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Abstract

Recent years have witnessed digital content appear with plenty of forms (includ-
ing online courses, online shopping and e-news) in daily life of people, which
has provided with opportunities as well as challenges for systems to provide
users with personalized services and information. The goal of our project is
to design a recommender algorithm that can return a good list such that the
consumers might have high chance of clicking the items on a simulated en-
vironment named Virtual Taobao, a simulator trained from the real-data from
Taobao. Firstly, We tried some state-of-art deep-reinforcement algorithms, such
as deep deterministic policy gradient (DDPG) method and Twin Delayed DDPG
(TD3), what’s more, we also used the Proximal Policy Optimisation (PPO) al-
gorithm and tried to improve the PPO algorithm with the features of the at-
tributes of the consumers.Video link:https://drive.google.com/file/d/1W VoAjKcJ-
4t506ny5 K aoDn7BymksY qr Jview?usp = sharing

1 Introduction

With the development of Information technology, more and more companies pay attention to the
recommender system. Recommender systems are widely used in e-commerce websites to recommend
products based on the preferences and tastes of online customers to improve their customer’s shopping
experience. Compared with other technologies, the use of reinforcement learning in the recommender
system can better consider the long-term benefits of users, so as to maintain the long-term satisfaction
and activity of users in the platform. In this paper, we try to investigate the power of reinforcement
learning in this area. we plan to develop a simple recommender algorithm based on a simulated
environment. The goal of our algorithm is to increase the mean reward and customer click-through
rate (CTR) of the items we recommend.

1.1 Related Work

In 2016, the emergence of YoutubeDNN[1] and WDL(2] led the industry trend of recommendation
systems and CTR estimation so far, setting off a wave of large-scale and efficient upgrade of deep
learning models for recall layer and ranking layer algorithms. In 2019, a Google team achieved
the largest reward growth for a single YouTube project in the past two years. The modeling idea
is similar to RNN recall, given the user’s behavior history, predict the user’s next click on the item
based on the Off-Policy training strategy[3] . Another Google team’s paper also claims that they
have achieved good results on the Youtube online recommendation system. The main contribution
is to propose a Q-Learning algorithm called SLATEQ, which optimizes the long-term value LTV
(Long-term Value) of multiple items displayed to users at the same time in the recommendation
system[4] . Also in 2019, a team from Shanghai Jiao Tong University proposed a Tree-structured
Policy Gradient Recommendation (TPGR) framework[5] , where a balanced hierarchical clustering



tree is built over the items and picking an item is formulated as seeking a path from the root to a
certain leaf of the tree.

2 RL Framework

2.1 Environment

Applying reinforcement learning in physical-world tasks is extremely challenging. However, re-
inforcement learning requires a large number of training samples. For example, AlphaGoZero|6)
conducted 490 million rounds of simulated Go training, and the reinforcement learning of Atari game
ran at high speed on the computer for more than 50 hours[7] . Luckily, we found a virtual environment
tool (Virtual Taobao) [8] for reinforcement learning training. The VirtualTaobao simulators trained
from the real-data of Taobao, one of the largest online retail platforms. In Taobao, when a customer
entered some query, the recommender system returns a list of items according to the query and the
customer profile. The system is expected to return a good list such that customers will have high
chances of clicking the items. Using virtual simulator, we can access a "live" environment just like
the real Taobao environment. Virtual customers will be generated once at a time, the virtual customer
starts a query, and the recommendation system needs to return a list of items. The virtual customer
will decide if he or she would like to click the items in the list which is similar to a real customer. We
can access the environment through OpeanAl gym conveniently, We trained our model on Virtual
Taobao and proved our model works.

2.2 MDP Modeling

We are now ready to formulate the problem as a Markov Decision Process (MDP) by introducing the
agent, states, actions, and the reward.

e Agent: our recommender system

e State: we treat the customers as the states. In the VirtualTaobao environment, A customer is
associated with 11 static attributes that has been one-hot encoded in to 88 binary dimensions,
and 3-dimensional dynamic attributes. Here, static/dynmaic means whether the features will
change during an interactive process. The attributes information about involve customer age,
customer gender, customer browsing history, etc.

e Action: the system will select 10 items and push them to the customer. Then, the customer
will choose to click on some items or leave the platform (results in the end of the session).
The action model of the customers has been trained by the developers of the VirtualTaobao
with the data of many real customers.

e Reward: every click on the items will receive +1 reward, and the customer may click all ten
items on the page, in addition, they might just end the session without any click.

3 Methods and Algorithms

3.1 DDPG

Deterministic Policy Gradient (DDPG) [9] is an algorithm which concurrently learns a Q-function
and a policy. It uses off-policy data and the Bellman equation to learn the Q-function, and uses the
Q-function to learn the policy. This approach is closely connected to Q-learning, and is motivated the
same way: if you know the optimal action-value function Q*(s, a).

In our actor-critic neural networks, we use two-layer MLP with each layer containing 128 hidden
layers to construct our networks. In addition, we add layer normalization after each layers, the details
of the algorithm is shown as below.



Algorithm 1 Deep Deterministic Policy Gradient
1: Input: initial policy parameters f, ()-function parameters ¢, empty replay buffer D
2: Set target parameters equal to main parameters H.,l,g 4, Pramy & @
3 repeat
4 Observe state s and select action a = clip(up(s) + €, @row, tpign), Where ¢ ~ N
5 Execute a in the environment
6 Observe next state s, reward v, and done signal d to indicate whether s* is terminal
7. Store (s,a,r, s, d) in replay buffer D
8 If ¢' is terminal, reset environment state.
9 if it’s time to update then

10 for however many updates do
11: Randomly sample a batch of transitions, 8 = {(s,a.r, &', d)} from P
12: Compute targets
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13: Update Q-function by one step of gradient descent nsing
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14 Update policy by one step of gradient ascent using
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15: Update target networks with
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16: end for
17 end if
18: until convergence

3.2 PPO

PPO-clip [10] updates policies via

B = arg max E [L(s,a.6;0)],

S,0~Tg

typically taking multiple steps of (usually minibatch) SGD to maximize the objective. Here L is
given by
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in which € is a small hyperparameter which roughly says how far away the new policy is allowed to
go from the old.

This is a pretty complex expression, and it’s hard to tell at first glance what it’s doing, or how it helps
keep the new policy close to the old policy. As it turns out, there’s a considerably simplified version
of this objective which is a bit easier to grapple with (and is also the version we implement in our
code):

L(s,a,0;,0) = min (M A" (s,a), gle, A™ (.«.a))) ,

7oy (as)’

where

L J+a4 A=0
gle, 4) = { (L—e)d A<O.



Algorithm 2 PPO-Clip
I: Input: initial policy parameters #, initial value function parameters ¢
2 for k=0,1,2,... do
3 Collect set of trajectories Dy = {7;} by running policy . = #(6) in the environment.
Compute rewards-to-go f‘i’;.
5. Compute advantage estimates, A, (using any method of advantage estimation) based
on the current value function V.
[ Update the pelicy by maximizing the PPO-Clip objective:

1 -~ — wolag|se)
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typically via stochastic gradient ascent with Adam.

A" (54, a1), gle, A" (s¢, ae l_l) .

7= Fit value function by regression on mean-squared error:
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typically via some gradient descent algorithm.
s end for

3.3 Improved PPO

As mentioned before, the states (customers) is associated with 88 binary dimensions attributes and
3-dimensional dynamic attributes. So we decided to train the two features respectively. In the actor
neural network, we use the three-layer MLP with each layer containing 128 hidden neurons to tain
the two features respectively (The same as our PPO-Clip method). Then we use a full connected layer
to combine the outputs of the two MLP. What’s more, we think our policy should emphasize on the
update of the 3-dimensions dynamic attributes, so we set the update frequency of the 3-dimensions
MLP is one hundred times that of the other one. Other parts are just the same as the PPO method in
the part 3.2.

4 Experiments

So far we have finished three experiments on the Google Colab platform, including DDPG algorithm,
PPO algorithm and our improved PPO algorithm, Here are the results.
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The figure shows the mean CTR of 50 states generated randomly, We can learn from the the figure
that the CTR of DDPG increase rapidly from 0 to about 0.5 between 0 and 200 iterations, however
it drops dramatically to around 0.42 after 2000 iterations, after that it fluctuates around 0.42. PPO
behaves more stable, it doesn’t drop during the training, but it increases from O to 0.37 but never
larger than 0.4. The performance of our improved PPO method is much better the the DDPG and
PPO method, it increase form O to 1 stably and it reach the maximum with only 5000 iterations and
nearly get 1 CTR for one page items. It means customer will choose to click all ten items on one
page we recommend.

5 Conclusions

The DDPG and PPO method don’t have good performances. Our improved PPO method behaves
much better than we expected. It tells that our improvement based on the features of the attributes of
the customers are successful, but this may leads to the dangerous area of the overfitting. What’s more,
our experiments are based on one page items, we may do more investigations about the customers
that may choose to view more pages which is more closer to the reality in the future.
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