StatsTest. We perform a Wald’s test (Wald,|1992)) with confidence level «, checking if

Lk e ko ery2
n2izibi) <, or equivalently (i)

(I) - N
(\/iZf—lﬁf—(le 167)? kY67 = (i6)?

n 1=

< (@7 (a))?

where @ is the cumulative density function of the standard normal distribution, and the right hand
side of the simplified inequality can be stored as constant. This method introduces overhead that
scales linearly the number of £;’s, as it requires computing running sum of the squared term over
the k terms in the partial results. Note that the assumptions of Wald’s test are not strictly met by
all exchangeable sequences. We discuss the assumptions in more detail in Section[6]

4.2 INSTANTIATION 2: DOMINANCE PREDICTION FOR PREDICTION HEADS

Algorithm[Ic|presents an instantiation of EXPRUNE for prediction heads, in which each ; accumulates
scores to every class, and the class with the maximum score is returned. This structure is widely present
in NN for classification and retrieval tasks. The amount of compute incurred by the prediction heads
is a small portion in large models, but non-trivial in edge models. The algorithm predicts whether
the current winner class (with the maximum score) likely dominates the others if all £;’s are computed.
We provide two possible dominance prediction methods dom, similar to Sectionfd.1]

* Threshold. Prune if a set of conditions c¢; —¢; > T; are met, where ¢; is the ¢-th largest score, and
T;’s are predetermined thresholds.

 StatsTest. We can conduct a Wald’s test for the score of cur_winner against each other class, and
prune when all or a subset of the tests pass. Since multiple tests are involved, Holm-Bonferroni
method (Holml|[1979) can be used to assign adjusted confidence levels for tests, given the overall a.

Under review as a conference paper at ICLR 2026

Table 1: Datasets and models. BN means the model is enhanced with BatchNorm |loffe & Szegedy
(2015)). The default fidelity metric is ROC-AUC for ogbg-molhiv and accuracy for others. GCN is

graph convolutional NN. T indicates the EXPRUNE baseline also optimizes the model’s prediction head.

Task Dataset Models (# Parameters)
Image Classification” CIFAR100|Krizhevsky|(2009) ResNet18-BN|He et al.|(2015) (22.4M)
Graph Property Prediction | ogbg-molhiv/Wu et al.|(2018) GCN|Kipf & Welling|(2017) (527K)
Question Answering PIQA[Bisk et al [(2020) OPT|Zhang et al.[(2022)) (6.7B)

5 EVALUATION

We compare EXPRUNE against the unoptimized inference and similar prior work on various models
with ReLU activation functions. Table[Ilsummarizes our benchmarks and models.

Datasets and Models. We have 3 datasets, covering 3 different tasks and input types. Please refer
to the Appendix [A]for the details of dataset split and obtaining the trained model weights. We choose
OPT (Zhang et al.} 2022) because it is an off-the-shelf ReLU activated language model. Mirzadeh
et al. (2024) demonstrated that one can replace ReLU in LLMs with other activation functions without
accuracy loss, but they did not release the weights of their "reluficated" models.

Metrics. We use the default fidelity metrics for each dataset. We use the floating-point operation
performed (FLOPs) as our performance metric, as it is a good proxy for inference efficiency (Mirzadeh
et al.,|2024). We count the FLOPs incurred by dynamic pruning algorithm towards the total FLOPs.

EXPRUNE Baselines. EXPRUNE baselines use ReLLU instantiation for all models on all applicable
sub-networks, and prediction head instantiation for ResNet18-BN model (the other models do not have
the top-1 prediction head), to prune different parts of the model. The prediction head instantiation does
one STATSTEST after processing k=160 terms &;’s, testing the score of the current top-1 against top-2
and top-3, with overall «=0.1. The ReLU instantiation can use either prediction metric described in
Sectionf.T} We try both and have two EXPRUNE baselines dubbed THRESHOLD and STATSTEST.
For ReL.U layers, EXPRUNE performs one negative prediction after processing k =32 terms &;’s and
terminate if confident, otherwise computes all other £;’s. We choose the number 32 as many statistics
methods target sample sizes of at least 30 (VanVoorhis et al.| 2007). THRESHOLD uses one FLOP as the
threshold k7 is stored as a constant. STATSTEST uses 2k+6 FLOPs as it uses 2k FLOPs for computing
the sum of £/2, and 6 more to compute the Wald’s statistic and compare it to the stored threshold. We re-
port FLOPs of the whole model for CNNs and GCNs as EXPRUNE is applied to most of the computation,
and the FLOPs of all the linear layers in between an attention layer and a ReLU activation for OPT, as
EXPRUNE is only applied to these layers. The FLOPs of these linear layers account for approximately
1/3 of the total FLOPs in the unoptimized inference (Ding et al.,[2024;[Zhang et al.,2022)).

Hyperparameter Optimization. As different layers in NN may have different error sensitivities, we
use Optuna (Akiba et al.,[2019) to find optimal parameter combinations for EXPRUNE. Specifically,
each layer has one parameter 7' (THRESHOLD) or o (STATSTEST). We tune the hyperparameters for
2000 trials on the validation set. Refer to Appendix [A|for Optuna configuration details. Using the data
we have on validation set, we select a subset of promising parameter configurations to run on the test set.
This emulates the process of selecting the hyperparameter combination for deployment. We iteratively
select all the combinations on the fidelity-FLOPs Parato Frontier (dubbed one Parato slice), remove
them from the set, and choose all on the next Parato slice. We include all points on the first 5 Parato slices.

SnaPEA baseline. The prior work most similar to EXPRUNE is SnaPEA (Akhlaghi et al., 2018), as it
also targets neuron-level pruning with ReLU activations. SnaPEA does error-free dynamic pruning by
sorting the weights offline so that the partial sum starts monotonically decreasing after processing some
terms, and then pruning the computation when the sum drops below zero. However, it requires that every
layer’s output is non-negative, and there is no normalization layers and shortcut connections, thus unable
to directly apply to any model in our evaluation. To make our best attempt to compare with it, we make it
work for ResNet18-BN by changing the model architecture, fusing the batch normalization into the con-
volution weights, and then adapting the SnaPEA algorithm to take into account the shortcut connection.
We note that similar adaptations cannot make SnaPEA work for other models in our evaluation set.

5.1 MAIN RESULTS AND ANALYSIS

Figure[5|shows the performance of the baselines. We use the default evaluation order of £;’s. Across
three models and compared to the unoptimized baseline, EXPRUNE is able to deliver 10.98-17.33% re-

Under review as a conference paper at ICLR 2026

JomT T T - @ 5&*‘ 8.;2 73&3*- >0.76 _ _ _ _ iy o
. d : 0.75 N !

8 g ;i | é 0.77 1| @ .‘_’A I
507l7g ®o77 5074 L4 A
So7 1| go77] = |
@ 0.70 ‘-g-;é 8073] o AR

0.701 @ | 0.76 | 0.72 4 |

075 0.80 0.85 0.90 0.95 1.00 080 0.85 090 0985 1.00 0.70 0.75 0.80 0.85 0.90 0.95 1.00
normalized FLOPs normalized FLOPs normalized FLOPs
(a) ResNet18-BN (b) GCN (c) OPT

Figure 5: @ is STATSTEST, A is THRESHOLD, [is SNAPEA, 5 is the unoptimized baseline. — show
fidelty and normalized FLOPs for unoptimized baseline. — shows baseline fidelity minus 1%.

078~ — = = = oTa — = = — omame ¥
3077 Cand - ‘.ra- Eg;;

Sor7 | - 50'75

S076 | 3 1 g

8 0.76 . 80.74

0.75 L : | 0.73

0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00 *'270.85 0.88 0.90 0.93 0.95 0.98 1.00 1.03 0.75 080 085 0090 005 1.00
normalized FLOPs normalized FLOPs normalized FLOPs

accuracy
coocoooo
SNNNNY

S
LDAWRRER

(a) model with 1.93% density (b) model with 1.74% density (c) three models put together

Figure 6: Fidelity-FLOPs scatter plots for statically pruned VGG11-BN models. FLOPs are normalized
to largest model’s unoptimized baseline in (c). Colors and lines have the same meaning as in Figure@

duction in FLOPs with negligible (<0.1%) fidelity drop, and 21.61-27.16% reduction in FLOPs with at
most 1% fidelity drop. On ResNet18-BN, while SnaPEA delivers only 7.3% FLOPs reduction without
accuracy loss with on average 18.5 checks per neuron, EXPRUNE delivers 14.4% FLOPs reduction with
only one check per neuron, introducing larger FLOPs reduction with less branching, making hardware
acceleration easier. We find that STATSTEST performs much better than THRESHOLD for CNNSs,
because STATSTEST offers more accurate negative prediction. In GCN and OPT, STATSTEST and
THRESHOLD perform similarly. This is because it takes fewer FLOPs to compute each exchangeable
value &; in the 1D convolution of GCN and the linear layer of OPT, compared to the 2D convolution
in CNNgs, and thus the overhead of STATSTEST acounts for a larger portion in the total FLOPs.

5.2 COMBINING EXPRUNE WITH STATIC MAGNITUDE PRUNING

We demonstrate that EXPRUNE can be applied to statically pruned models and offer additional reduction
in FLOPs. We train a VGG11-BN model (Simonyan & Zisserman, [2015) on CIFAR10, and iteratively
(1) set the 5% parameters in all convolution kernels with smallest magnitude to zero, and (2) finetune
the model on the training set to recover accuracy, following the practice of Han et al.|(2015). Note
that exchangeability is also present in the pruned model, as exchangeable parameters have the same
probability to be pruned in the process. We take the models at three consecutive pruning iterations, where
only 1.93%, 1.83%, and 1.74% weights in convolution layers are left. We choose aggressively pruned
models because we want to study how EXPRUNE works with already extremely compressed models, in
which static pruning cannot compress more without accuracy loss. To work with these models, we let
EXPRUNE compute &;’s in the order of computation cost, i.e., the number of none-zero weights in the
corresponding (;. In other words, we compute the cheap &;’s first. This corresponds to sorting channels
of convolution kernels, which can be done statically offline and introduces no overhead during inference.

The results are shown in Figure[6] In each of the three pruned models, EXPRUNE still provides
10.24-11.11% reduction in FLOPs with negligible accuracy drop, and 13.91-14.39% reduction in
FLOPs with at most 1% accuracy drop, compared to the unoptimized inference. THRESHOLD achieves
better results than STATSTEST in pruned models, because the exchangeable values ;s are cheaper
to compute in these models, making the overhead of STATSTEST offset the FLOPs reduction of
computing fewer &;’s. Figure[6c|shows all the points in three models compared together. We find that
EXPRUNE combined with static pruning achieve better accuracy-performance trade-off than only
static pruning. This indicates EXPRUNE composes with static pruning, because EXPRUNE can remove
redundancy that cannot be removed by static pruning.

6 DISCUSSION

Exchangeability and Confidence Test. De Finetti’s theorem states that infinite sequence of
exchangeable random variables are conditionally :d. Exchangeability of a finite sequence of random
variables could indicate either that they are conditionally ¢id, or that they form a case of sampling
without replacement. The latter case does not satisfy the assumptions made by Wald’s test (Wald,

Under review as a conference paper at ICLR 2026

1992), but it can be approximated with an iid (Diaconis & Freedman, [1980). It is interesting and
valuable to investigate stronger statistical properties to describe them. It is of great practical value
to devise better confidence test for EXPRUNE that is more accurate and more efficient.

EXPRUNE and Hardware Acceleration. EXPRUNE reduces FLOPs but also breaks certain
structures of computation which are exploited in hardware accelerators, e.g., uniformity for parallel
processing. We note that in resource-constrained scenarios such as edge/embedded ML with limited
parallelism, FLOPs reduction straightforwardly translates to speed-up and energy savings. Customized
architecture/hardware such as the one proposed with SnaPEA (Akhlaghi et al., |2018) also helps
translate FLOPs reduction of dynamic pruning into speed-up and energy reduction. EXPRUNE
could also be integrated with scheduling algorithms of reconfigurable dataflow architectures such
as CGRAs (Koul et al.}[2023)) to reduce the amount of energy-intensive off-chip memory loading.

7 RELATED WORK

Exchangeability in Deep Learning. Statistical exchangeability has various applications in deep
learning, but prior work focused on exchangeable data. Observing exchangeability of certain input
data such as sets, special NN architectures have been proposed to process them (Chan et al.| 2018},
Korshunova et al., [2018; |Bloem-Reddy & Tehl [2020; [Wiese et al., [2023)). Conformal prediction
provides a prediction set with guaranteed error rate for any NN model assuming exchangeability of
data sequence (Fontana et al., 2023 |Kuchibhotla, 2020).

Symmetry in Deep Learning. Symmetry in NNs and its impact have been extensively studied by
theoreticians. Symmetry is known to affect model generalization (Dinh et al., 2017)), interpretabil-
ity (Godfrey et al.,[2022)), and the loss landscape (Zhao et al., 2023 Lim et al.,2024). A related but
different concept is equivariance (Zaheer et al.,[2017;Cohen & Welling,[2016)), a feature of special NN
architectures that the NNs produce consistent outputs under symmetry transformations of the inputs.

Static NN Model Optimizations. Various techniques have been proposed to derive efficient NN mod-
els with smaller sizes, including pruning (Han et al., 2015} |Cheng et al.,|2024)), quantization (Saha et al.|
2024;|Gholami et al.,2022; [Hubara et al., 2016; Qin et al.,[2020), knowledge distillation (Hinton et al.,
2015;|Gou et al.,2021)), and neural architectural search (Elsken et al.,[2019)). These methods are stati-
cally applied before model deployment. In contrast, ours is dynamic and applies on a per-input basis dur-
ing inference. In our evaluation (Section[5.I]), we show that our method composes with static pruning.

Dynamic Pruning at Inference. Researchers have explored coarse-grained dynamic pruning methods,
which are applied on a per-input basis during NN inference (Cheng et al., [2024). They explored
dynamically pruning layers (Teerapittayanon et al., [2016; [Tambe et al., [2021; |Han et al., [2022),
tokens (Anagnostidis et al.| 2023)), channels (Lin et al.| 2017; Elkerdawy et al.,[2022)), and spatial
domain (Liu et al.,2018)). These methods are specialized to certain model architectures and coarse-
grained, operating on structures larger than neurons. In contrast, our method can operate at very fine
granularity (neuron level) and can be generalized across multiple architectures and granularities. Our
method can also potentially compose with these approaches as we work at different network granularity.

SnaPEA (Akhlaghi et al.l [2018) and ComPreEND (Kim et al., 2022)) explored neuron-level
dynamic pruning for convolution. They make similar assumptions that do not hold for modern model
architectures (discussed in Section[5). ComPreEnd is more limited, requiring specific architecures
and fixed-point number representations. Another line of work (Wakatsuki et al., 2021} |[Kong et al.}
2023)) exploited similar patches in input feature maps to derive upper bound of the weighted sum given
the partial sum, and terminated early when the upper bound is below zero. These methods only take
effect on similar input patches and are specialized to CNNs and video processing. In contrast, our
method works with many model architectures, and does not require similar input patches.

8 CONCLUSION

We present a novel theory that formalizes exchangeability between certain parameters and intermediate
values. We identify exchangeable parameters and intermediate values in popular NNs. Exploiting
this insight, we devise a general dynamic pruning algorithm EXPRUNE using statistics of partial
evaluation results. We present two instantiations of EXPRUNE for ReLLU activations and prediction
heads respectively. We demonstrate that EXPRUNE is able to provide large FLOPs reduction in
image CNNs, GCNs, and LMs. We also show that EXPRUNE is able to compose with static pruning,
providing additional FLOPs reduction on models that are heavily pruned statically.

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

Our evaluation details are described in the Appendix [A] Our evaluation code is released at
https://anonymous.4open.science/r/Exchangeable-NN-FBC7.

REFERENCES

Vahideh Akhlaghi, Amir Yazdanbakhsh, Kambiz Samadi, Rajesh K. Gupta, and Hadi Esmaeilzadeh.
SnaPEA: Predictive early activation for reducing computation in deep convolutional neural networks.
In 2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA), pp.
662-673,2018. doi: 10.1109/ISCA.2018.00061.

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna: A
next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2019.

Sotiris Anagnostidis, Dario Pavllo, Luca Biggio, Lorenzo Noci, Aurelien Lucchi, and Thomas
Hofmann. Dynamic context pruning for efficient and interpretable autoregressive transformers.
Advances in Neural Information Processing Systems, 36:65202—-65223,2023.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016. URL
https://arxiv.org/abs/1607.06450.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu,
Chenggqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuangi
Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng
Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi
Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report, 2023. URL
https://arxiv.org/abs/2309.166009.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning
about physical commonsense in natural language. In Thirty-Fourth AAAI Conference on Artificial
Intelligence, 2020.

Benjamin Bloem-Reddy and Yee Whye Teh. Probabilistic symmetries and invariant neural networks.
J. Mach. Learn. Res.,21(1), January 2020. ISSN 1532-4435.

Jeffrey Chan, Valerio Perrone, Jeffrey P. Spence, Paul A. Jenkins, Sara Mathieson, and Yun S. Song.
A likelihood-free inference framework for population genetic data using exchangeable neural
networks. In Proceedings of the 32nd International Conference on Neural Information Processing
Systems, NIPS’ 18, pp. 8603-8614, Red Hook, NY, USA, 2018. Curran Associates Inc.

Hongrong Cheng, Miao Zhang, and Javen Qinfeng Shi. A survey on deep neural network pruning:
Taxonomy, comparison, analysis, and recommendations. /[EEE Transactions on Pattern Analysis
and Machine Intelligence, 46(12):10558-10578, 2024. doi: 10.1109/TPAMI.2024.3447085.

Yuan Shih Chow and Henry Teicher. Probability theory: independence, interchangeability,
martingales. Springer Science & Business Media, 2003.

Taco Cohen and Max Welling. Group equivariant convolutional networks. In Maria Flo-
rina Balcan and Kilian Q. Weinberger (eds.), Proceedings of The 33rd International
Conference on Machine Learning, volume 48 of Proceedings of Machine Learning Re-
search, pp. 2990-2999, New York, New York, USA, 20-22 Jun 2016. PMLR. URL
https://proceedings.mlr.press/v48/cohencl6.html.

Angela M Dean and Joseph S Verducci. Linear transformations that preserve majorization, schur
concavity, and exchangeability. Linear algebra and its applications, 127:121-138, 1990.

Persi Diaconis and David Freedman. Finite exchangeable sequences. The Annals of Probability, pp.
745-764, 1980.

10

https://anonymous.4open.science/r/Exchangeable-NN-FBC7
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/2309.16609
https://proceedings.mlr.press/v48/cohenc16.html

Under review as a conference paper at ICLR 2026

Ning Ding, Yehui Tang, Haochen Qin, Zhenli Zhou, Chao Xu, Lin Li, Kai Han, Liao Heng, and Yunhe
Wang. MemoryFormer: Minimize transformer computation by removing fully-connected layers.
In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024. URL
https://openreview.net/forum?i1d=04EC47ZnZJ].

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize
for deep nets. In Proceedings of the 34th International Conference on Machine Learning - Volume
70,ICML’17, pp. 1019-1028. JMLR.org, 2017.

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neu-
ral network function approximation in reinforcement learning, 2017. URL https:
//arxiv.org/abs/1702.03118!.

Sara Elkerdawy, Mostafa Elhoushi, Hong Zhang, and Nilanjan Ray. Fire together wire together: A
dynamic pruning approach with self-supervised mask prediction. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), June 2022.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: a survey. J. Mach.
Learn. Res.,20(1):1997-2017, January 2019. ISSN 1532-4435.

Matteo Fontana, Gianluca Zeni, and Simone Vantini. Conformal prediction: a unified review of theory
and new challenges. Bernoulli, 29(1):1-23, 2023.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer. A
survey of quantization methods for efficient neural network inference. In Low-power computer
vision, pp. 291-326. Chapman and Hall/CRC, 2022.

Charles Godfrey, Davis Brown, Tegan Emerson, and Henry Kvinge. On the symmetries of deep
learning models and their internal representations. In Proceedings of the 36th International
Conference on Neural Information Processing Systems, NIPS *22, Red Hook, NY, USA, 2022.
Curran Associates Inc. ISBN 9781713871088.

Jianping Gou, Baosheng Yu, Stephen J. Maybank, and Dacheng Tao. Knowledge distillation: A
survey. Int. J. Comput. Vision, 129(6):1789-1819, June 2021. ISSN 0920-5691. doi: 10.1007/
s11263-021-01453-z. URLhttps://doi.org/10.1007/s11263-021-01453-2z.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. In Advances in Neural Information Processing Systems, 2015.

Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui Wang, and Yulin Wang. Dynamic Neural
Networks: A Survey . IEEE Transactions on Pattern Analysis & Machine Intelligence, 44(11):
74367456, November 2022. ISSN 1939-3539. doi: 10.1109/TPAMI.2021.3117837. URL
https://doi.ieeecomputersociety.org/10.1109/TPAMI.2021.3117837.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. arXiv preprint arXiv:1512.03385, 2015.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus), 2023. URL
https://arxiv.org/abs/1606.08415.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural network.
CoRR, abs/1503.02531, 2015. URL http://dblp.uni-trier.de/db/journals/
corr/corrl503.html#HintonVD15.

Sture Holm. A simple sequentially rejective multiple test procedure. Scandinavian journal of statistics,
pp. 65-70, 1979.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks. In Proceedings of the 30th International Conference on Neural Information
Processing Systems, NIPS’ 16, pp. 4114-4122, Red Hook, NY, USA, 2016. Curran Associates Inc.
ISBN 9781510838819.

Sergey loffe and Christian Szegedy. Batch normalization: accelerating deep network training by reduc-

ing internal covariate shift. In Proceedings of the 32nd International Conference on International
Conference on Machine Learning - Volume 37, ICML’15, pp. 448-456. JMLR.org, 2015.

11

https://openreview.net/forum?id=04EC4ZnZJj
https://arxiv.org/abs/1702.03118
https://arxiv.org/abs/1702.03118
https://doi.org/10.1007/s11263-021-01453-z
https://doi.ieeecomputersociety.org/10.1109/TPAMI.2021.3117837
https://arxiv.org/abs/1606.08415
http://dblp.uni-trier.de/db/journals/corr/corr1503.html#HintonVD15
http://dblp.uni-trier.de/db/journals/corr/corr1503.html#HintonVD15

Under review as a conference paper at ICLR 2026

Namhyung Kim, Hanmin Park, Dongwoo Lee, Sungbum Kang, Jinho Lee, and Kiyoung Choi.
ComPreEND: Computation pruning through predictive early negative detection for ReLU in a
deep neural network accelerator. IEEE Transactions on Computers, 71(7):1537-1550, 2022. doi:
10.1109/TC.2021.3092205.

Thomas N. Kipf and Max Welling. = Semi-supervised classification with graph convolu-
tional networks. In International Conference on Learning Representations, 2017. URL
https://openreview.net/forum?id=SJU4dayYqgll

Rui Kong, Yuanchun Li, Yizhen Yuan, and Linghe Kong. ConvReLU++: Reference-based lossless
acceleration of Conv-ReLU operations on mobile cpu. In Proceedings of the 21st Annual
International Conference on Mobile Systems, Applications and Services, pp. 503-515, 2023.

Iryna Korshunova, Jonas Degrave, Ferenc Huszar, Yarin Gal, Arthur Gretton, and Joni Dambre.
BRUNO: a deep recurrent model for exchangeable data. In Proceedings of the 32nd International
Conference on Neural Information Processing Systems, NIPS’ 18, pp. 7190-7198, Red Hook, NY,
USA, 2018. Curran Associates Inc.

Kalhan Koul, Jackson Melchert, Kavya Sreedhar, Leonard Truong, Gedeon Nyengele, Keyi Zhang,
Qiaoyi Liu, Jeff Setter, Po-Han Chen, Yuchen Mei, et al. Aha: An agile approach to the design
of coarse-grained reconfigurable accelerators and compilers. ACM Transactions on Embedded
Computing Systems, 22(2):1-34,2023.

Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009. URL
https://api.semanticscholar.org/CorpusID:18268744.

Arun Kumar Kuchibhotla. Exchangeability, conformal prediction, and rank tests. arXiv preprint
arXiv:2005.06095, 2020.

Derek Lim, Theo Putterman, Robin Walters, Haggai Maron, and Stefanie Jegelka. The
empirical impact of neural parameter symmetries, or lack thereof. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024. URL
https://openreview.net/forum?id=pCVxYw6FKg.

Ji Lin, Yongming Rao, Jiwen Lu, and Jie Zhou. Runtime neural pruning. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.
URL |https://proceedings.neurips.cc/paper_files/paper/2017/file/
a51fb975227d6640e4fed7854476d133-Paper.pdfl

Zhenhua Liu, Jizheng Xu, Xiulian Peng, and Ruiqin Xiong. Frequency-Domain dynamic pruning
for convolutional neural networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31.
Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper_
files/paper/2018/file/a%9a6653e48976138166de32772blbf40-Paper.pdfl

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representations
in vector space. In Ist International Conference on Learning Representations (ICLR 2013),2013.

Seyed Iman Mirzadeh, Keivan Alizadeh-Vahid, Sachin Mehta, Carlo C del Mundo, Oncel Tuzel,
Golnoosh Samei, Mohammad Rastegari, and Mehrdad Farajtabar. ReLU strikes back: Exploiting
activation sparsity in large language models. In The Twelfth International Conference on Learning
Representations,2024. URL https://openreview.net/forum?id=0soWxY8g2E.

Dmytro Mishkin and Jiri Matas. All you need is a good init. In 4¢h International Conference on
Learning Representations (ICLR 2016), 2015.

Haotong Qin, Ruihao Gong, Xianglong Liu, Xiao Bai, Jingkuan Song, and Nicu Sebe. Binary neural
networks: A survey. Pattern Recognition, 105:107281, 2020.

Rajarshi Saha, Naomi Sagan, Varun Srivastava, Andrea Goldsmith, and Mert Pilanci. Com-
pressing large language models using low rank and low precision decomposition. In The
Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024. URL
https://openreview.net/forum?id=1kx30pcgSZ.

12

https://openreview.net/forum?id=SJU4ayYgl
https://api.semanticscholar.org/CorpusID:18268744
https://openreview.net/forum?id=pCVxYw6FKg
https://proceedings.neurips.cc/paper_files/paper/2017/file/a51fb975227d6640e4fe47854476d133-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/a51fb975227d6640e4fe47854476d133-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/a9a6653e48976138166de32772b1bf40-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/a9a6653e48976138166de32772b1bf40-Paper.pdf
https://openreview.net/forum?id=osoWxY8q2E
https://openreview.net/forum?id=lkx3OpcqSZ

Under review as a conference paper at ICLR 2026

Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the nonlinear dynamics
of learning in deep linear neural networks. arXiv preprint arXiv:1312.6120,2013.

K Simonyan and A Zisserman. Very deep convolutional networks for large-scale image recognition. In
3rd International Conference on Learning Representations (ICLR 2015), pp. 1-14. Computational
and Biological Learning Society, 2015.

Thierry Tambe, Coleman Hooper, Lillian Pentecost, Tianyu Jia, En-Yu Yang, Marco Donato, Victor
Sanh, Paul Whatmough, Alexander M. Rush, David Brooks, and Gu-Yeon Wei. EdgeBERT:
Sentence-level energy optimizations for latency-aware multi-task NLP inference. In MICRO-54:
54th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO °21, pp. 830-844,
New York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450385572. doi:
10.1145/3466752.3480095. URLhttps://doi.org/10.1145/3466752.3480095.

Surat Teerapittayanon, Bradley McDanel, and H.T. Kung. BranchyNet: Fast inference via early exiting
from deep neural networks. In 2016 23rd International Conference on Pattern Recognition (ICPR),
pp. 2464-2469, 2016. doi: 10.1109/ICPR.2016.7900006.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971,2023.

CR Wilson VanVoorhis, Betsy L Morgan, et al. Understanding power and rules of thumb for
determining sample sizes. Tutorials in quantitative methods for psychology, 3(2):43-50, 2007.

Toshiaki Wakatsuki, Sekitoshi Kanai, and Yasuhiro Fujiwara. Accelerate inference of cnns for video
analysis while preserving exactness exploiting activation sparsity. In A. Smola, A. Dimakis, and
L. Stoica (eds.), Proceedings of Machine Learning and Systems, volume 3, pp. 860-872, 2021.
URL https://proceedings.mlsys.org/paper_files/paper/2021/file/
09799a12d683d136cc817£94b73a8938-Paper.pdf.

Abraham Wald. Sequential tests of statistical hypotheses. In Breakthroughs in statistics: Foundations
and basic theory, pp. 256-298. Springer, 1992.

Jonas Gregor Wiese, Lisa Wimmer, Theodore Papamarkou, Bernd Bischl, Stephan Giinnemann,
and David Riigamer. Towards efficient mcmc sampling in bayesian neural networks by exploiting
symmetry. In Joint European Conference on Machine Learning and Knowledge Discovery in
Databases, pp. 459—-474. Springer, 2023.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von
Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural language
processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Pro-
cessing: System Demonstrations, pp. 38—45, Online, October 2020. Association for Computational
Linguistics. URL https://www.aclweb.org/anthology/2020.emnlp-demos. 6l

Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S Pappu,
Karl Leswing, and Vijay Pande. MoleculeNet: a benchmark for molecular machine learning.
Chemical science, 9(2):513-530, 2018.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbhakhsh, Barnabas Péczos, Ruslan Salakhutdinov, and
Alexander J Smola. Deep sets. In Proceedings of the 31st International Conference on Neural
Information Processing Systems, NIPS’17, pp. 3394-3404, Red Hook, NY, USA, 2017. Curran
Associates Inc. ISBN 9781510860964.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt Shuster,
Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettlemoyer. Opt: Open
pre-trained transformer language models, 2022.

Bo Zhao, Iordan Ganev, Robin Walters, Rose Yu, and Nima Dehmamy. Symmetries, flat minima, and
the conserved quantities of gradient flow. In The Eleventh International Conference on Learning
Representations,2023. URL https://openreview.net/forum?id=9ZpciCOunFb.

13

https://doi.org/10.1145/3466752.3480095
https://proceedings.mlsys.org/paper_files/paper/2021/file/b9799a12d683d136cc817f94b73a8938-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2021/file/b9799a12d683d136cc817f94b73a8938-Paper.pdf
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://openreview.net/forum?id=9ZpciCOunFb

Under review as a conference paper at ICLR 2026

A TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

A.1 EXCHANGEABLE PARAMETERS AND VALUES IN CNNS AND EMBEDDINGS

Convolutions. We present the CNN formulation and the exchangeability in two consecutive
convolutions in Section[3.3] Here we present the exchangeability in other common structures in CNNs.

Normalization Layers. Normalization layers (NL) such as batch normalization loffe & Szegedy|(2015)
and layer normalization|Ba et al.|(2016) can stabilize training. It applies a channel-wise scaling and
bias. In CNNs, one normalization layer is usually inserted right before or after each activation function.
We present an analysis for the latter case but the analysis also applies to the former case. Denote the NL
functions as NL with parameters nl, and NL; denotes the NL applied to the i-th channel, parameterized
by nl;. We instantiate n=Cy, (; =W/ @nl;®W.;, and §; = conv(NL; (o (conv(A4,W/))),W.;).

One convolution layer followed by a fully connected layer. For simplicity, we assume B goes through
channel-wise average pooling pool (pool(B) is of shape Cs) before the fully connected layer. The
analysis easily generalizes to other/no pooling as well. The second layer then has function Wpool(B).
We instantiate n=Cy, (; =W/ ®@W.,;, and ; =pool(conv(A,W/))W.,.

Skip Connections. Skip connections from A to C' do not affect the rest of the analysis. Skip connections
from a layer before A to B, and from B to a layer after C' are similar, and we present an analysis for
the former case. We can simply include in (; the parameters that produce, and also the parameters
that consume, the i-th channel of the shortcut values. The rest of the analysis is unaffected.

Embeddings Embedding dimensions are intuitively symmetric because embeddings are “distributed”
representations as the relevant information is represented in many dimensions. We present the simple
example Word2vec [Mikolov et al.| (2013). Let m be the number of words, n be the embedding
dimension, A be the embedding matrix for all the words, M be the fully connected layer weight matrix
(both of size m x n), and o be the softmax operation. The NN takes into input a word index &, and
outputs o (M AL). We instantiate ; = A.; & M.; and &; = Ay; M.;. Alternatively, &; = Ay;, which
indicates that learned embedding dimensions are exchangeable.

A.2 EVALUATION DETAILS

All the details can be found in our codebase at https://anonymous.4open.science/r/
Exchangeable—-NN-FBC7/.

Dataset split. The test set labels of PIQA Bisk et al.|(2020) are not published, so we use the validation
set as the test set, and 10% of the training set as the validation set. This is reasonable because the
pretrained OPT model was not trained on PIQA training set. For CIFAR 100 |Krizhevsky|(2009), we
use a fixed split of the training set, with 90% samples used for training, 10% used as validation set,
and use the default test set. We use the default dataset splits for ogbg-molhiv dataset|Wu et al.| (2018)).

Model architectures. We use the default OPT architecture from HuggingFace [Wolf et al.| (2020).
The GCN architectures follow Kipf and Welling Kipf & Welling| (2017). We use the adapted CNNs He
et al.[(2015) for CIFAR100. Specifically, the first layer and the pooling layer before the prediction
head are adapted in size for the image size and class number in CIFAR100.

Obtaining trained models. We train image CNNs and GCNs locally using the training set, and used the
pretrained weights for OPT|Zhang et al.|(2022) from HuggingFace Wolf et al.|(2020). For local training
of ResNet18-BN, we use AdamW optimizer, X 102 learning rate, 16 batch size, 10~4 weight decay,
Icycle learning rate scheduler, and 100 epochs. When statically pruning VGG11-BN on CIFAR10,
we use the same training scheme in every pruning iteration to finetune the model after 5% parameters
in all convolution kernels are set to zero. For local training of GCN, we use AdamW optimizer, 10-3
learning rate, 32 batch size, 10~* weight decay, lcycle learning rate scheduler, and 80 epochs.

Optuna hyperparameter tuning. Across all models, we set the range of « as [0,0.5] in STATSTEST
for all layers. The range of T'in THRESHOLD is [—30,0] for CNNs, [—1,0] for GCN, [—0.005,0] for
OPT. For statically pruned models, we additionally add a parameter r in range [0.1,0.5] to tune for
each layer, which controls when EXPRUNE is disabled. When the ratio of the total FLOPs that can
be potentially pruned for a channel’s computation to the overhead of EXPRUNE is below r, EXPRUNE
is disabled. For each model, we provide a set of initial points to warm up Optuna’s surrogate model.
Please see our code for details.

14

https://anonymous.4open.science/r/Exchangeable-NN-FBC7
https://anonymous.4open.science/r/Exchangeable-NN-FBC7

	Introduction
	Running Example: Dynamic Pruning of ReLU-activated MLP
	Exchangeability in Neural Networks
	Background: Statistical Exchangeability and Parameter Space Symmetry
	Exchangeable Parameters and Values in Neural Networks
	Exchangeable Parameters and Values in Popular Neural Networks

	ExPrune Algorithm
	Instantiation 1: Early Negative Prediction for ReLU
	Instantiation 2: Dominance Prediction for Prediction Heads

	Evaluation
	Main Results and Analysis
	Combining ExPrune with Static Magnitude Pruning

	Discussion
	Related Work
	Conclusion
	Technical Appendices and Supplementary Material
	Exchangeable Parameters and Values in CNNs and Embeddings
	Evaluation Details

