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Abstract

In the large language model (LLM) revolution,001
embedding is a key component of various sys-002
tems, such as retrieving knowledge or mem-003
ories for LLMs or building content modera-004
tion filters. As such cases span from English005
to other natural or programming languages,006
from retrieval to classification and beyond, it007
is advantageous to build a unified embedding008
model rather than dedicated ones for each sce-009
nario. In this context, the pre-trained multi-010
lingual decoder-only large language models,011
e.g., BLOOM, emerge as a viable backbone012
option. To assess their potential, we propose013
straightforward strategies for constructing em-014
bedders and introduce a universal evaluation015
benchmark. Experimental results show that our016
trained model is proficient at generating good017
embeddings across languages and tasks, even018
extending to languages and tasks for which no019
finetuning/pretraining data is available. We also020
present detailed analyses and additional evalua-021
tions. We hope that this work could encourage022
the development of more robust open-source023
universal embedders.1024

1 Introduction025

Embeddings, which transform discrete text or code026

sequences into continuous vectors, are widely used027

in many fields (Li et al., 2022; Neelakantan et al.,028

2022). They have recently gained broader attention029

by manipulating knowledge and memories for large030

language models (LLMs) and LLM-based agents031

(Peng et al., 2023; Song et al., 2022; Wang et al.,032

2023). In such scenarios, their usages are inevitably033

coupled with different languages and tasks. This034

brings a demand for robust and universal embed-035

ders, where one single model can be applied across036

diverse tasks and languages, encompassing both037

natural and programming languages.038

The common approach to building effective em-039

bedders is finetuning pretrained language models040

through contrastive learning on pairs of sentences041

(Neelakantan et al., 2022; Wang et al., 2022a). In042

1The data, code and model will be publicly released.
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Figure 1: The performance comparison of finetuned
BLOOM models on our compiled universal embedding
benchmark, details refer to Table 2.

practice, BERT-style pretrained transformer en- 043

coders are de facto standard choices, deriving pow- 044

erful open-source models like E5 (Wang et al., 045

2022a), BGE (Xiao et al., 2023) and GTE (Li et al., 046

2023). However, these encoders have encountered 047

difficulties in constructing universal embeddings 048

because there are currently no available encoders 049

that simultaneously support multiple natural lan- 050

guages and programming languages. 051

A possible solution is to use multilingual large 052

language models (mLLM), such as BLOOM (Scao 053

et al., 2022) series. These models adopt a decoder- 054

only architecture and are pretrained on meticu- 055

lously curated, large-scale, multilingual corpora, 056

ROOTS (Laurençon et al., 2022), by the next token 057

prediction objective. They are not only skilled in 058

English but also excel in other languages, includ- 059

ing natural ones such as Chinese and programming 060

languages like Python, showing their wide-ranging 061

language abilities. 062

Therefore, one major question arises: is it fea- 063

sible to derive universal embedders from mLLMs? 064

To study this inquiry, we examine two scenarios: 065

(1) Task versatility: we explore strategies of data 066

compositions that enable the model to adapt effec- 067

tively to a variety of embedding tasks. (2) Multilin- 068

guality: we investigate the process of obtaining em- 069

beddings across multiple languages using limited 070

data, especially considering that some of them are 071

hard to acquire suitable training data. By synthesiz- 072

ing insights from above cases, we evaluate whether 073

mLLMs can be trained to generate high-quality 074

embeddings across both languages and tasks. 075
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In practice, we construct embedders by conven-076

tional methods (detailed in §2.1) based on BLOOM077

(Scao et al., 2022) models.2 For task versatility, in078

line with prior works (Wang et al., 2022a; Muen-079

nighoff, 2022), we categorize all embedding tasks080

into symmetric and asymmetric types and combine081

datasets from both sides for training (§2.3). Regard-082

ing multilinguality, we employ parameter-efficient083

fine-tuning to maximally preserve the modeling084

abilities of various languages (§2.2). For evalua-085

tion, we select 5 languages (4 natural, 1 program-086

ming) and compile a universal embedding bench-087

mark (§3.1). All models are trained with mono-088

lingual data and evaluated on the benchmark (as089

shown in Figure 1), which helps us to analyze the090

performance of different languages, e.g., densely,091

lessly or not pretrained ones, more effectively.092

Through extensive experiments, we find that:093

• Combining datasets of both symmetric and094

asymmetric types can achieve task versatility095

across languages.096

• For pretrained languages, mLLMs can pro-097

vide high-quality embeddings, even when fine-098

tuning occurs with data exclusively from other099

languages.100

• mLLMs show some extent generalizations to101

languages that are not pretrained, and the per-102

formance can be greatly improved by finetun-103

ing on data of these unseen languages.104

We believe that mLLMs are feasible and show great105

potential in building universal embedders.106

Additionally, we provide various detailed anal-107

yses (§3.3, §3.4, §4), e.g., scaling the model size,108

and the model performance in additional bench-109

marks such as MTEB (Muennighoff et al., 2023)110

and CodeSearchNet (Husain et al., 2019), to better111

understand the model behaviors. We hope that our112

findings could foster the development and research113

of more powerful universal embedders.114

2 Method115

Figure 2 shows our method and evaluation. For116

clarity, the details of embedding model are not117

presented. Next, we describe this model design.118

2.1 Embedding Model119

Our model design mainly follows the standard prac-120

tice of previous work (Muennighoff, 2022; Nee-121

lakantan et al., 2022). Given a text or code input x,122

2Recently released Qwen1.5 is another viable option, we
list the experiments in Appendix A.1.
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Figure 2: The outline of our main evaluation process.
We finetune BLOOM to generate embeddings by [EOS]
with contrastive loss on monolingual data, and analyze
performance by multilingual tests from various tasks.
The solid lines in the graph show English as an example.

we append special tokens, [BOS]t and [EOS]t, to 123

the start and end of x respectively, where t repre- 124

sents the input type.3 We take the last token state 125

from the model output, i.e., the representation of 126

[EOS]t, as the embedding e of the input text x. 127

The contrastive learning objective involves pos- 128

itive and hard-negative examples (Reimers and 129

Gurevych, 2019). For each positive pair (x, x+) in 130

trainset, where x+ is the sequence similar or rel- 131

evant to x, we build the training instance {x, x+, 132

x−1 , . . . , x−N} with N negative examples x− from 133

the data (§2.3). We optimize the InfoNCE (Chen 134

et al., 2020) contrastive loss: 135

L = − log
exp(fθ(x, x+))

exp(fθ(x, x+)) +
∑N
j=1 exp(fθ(x, x−

i ))
(1) 136

where fθ(x, y) = cos(ex, ey)/τ denotes the func- 137

tion that computes the cosine similarity between 138

two embeddings ex, ey of inputs x, y parameter- 139

ized by θ of the model. τ is the temperature hyper- 140

parameter which is set to 0.05 in our experiments. 141

2.2 Parameter Efficient Fine-Tuning for 142

Multilinguality 143

In finetuning, extensive parameter optimization can 144

lead to catastrophic forgetting, causing models to 145

lose their ability to model languages not included 146

in the fine-tuning data (Mao et al., 2022). This is a 147

significant concern, especially for languages where 148

paired data for contrastive learning are scarce. In 149

such cases, we depend on the inherent capability 150

of model to acquire qualified embeddings, making 151

the prevention of catastrophic forgetting essential 152

to maintain multilingual performance. 153

3We set two input types, i.e., query and document. If not
specified, the input is encoded as query by default. We only
use the document type in retrieval tasks.
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Language Asymmetric #train Symmetric #train

Natural mMarco-google 499,184 SNLI + MNLI 281,230
Java CodeSearchNet 454,451 BigCloneBench 450,862

Table 1: Statistics of training data used in each language.
The SNLI+MNLI is translated to other languages by
GPT-3.5-turbo API.

Parameter Efficient Fine-Tuning presents a so-154

lution to balance these two aspects (Badola et al.,155

2023), which enhances performance on target tasks156

while limit the updates to parameters. Therefore,157

we employ it to maximize multilingual perfor-158

mance, focusing on popular methods like Bitfit159

(Ben Zaken et al., 2022) and LoRA (Hu et al.,160

2021). In order to explore the model potential as161

much as possible, we use data from a single lan-162

guage in finetuning, which has demonstrated strong163

competitiveness (Wang et al., 2022b).164

2.3 Data Composition for Task Versatility165

Downstream embedding tasks can be categorized166

into two types: symmetric and asymmetric (Wang167

et al., 2022a; Su et al., 2023). To ensure the versa-168

tility, we use both types data (Table 1).169

Asymmetric Data Query-to-passage/document170

retrieval is a typical asymmetric embedding task,171

focusing on capturing semantic relevance between172

texts (Muennighoff, 2022). The model is trained173

to maximize the similarity of vectors between a174

query and its most relevant candidate. Consistent175

with previous studies, we select the MSMARCO176

passage ranking (Nguyen et al., 2016) and its trans-177

lated version mMARCO (Bonifacio et al., 2021).178

Symmetric Data Natural language inference is179

an exemplary symmetric task that aligns well with180

the requirements of contrastive learning, where the181

semantic similarity between texts is gauged based182

on the similarity of their embeddings. The training183

instances comprise sentences with at least one en-184

tailment (positive) and one contradiction (negative).185

We utilize two classic English datasets, i.e., SNLI186

(Bowman et al., 2015) and MNLI (Williams et al.,187

2018), and translate them into other languages.188

For programming languages, clone detection fo-189

cuses on the similarity between codes, where Big-190

CloneBench (Svajlenko et al., 2014) is used as the191

symmetric. However, it is hard to find a suitable192

dataset that measures code to code relevance4. As a193

4Sedykh et al. (2023) introduced a code-to-code search
dataset based on StackOverflow but it is not public yet.

compromise, we use CodeSearchNet (Husain et al., 194

2019) which match codes and their comments. 195

3 Main Experiments 196

To assess the viability of converting mLLMs into 197

universal embedding models, we conduct two parts 198

of experiment. The first part aims to evaluate the 199

potential of the LMs and validate employed strate- 200

gies on the compiled benchmark (§3.1). We expand 201

to broader open evaluations in the second part (§4). 202

3.1 Design of Controlled Experiments 203

The universal embedding encompasses two dimen- 204

sions: (1) multilingual, including both natural and 205

programming languages; (2) multitask, addressing 206

both symmetric and asymmetric embedding tasks. 207

Conducting comprehensive evaluations and analy- 208

ses can be quite complex and challenging, given the 209

significant variations in task scope and difficulty 210

across different languages. Therefore, to facilitate 211

research and comparison, we initially focus our ex- 212

periments on a limited set of languages and tasks. 213

Evaluation benchmarks. For both symmetric 214

and asymmetric task categories, we select two 215

benchmarks each. One is in-domain, which is the 216

corresponding evaluation of training data. For the 217

asymmetric (resp. symmetric) part of natural lan- 218

guages, it is devset of mMarco (resp. testset of 219

STS Benchmark 5 (Cer et al., 2017)). The other 220

is an out-of-domain evaluation, which is MIRACL 221

multilingual retrieval (Zhang et al., 2022) devset 222

(resp. MASSIVE (FitzGerald et al., 2022) testset) 223

for the asymmetric (resp. symmetric) of natural 224

languages. The out-of-domain asymmetric (resp. 225

symmetric) testset for code is xCodeEval/nl-code- 226

search (Khan et al., 2023) (resp. GoogleCodeJam 227

(Zhao and Huang, 2018)). 228

Evaluation languages. Java is only one choice 229

for code experiments as the training and evaluation 230

data are hard to find for other languages. For natu- 231

ral ones, we list all languages shared by mMarco, 232

MIRACL and BLOOM pretraining in Table 10. We 233

select English, Chinese, Arabic and Indonesian for 234

main experiments as they are from different lan- 235

guage families and with different ratio in ROOTS. 236

Implementation details. We finetune BLOOM 237

models by LoRA (Hu et al., 2021) with r of 64. We 238

append special tokens to the vocabulary, initialize 239

5The STS-B data are originated from SNLI. We use the
translated version from hf.co/datasets/stsb_multi_mt .
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Setting Eval → Asym Sym All

Train ↓ Lang en zh ar id java avg. en zh ar id java avg. en zh ar id java avg.

Asym

en 43.85 39.93 43.64 31.43 47.60 41.29 75.00 72.00 63.77 68.51 57.74 67.40 59.43 55.96 53.70 49.97 52.67 54.35
zh 39.91 42.04 41.94 28.93 49.24 40.41 75.05 72.68 65.32 68.57 58.54 68.03 57.48 57.36 53.63 48.75 53.89 54.22
ar 39.60 36.76 46.23 32.70 50.09 41.08 75.12 72.82 65.73 69.85 56.93 68.09 57.36 54.79 55.98 51.27 53.51 54.58
id 40.00 35.25 42.19 38.90 48.40 40.95 75.01 71.70 65.73 71.88 57.87 68.44 57.51 53.47 53.96 55.39 53.14 54.69

java 15.36 19.40 20.44 13.52 53.00 24.35 72.27 72.32 62.84 68.37 54.76 66.11 43.82 45.86 41.64 40.95 53.88 45.23

Sym

en 5.94 9.46 4.87 5.80 42.33 13.68 79.41 76.23 68.88 73.92 56.05 70.90 42.67 42.85 36.87 39.86 49.19 42.29
zh 5.15 7.25 6.76 6.88 43.13 13.83 78.84 76.64 68.76 73.60 56.94 70.96 42.00 41.95 37.76 40.24 50.03 42.40
ar 5.89 8.19 8.57 7.38 42.86 14.58 78.64 76.01 70.39 74.90 55.77 71.14 42.27 42.10 39.48 41.14 49.32 42.86
id 7.51 4.69 10.28 8.38 36.15 13.40 78.41 75.62 68.71 76.17 54.60 70.70 42.96 40.16 39.50 42.28 45.37 42.05

java 0.00 0.02 0.00 0.02 1.57 0.32 32.67 39.43 23.27 33.51 73.34 40.44 16.33 19.72 11.64 16.77 37.45 20.38

All

en 42.97 37.96 42.85 32.09 50.70 41.31 77.65 74.95 68.26 72.06 57.14 70.01 60.31 56.46 55.55 52.08 53.92 55.66
zh 38.92 40.48 41.08 28.46 49.79 39.75 77.68 75.00 68.39 71.58 58.27 70.18 58.30 57.74 54.73 50.02 54.03 54.96
ar 38.43 36.21 45.55 32.33 49.07 40.32 77.76 75.12 69.74 73.58 57.21 70.68 58.09 55.67 57.65 52.95 53.14 55.50
id 39.48 34.08 41.41 38.20 48.58 40.35 77.69 74.13 68.78 75.39 56.82 70.56 58.58 54.11 55.09 56.79 52.70 55.45

java 14.62 20.31 21.97 15.02 51.56 24.70 72.60 72.24 62.74 68.12 76.12 70.37 43.61 46.28 42.36 41.57 63.84 47.53

Table 2: Main Results on BLOOM-1b1. The socre of the asym (or sym) is the macro average of an in-domain test
and a out-of-domain test. All tests are listed in §3.1. The score of the all is the macro average of asym and sym.

their embeddings randomly, and update them as240

well. We use AdamW optimizer with learning rate241

(lr) 5e-5 and a cosine learning rate schedule, with242

warmup of 10% steps, and decay final lr down to243

10% of the peak lr. We use GradCache (Gao et al.,244

2021a) to scale up the batch size to 1024 for the all245

that combine both asymmetric and symmetric data.246

And that of asym and sym is 512 to keep similar247

optimization steps. For each instance, we sample248

7 negative examples from the hard negatives.6 All249

training are conducted on 8 A100-80GB GPUs in250

BF16 with FlashAttention2 (Dao, 2024).251

3.2 Results252

Table 2 shows the results of controlled experiments.253

It is intuitive that, for each setting in every lan-254

guage, the in-domain trained models consistently255

perform the best (except the symmetric Java evalu-256

ation). Referencing these scores (on the diagonal),257

we explore the potential of Multilingual LM on the258

unified embeddings. For simplicity, we index the259

table by a {train (row) → eval (column)} format,260

e.g., asym-en→sym-zh is 72.00. We can also omit261

part of it to refer to a set of results.262

Task versatility For each setting, we can ob-263

serve that: (1) sym models achieve poor results264

on asymmetric tasks (sym→asym are much lower265

than asym→asym); (2) asym models show compa-266

rable performance on symmetric tasks as the sym267

ones (asym→sym are close to sym→sym); (3) the268

all (i.e., models trained on both types data) exhibit269

a slight decrease in asymmetric task (all→asym270

are slightly lower than asym→asym), but symmet-271

6Since most examples from NLI datasets have only one
contradiction sentence as the hard negative, we randomly
sample 6 sentences to serve as the negative.

ric performance is improved (all→sym are better 272

than asym→sym), resulting in the best overall score 273

(all→all are higher than asym/sym→all). In all 274

(natural and programming) languages, combining 275

symmetric and asymmetric data improves task gen- 276

eralization, demonstrating that task versatility can 277

be achieved across languages. 278

Multilinguality Focusing on all→all, lower 279

right part of Table 2, we have: (1) on the column 280

view, for one language, the performance from other 281

languages (except Java) trained models are close 282

to each other and reasonably less than that of this 283

language; (2) on the row view, the averaged scores 284

for each language trained models (except Java) are 285

also similar. On all→sym, we can also consider 286

the above two statements to be valid with Java. The 287

models are not only performant in the source lan- 288

guage, but also effective in others. It indicates that 289

we can train mLLM to generate good embed- 290

dings for a language without paired data. 291

Exception on Java The exception results of Java 292

could be possibly attributed to the unsatisfactory 293

training data. First, the asymmetric data, i.e., Code- 294

SearchNet, is easier than mMARCO. On asym- 295

metric Java evaluation, natural language models 296

could achieve comparable results to the asym-java 297

model, but, on asymmetric natural language eval- 298

uations, the latter is substantially weaker than the 299

former. Thus, hard-pairs of asymmetric data would 300

be beneficial. Second, the symmetric data (Big- 301

CloneBench) seem to be insufficient as it is limited 302

to only a few hundred contest problems, which 303

is smaller than the tens of thousands of semantic 304

groups in NLI data. A wide-coverage large-scale 305

dataset might be helpful. 306
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Model en de es fr ru ja zh ar id

en 43.85 19.40 39.99 39.40 17.53 27.06 39.93 43.64 31.43
de 39.53 35.08 36.70 36.50 21.31 29.10 36.93 41.87 31.66
es 41.75 20.88 41.82 40.23 18.50 26.92 39.94 45.06 34.64
fr 41.56 21.05 39.88 41.90 18.51 27.42 40.11 44.93 33.95
ru 36.33 22.13 32.56 33.35 31.61 29.69 27.07 40.47 28.38
ja 36.28 21.17 30.36 30.60 22.26 38.65 34.26 36.83 26.81
zh 39.91 18.48 35.53 35.68 16.44 26.36 42.04 41.94 28.93
ar 39.60 21.49 38.29 36.87 19.58 26.15 36.76 46.23 32.70
id 40.00 21.59 38.70 37.47 19.90 26.77 35.25 42.19 38.90

Table 3: Results of language generalization experiments
in asym→asym setting, with language codes in bold
included in the BLOOM pre-training, while the ones in
italic are not. Language information refer to Table 10.

0 10 20 30 40 50 60
(a) monolingual (x to x) score

en 30.0%
zh 16.2%
ar   4.6%
id   1.2%

0 10 20 30 40 50 60
(b) crosslingual averaged (avg. of y to x) score

en 30.0%
zh 16.2%
ar   4.6%
id   1.2%

0 1 2 3 4 5
(c) monolingual - crosslingual averaged

en 30.0%
zh 16.2%
ar   4.6%
id   1.2%

Figure 3: The plot of monolingual score (a), crosslingual
averaged score (b), and their difference (c) of natural
language evaluations on all→all setting. The lower
the ratio of a language in pre-training, the lower its
performance, and the more significant the improvement
brought by training data.

3.3 Analysis307

In this subsection, we further analyze multilingual308

performance and mechanism.309

How language pretraining ratio affect perfor-310

mance? To explore the relationship between the311

performance of each language and its pretraining312

ratio in mLLM, we focus on natural languages in313

all→all setting and present the monolingual per-314

formance, cross-lingual average performance, and315

the differences between them in Figure 3. From En-316

glish to Indonesian, we observe decreases in both317

monolingual and cross-lingual performance as well318

as an increase in their difference, indicating that319

models have poorer representation capabilities for320

language with lower pretraining ratios and larger321

gaps to rich-pretraining languages, regardless of322

whether fine-tuning is applied or not.323

Can model generalize to not pretrained lan-324

guages? The BLOOM models are not pretrained325

with some commonly used languages such as Ger-326
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(a) BLOOM-560m w/o finetuning

English text
Chinese text
Python code
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(b) BLOOM-560m w/ English finetuning
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Chinese text
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Figure 4: Visualization of 100 examples from Code-
SearchNet Python, where Chinese texts are translated by
GPT-3.5-turbo. Gold and pink markers represent paral-
lel sequences in different languages. Before finetuning,
(a), embeddings are separated by language, especially
English and Chinese. After English finetuning, (b), the
parallel sequences are well aligned to each other.

Model en zh ar id java

en-1b1 60.31 56.46 55.55 52.08 53.92

Scaling model size

en-3b 61.93+1.62 58.51+2.05 58.25+2.70 54.56+2.48 56.28+2.36

en-7b1 63.47+3.16 60.01+3.55 60.06+4.51 56.86+4.78 56.73+2.81

Full parameter tuning

en-1b1 61.55+1.24 58.98+2.42 56.53+0.98 51.68-0.4 53.53-0.39

Table 4: Results of English data trained models of scal-
ing and ablation experiments in all→all setting.

man and Japanese. To investigate such scenario, 327

we extend to more languages and focus on the 328

asym→asym setting. Table 3 displays the results 329

of three languages that are not covered by ROOTS, 330

i.e., German (de), Russian (ru) and Japanese (ja). 331

First, the models trained on pretrained languages 332

(e.g., en) are capable on them (e.g.,, en→de has 333

a small gap with de→de). Second, for an unpre- 334

trained language, with its fine-tuning data, mLLM 335

not only exhibits excellent performance in this lan- 336

guage itself but also acquires a certain level of 337

multilingual embedding ability (it also achieves 338

considerable scores on other languages). Overall, 339

mLLM achieves promising generalization. 340

Does performance correlate to language fami- 341

lies? It is also interesting to investigate whether 342

there is a connection between language family 343

and performance. Focusing rows of three Indo- 344

European languages (en, fr, es) and one Sino- 345

Tibetan language (zh) in Table 3. The results 346

show that the models trained on Indo-European lan- 347

guages indeed exhibit similar performance trends, 348

while the model trained on zh shows significant 349

differences on es, fr and ar, which indicates that 350

the language family is one potential factor. We 351

also provide a better visualization of the results in 352

Appendix Figure 5 . 353
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Avg. Class. Clust. PairClass. Rerank. Retr. STS Summ.
#Datasets (→) 56 12 11 3 4 15 10 1

e5-mistral-7b-instruct (Wang et al., 2024) 66.63 78.47 50.26 88.34 60.21 56.89 84.63 31.4
bge-large-en-v1.5 (Xiao et al., 2023) 64.23 75.97 46.08 87.12 60.03 54.29 83.11 31.61
SGPT-5.8B-msmarco (Muennighoff, 2022) 58.93 68.13 40.34 82 56.56 50.25 78.1 31.46
sgpt-bloom-7b1-msmarco (Scao et al., 2022) 57.59 66.19 38.93 81.9 55.65 48.22 77.74 33.6

en-all-bloom-1b1 58.36 69.74 40.14 83.06 53.22 45.89 80.88 30.31
en-all-bloom-3b 59.70 71.87 41.25 83.88 52.69 47.64 81.80 32.07
en-all-bloom-7b1 60.62 71.72 42.31 85.00 54.81 49.06 82.66 32.24

Table 5: Results on MTEB English subset. We include the scores of top-performing encoder model, i.e., BGE, and
deocder-only models from the leaderboard (retrieved on Feb 3th, 2024).

What contributes to the multilinguality? To ex-354

plore why monolingual fine-tuning can also lead to355

satisfactory performance in other languages, we vi-356

sualize the embeddings before and after fine-tuning357

using umap (McInnes et al., 2018). We select the358

top 100 text-code pairs from the CodeSearchNet359

test set, translate the text into Chinese, and ob-360

tain embeddings using the model trained on En-361

glish. As shown in Figure 4, before finetuning,362

the embeddings of each language are distributed363

separately. After finetuning, all embeddings are364

distributed according to semantics (the text-code365

pair and Chinese translation are clustered together).366

This indicates that monolingual contrastive learn-367

ing align embeddings in the shared semantic space368

across languages, thereby improving performance369

in other languages, consistent with the finding of370

Wang et al. (2022b).371

3.4 Scaling and Ablation on English372

In this subsection, we take English data as an ex-373

ample to explore scaling and ablation of LoRA.374

Scaling model size All previous experiments are375

conducted on BLOOM-1b1. Here, we extend the376

experiments to the 3b and 7b1 models. As shown377

in Table 4, the performance gradually increases as378

model size increases. Additionally, for a language,379

the smaller the pre-training ratio, the greater the380

improvement brought about by scaling.381

LoRA v.s. full parameter tuning The impact382

of data combination has been reflected in Table 2.383

Now we conduct the ablation of LoRA by compar-384

ing with the full-parameter finetuned model. In Ta-385

ble 4, although full parameter fine-tuning resulted386

in performance improvement in English, Chinese,387

and Arabic, it shows a decrease in Indonesian and388

Java, two languages with smaller proportions of389

pre-training. To ensure better performance across390

multiple languages, we opt for LoRA.391

4 Extended Evaluations 392

The second part experiment consists of evaluations 393

on more tasks and domains (§4.1), as well as di- 394

verse languages of multilingual (§4.2) and cross- 395

lingual (§4.3) tests. We evaluate BLOOM models 396

(1b1, 3b, 7b1) finetuned on English data. 397

4.1 Task and Domain Evaluation 398

Our method improves task generalization. 399

The MTEB benchmark (Muennighoff et al., 2023) 400

compiles a variety of embedding datasets for differ- 401

ent tasks and domains. We evaluate the generaliza- 402

tion on MTEB English subset, which is currently 403

one of the most comprehensive benchmark for En- 404

glish embeddings. Table 5 shows the results of the 405

English MTEB. Compared to decoder-only models 406

trained only on asymmetric data (SGPT series), our 407

model significantly improves the performance on 408

symmetric tasks (classification, clustering, STS). 409

We acknowledge that there is still room to go com- 410

pared to the best models, which are densely trained 411

on diverse datasets. As our goal is to build a unified 412

model for various languages, the score on English 413

is already competitive enough. 414

mLLM can generalize to unseen domains. To 415

assess the domain generalization, we focus on a 416

more challenging scenario, a Chinese multi-domain 417

retrieval benchmark (Long et al., 2022) which has 418

nearly no overlap with the training and finetuning 419

data. Table 6 presents the results. Our model is 420

on par with the in-domain continue pre-trained and 421

finetuned model (Karpukhin et al., 2020) (DPR-2), 422

which highlights the remarkable domain general- 423

ization ability of mLLM. 424

4.2 Multilingual Evaluation 425

mLLM outperforms supervised code models. 426

In main experiments (§3.2), Java is the only pro- 427

gramming language evaluated. Now we expand the 428

6



Model Dataset Backbone E-commerce Entertainment video Medical
MRR@10 Recall@1k MRR@10 Recall@1k MRR@10 Recall@1k

DPR-1 In-Domain BERT 0.270 0.921 0.254 0.934 0.327 0.747
DPR-2 In-Domain BERT-CT 0.289 0.926 0.263 0.935 0.339 0.769

text-embedding-ada-002 General GPT 0.183 0.825 0.159 0.786 0.245 0.593
sgpt-bloom-7b1-msmarco General BLOOM 0.242 0.840 0.227 0.829 0.311 0.675

en-all-bloom-1b1 General BLOOM 0.244 0.863 0.208 0.815 0.241 0.557
en-all-bloom-3b General BLOOM 0.267 0.871 0.228 0.836 0.288 0.619
en-all-bloom-7b1 General BLOOM 0.296 0.889 0.267 0.907 0.343 0.705

Table 6: Results on Multi-CPR (Long et al., 2022). “In-Domain” indicates that the adopted training dataset is from
the corresponding domain. “BERT-CT” notes that the BERT model is continuing pre-trained with domain corpus.

Go Ruby Python Java JS PHP Avg.

CodeBERT 69.3 70.6 84.0 86.8 74.8 70.6 76.0
GraphCodeBERT 84.1 73.2 87.9 75.7 71.1 72.5 77.4
cpt-code S 97.7 86.3 99.8 94.0 86.0 96.7 93.4
cpt-code M 97.5 85.5 99.9 94.4 86.5 97.2 93.5
sgpt-bloom-7b1-msmarco 76.79 69.25 95.68 77.93 70.35 73.45 77.24

en-all-bloom-1b1 80.96 72.43 98.49 83.09 75.11 77.77 81.31
en-all-bloom-3b 81.04 76.30 98.45 84.34 77.22 79.58 82.82
en-all-bloom-7b1 81.66 79.02 98.14 84.88 78.55 79.92 83.70

Table 7: Results on CodeSearchNet (Husain et al., 2019).
Scores of CodeBERT (Feng et al., 2020), GraphCode-
BERT (Guo et al., 2021), and OpenAI API cpt-code
are taken from Neelakantan et al. (2022).

Model ar en es ko

LASER2 67.47 76.73 79.67 70.52
LaBSE 69.07 79.45 80.83 71.32
paraphrase-multilingual-MiniLM-L12-v2 79.16 86.87 85.56 77.03
paraphrase-multilingual-mpnet-base-v2 79.1 86.99 85.14 83.41
sgpt-bloom-7b1-msmarco 76.42 87.07 86 66.89
multilingual-e5-base 74.52 87.83 86.74 79.95

en-all-bloom-1b1 81.31 89.85 86.36 61.43
en-all-bloom-3b 81.67 90.77 86.60 66.12
en-all-bloom-7b1 83.41 91.60 87.72 66.53

Table 8: Spearman correlation between embedding co-
sine similarity and labels on STS17 multilingual testset.
Language codes in italic are not included in the BLOOM
pre-training. Reference results are from MTEB.

evaluations to all languages in CodeSearchNet (Hu-429

sain et al., 2019), as shown in Table 7. Our models430

(1b1, 3b, and 7b1) are better than supervised base-431

lines of code (Feng et al., 2020; Guo et al., 2021),432

demonstrating that our approach is a promising so-433

lution in building text and code unified embeddings.434

In addition to python, our models has large margins435

to OpenAI APIs in others. This is reasonable given436

their pre-training on large-scale code-text pairs.437

Scaling can benefit unseen languages. We now438

extend the symmetric evaluation with languages439

that are not included in the BLOOM pre-training440

(that of the asymmetric refer to Table 3). We con-441

duct experiments on the multilingual testset of STS-442

17 (Cer et al., 2017). Following the STS evaluation443

Model fr-en zh-en de-en ru-en

LASER2 98.39 97.7 99.21 97.62
LaBSE 98.72 99.16 99.35 97.78
multilingual-e5-base 97.59 98.3 99.13 97.20
paraphrase-multilingual-mpnet-base-v2 96.89 97.56 98.59 96.44
paraphrase-multilingual-MiniLM-L12-v2 94.99 95.63 97.11 95.06
sgpt-bloom-7b1-msmarco 97.06 97.96 54.00 45.30

en-all-bloom-1b1 97.76 97.70 38.61 23.67
en-all-bloom-3b 98.29 98.82 71.18 66.92
en-all-bloom-7b1 98.52 98.77 90.11 83.74

Table 9: BUCC F1 scores from MTEB. Languages in
italic are not included in the BLOOM pre-training. Base-
line results are retrieved from MTEB.

protocol of MTEB, we use the Spearman correla- 444

tion between the cosine similarity of the sentence 445

embeddings and the human-annotated scores (from 446

1 to 5) as the metric. Table 8 compares the results 447

of our models with baselines. For languages in- 448

cluded in the BLOOM pre-training, our models 449

are the best. For the unseen language (marked 450

italic), our models do not give competitive perfor- 451

mance. Nonetheless, parameter scaling leads to 452

the increase of language capabilities, resulting in 453

improvement scores. 454

4.3 Cross-lingual Evaluation 455

Scaling aligns unseen languages with English. 456

In Table 8, it is evident that parameter scaling 457

can enhance monolingual performance for unseen 458

languages. We now investigate whether this find- 459

ing still holds for cross-lingual tasks and inquire 460

whether unseen languages are aligned with En- 461

glish. We evaluate on the BUCC bi-text mining 462

task (Zweigenbaum et al., 2016), which aims to 463

find parallel sentences, often translations, from two 464

monolingual corpora (French / Chinese / German 465

/ Russian and English). For fair comparisons, we 466

adopt the setting and baselines of MTEB (Muen- 467

nighoff et al., 2023). Table 9 shows the F1 scores 468

on the BUCC testset. Similar to the multilingual re- 469

sults, on the pre-trained language pairs (i.e., fr-en 470
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and zh-en), our models are comparable with the471

state-of-the-art approach, LABSE (Feng et al., 2022).472

On the half-covered language pairs (de-en and473

ru-en), there are consistent improvements with the474

model size growth, demonstrating that the embed-475

ding spaces of unseen languages are aligned to that476

of English. Hence, we can affirmatively answer the477

research question posed earlier.478

5 Related Work479

Text and sentence embeddings are useful for many480

downstream tasks and applications (Karpukhin481

et al., 2020; Gao and Callan, 2021). Early studies482

start from similar ideas of word vectors (Hill et al.,483

2016; Lin et al., 2017; Pagliardini et al., 2018), also484

shift to neural networks (Conneau et al., 2017) then485

pre-trained transformers (Cer et al., 2018; Reimers486

and Gurevych, 2019; Ni et al., 2022). The sub-487

sequent work mainly focus on using contrastive488

loss to supervise or improve representation learn-489

ing (Zhang et al., 2020; Giorgi et al., 2021; Kim490

et al., 2021; Gao et al., 2021b; Yan et al., 2021;491

Cheng et al., 2023), translation augmentation (Wi-492

eting et al., 2020; Zhang et al., 2021), large-scale493

pre-training (Yang et al., 2021; Neelakantan et al.,494

2022; Wang et al., 2022a), and prompt (Su et al.,495

2023). As most of them are under specific tasks,496

Muennighoff et al. (2023) compile MTEB with497

diverse tasks, domains, and languages for evalua-498

tions. Recently, embeddings have gained attention499

and a batch of large-scale pretrained models have500

emerged, such as E5 (Wang et al., 2022a), BGE501

(Xiao et al., 2023), GTE (Li et al., 2023), UAE502

(Li and Li, 2023). Most of them are targeted to503

and evaluated on English, while we explore the504

languages beyond English.505

Pre-trained transformer encoders, i.e., BERT506

(Devlin et al., 2019), or that of T5 (Raffel et al.,507

2020) are currently the mainstream for embed-508

ding models, which are computation-effective than509

encoder-decoders (Ni et al., 2022). GPT-style510

decoder-only models (Radford et al., 2018) are511

promising alternatives, since they have theoreti-512

cally stronger representations (Dong et al., 2021;513

Su, 2023). Pioneering GPT-based studies show514

impressive performance on both text and code515

(Neelakantan et al., 2022), especially for semantic516

search (Muennighoff, 2022). We continue this line,517

exploring the unified embeddings across multiple518

natural and programming languages. A concur-519

rent work (Wang et al., 2024) fine-tune Mistrial-7B520

(Jiang et al., 2023) with data from diverse source 521

and carefully crafted instructions, showing state-of- 522

the-art performance on English MTEB. Taking into 523

account a more general scenario with various lan- 524

guages, we do not use complex prompts, but only 525

a set of special symbols for asymmetric inputs. 526

Multi- and cross-lingual text embeddings fol- 527

low the developments of English ones, from cross- 528

lingual word embeddings (Ruder et al., 2019) to 529

RNNs (Artetxe and Schwenk, 2019) and transform- 530

ers (Chidambaram et al., 2019; Yang et al., 2020; 531

Reimers and Gurevych, 2020; Feng et al., 2022). 532

To learn models without enough supervisions, 533

translation information (Artetxe and Schwenk, 534

2019; Chidambaram et al., 2019; Goswami et al., 535

2021; Feng et al., 2022) and multilingual pre- 536

trained encoders (Reimers and Gurevych, 2020; 537

Liu et al., 2021) are explorated to improve embed- 538

dings (Chen et al., 2024). However, such BERT- 539

like multilingual encoders do not support code, 540

which is currently one of the crucial requirements. 541

Therefore, we shift our focus to pre-training de- 542

coder models that can simultaneously support natu- 543

ral languages and programming languages, aiming 544

to evaluate and analyze the potential of construct- 545

ing universal embeddings from them. 546

6 Conclusion 547

We propose the development of unified embed- 548

dings models (universal embedders) for various 549

tasks across multiple natural and programming lan- 550

guages based on multilingual decoder-only mod- 551

els. To evaluate the potential, we present straight- 552

forward strategies to construct embedding mod- 553

els from them, and design a universal embedding 554

benchmark for evaluation and analysis. Through 555

extensive experiments, we demonstrated the ver- 556

satility of embedders constructed from mLLMs, 557

showing their capabilities cross languages and 558

tasks. The models can generate reasonably good 559

embeddings for languages that have not been fine- 560

tuned or pre-trained, and the quality can be signifi- 561

cantly improved with the corresponding fine-tuning 562

data. These characteristics strongly indicate the 563

great potential of mLM for building universal em- 564

bedders. Additionally, we provide various analyses 565

and extended evaluations to reveal the interesting 566

properties of the model. We hope that our work 567

could inspire more open-source high-quality uni- 568

versal embedders. 569
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Limitations570

This work suffers from three primary limitations.571

Firstly, we only evaluate the BLOOM and Qwen1.5572

models as they are currently the only open-source573

decoder-only models available for multiple natural574

and programming languages. We hope that in the575

future, there will be more model options to consider.576

Secondly, we train the model using only monolin-577

gual data. We have chosen to focus on monolingual578

fine-tuning for a clearer analysis, which helps us579

to fully analyze the intrinsic characteristics of dif-580

ferent languages and the performance relationships581

between them. We left mixed-language training as582

future work. Thirdly, there were some anomalies583

in the training and evaluation for the code. We584

are committed to finding higher-quality data to en-585

hance code evaluations.586
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Code Language Family Subfamily in ROOTS (%)

ar Arabic Afroasiatic Semitic 4.6
zh Chinese Sino-Tibetan Sinitic 16.2
de German Indo-European Germanic -
en English Indo-European Germanic 30.04
es Spanish Indo-European Italic 10.8
fr French Indo-European Italic 12.9
hi Hindi Indo-European Indo-Iranian 0.7
id Indonesian Austronesian Malayo-Polynesian 1.2
ja Japanese Japonic - -
ru Russian Indo-European Balto-Slavic -

Table 10: Languages shared by mMarco and MIRACL.
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A Appendix933

en es fr zh ar id

30

40
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zh

Figure 5: The plot of English (en), French (fr), Spanish
(es), Chinese (zh) from Table 3, where en, fr and es
are all in the Indo-European family and with similar
performance trends. While the zh trained model shows
differences to Indo-European ones in es, fr, and ar.

A.1 Experiments on Qwen1.5 934

Qwen1.5 models are recently released multilingual 935

LLMs, we conduct the main experiments on the 936

Qwen1.5-0.5B to examine the multilingual perfor- 937

mance (Table 11) and evaluate 0.5B, 1.8B and 4B 938

English finetuned models on MTEB English (Ta- 939

ble 12). In Table 11, Qwen1.5-0.5B is comparable 940

to BLOOM-1b1 or even better on English (en), 941

Chinese (zh), and Java. But it performs poorly in 942

Arabic (ar) and Indonesian (id). In MTEB English, 943

as shown in Table 12, the Qwen1.5 models are 944

significantly better than BLOOM models. 945

A.2 Additional Design Analysis 946

We now conduct the ablation analysis to identify 947

the contributions of different design aspects of our 948

approach. We hope that this analysis can help build- 949

ing more robust decoder-based embedding models. 950

Table 13 presents the MTEB-English performance 951

of BLOOM-560M models finetuned in different 952

experimental settings. 953

NLI data improve symmetric tasks. We first 954

investigate the effect of symmetric NLI data on 955

different tasks. In the line No.1 of Table 13, we re- 956

move the NLI data and finetune the model solely us- 957

ing asymmetric retrieval data (MSMARCO). Com- 958

pared with our model in line No.0, the performance 959

of classification (Class.) and STS is significantly 960

decreased, which are typical symmetric tasks. How- 961

ever, these two tasks are not affected by the removal 962

of MSMARCO data (line No.2). This demonstrates 963

the crucial role of symmetric NLI data in achieving 964

optimal performance in these tasks. 965

Retrieval data are irreplaceable. As stated 966

above, finetuning using only NLI data (line No.2) 967

is competitive enough for classification and STS. 968

However, it can not provide a satisfactory score 969

for retrieval (Retr.), i.e., 20.78 v.s. 40+ of others, 970

and also leads a drop in clustering (Clust.). This 971
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Setting Eval → Asym Sym All

Train ↓ Lang en zh ar id java avg. en zh ar id java avg. en zh ar id java avg.

BLOOM-1b1

All

en 42.97 37.96 42.85 32.09 50.70 41.31 77.65 74.95 68.26 72.06 57.14 70.01 60.31 56.46 55.55 52.08 53.92 55.66
zh 38.92 40.48 41.08 28.46 49.79 39.75 77.68 75.00 68.39 71.58 58.27 70.18 58.30 57.74 54.73 50.02 54.03 54.96
ar 38.43 36.21 45.55 32.33 49.07 40.32 77.76 75.12 69.74 73.58 57.21 70.68 58.09 55.67 57.65 52.95 53.14 55.50
id 39.48 34.08 41.41 38.20 48.58 40.35 77.69 74.13 68.78 75.39 56.82 70.56 58.58 54.11 55.09 56.79 52.70 55.45

java 14.62 20.31 21.97 15.02 51.56 24.70 72.60 72.24 62.74 68.12 76.12 70.37 43.61 46.28 42.36 41.57 63.84 47.53

Qwen1.5-0.5B

All

en 42.42 38.36 24.66 20.41 52.63 35.70 79.23 75.33 52.96 61.09 60.28 65.78 60.82 56.85 38.81 40.75 56.46 50.74
zh 40.03 41.02 24.71 17.68 53.25 35.34 78.82 75.79 52.89 60.48 61.23 65.84 59.42 58.41 38.80 39.08 57.24 50.59
ar 36.32 33.34 37.64 22.85 52.25 36.48 76.85 73.43 62.32 63.02 58.77 66.88 56.59 53.38 49.98 42.94 55.51 51.68
id 38.22 34.97 29.67 34.54 53.81 38.24 77.32 73.68 54.96 69.85 60.44 67.25 57.77 54.32 42.32 52.20 57.12 52.75

java 18.19 24.25 2.30 5.36 50.65 20.15 71.90 70.18 44.49 54.89 75.60 63.41 45.04 47.21 23.39 30.13 63.12 41.78

Table 11: Main Results of BLOOM-1b1 and Qwen1.5-0.5B. The socre of the asym (or sym) is the macro average of
an in-domain test and a out-of-domain test. All tests are listed in §3.1. The score of the all is the macro average of
asym and sym.

Avg. Class. Clust. PairClass. Rerank. Retr. STS Summ.
#Datasets (→) 56 12 11 3 4 15 10 1

e5-mistral-7b-instruct (Wang et al., 2024) 66.63 78.47 50.26 88.34 60.21 56.89 84.63 31.4
bge-large-en-v1.5 (Xiao et al., 2023) 64.23 75.97 46.08 87.12 60.03 54.29 83.11 31.61
SGPT-5.8B-msmarco (Muennighoff, 2022) 58.93 68.13 40.34 82 56.56 50.25 78.1 31.46
sgpt-bloom-7b1-msmarco (Scao et al., 2022) 57.59 66.19 38.93 81.9 55.65 48.22 77.74 33.6

en-all-bloom-1b1 58.36 69.74 40.14 83.06 53.22 45.89 80.88 30.31
en-all-bloom-3b 59.70 71.87 41.25 83.88 52.69 47.64 81.80 32.07
en-all-bloom-7b1 60.62 71.72 42.31 85.00 54.81 49.06 82.66 32.24

en-all-qwen1.5-0.5b 58.89 71.71 39.87 83.61 53.81 46.43 80.46 31.62
en-all-qwen1.5-1.8b 60.73 72.83 42.91 84.75 55.19 48.79 81.66 31.31
en-all-qwen1.5-4b 62.41 74.53 44.61 85.58 55.35 51.36 82.98 31.27

Table 12: Results on MTEB English subset. We include the scores of top-performing encoder model, i.e., BGE, and
deocder-only models from the leaderboard (retrieved on Feb 3th, 2024).

No. Model Setting Overall Class. Clust. PairClass. Rerank. Retr. STS Summ.

0 Our-bloom-560m 55.80 68.04 36.89 81.05 52.60 41.19 79.93 32.06
1 w/o allnli 54.01 62.52 37.12 78.90 52.95 42.19 75.57 29.16
2 w/o msmarco 49.14 67.74 32.84 78.81 50.02 20.78 79.98 29.84
3 w/o multiple negatives 55.70 68.19 37.30 80.60 52.87 40.63 79.63 31.49
4 w/ weightedmean 55.37 66.60 36.42 80.26 52.98 42.14 78.89 30.58

5 sgpt-bloom-560m 53.01 62.89 36.58 76.61 52.06 39.96 74.40 30.09
6 w/ learnable special token + lasttoken pooling 54.24 62.45 38.33 77.89 53.22 42.22 75.69 29.48

Table 13: Ablation study. MTEB English results of bloom-560m finetuned by different settings.
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Train → raw english zh ar id java
Eval ↓ 1b1 1b1-asym 1b1-sym 1b1-all 1b1-all-full 3b-all 7b1-all 1b1-asym 1b1-sym 1b1-all 1b1-asym 1b1-sym 1b1-all 1b1-asym 1b1-sym 1b1-all 1b1-sym 1b1-asym 1b1-all

en

mMarco 0.01 39.79 8.8 38.49 42.72 40.49 41.98 36.21 7.94 34.99 35.86 7.45 34.24 36.34 8.7 35.83 0 13.58 12.95
Miracl 0 47.91 3.08 47.44 48.41 48.3 50.42 43.6 2.36 42.86 43.34 4.33 42.62 43.67 6.32 43.12 0 17.15 16.29

STSBenchmarkMultilingual 12.21 79.53 85.96 85.15 85.35 86.76 87.37 78.75 86.42 84.36 78.81 84.54 84.24 79.16 85.32 84.28 23.54 73.24 73.56
STS17Extend 35.44 86.47 89.84 89.85 90.01 90.77 91.6 84.98 88.82 88.88 85.03 88.01 88.42 85.49 88.9 88.88 37.63 80.83 82.51

MassiveIntentClassification 28.22 67 70.92 67.8 67.38 70.18 72.01 68.24 70.06 68.75 68.31 71.01 69.18 67.7 69.72 68.8 34.75 67.5 67.16

zh

mMarco 0.02 27.01 8.01 26.27 30.02 28.43 29.69 31.06 6.86 30.19 27.12 7.06 26.32 25.95 5.83 25.07 0.04 12.91 13.41
Miracl 0 52.84 10.92 49.66 54.14 52.75 55.69 53.03 7.65 50.77 46.41 9.31 46.1 44.55 3.56 43.09 0 25.89 27.22

STSBenchmarkMultilingual 25.41 74.62 79.59 78.89 80.68 80.82 81.49 75.83 81.65 80.72 75.47 79.66 79.13 74.4 79.26 78.05 33.03 71.09 71.52
STS17Extend 38.29 81.77 85.99 86.9 87.87 88.47 88.86 83.87 87.49 87.62 82.23 85.19 86.19 80.48 84.65 84.41 41.67 79.69 79.52

MassiveIntentClassification 31.75 65.8 69.67 67.01 67.49 68.22 69.5 65.51 68.72 65.82 66.78 69.59 67.59 65.95 69.29 67.03 41.5 69.25 68.95

ar

mMarco 0.05 22.04 4.04 21.33 24.35 23.79 25.97 22.85 5.75 22.24 27.36 5.95 26.48 23.59 7.04 22.99 0.01 8.28 9.75
Miracl 0.07 65.25 5.7 64.36 63.69 68.16 70.26 61.02 7.78 59.91 65.09 11.19 64.63 60.8 13.53 59.82 0 32.6 34.19

STSBenchmarkMultilingual 29.51 69.54 75.94 75.94 79.16 79.34 81.44 72.14 78.49 77.41 73.32 79.39 79.78 73.34 77.75 77.8 20.52 66.88 67.64
STS17Extend 31.43 72.61 80.68 81.31 82.26 81.67 83.41 74.55 80.53 80.9 76.7 83.38 84.17 76.74 80.27 81.76 16.35 67.29 66.26

MassiveIntentClassification 19.08 56.46 59.44 57.88 57.38 60.53 61.57 57.29 58.02 57.62 56.45 59.4 57.51 56.43 58.41 57.77 28.1 58.6 58.53

id

mMarco 0.01 20.04 4.89 21.41 21.92 26.16 29.26 19.32 4.97 18.97 24.86 5.06 24.16 33.03 6.29 32.03 0.01 6.92 6.67
Miracl 0 42.82 6.71 42.77 40.42 44.2 45.85 38.54 8.78 37.95 40.54 9.69 40.49 44.77 10.47 44.36 0.03 20.13 23.38

STSBenchmarkMultilingual 24.91 72.11 79.58 78.36 80.72 81.03 83.2 72.73 81.06 78.75 73.1 80.63 79.78 76.89 83.13 82.91 24.12 69.54 69.4
STS17Extend 47.12 80.32 86.55 86.25 88.51 87.87 89.63 79.19 86 84.31 81.1 86.77 87.28 83.53 87.98 88.98 44.45 77.11 76.83

MassiveIntentClassification 22.7 60.81 64.77 61.82 59.77 63.43 65.91 61.18 63.67 61.62 62.6 66.09 63.63 63.54 66.79 64.83 32.74 63.42 63.13

java

CodeSearchNet 1.00 82.45 73.27 83.09 82.84 84.33 84.87 82.77 75.17 82.64 82.4 73.81 81.66 81.1 62.46 81.41 3.14 88.53 88.47
xCodeEvalRetrievalNlCode 0 12.74 11.4 18.31 15.94 20.06 20.43 15.72 11.08 16.94 17.78 11.91 16.48 15.7 9.84 15.76 0 17.47 14.64

BigCloneBench 19.14 48.05 43.83 45.96 48.67 50.76 50.18 47.53 44.71 47.77 44.19 43.97 45.63 44.79 42.4 45.42 94.61 46.81 95.48
GoogleCodeJam 61.79 67.43 68.28 68.33 66.67 69.98 71.45 69.55 69.17 68.78 69.67 67.57 68.8 70.95 66.79 68.22 52.07 62.72 56.77

Table 14: Detailed results of Table 2 on our compiled universal embedding benchmark. raw-1b1 is un-finetuned
BLOOM 1b1 model tested with <EOS> embeddings.

suggests that retrieval data are crucial for building972

unified embedding models.973

Multiple negatives only help retrieval. In line974

No.3 of Table 13, we keep only one negative exam-975

ple in contrastive learning. Compared to our model976

in line No.0, only the performance of retrieval is977

decreased, while other tasks have no significant978

change. Considering that learning multiple nega-979

tives greatly increase the computational cost and980

training train, one can freely choose whether or not981

to use it according to the specific requirements.982

Last special token is better representation.983

With regard to sequence encoding by decoder-984

based models, both Neelakantan et al. (2022) and985

Muennighoff (2022) append special tokens to the986

start and end of the input sequence. On the se-987

lection of the final embedding output, Neelakan-988

tan et al. (2022) use the last special token, while989

Muennighoff (2022) use a position weighted mean990

pooling of the hidden states. In line No.4 of Table991

13, we employ the weighted mean pooling on our992

model and observe a slight performance decrease.993

Additionally, we also try to use the last special994

token on SGPT (Muennighoff, 2022), achieving995

better average scores (line No.6) compared with996

the sgpt-bloom-560m we implemented. Our ex-997

periments demonstrate that the last special token is998

more effective for unified embeddings models.999

en-all zh-all ar-all id-all java-all

en

mMarcoMultilingual 38.56 36.06 33.01 34.30 15.65
Miracl 46.28 44.00 39.63 42.14 20.73
STSBenchmarkMultilingual 84.64 84.30 79.28 81.22 71.93
STS17Extend 90.80 90.20 88.08 88.29 77.70
MassiveIntentClassification 70.73 70.39 70.02 69.89 68.97

zh

mMarcoMultilingual 26.14 29.51 23.19 23.79 13.69
Miracl 50.58 52.53 43.48 46.15 34.80
STSBenchmarkMultilingual 77.57 79.79 72.53 74.51 68.07
STS17Extend 88.42 89.15 84.89 85.27 76.85
MassiveIntentClassification 67.67 67.11 68.15 67.47 67.90

ar

mMarcoMultilingual 12.40 12.79 21.52 15.84 1.80
Miracl 36.92 36.63 53.76 43.51 2.79
STSBenchmarkMultilingual 62.27 62.47 73.10 64.17 54.03
STS17Extend 59.46 58.79 77.54 64.59 43.90
MassiveIntentClassification 45.06 45.14 49.32 45.54 40.02

id

mMarcoMultilingual 14.54 13.36 16.57 27.53 3.17
Miracl 26.28 22.01 29.13 41.55 7.55
STSBenchmarkMultilingual 65.61 63.97 66.63 77.18 54.28
STS17Extend 71.77 72.19 76.81 86.16 65.59
MassiveIntentClassification 53.48 52.87 54.32 58.03 49.85

java

CodeSearchNet 83.95 83.00 82.47 83.00 88.25
xCodeEvalRetrievalNlCode 21.31 23.51 22.03 24.62 13.04
BigCloneBench 48.56 50.68 45.95 48.18 96.85
GoogleCodeJam 72.00 71.78 71.59 72.69 54.35

Table 15: Detailed results of Qwen1.5-0.5B of Table 11.
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