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Abstract

We present first empirical results from our ongoing investigation of distribution
shifts in image data used for various computer vision tasks. Instead of analyzing
the original training and test data, we propose to study shifts in the learned weights
of trained models. In this work, we focus on the properties of the distributions
of dominantly used 3 × 3 convolution filter kernels. We collected and publicly
provide a data set with over half a billion filters from hundreds of trained CNNs,
using a wide range of data sets, architectures, and vision tasks. Our analysis
shows interesting distribution shifts (or the lack thereof) between trained filters
along different axes of meta-parameters, like data type, task, architecture, or layer
depth. We argue, that the observed properties are a valuable source for further
investigation into a better understanding of the impact of shifts in the input data
to the generalization abilities of CNN models and novel methods for more robust
transfer-learning in this domain.
Data available at: https://github.com/paulgavrikov/CNN-Filter-DB/.

1 Introduction
Despite their overwhelming success in the application to various vision tasks, the practical deployment
of convolutional neural networks (CNNs) is still suffering from several inherent drawbacks. Two
prominent examples are I) the dependence on very large amounts of annotated training data [1],
which is not available for all target domains and is expensive to generate; and II) still widely unsolved
problems with the robustness and generalization abilities of CNNs [2] towards shifts of the input
data distributions. One can argue that both problems are strongly related, since a common practical
solution to I) is the fine-tuning [3] of pre-trained models by small data sets from the actual target
domain. This results in the challenge to find suitable pre-trained models based on data distributions
that are "as close as possible" to the target distributions. Hence, both cases (I+II) imply the need to
model and observe distribution shifts in the contexts of CNNs.
In this paper, we propose not to investigate these shifts in the input (image) domain, but rather in
the weight distributions of the CNNs themselves. We argue that e.g. the distributions of trained
convolutional filters in a CNN, which implicitly reflect the sub-distributions of the input image data
which are actually utilized by a specific model, are more suitable and easier accessible representations
for this task.

2 Methods
Data. We collected a total of 391 publicly available CNN models pre-trained for various visual
tasks, recorded meta-data for each model, and manually categorized the training data into visually
distinctive groups (data type) like natural scenes, medical ct, seismic, or astronomy for example.
All models were trained with full 32-bit precision but may have been trained with variously scaled
inputs. The dominant subset is formed by image classification models trained on ImageNet1k [4] (264
models). We extracted all trained convolution filters to get a heterogeneous and diverse representation.
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Hereby, only the widely used filters with a kernel size of 3× 3 were taken into account. Filters were
only extracted from regular convolution layers; Transposed convolution layers were not included. A
total of 524,563,289 filters from 13,015 layers is used for the following study.

Structure analysis. We apply a full-rank PCA transformation to understand the underlying structure
of the filters. A linear combination of principal components vi weighted by the coefficients ci and
a bias bi then describes each filter: f =

∑
i civi + bi . Figure 1 shows the principal components

computed on the complete data set and various sub-sets.

Measuring distribution shifts. The divergence between two distributions is measured by the
symmetric, non-negative variant of Kullback-Leibler [5]. The shift D of two filter sets is then defined
by the sum of the divergence of the coefficient distributions Pi, Qi along every principal component
index i. The sum is weighted by the ratio of variance qi explained by the i-th principal component.

D(P ‖ Q) =
∑
i

qi
∑
x∈X

Pi(x) log

(
Pi(x)

Qi(x)

)
+Qi(x) log

(
Qi(x)

Pi(x)

)
(1)

To avoid undefined expressions, all probability distributions F are set to hold ∀x ∈ X : F (x) ≥ ε.

3 Empirical evaluation
3.1 Comparison of filter structures
In a first series of experiments, we analyze only the structure of 3× 3 filters, neglecting their actual
numerical weight in the trained models. We scale all filters by their absolute maximum weight and
perform a PCA. Figure 1 shows some qualitative examples of principal components, split by several
meta-data dimensions. Figure 2 depicts the shifts between distributions of PCA coefficients along
models trained on different data types. We hypothesize that the spiky kernel density estimates (KDEs)
are caused by "degenerated" layers e.g. if a model was too complex/deep for a given dataset (e.g.
ResNet-101 [6] on CIFAR-10 [7]).
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Figure 1: Principal components vi and (cumulative) explained variance ratio per component for filters
from (a) full dataset, (b) models trained on formula data, (c) GAN discriminators, (d) first convolution
layers. More examples in subsection A.3.
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Figure 2: Coefficient distributions along the principal components for selected data types. Full
overview in subsection A.5.
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3.1.1 Observable shifts along filters sub-sets
Between Models. The comparison of filters between individual neural architectures results in the
highest shift we observe for all investigated meta-groups (Figure 4).

Inside Model families. The shift between models of the same family trained for the same task (e.g.
ResNet-classifiers in Figure 4) is negligible and mostly independent of the training data, showing
that the common practice of pre-training models with ImageNet is indeed a valid approach even for
visually distant application domains.

Between Tasks. Unsurprisingly, classification, segmentation, object detection, and GAN-generator
distributions are quite similar (Figure 3a), since the non-classification models typically include a
classification backbone. The smallest mean shift to other tasks is observed in object detection, GAN-
generators, depth estimation models. Super Resolution models appears to be strong outliers, but we
only have one model for this task. Additionally, this model contains PixelShuffle layers [8] that may
tamper with the filters. Less transferable task distributions also include GAN-discriminators and face
detection models. GAN-discriminators distributions do barely differ along principal components and
can be approximated by a gaussian distribution. This indicates a filter distribution close to random
initialization, representing a "confused" discriminator that cannot distinguish between real and fake
samples towards the end of training.
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Figure 3: D matrices for different filter meta-groups: (a) by tasks, (b) by data types, (c) by layer
depth decile (relative to the model depth).

Data types and training sets. We find that the distribution shift is well balanced across most data
types and training sets (Figure 3b). Most coefficient distributions tend to shrink towards the least
significant principal components, with a remarkably wide distribution of the first principal component.
Notable outliers include medical CT & MRI, formula, texture, and plants data types. Medical types
have visible spikes in the KDEs, indicating that many structurally similar filters exist. The outlier
Formula includes models trained on Fractal-DB, which was proposed as a synthetic pre-training
alternative to ImageNet1k [9].

Layer depth. The shift between layers of various depth deciles increases with the difference in depth
(Figure 3c), yet it is marginal compared to the shift across tasks or data types. Distributions in the last
decile of depth form the most distinct interval, significantly outdistancing the first and second-to-last
decile that follow next. However, splitting the coefficients by absolute depth introduces many extreme
outliers (Figure 4). That may again be a result of degenerated layers or an effect of under-sampling.
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Figure 4: Distribution of the pair-wise shift D for different filter sub-sets.
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3.1.2 Observable filter distribution phenotypes
We categorize the distributions into three phenotypes depend-
ing on their distribution characteristic in the PCA space: I)
distributions where all dimensions are gaussian-like; II) dis-
tributions containing one or more layer that shows a fairly
small variety of feature patterns and therefore takes on dis-
crete stages in bi-variate scatter plots; III) distributions where
one or more distribution is multi-modal, not centered, highly
sparse or otherwise non-normal forming scatter plots that
look like symbols. Figure 5 shows typical examples of these
phenotypes.
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Figure 5: Bi-variate plot between
component distributions catego-
rized as (a) sun, (b) spikes, (c) sym-
bols.

3.2 Filter Scales
So far we have only studied the structural similarity, independent of the actual scale of the learned
filter weights (difference between minimal and maximal weight). In Figure 6 we compute the mean
scale per layer depth decile. The distributions show an expected decrease with depth but also a high
variance and many outliers across models, especially in the first two deciles.
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Figure 6: Boxplots showing mean range per layer depth decile (top to bottom in decreasing order) for
each model in the dataset.

4 Related Work
An extensive analysis of features, connections, and their organization extracted from trained Incep-
tionV1 [10] was presented in [11, 12, 13, 14, 15, 16, 17, 18, 19]. The authors of [20] studied learned
filter representations in ImageNet classification models and presented the first moves towards transfer
learning. A summary of transfer learning for image classification CNN can be found in [21] and
general surveys for other tasks and domains are available in [22, 23]. [24] captured convolution
filter patterns with Gaussian Mixture Models to achieve cross-architecture transfer learning and [25]
demonstrated that convolutions filters can be replaced by a fixed filter basis that 1× 1 convolution
layers blend.
A benchmark for distribution shifts that arise in real-world applications is provided in [26] and [27]
measured robustness to natural distribution shifts. Lastly, [28] studied the correlation between transfer
performance and distribution shifts of image classification models.

5 Discussion and Outlook
Our first results support our initial hypothesis that the distributions of trained convolutional filters
are a suitable and easy-to-access proxy for the investigation of image distributions and the similarity
between the same. While the presented results are still in the early stages of a thorough study, we
report several interesting findings that could be explored to obtain better model generalizations
and assist in finding suitable pre-trained models. One finding is the presence of large amounts of
degenerated (or untrained) filters in large, well-performing networks - resulting in the phenotypes
spikes and symbols. We assume that their existence is a symptom in line with the Lottery Ticket
Hypothesis [29].
Another striking finding is the observation of very low shifts between different meta-groups: I) shifts
inside a family of architectures are very low, independent of the target image distribution; II) also we
observe rather small shifts between convolution layers of different depths; while III) shifts between
different tasks are higher, even when related architectures and the same data is used.
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A Appendix

A.1 Detailed divergence computation

All probability distributions are represented by histograms. The histogram range is defined by the
minimum and maximum value found across all distributions to compare. 70 uniform bins are used.

A.2 D-matrix for non-scaled filters
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Figure 7: D matrices for different filter sub-sets on the raw filter data (non-scaled): (a) tasks, (b) data
types, (c) filter depth decile relative to the model depth.
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A.4 Data set statistics
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Figure 10: Total count of filters per filter sub-set. Log scale.

NI
H 

ch
es

t
lg

g-
m

ri-
se

gm
en

ta
tio

n
cu

st
om

Re
fin

ed
 M

R2
31

;C
ov

id
W

eb
R2

31
Pe

no
bs

co
t

Pa
dC

he
st

PA
SC

AL
20

12
PA

SC
AL

20
07

;P
AS

CA
L2

01
2

wi
de

rfa
ce

LT
RC

Ka
gg

le
 R

SN
A+

4 
ot

he
rs

Ka
gg

le
 R

SN
A

KA
IS

T
wi

de
rfa

ce
-(c

le
an

ed
)

CU
B2

00
 2

0
BS

D3
00

Fr
ac

ta
lD

B-
10

k
FE

RP
lu

s
Ch

eX
pe

rt
Ch

aL
ea

rn
 L

AP
Ca

rv
an

a
Fr

ac
ta

lD
B-

1k
ce

le
bA

HQ
-5

12
ce

le
bA

HQ
-2

56
ce

le
bA

-c
ro

pp
ed

UK
 B

io
ba

nk
CM

P 
fa

ca
d

Re
DW

eb
+9

 o
th

er
s

Go
og

le
 M

a
Ad

ie
nc

e
DT

D
M

IM
IC

-C
XR

Fl
ick

er
HQ

-1
02

4
IM

DB
-W

IK
I

NI
TR

C 
IIT

Du
tc

h 
F3

cit
ys

ca
pe

s
Pl

ac
es

36
5-

St
an

da
rd

PA
SC

AL
-C

on
te

xt
im

ag
en

et
1k

-(s
ub

se
t)

CO
CO

20
14

AD
E2

0k
cu

st
om

 F
l

CO
CO

20
17

pr
op

rie
ta

ry
im

ag
en

et
1k

100

101

102

Training-Dataset

ca
rs

pl
an

ts
th

er
m

al
as

tro
no

m
y

de
pt

h
fo

rm
ul

a
m

ap
te

xt
ur

es
m

ed
ica

l c
t

se
ism

ic ar
t

m
ed

ica
l m

ri
m

ed
ica

l x
ra

y
fa

ce
s

na
tu

ra
l

Datatype

Fa
ce

 R
ec

og
ni

tio
n

Su
pe

r R
es

ol
ut

io
n

De
pt

h 
Es

tim
at

io
n

Fa
ce

 D
et

ec
tio

n
St

yl
e 

Tr
an

sf
er

GA
N-

Di
sc

rim
in

at
or

Ob
je

ct
 D

et
ec

tio
n

GA
N-

Ge
ne

ra
to

r
Se

gm
en

ta
tio

n
Cl

as
sif

ica
tio

n

Task

Figure 11: Total count of models per filter sub-set. Log scale.
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A.5 Ridge Plots
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Figure 12: Distribution of the coefficients along the principal components by model task.
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Figure 13: Distribution of the coefficients along the principal components by training data type.
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Figure 14: Distribution of the coefficients along the principal components by combination of data
set used for training.
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Figure 15: Distribution of the coefficients along the principal components by model task for data
sets labeled as natural data type.
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Figure 16: Distribution of the coefficients along the principal components by training data type for
image classification models.
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Figure 17: Distribution of the coefficients along the principal components by training data set for
image classification models.
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