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Abstract

Graph Neural Networks (GNNs) have displayed
considerable promise in graph representation
learning across various applications. The core
learning process requires the initialization of
model weight matrices within each GNN layer,
which is typically accomplished via classic ini-
tialization methods such as Xavier initialization.
However, these methods were originally moti-
vated to stabilize the variance of hidden embed-
dings and gradients across layers of Feedforward
Neural Networks (FNNs) and Convolutional Neu-
ral Networks (CNNs) to avoid vanishing gradients
and maintain steady information flow. In contrast,
within the GNN context classical initializations
disregard the impact of the input graph structure
and message passing on variance. In this paper,
we analyze the variance of forward and backward
propagation across GNN layers and show that the
variance instability of GNN initializations comes
from the combined effect of the activation func-
tion, hidden dimension, graph structure and mes-
sage passing. To better account for these influence
factors, we propose a new initialization method
for Variance Instability Reduction within GNN
Optimization (Virgo), which naturally tends to
equate forward and backward variances across
successive layers. We conduct comprehensive ex-
periments on 15 datasets to show that Virgo can
lead to superior model performance and more sta-
ble variance at initialization on node classification,
link prediction and graph classification tasks.
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1. Introduction
Graph Neural Networks (GNNs) (Hamilton et al., 2017;
Veličković et al., 2017; Kipf & Welling, 2016; Xu et al.,
2018a; Monti et al., 2017) are a class of deep learning
models specifically designed to process and analyze graph-
structured data, allowing for the integration of both node
and edge information for tasks such as node classification,
link prediction, and graph classification. GNNs have re-
cently shown great success in graph representation learn-
ing in service of various downstream applications includ-
ing social networks (Ying et al., 2018; Rossi et al., 2020),
recommendation (Fan et al., 2019; Yu et al., 2021), fraud
detection (Wang et al., 2019; Liu et al., 2020), and life sci-
ences (Strokach et al., 2020; Jing & Xu, 2021; Nguyen et al.,
2020).

To initiate model training, learnable GNN weight matrices
need to be initialized in one way or another. In the past,
more traditional deep learning models (e.g., CNNs, MLPs)
have typically adopted initialization schemes designed to
improve training outcomes by stabilizing the variance of
forward and backward passes (LeCun et al., 2012; Glorot
& Bengio, 2010; He et al., 2015), the motivation being that
unstable variances could otherwise lead to undesirable phe-
nomena such as vanishing gradients (LeCun et al., 2012)
or poor information flow (Glorot & Bengio, 2010). The
GNN community has largely borrowed these same schemes,
particularly the Xavier (Glorot & Bengio, 2010) and Le-
cun (LeCun et al., 2012) initialization paradigms. For exam-
ple, the Deep Graph Library (DGL) (Wang et al., 2020) uses
Xavier to initialize the layers of GNN architectures such as
GCN (Kipf & Welling, 2016), GraphSAGE (Hamilton et al.,
2017), GAT/GATv2 (Veličković et al., 2017; Brody et al.,
2021) and SGC (Wu et al., 2019) models. Similarly, the Py-
Torch Geometric (PyG) package (Fey & Lenssen, 2019) also
uses Xavier to initialize models like GCN, GAT/GATv2, and
RGCN (Schlichtkrull et al., 2018). Meanwhile, RGCN and
ChebNet (Defferrard et al., 2016) layers within DGL and
GraphSAGE layers within PyG adopt Lecun initialization.

And yet despite this widespread adoption within GNN train-
ing, it remains unclear the degree to which the original justi-
fications for existing initializations actually still apply when
we venture beyond the non-GNN architectures for which
they were first designed. Indeed, prior analysis has largely
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relied on the assumption of i.i.d. training instances devoid
of graph structure (and all neurons within each layer having
the same variance), which greatly simplifies the selection
of an appropriate distribution for drawing initial matrices.
The latter is usually a zero-mean uniform or Gaussian dis-
tribution with variance chosen to reduce the influence of
the model hidden dimension (LeCun et al., 2012; Glorot &
Bengio, 2010; He et al., 2015) or activation function (He
et al., 2015) on the variance. However, GNN message pass-
ing layers and graph structure can impact initial variances in
more nuanced ways, for example, through dependencies in-
troduced by varying node-wise receptive-field sizes. Hence
prior assumptions may no longer apply and it behooves us
to consider GNN-specific alternatives.

For this purpose, we first present derivations for forward and
backward variances within a certain class of message pass-
ing GNNs. Specifically, for any given layer, we decompose
the variance of each node into the sum of variances over
message propagation paths, and then further decompose the
variance of each message propagation path into the sum
of variances over weight propagation paths. As a result of
these cascaded decompositions, we obtain expressions for
the variance of each node in terms of the variance of weight
matrices. These expressions disclose the combined impact
of hidden dimension, activation function, graph structure,
and message aggregation mechanism of the variance of hid-
den embeddings and gradients.

Based on these insights, we next propose a simple but
effective initialization method called Virgo for Variance
Instability Reduction within GNN Optimization to mitigate
the influence of these factors. Defining the overall variance
within each layer as the mean over the variances of all nodes,
Virgo minimizes the difference of overall variance between
successive layers, and thereby derives the variance of dis-
tributions, such as zero-mean Gaussian or uniform, from
which we can sample initial weight matrices for GNNs. Fi-
nally, we conduct comprehensive experiments on 15 datasets
across three popular graph tasks, namely, node classification,
link prediction, and graph classification. We compare Virgo
with existing initialization methods including Lecun, Xavier
and Kaiming. Overall, we make following contributions:

• We derive and analyze expressions for the variance of
GNN embeddings (forward pass) and gradients (back-
ward pass), showcasing how these quantities are af-
fected by the joint influences of hidden dimension,
activation function, graph structure, and GNN message
passing mechanisms.

• We propose a new initialization method named Virgo
for GNN weight matrices based on our analysis, which
minimizes the difference of the overall variance be-
tween successive layers.

• We evaluate GNNs with different initializations on
node classification, link prediction and graph classifi-
cation tasks. Virgo helps improve prediction accuracy
by up to 7% and well stabilizes variances at the initial-
ization.

2. Preliminaries
This section introduces basic GNN concepts and initializa-
tion methods. And for convenience, we summarize our
adopted notational conventions in Table 1.

2.1. Graph Neural Networks

Given a graph G = (X,A), where X is the feature matrix
of nodes, A is the graph adjacency matrix, the forward
propagation over G of the l-th GNN layer can be defined as:

hl
i = σ

 ∑
j∈N(i)

dijh
l−1
j W l−1

 . (1)

In this expression, N(i) is a set including 1-hop neighbors of
node i, σ is an activation function, which we assume to be
ReLU in this paper, W l ∈ Rm

(l)
1 ×m

(l)
2 is a weight matrix,

and hl
i denotes the hidden embedding of the i-th node. We

also set the scaling constant dij to 1/
√

(di + 1)(dj + 1)
following the GCN model (Kipf & Welling, 2016), where
di and dj are the degrees of node i and j respectively. We
denote the t-th element of the hidden embedding hl

i by hl
i,t.

h̄l
i and var(hl

i) = Vart(h
l
i,t) denote the mean and variance

over neurons within hl
i respectively. We use var(hl) to

denote the mean over var(hl
i) of all nodes i. var(hl) is

also termed as the forward variance of the lth layer. Anal-
ogously, the mean over var(∂Loss

∂hl
i

) of all nodes i, denoted

by var(∂Loss
∂hl ), is termed as the backward variance of

the lth layer, where Loss refers to a standard cross entropy
objective we assume throughout the paper. Hereinafter we
use variance to denote these two types of variance without
ambiguity.

At initialization, we assume that neurons within hl
i are in-

dependent and identically distributed (i.i.d). The same as-
sumption also applies to elements of W l. Analogously, we
assume that for all neurons t, t′, two certain nodes i, j and a

layer l,
∂hL

j,t′

∂hl
i,t

are i.i.d. We also assume that elements of W l

are independent to elements of W l′ , where l is not equal
to l′. The input features h0

i are random variables and the
following derivations are conditioned on the input features
of the given graph G.

2.2. Classic Initializations Used by GNNs

We denote the (i, j)-th of the weight matrix W l by wl
i,j .

In the following, we remove subscripts (i, j) without caus-
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Table 1. Notation table.

W l Weight matrix of the l-th GNN layer, W l ∈ Rm
(l)
1 ×m

(l)
2 . W l

ij is denoted by wl
i,j

ĥl
i, h

l
i Embedding of node i at the l-th layer before and after the activation. h0

i is input feature of node i

i, j Node index
t Neuron index

l, L Layer index and number of layers of a GNN
hl
i,t, w

l
t1,t2 The t-th element of embedding of node i at l-th layer, and (t1, t2)-th element of W l

dij Re-normalization coefficient between node i and j following the definition of GCN (1)

N, N(i) Set of nodes in G and one-hop neighbors of node i

[hl
i]p

Message propagation path indexed by p. This path has length l and takes i as the destination
node. The set of all such p is denoted as Pi,l

[hl
i]p,t,ϕ

Weight propagation path indexed by ϕ. This path goes along the message propagation path p, is
connected to the t-th neuron of node i and has length l. The set of all such ϕ is denoted as Φi,p,t

δ(h), δ(h) δ(h) is an indicator function of h, which is equal to 1 when h is greater than 0,
and 0 when h is smaller than or equal to 0. δ(h) is a vector, of which elements are δ(h)

⊙,
∏

⊙ Element-wise product and cumulative element-wise product

ing ambiguity. Before the model training, elements of the
weight matrix W l are sampled from a probability distri-
bution P (wl), such as a uniform or Gaussian distribution.
The mean of the distribution is typically set to zero, and
thus the variance, denoted by var(wl), determines the form
of the distribution. Classic initialization methods, such as
Xavier and Lecun, tend to stabilize variance across layers
by setting an appropriate var(wl) for all layers. Stabilizing
variance means equating var(hl) for ∀l ∈ 0 · · ·L− 1, and
equating var(∂Loss

∂hl ) for ∀l ∈ 0 · · ·L− 1. In the context of
CNNs, hl denotes an element of a flattened feature map of
the lth layer. For example, to stabilize forward variance, Le-
cun, Xavier and Kaiming initialization set var(wl) to 1

3m
(l)
1

,
1

m
(l)
1

and 2

m
(l)
1

respectively. Meanwhile, Xavier and Kaim-

ing initialization set var(wl) to 1

m
(l)
2

and 2

m
(l)
2

respectively

to stabilize backward variance. Note that Xavier sets the
final var(wl) to the harmonic average of 1

m
(l)
1

and 1

m
(l)
2

, ob-

taining a trade-off between forward and backward variance
stabilization. Classic initializations might lead to subopti-
mal performance for GNNs though they have been widely
used by modern GNN architectures, since they disregard the
impact of input graph structure and message mechanisms
of GNN on variance. Furthermore, they implicitly assume
that forward outputs and backward gradients of all neurons
within each layer have the same variance. We next derive
new variance expressions that directly take graph structure
into account.

3. Forward and Backward Variance
In this section, we show an overview of derivations that
finally provide analytic expressions of forward variance
of GNNs defined by (1). The backward variance follows

similar derivations. Then we present variance expressions
in terms of var(wl) based on given derivations. Proofs
of theorems and empirical verification of assumptions are
presented in the Appendix A.

Firstly, to simplify subsequent derivations, we adopt a mod-
ification, proposed by (Xu et al., 2018b), to the activation
function in the original GCN formulation (1). Given an
arbitrary vector x, we introduce an indicator function δ(x)
that maps x into a binary vector, where each element is 1 if
the corresponding element in x is greater than 0, and 0 oth-
erwise. z = σ(x) is thereby rewritten by z = δ(x)⊙ x. In
this paper, we originally intend to investigate the influence
of σ(x) on z. The nesting of the activation function and the
input vector makes such investigation intractable. After the
proposed modification decouples the nesting, we are able
to investigate the influence of δ(x) and x on z separately,
where δ(x) is a simple 0-1 vector. We therefore convert (1)
into the following equations:

ĥl−1
i =

∑
j∈N(i)

dijh
l−1
j W l−1

hl
i = δ(ĥl−1

i )⊙ ĥl−1
i .

(2)

3.1. The First Variance Decomposition

Based on (2), we now decompose the forward variance into
the sum over variance of message propagation paths. As
proposed by (Xu et al., 2018b; Gasteiger et al., 2022), we
can decompose the acyclic GNN computation graph into
a set of message propagation paths from the input to the
l-th layer such that the embedding hl

i can be viewed as
a summation over message propagation paths of length l.
The full details of how we conduct the decomposition are
presented in Appendix C.
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We denote an ordered sequence describing nodes along
a message propagation path from node i to node jl−1 by
p = {i, j1, j2, · · · jl}. The product set of neighbors {N(i)×
N(j1) · · ·N(jl−2)×N(jl−1)} is denoted by N(i, jl−1). The
decomposition results in:

hl
i =

∑
p∈

N(i,jl−1)

[(

l−1∏
k1=0

⊙

δ(ĥl−k1−1
jk1

))(

l−1∏
k2=0

djk2
jk2+1)

(h0
jl

l−1∏
k3=0

W k3)].

(3)

We denote a message propagation path of length l as [hl
i]p,

which is an element of the summation in (3). [hl
i]p is equal

to:

[hl
i]p = (

l−1∏
k1=0

⊙

δ(ĥl−k1−1
jk1

))(

l−1∏
k2=0

djk2
jk2+1)(h

0
jl

l−1∏
k3=0

W k3).

(4)

[hl
i]p propagates input message from a l-hop neighbor jl to

the target node i along the path p. We denote the set includ-
ing all such paths p as Pi,l. Let [hl

i]p,t be an element of the
[hl

i]p, then var(hl
i) is equal to var(

∑
p∈Pi,l

[hl
i]p,t), that is,

the variance of node i is equal to the variance of the sum
over all message propagation paths into node i. We know
that var(

∑
p∈Pi,l

[hl
i]p,t) is equal to

∑
p∈Pi,l

var([hl
i]p,t) +

2
∑

p1 ̸=p2
cov([hl

i]p1,t, [h
l
i]p2,t). We convert the covariance

terms into the combination of variance terms var([hl
i]p,t)

over different paths p, so that the variance of each node
can be deduced from the variance of its message propaga-
tion paths. We observe that [hl

i]p1,t and [hl
i]p2,t have the

multiplication of the same weight matrices, and δ terms
only control whether or not a message propagation path
is activated. Motivated by this observation, we make the
following assumption to simplify the derivation and ease
the conversion:

Assumption 3.1. Let p1 and p2 be two different elements of
Pi,l. Before model training, the Pearson correlation between
[hl

i]p1,t and [hl
i]p2,t is approximately 1.

In Appendix A, we take the GNN following (2) and empir-
ically investigate Pearson correlation of a set of message
propagation paths on four datasets. All correlation results
are greater than 0.83, which supports the feasibility of As-
sumption 3.1 for GNNs.

Based on the Assumption 3.1, the covariance term

can be approximated by
√
var([hl

i]p1,t)var([h
l
i]p2,t),

var(
∑

p∈Pi,l
[hl

i]p,t) can thus be represented in terms of
the combination of var([hl

i]p,t) over different paths p.

3.2. The Second Variance Decomposition

We now decompose the variance of each message propaga-
tion path into the sum over variances of its weight propaga-
tion paths. A weight propagation path of length l multiplies
each element within weight matrices from the input layer to
the l-th layer. Weight propagation paths are motivated by the
forward propagation of MLP: There are many paths from
neurons within the input layer to a certain neuron within the
l-th layer, each of which propagates information through
layers.

In (4), δ(·) indicates if the path p is activated by ReLU, the
multiplication of degree terms is a re-scaling constant, and
h0
jl

∏l−1
k3=0 W

k3 is a FNN with h0
jl

as input. Moreover, (4)
can be viewed as an FNN with activation function ReLU. As
proposed by (Choromanska et al., 2015; Kawaguchi, 2016;
Xu et al., 2018b; Gasteiger et al., 2022), we can decompose
such FNN into a summation over weight propagation paths
from the input layer to the l-th layer. To see this more
formally, we first provide the expression of [hl

i]p,t according
to (4). Let Z(m) be a set {0, 1, · · · ,m}. We denote the set
Z(m(0)

1 ) × Z(m(1)
1 ) · · ·Z(m(l−1)

1 ) by Ẑ(l − 1). Then we
have [hl

i]p,t equal to:

[hl
i]p,t =(

l−1∏
k1=0

δ(ĥl−k1−1
jk1

,t ))(

l−1∏
k2=0

djk2
jk2+1)

(
∑

(t0···tl−1)∈
Ẑ(l−1)

h0
jl,t0

l−1∏
k3=0

wk
tk3

,tk3+1
).

(5)

δ(ĥl−k1−1
jk1

,t ) in (5) is the tth element of δ(ĥl−k1−1
jk1

) in (4),
and the

∑
t0···tl−1

h0
jl,t0

∏
k3

wk
tk3

,tk3+1
in (5) is the tth

output element of the FNN h0
jl

∏l−1
k3=0 W

k3 in (4).To
simplify (5), let δp be

∏
k1

δ(ĥl−k1−1
jk1

,t ), and dp be∏
k2

djk2
jk2+1

. An output element of the FNN can be
viewed as summation over weight propagation paths, where
each weight propagation path, denoted as [hl

i]p,t,ϕ, is:

[hl
i]p,t,ϕ = h0

jl,t0
w0

t0,t1 · · ·w
l−1
tl−1,t

, (6)

where ϕ equals to {t0 · · · tl−1, t} is an ordered sequence
describing neurons along that weight propagation path.
We denote the set including all such ϕ as Φi,p,t. [hl

i]p,t,ϕ
multiplies elements of input features and weight matrices
across l layers. It is obvious that var([hl

i]p,t) is equal to
d2pvar(δp

∑
ϕ∈Φi,p,t

[hl
i]p,t,ϕ). For this formula, we intend

to extract δp from it then convert the variance of sum into
the sum over variance of [hl

i]p,t,ϕ, so that variance of each
message propagation path can be expressed by the variance
of weight propagation paths. To achieve this conversion, we
hold the following three assumptions:

Assumption 3.2. Prior to model training, let ϕ1 and ϕ2 be
two different elements of Φi,p,t. Following assumptions
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proposed by (He et al., 2015), we assume the Pearson corre-
lation between δp[h

l
i]p,t,ϕ1 and δp[h

l
i]p,t,ϕ2 is approximately

0.

Assumption 3.3. Prior to model training, the Pearson corre-
lation between δp and [hl

i]p,t,ϕ is approximately 0, and the
Pearson correlation between δ2p and [hl

i]
2
p,t,ϕ is also approxi-

mately 0.

Assumption 3.4. (Xu et al., 2018b; Choromanska et al.,
2015; Kawaguchi, 2016) assume δp to be a Bernoulli ran-
dom variable, and different δp with the same length of p
have the same success probability. Inspired by these given
assumptions, we assume such success probability to be 0.5l

before the model training, where l is the length of p.

When Assumptions 3.2 to 3.4 hold, var(δp
∑

ϕ∈Φi,p,t
) can

be converted into 0.5lvar([hl
i]p,t,ϕ). According to (6), we

are able to express var(hl
i) in terms of var(wk). Anal-

ogously, var(∂Loss
∂hl

i

) can also be represented in terms of

var(wk). Specifically, the expressions of variance are pro-
vided as follows:

Theorem 3.5. Given an L-layer GNN defined by (2), we
define Ã as a matrix in the sense that Ãij is equal to dij
if node i and j are connected, and 0 otherwise. Let h0 be
[M(h0

0) · · ·M(h0
|N|−1)]

T , where M(v) denotes the mean
over elements of the vector v. Also, [v]2i denotes the square
of the ith element of the vector v. Then if Assumptions 3.1
to 3.4 hold, var(hl

i) is equal to:

var(hl
i) = (

∏l−1
k1=0 m

(k1)
1

2l
)(

l−1∏
k2=0

var(wk2))([Ãlh0]2i ). (7)

Next, to derive the formula of var(∂Loss
∂hl

i

), we need one
additional lemma and assumption.

Lemma 3.6. Let y(i) denote the label of node i and s(v)i
denote the ith element of the softmax of the vector v. Then
given a cross-entropy loss as in Section 2.1, we have:

∂Loss

∂hL
i,t

=


s(hL

i )t−1
|N| t = y(i)

s(hL
i )t

|N| t ̸= y(i).
(8)

Assumption 3.7. Prior to model training, we assume the
random uniformity of predicted labels at initialization and
thereby s(hL

i )t in Lemma 3.6 is equal to 1/C, where C is
the output dimension of the last GNN layer.

The expression of var(∂Loss
∂hl

i

) is presented as the following
theorem.

Theorem 3.8. Let 1 ∈ R|N| be the vector with all 1s. As-
suming the same conditions as in Theorem 3.5, and the

additional Assumption 3.7, var(∂Loss
∂hl

i

) is equal to:

var(
∂Loss

∂hl
i

) =(

∏L−1
k1=l+1 m

(k1)
2 (C − 1)

2L−l|N|2C )

(

L−1∏
k2=l+1

var(wk2))([ÃL−l1]2i ).

(9)

From Theorems 3.5 and 3.8, we observe that nodes at each
layer have different variance since nodes have different re-
ceptive fields expressed by [ÃL−l1]2i . This finding breaks
the assumption of classic methods that all neurons at each
layer have the same variance. Furthermore, while classic
methods only consider the impact of hidden dimension and
activation function on variance, we can see that variance
is also affected by the graph structure, the message propa-
gation of GNNs, input features and the number of nodes.
Specifically, in formulas of both theorems, the constant 2
is computed based on the ReLU activation function follow-
ing (He et al., 2015), the constants m(k1)

1 , m(k1)
2 , C are input

or output dimensions of weight matrices, |N| is the number
of nodes, Ã is the renormalized adjacent matrix, which is
determined by the graph structure as well as the message
propagation mechanism of the GNN, and h0 is determined
by input features of the given graph. We now apply these
insights towards the development of a new initialization
method.

4. Proposed Virgo Initialization
To stabilize variance for GNNs, we propose a initialization
method named Virgo which incorporates the factors men-
tioned in the last section. The target of Virgo is to make∑

i var(h
l
i) equal to

∑
i var(h

l+1
i ), and

∑
i var(

∂Loss
∂hl

i

)

equal to
∑

i var(
∂Loss

∂hl+1
i

). Consideration of these two condi-
tions then leads to the following two theorems:

Theorem 4.1. Assuming the same conditions as in Theo-
rem 3.5, to make

∑
i var(h

l
i) equal to

∑
i var(h

l+1
i ), we

require that:

var(wl) =
2

m
(l)
1

1T[Ãl−1h0]2

1T[Ãlh0]2
. (10)

Theorem 4.2. Assuming the same conditions as in Theo-
rem 3.8, to make

∑
i var(

∂Loss
∂hl

i

) equal to
∑

i var(
∂Loss

∂hl+1
i

),

we require that:

var(wl) =
2

m
(l)
2

1T[ÃL−l−11]2

1T[ÃL−l1]2
. (11)

var(wl) as calculated by Theorems 4.1 and 4.2 stabilizes
forward and backward variances respectively. Within the
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variance expressions of these two theorems, the constants
2, m(k1)

1 , and m
(k1)
2 are introduced to mitigate the impact

of the activation function and hidden dimension on vari-
ance, analogous to factors considered by classic methods.
In constrast, the appearance of Ã and h0 encapsulate the
innovative part of Virgo, which is taking graph structure,
message passing and input features into account to better
stabilize the variance of GNNs.

5. Experiments
In this section, we conduct experiments to investigate the
performance of Virgo. Firstly, we evaluate several mod-
els on three popular graph tasks, node classification (Sec-
tion 5.1), link prediction (Section 5.2) and graph classi-
fication (Section 5.3), to showcase the performance and
generalizability of Virgo. Then to provide further insights,
we test the variance stability (Section 5.4) of models trained
with Virgo. In experiments below, we conduct hyperparam-
eter sweep to search for best hyperparameter settings. To
be specific, for each hyperparameter setting, we calculate
the mean and standard deviation of 10 trials across differ-
ent random seeds. We iterate over multiple hyperparameter
settings and search for the setting with the best mean on
validation datasets. We then report the mean and standard
deviation on testing datasets with the selected setting as
the final results. All experiments are conducted on a single
Tesla T4 GPU with 16GB memory. Details of experimental
setting are presented in Appendix B

Baseline Initializations We compare Virgo with (i) Lecun
initialization, designed for stabilizing the forward variance
of linear FNNs; (ii) Xavier initialization, for stabilizing both
forward and backward variances of linear FNNs; and (iii)
Kaiming initialization, which proposes two methods that
stabilize either the forward or backward variance of CNNs
activated by ReLU. We denote the two Kaiming variants
as KaiFor and KaiBack, respectively. Similarly, we denote
model initialization following Theorem 4.1 as VirgoFor, and
Theorem 4.2 as VirgoBack, which stabilizes forward and
backward variance respectively.

GNN Architectures We evaluate the model performance on
node classification, link prediction and graph classification
tasks with some classic GNN architectures: (i) GCN (Kipf &
Welling, 2016), a spectral-based GNN for semi-supervised
node classification tasks; (ii) GraphSAGE (Hamilton et al.,
2017), stacking spatial-based convolutions to propagate mes-
sage over graphs; (iii) GIN (Xu et al., 2018a), mitigating the
incapability of GNNs to distinguish different graphs struc-
tures; (iv) NGNN (Song et al., 2021) variants of (i) and (ii),
which deepens GNN models with additional MLP layers
interspersed with graph propagation. Note that with NGNN
variants, we are able to investigate the capability of Virgo ini-
tializations on deeper GNNs more fairly while largely avoid-

ing the effects of over-smoothing and over-squashing on
model performance, i.e., Virgo is not presently designed to
alleviate oversmoothing or oversquashing on deep GNNs. In
practice, Virgo is directly applied to GNN layers of NGNN.
All models are implemented with DGL (Wang et al., 2020)
and PyG (Fey & Lenssen, 2019).

Datasets For node classification, we choose three citation
network datasets (Sen et al., 2008): cora, citeseer, pubmed,
and three OGB (Hu et al., 2020) datasets: ogbn-arxiv, ogbn-
proteins and ogbn-products. For link prediction, we adopt
four OGB datasets: ogbl-ddi, ogbl-collab, ogbl-citation2
and ogbl-ppa. For graph classification, we take three social
network datasests imdb b, imdb m and collab from (Ya-
nardag & Vishwanathan, 2015), and two OGB datasets
ogbg-molhiv and ogbg-molpcba.

5.1. Node Classification

Experimental setting We use DGL to implement GCN
on cora, citeseer and pubmed, and take implementations of
the OGB team on the OGB node classification leaderboard
to implement GCN on ogbn-arxiv and ogbn-proteins, and
GraphSAGE on ogbn-products. We use neighbor sampling
to support mini-batch training of GraphSAGE on ogbn-
products. We tune hyper-parameters as specified previously
and compare model performance of GCN and GraphSAGE
with different initialization methods, including Xavier, Le-
cun, KaiFor, KaiBack, VirgoFor, and VirgoBack. We use
the Adam (Kingma & Ba, 2014) optimizer to update train-
able parameters and use early-stop mechanism to reduce the
training time overhead.

Results The evaluation results are presented in Table 2. We
observe that models with Virgo outperform models with
other initializations on 5 out of 6 datasets, the lone excep-
tion being pubmed. And even on pubmed, VirgoFor and
VirgoBack obtain the second and third best performance
among all initializations. Furthermore, models with Virgo
perform well on larger size graphs (ogbn-proteins and ogbn-
products). For example, GCN initialized by Virgo on ogbn-
proteins produces the largest performance gain; specifically,
VirgoBack has 1.04% higher accuracy than the best baseline
initialization method Xavier.

5.2. Link Prediction

Experimental setting We adopt the implementations of the
OGB team on the OGB link prediction leaderboard for GCN
and GraphSAGE, and use DGL to implement their NGNN
variants. We take Xavier and Lecun as baseline initializa-
tions. Baselines on the leaderboard take Xavier or Lecun to
initialize models. We observe that the reported numbers of
many leaderboard submissions of baselines are significantly
lower than model performance with Virgo, which we believe
is in part an artifact of the fact that baselines on the OGB
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Table 2. The performance of GCN on cora, citeseer, pubmed, ogbn-arxiv and ogbn-proteins, GraphSAGE with neighbor sampling on
ogbn-products. The numbers indicating the first and second place of mean accuracy are highlighted in red and blue respectively.

Methods Datasets
cora citeseer pubmed arxiv proteins productssage

KaiFor 81.33±0.46 70.14±0.47 78.92±0.40 71.78±0.44 73.51±0.30 78.80±0.28
KaiBack 81.57±0.43 70.79±0.49 79.20±0.55 71.44±0.37 73.41±0.58 78.73±0.24

Lecun 81.41±0.33 70.97±0.43 79.48±0.31 71.82±0.24 73.29±0.44 78.49±0.37
Xavier 81.50±0.20 71.09±0.52 79.10±0.37 71.74±0.32 73.54±0.67 78.89±0.31

VirgoFor 82.14±0.52 71.96±0.47 79.42±0.42 72.22±0.17 74.41±0.43 79.50±0.36
VirgoBack 82.14±0.48 71.36±0.50 79.34±0.22 72.18±0.34 74.58±0.53 79.45±0.36

leaderboard may not be sufficiently trained. For example,
GCN on ogbl-ddi achieves 37.07 hit@20 reported on leader-
board, surprisingly worse than GCN with Virgo (67.98 and
74.83). We observe that the number of training epochs of
leaderboard submissions is too small to allow model train-
ing to converge. Their validation accuracy curves are still
rising rather than staying flat until the end of the model
training. Therefore, we re-train baselines on link prediction
datasets with more epochs (for example, we take around
1000 to 2000 epochs for models on ogbl-ddi compared to
80 to 400 epochs taken by leaderboard submissions) and
carefully tune their hyperparameters for a fair comparison
with Virgo. The hyperparameter tuning setting is the same
for baselines and Virgo.

The evaluation metrics for models on ogbl-ddi, ogbl-collab,
ogbl-citation2 and ogbl-ppa are hits@20, hits@50, mrr and
hits@100, respectively. We use Adam optimizer to train
models and pick the model checkpoint which has the best
performance on the validation dataset. The selected check-
point is then used to evaluate on the test dataset.

Results The results are presented in Table 3. We observe
that Virgo leads to better model performance relative to
other initializations in most cases. For example, NGNN-
GraphSAGE with Virgo (the best one is VirgoFor with
performance 80.36%) exhibits the largest performance im-
provement (7.31%) relative to NGNN-GraphSAGE with
baseline initializations (the best one is Xavier with perfor-
mance 73.07%). Overall the model performance with Virgo
is best in 14 out of 16 cases. In other cases where Virgois
not the top 1 (NGNN-GCN and NGNN-GraphSAGE on
ogbl-ppa), Virgostill achieves second place. Furthermore,
we see that Virgo improves performance of NGNN variants,
which have around 3 GCN/GraphSAGE layers and 2 MLP
layers, in most cases, indicating that Virgo can be helpful to
deep GNNs.

5.3. Graph Classification

Experimental setting We use DGL to implement models
on imdb b, imdb m and collab, and we take implementa-
tions of the OGB team on the OGB graph classification
leaderboard to conduct experiments on OGB datasets. We
evaluate GCN and GIN with Xavier, Lecun and Virgo. To
compute the initial variance of weight matrices based on
Virgo, we sample a subset of training graphs into a single
graph defined as the approximation graph, and utilize its
graph structure to approximate Ã in Theorems 4.1 and 4.2.
For imdb b, imdb m, collab and ogbg-molhiv, we merge
all training graphs into the approximation graph. For ogbg-
molpcba, we randomly and uniformly sample 10,000 train-
ing graphs and merge them into the approximation graph
since its training dataset is too large to be fed into a single
GPU. We use Adam optimizer to update trainable parame-
ters. For OGB datasets, we take the model checkpoint that
has the best validation performance, and evaluate this check-
point on test datasets to obtain the test performance. We
evaluate classification accuracy on imdb and collab, roc-auc
on ogbg-molhiv, and average precision on ogbg-molpcba.

Results The experimental results are reported in Table 4.
We have three observations: First, both VirgoFor and Vir-
goBack take top 2 in 8 out of 10 cases, and 9 out of 10
cases have Virgo as their best initialization method. These
results shows the benefit of Virgo to model performance,
which is not limited to node classification and link predic-
tion tasks. In other cases where Virgo does not occupy top
2 positions (GCN on imdb b and ogbg-molhiv), it takes
at least the second place. Second, by comparing the best
model performance with Virgo and the best one with base-
line initializations, Virgo brings at least 1% improvements
to GCN on 4 out of 5 datasets: imdb b (1.23%), collab
(1.53%), ogbg-molhiv (1.72%) and ogbg-molpcba (1.11%).
Finally, performance improvements on ogbg-molpcba with
trivial sampling methods indicate that we can simply use
random uniform sampling methods as described previously
to achieve competitive performance with Virgo.
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Table 3. The performance of GCN, GraphSAGE and their NGNN variants on link prediction tasks. The numbers indicating the first and
second place of the average of evaluation metrics are highlighted in red and blue respectively.

Models Methods Datasets
ddi collab citation2 ppa

GCN

Lecun 69.77±10.62 52.23±0.34 68.04±2.29 39.35±1.29
Xavier 55.16±10.64 53.64±0.25 80.88±0.18 37.40±0.66

VirgoFor 67.98±11.91 54.58±0.51 81.05±0.16 39.38±1.03
VirgoBack 74.83±10.49 54.31±0.42 81.12±0.23 39.85±0.89

NGNN-
GCN

Lecun 58.18±10.21 51.93±0.63 54.38±2.71 44.26±3.48
Xavier 67.71±11.90 52.97±0.50 81.07±0.12 45.47±1.64

VirgoFor 69.05±9.54 54.16±0.51 81.41±0.28 45.10±1.54
VirgoBack 65.32±8.78 54.13±0.38 81.36±0.23 46.99±0.54

GraphSAGE

Lecun 71.26±13.79 53.62±0.44 82.62±0.12 42.98±2.38
Xavier 70.86±10.94 53.48±0.34 83.39±0.11 41.99±2.42

VirgoFor 72.73±7.58 53.67±0.74 83.74±0.01 42.45±0.66
VirgoBack 72.48±9.50 54.16±0.47 83.49±0.14 43.02±0.56

NGNN-
GraphSAGE

Lecun 65.77±13.19 52.14±0.43 81.61±0.07 42.41±1.48
Xavier 73.07±8.57 53.59±0.38 83.44±0.07 44.36±1.26

VirgoFor 80.36±4.35 54.37±0.24 83.13±0.13 44.09±0.06
VirgoBack 76.02±10.21 53.87±0.19 83.36±0.12 43.95±1.69

5.4. Variance Stability

In this section, we compare variance stability of GCN fol-
lowing (2) on ogbn-arxiv and ogbn-proteins at initialization
with different methods. For each combination of an initial-
ization method and a dataset, we pick the best hyperparame-
ter setting that has been investigated in Section 5.1, and test
forward and backward variance across 5 layers. Specifically,
we compute the variance of each node, and compute the
mean of variance over nodes at each layer. The results are
presented in Figure 1. We observe that Virgo leads to more
stable variance change than classic methods. For example,
in the cases of backward variance on ogbn-arxiv and for-
ward variance on ogbn-proteins, only Virgo mitigates the
steep decline in variances towards zero, emblematic of the
importance of accounting for graph structure and message
passing relative to other factors in stabilizing the variance.

6. Related Work
Our work is closely related to Graph Neural Networks
(GNNs) and initialization methods. We introduce classic
work in these fields as follows.

Graph Neural Networks There are a number of ap-
proaches that generalize convolution operations on images
to the graph domain and achieve state-of-the-art perfor-
mance on popular tasks of graphs, such as node classifi-
cation, link prediction and graph classification. (Defferrard

et al., 2016; Levie et al., 2018; Kipf & Welling, 2016) pro-
pose spectral-based convolutional neural networks based on
graph Laplacian matrix for learning on graphs. (Wu et al.,
2019) achieves comparable peformance with GCN (Kipf &
Welling, 2016) while reduce excess complexity. (Hamilton
et al., 2017) propose spatial-based convolutions to propagate
message over graphs based on nodes’ spatial dependencies.
(Veličković et al., 2017; Brody et al., 2021) utilize attention
mechanism to learn contributions of neighboring nodes to
the target nodes. (Xu et al., 2018a) investigates the expres-
sive power of classic GNNs and develop a simple but more
powerful structure. (Xu et al., 2018b; Li et al., 2019) are
designed to learn higher level of knowledge from graphs
by increasing the number of GCN layers. Inspired by (Lin
et al., 2013; Xu et al., 2018a), (Song et al., 2021) equips
each GCN layer with multiple linear layers to form a NGNN
block, which extracts more complex semantics from graphs.

Initialization methods Several initialization methods
have been proposed to define initial values of model parame-
ters prior to the model training. Lecun initialization (LeCun
et al., 2012) requires forward variance to be 1. Xavier
initialization (Glorot & Bengio, 2010) is similar to Lecun
but considers both forward and backward variance. De-
spite Lecun and Xavier assuming no non-linearity in neural
networks, they work well in many applications. Kaiming
initialization (He et al., 2015) extends Xavier to CNNs with
ReLU non-linearity. (Saxe et al., 2013) exhibit a new class
of orthogonal matrix initialization for deep linear neural
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Table 4. The performance of GCN and GIN on graph classification tasks. The numbers indicating the first and second place of the average
of evaluation metrics are highlighted in red and blue respectively.

Models Methods Datasets
imdbb imdbm collab molhiv molpcba

GCN
Lecun 74.57±2.19 52.04±1.77 82.43±0.84 77.06±0.63 20.44±0.21
Xavier 74.17±2.12 51.83±3.23 82.17±1.13 76.49±0.95 20.62±0.31

VirgoFor 75.80±2.32 52.13±2.00 83.96±0.78 77.94±0.58 21.12±0.50
VirgoBack 75.40±4.84 52.67±2.15 83.44±0.73 78.78±0.16 21.73±0.15

GIN
Lecun 75.07±2.43 52.61±1.41 83.10±0.74 77.12±1.01 23.45±0.23
Xavier 75.42±3.31 52.24±1.57 83.27±1.39 76.16±1.76 23.01±0.33

VirgoFor 75.20±3.66 53.20±1.36 84.32±0.63 77.09±1.19 24.15±0.49
VirgoBack 74.60±2.73 53.60±2.00 83.84±1.17 77.90±1.43 24.23±0.12

Figure 1. Variance stability of GCN on ogbn-arxiv and ogbn-
proteins at the initialization. Upper left: Forward variance
on ogbn-arxiv(×10−2). Upper right: Backward variance on
ogbn-arxiv(×10−25). Bottom left: Forward variance on ogbn-
proteins (×10−3). Bottom right: Backward variance on ogbn-
proteins(×10−16). As for Kaiming and Virgo, we adopt KaiFor
and VirgoFor in figures labeled forward, and KaiBack and VirgoB-
ack in figures labeled backward.

networks. (Mishkin & Matas, 2015) proposes LSUV initial-
ization based on (Saxe et al., 2013) to consider the impact
of more model components on variance, such as tanh and
maxout. (Sussillo & Abbott, 2014) designs a Random Walk
initialization for FNNs with non-linearity to keep constant
the logarithm of squared magnitude of gradients acorss all
layers. (Jaiswal et al., 2022) proposes a topology-aware iso-
metric initialization to facilitate gradient flow during GCN
training. (Han et al., 2022) initialize GNNs with pre-trained
MLP parameters to train GNNs more efficiently. However,
most existing work does not directly apply to GNNs because

of: only analyzing output and gradients with FNNs (LeCun
et al., 2012; Glorot & Bengio, 2010; He et al., 2015; Saxe
et al., 2013; Mishkin & Matas, 2015; Sussillo & Abbott,
2014), ignoring the impact of non-linearities (LeCun et al.,
2012; Glorot & Bengio, 2010; Saxe et al., 2013; Jaiswal
et al., 2022), assuming outputs and gradients of neurons at
each layer are i.i.d (LeCun et al., 2012; Glorot & Bengio,
2010; He et al., 2015). In contrast, our analysis is explicitly
based on GNNs over graphs, and accounts for the fact that
the outputs and gradients of different nodes have correlated
variances due to the effective receptive fields at each layer.
We then exploit these findings to develop Virgo, which is
better equipped to stabilize GNN variances.

7. Conclusion
In this paper, we derive explicit expressions for the forward
and backward variance of GNN initializations, and analyze
deficiencies of classic initialization methods when applied
to stabilizing them. Informed by this perspective, we pro-
pose a new GNN initialization scheme Virgo, and conduct
comprehensive experiments to compare with 4 classic ini-
tialization methods on 15 datasets across 3 popular graph
learning tasks showing superior performance.

In the future, there are two shortcomings of Virgothat could
potentially be addressed: (i) Virgo is derived based on GNNs
that have pre-computed constant coefficients between neigh-
boring nodes, and thus it cannot directly be generalized
to GNNs like GAT (Veličković et al., 2017) with adap-
tive/learnable coefficients between neighbors. (ii) Virgo
only considers one level of aggregation, thus it is not yet
suitable for models like RGCN (Schlichtkrull et al., 2018)
that have multiple levels of aggregation. Beyond these con-
siderations, we do not believe that our approach will have
any undue negative societal impact beyond the minor poten-
tial essentially shared by all GNN methods, e.g., propagating
unfair biases, etc.
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mini-batching for graph neural networks. arXiv preprint
arXiv:2212.09083, 2022.

Glorot, X. and Bengio, Y. Understanding the difficulty
of training deep feedforward neural networks. In Pro-
ceedings of the thirteenth international conference on
artificial intelligence and statistics, pp. 249–256. JMLR
Workshop and Conference Proceedings, 2010.

Hamilton, W. L., Ying, R., and Leskovec, J. Inductive
representation learning on large graphs. In Proceedings of
the 31st International Conference on Neural Information
Processing Systems, pp. 1025–1035, 2017.

Han, X., Zhao, T., Liu, Y., Hu, X., and Shah, N. Mlpinit:
Embarrassingly simple gnn training acceleration with mlp
initialization. arXiv preprint arXiv:2210.00102, 2022.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep
into rectifiers: Surpassing human-level performance on
imagenet classification. In Proceedings of the IEEE inter-
national conference on computer vision, pp. 1026–1034,
2015.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B.,
Catasta, M., and Leskovec, J. Open graph benchmark:
Datasets for machine learning on graphs. arXiv preprint
arXiv:2005.00687, 2020.

Jaiswal, A., Wang, P., Chen, T., Rousseau, J., Ding, Y., and
Wang, Z. Old can be gold: Better gradient flow can make
vanilla-gcns great again. Advances in Neural Information
Processing Systems, 35:7561–7574, 2022.

Jing, X. and Xu, J. Fast and effective protein model refine-
ment using deep graph neural networks. Nature Compu-
tational Science, 1(7):462–469, 2021.

Kawaguchi, K. Deep learning without poor local minima.
Advances in neural information processing systems, 29,
2016.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

LeCun, Y. A., Bottou, L., Orr, G. B., and Müller, K.-R.
Efficient backprop. In Neural networks: Tricks of the
trade, pp. 9–48. Springer, 2012.

Levie, R., Monti, F., Bresson, X., and Bronstein, M. M.
Cayleynets: Graph convolutional neural networks with
complex rational spectral filters. IEEE Transactions on
Signal Processing, 67(1):97–109, 2018.

Li, G., Muller, M., Thabet, A., and Ghanem, B. Deepgcns:
Can gcns go as deep as cnns? In Proceedings of the
IEEE/CVF international conference on computer vision,
pp. 9267–9276, 2019.

Lin, M., Chen, Q., and Yan, S. Network in network. arXiv
preprint arXiv:1312.4400, 2013.

Liu, Z., Dou, Y., Yu, P. S., Deng, Y., and Peng, H. Alleviat-
ing the inconsistency problem of applying graph neural
network to fraud detection. In Proceedings of the 43rd
International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 1569–1572,
2020.

Mishkin, D. and Matas, J. All you need is a good init. arXiv
preprint arXiv:1511.06422, 2015.

Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J.,
and Bronstein, M. M. Geometric deep learning on graphs
and manifolds using mixture model cnns. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pp. 5115–5124, 2017.

Nguyen, T., Le, H., Quinn, T. P., Le, T., and Venkatesh, S.
Predicting drug–target binding affinity with graph neural
networks. BioRxiv, pp. 684662, 2020.

Rossi, E., Chamberlain, B., Frasca, F., Eynard, D., Monti,
F., and Bronstein, M. Temporal graph networks for
deep learning on dynamic graphs. arXiv preprint
arXiv:2006.10637, 2020.

10



On the Initialization of Graph Neural Networks

Saxe, A. M., McClelland, J. L., and Ganguli, S. Exact
solutions to the nonlinear dynamics of learning in deep
linear neural networks. arXiv preprint arXiv:1312.6120,
2013.

Schlichtkrull, M., Kipf, T. N., Bloem, P., Berg, R. v. d.,
Titov, I., and Welling, M. Modeling relational data with
graph convolutional networks. In European semantic web
conference, pp. 593–607. Springer, 2018.

Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B.,
and Eliassi-Rad, T. Collective classification in network
data. AI magazine, 29(3):93–93, 2008.

Song, X., Ma, R., Li, J., Zhang, M., and Wipf, D. P.
Network in graph neural network. arXiv preprint
arXiv:2111.11638, 2021.

Strokach, A., Becerra, D., Corbi-Verge, C., Perez-Riba, A.,
and Kim, P. M. Fast and flexible protein design using
deep graph neural networks. Cell systems, 11(4):402–411,
2020.

Sussillo, D. and Abbott, L. Random walk initialization for
training very deep feedforward networks. arXiv preprint
arXiv:1412.6558, 2014.
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A. Proof and Empirical Verification
In this section, we show empirical verification of assumptions, and proofs of one lemma and multiple theorems in the main
body of this paper. All experiments are conducted on a 3-layer GCN initialized by Xavier initialization. We argue that
the initialization method does not affect empirical results in this section since they are not related to distributions of GCN
weight matrices.

Assumption 3.1 We first take a forward propagation of GCN on the input graph and obtain hidden embeddings of 3 layers.
Then we randomly sample two nodes u and v from the input graph, and take all paths of length 3 from u to v in the graph if
there exists at least one. The random sampling process continues until the number of paths reach 100. Let’s recap that the
expression of message propagation paths is:

[hl
i]p = (

l−1∏
k1=0

⊙

δ(ĥl−k1−1
jk1

))(

l−1∏
k2=0

djk2
jk2+1

)(h0
jl

l−1∏
k3=0

W k3) (12)

It’s obvious that sampled paths are instances of p that has length 3 in (12). For (12), the node v and u of each sampled path
are the destination node i and the starting node jl of the p, respectively. We apply δ to pre-activated embeddings of nodes to
estimate δ(ĥl−k1−1

jk1
), then calculate the multiplication of resulted quantities along each path to estimate

∏
k1,⊙ δ(ĥl−k1−1

jk1
).

We take the multiplication of degrees of nodes along the path p as
∏l−1

k2=0 djk2
jk2+1

, and take the multiplication of weight
matrices across 3 GCN layers with input features of node jl as h0

jl

∏l−1
k3=0 W

k3 . As a result, we are able to estimate [hl
i]p

with quantities mentioned above. Next, we randomly sample 100 neurons from each [hl
i]p as its 100 [hl

i]p,t, and calculate
the Pearson correlation between each pair of [hl

i]p1,t and [hl
i]p2,t, where p1 is not equal to p2. Thereby we obtain 4950(pairs)

resulted numbers, which indicate the Pearson correlation between message propagation paths of length 3. We take the
average and standard deviation of them, and put results in Table 5.

In Table 5, we show evaluation results of 3-layer GCN on cora, pubmed, citeseer and ogbn-arxiv. We test the Pearson
correlation of message propagation paths that have length 1, 2 besides 3. The row titled with Expected indicates that we
require the Pearson correlation to be 1 to hold Assumption 3.1. We can see that the Pearson correlation on all datasets are
greater than 0.83, especially on ogbn-arxiv where results are greater than 0.9.

Table 5. Estimation of the Pearson correlation between different message propagation paths.

Dataset Layers
1 2 3

cora 0.83±0.13 0.86±0.12 0.84±0.15

pubmed 0.89±0.09 0.89±0.09 0.93±0.06

citeseer 0.83±0.12 0.85±0.11 0.85±0.12

arxiv 0.91±0.06 0.91±0.05 0.94±0.04

Expected 1.0 1.0 1.0

Assumption 3.2 We use the same experiment setting as in the empirical verification of Assumption 3.1. For each δp[h
l
i]p,t,

we randomly take 50 neurons as observations of δp[hl
i]p,t,ϕ1 and take remain 50 neurons as observations of δp[hl

i]p,t,ϕ2 . We
have 4950(pairs) of δp[hl

i]p,t,ϕ1
and δp[h

l
i]p,t,ϕ2

, then we calculate the Pearson correlation between each pair. We take the
average and standard deviation of resulted numbers and report results in Table 6.

In Table 6, the row titled with Expected indicates that we require the Pearson correlation to be 0 to hold Assumption 3.2.
We observe that all average numbers of the Pearson correlation are less than 0.1.

Assumption 3.3 We use the same experiment setting as in the empirical verification of Assumption 3.1. Let’s recap

12
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Table 6. Estimation of the Pearson correlation between different weight propagation paths.

Dataset Layers
1 2 3

cora 0.07±0.05 0.07±0.07 0.05±0.07

pubmed 0.06±0.04 0.07±0.06 0.04±0.06

citeseer 0.07±0.05 0.06±0.05 0.03±0.04

arxiv 0.07±0.06 0.08±0.07 0.07±0.06

Expected 0.0 0.0 0.0

expressions of δp and [hl
i]p,t,ϕ:

δp =

l−1∏
k=0

δ(ĥl−k−1
jk,t

) (13)

[hl
i]p,t,ϕ = h0

jl,t0
w0

t0,t1 · · ·w
l−1
tl−1,t

(14)

For each message propagation path p, we take the estimation of neurons of
∏

k1,⊙ δ(ĥl−k1−1
jk1

) in the empirical verification

of Assumption 3.1 to estimate δp and take the estimation of neurons of h0
jl

∏l−1
k3=0 W

k3 in the empirical verification
of Assumption 3.1 to estimate [hl

i]p,t,ϕ. In practice, we will obtain 100(message propagation paths) pairs of both δp and
[hl

i]p,t,ϕ. We then report the average and standard deviation of Pearson correlation between δp and [hl
i]p,t,ϕ, between δ2p and

[hl
i]
2
p,t,ϕ, in Table 7.

In Table 7, the row titled with Expected indicates that we require the Pearson correlation to be 0 to hold Assumption 3.3.
We observe that all average numbers of the Pearson correlation are less than or equal to 0.1.

Table 7. Estimation of the Pearson correlation between δp and [hl
i]p,t,ϕ, between δ2p and [hl

i]
2
p,t,ϕ. We present the the Pearson correlation

between δp and [hl
i]p,t,ϕ in rows that have dataset names with subscripts 1, and the Pearson correlation between δ2p and [hl

i]
2
p,t,ϕ in rows

that have dataset names with subscripts 2.

Dataset Layers
1 2 3

cora1 0.04±0.03 0.05±0.03 0.06±0.04
cora2 0.05±0.03 0.04±0.03 0.03±0.03

pubmed1 0.04±0.03 0.04±0.03 0.06±0.04
pubmed2 0.05±0.04 0.04±0.03 0.03±0.03

citeseer1 0.04±0.03 0.05±0.04 0.04±0.03
citeseer2 0.04±0.05 0.05±0.03 0.05±0.03

arxiv1 0.02±0.01 0.03±0.01 0.1±0.01
arxiv2 0.03±0.01 0.04±0.01 0.01±0.01

Expected 0.0 0.0 0.0

Assumption 3.4 Assuming that δp is a Bernoulli random variable, it’s known that mean of a Bernoulli random variable
is equal to its success probability. With the same experiment setting as in the empirical verification of Assumption 3.3,
we have 100(neurons) * 100(message propagation paths) observations of δp. We calculate the mean values and standard
deviation of δp and report results in Table 8

In Table 8, the row titled with Expected indicates that we require the mean of δp to be 0.5 to hold Assumption 3.4. We
observe that averages of δp are quite close to 0.5.

13
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Table 8. Estimation of the success probability of δp.

Dataset Layers
1 2 3

cora 0.47±0.03 0.24±0.02 0.13±0.01

pubmed 0.50±0.03 0.25±0.02 0.13±0.02

citeseer 0.52±0.03 0.27±0.02 0.14±0.02

arxiv 0.54±0.01 0.27±0.01 0.11±0.01

Expected 0.5 0.25 0.125

Theorem 3.5 Let’s recap the forward propagation of the neuron t of the node i at the path p is presented as follows:

[hl
i]p,t = (

l−1∏
k1=0

δ(ĥl−k1−1
jk1

,t ))(

l−1∏
k2=0

djk2
jk2+1

)(
∑

(t0···tl−1)∈
Ẑ(l−1)

h0
jl,t0

l−1∏
k3=0

wk
tk3

,tk3+1
) (15)

Let’s denote
∏l−1

k1=0 δ(ĥ
l−k1−1
jk1

,t ) as δp, and
∏l−1

k2=0 djk2
jk2+1

as dp, then we have:

var([hl
i]p,t) = d2p var(δp

∑
(t0···tl−1)∈

Ẑ(l−1)

h0
jl,t0

l−1∏
k=0

wk
tk,tk+1

) (16)

Let’s recap the expression of weight propagation path:

[hl
i]p,t,ϕ = h0

jl,t0
w0

t0,t1 · · ·w
l−1
tl−1,t

(17)

It’s obvious that
∑

(t0···tl−1)∈
Ẑ(l−1)

h0
jl,t0

∏l−1
k=0 w

k
tk,tk+1

in (16) is the sum over [hl
i]p,t,ϕ. We now derive the variance of

δp[h
l
i]p,t,ϕ:

var(δp[h
l
i]p,t,ϕ) = (h0

jl,t0
)2 var(δp

l−1∏
k=0

wk
tk,tk+1

) (18)

where

var(δp ·
l−1∏
k=0

wk
tk,tk+1

) = cov[δ2p,

l−1∏
k=0

(wk
tk,tk+1

)2] (19a)

+ [var(δp) + E2(δp)] · [var(
l−1∏
k=0

wk
tk,tk+1

) + E2(

l−1∏
k=0

wk
tk,tk+1

)] (19b)

− [cov(δp,

l−1∏
k=0

wk
tk,tk+1

) + E(δp)E(

l−1∏
k=0

wk
tk,tk+1

)]2 (19c)

wk
tk,tk+1

for different k are independent and have the same mean value 0, thus both E(
∏l−1

k=0 w
k
tk,tk+1

) =∏l
k=0 E(wk

tk,tk+1
) and E2(

∏l−1
k=0 w

k
tk,tk+1

) are equal to 0, var(
∏l−1

k=0 w
k
tk,tk+1

) =
∏l

k=0(var(w
k
tk,tk+1

)+E2(wk
tk,tk+1

))−

14
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k=0(E

2(wk
tk,tk+1

)) is equal to
∏l−1

k=0 var(w
k
tk,tk+1

). Additionally, given that Assumption 3.4 holds, δp is a Bernoulli
random variable and has the success probability 0.5l, where l is the length of p. Furthermore, when Assumption 3.3 holds,
the correlation between δp and

∏l−1
k=0 w

k
tk,tk+1

, between δ2p and
∏l−1

k=0(w
k
tk,tk+1

)2, are both approximately equal to 0. As a
result, we have:

var(δp

l−1∏
k=0

wk
tk,tk+1

) = 0.5l ·
l−1∏
k=0

var(wk
tk,tk+1

) (20)

Combining Equations (18) and (20), we have:

var(δp[h
l
i]p,t,ϕ) = (h0

jl,t0
)20.5l ·

l−1∏
k=0

var(wk
tk,tk+1

) (21)

When Assumption 3.2 holds, (16) is equal to:

var([hl
i]p,t) = d2p

∑
ϕ∈Φi,p,t

var(δp[h
l
i]p,t,ϕ) (22a)

= d2p 0.5
l ·

l−1∏
k=0

var(wk
tk,tk+1

) ·
∑

ϕ∈Φi,p,t

(h0
jl,t0

)2 (22b)

var(hl
i,t) is equal to the summation of var([hl

i,t]p,t) for all p in Pi,l, thus we have:

var(hl
i,t) = var(

∑
p∈Pi,l

var([hl
i]p,t)) (23a)

=
∑

p∈Pi,l

var([hl
i]p,t) + 2

∑
i<j

cov([hl
i]pi,t, [h

l
i]pj ,t) (23b)

where

cov([hl
i]pi,t, [h

l
i]pj ,t) = dpi

dpj
cov(

∑
ϕ∈Φi,p,t

δp[h
l
i]p,t,ϕ,

∑
ϕ∈Φj,p,t

δp[h
l
j ]p,t,ϕ) (24)

where

cov(
∑

ϕ∈Φi,p,t

δp[h
l
i]p,t,ϕ,

∑
ϕ∈Φj,p,t

δp[h
l
j ]p,t,ϕ) (25a)

= cov(
∑

ϕ∈Φi,p,t

δph
0
jl,t0

l−1∏
k=0

var(wk
tk,tk+1

),
∑

ϕ∈Φj,p,t

δpjh
0
j′l,t0

l−1∏
k=0

var(wk
tk,tk+1

)) (25b)

= h0
jl,t0

h0
j′l,t0

cov(
∑

ϕ∈Φi,p,t

δp

l−1∏
k=0

var(wk
tk,tk+1

),
∑

ϕ∈Φj,p,t

δpj

l−1∏
k=0

var(wk
tk,tk+1

)) (25c)

When Assumption 3.1 holds, the Pearson correlation between
∑

ϕ δp
∏l−1

k=0 var(w
k
tk,tk+1

) and
∑

ϕ δpj

∏l−1
k=0 var(w

k
tk,tk+1

)

is close to 1, we thus use
√
var(

∑
ϕ δp

∏l−1
k=0 var(w

k
tk,tk+1

))var(
∑

ϕ δpj

∏l−1
k=0 var(w

k
tk,tk+1

)) to ap-
proximate the covariance term. And according to the analysis above, the correlation between differ-
ent weight propagation paths is approximately 0, thus the covariance term can be approximated by
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ϕ var(δp

∏l−1
k=0 var(w

k
tk,tk+1

))
∑

ϕ var(δpj

∏l−1
k=0 var(w

k
tk,tk+1

)) =
∑

ϕ var(δp
∏l−1

k=0 var(w
k
tk,tk+1

)). There

are
∏l−1

l′=0 m
(l′)
1 weight propagation paths in Φi,p,t for L layers. We thus replace

∑
ϕ var(δp

∏l−1
k=0 var(w

k
tk,tk+1

)) with∏l−1
l′=0 m

(l′)
1 · var(δl

∏l−1
k=0 var(w

k
tk,tk+1

)). As a result, with ĥ0
jl,t0

to denote the mean over elements of h0
npi

we have:

var(hl
i,t) =

∑
p∈Pi,l

(
∏

j,j′∈p

djj′)
20.5l ·

l−1∏
k=0

var(wk
tk,tk+1

)
∑

ϕ∈Φi,p,t

(ĥ0
jl,t0

)2 (26)

+ 2ml · 0.5l ·
l−1∏
k=0

var(wk
tk,tk+1

)
∑
i<j

pi,pj∈Pi,l

(
∏

t,t′∈pi

dtt′
∏

t,t′∈pj

dtt′)(ĥ
0
jl,t0

ĥ0
j′l,t0

) (27)

where

∑
p∈Pi,l

(
∏

j,j′∈p

djj′)
2

∑
ϕ∈Φi,p,t

(ĥ0
jl,t0

)2 =
l−1∏
l′=0

m
(l′)
1

∑
p∈Pi,l

(
∏

j,j′∈p

djj′ ĥ
0
jl,t0

)2 (28)

and

2
∑
i<j

pi,pj∈Pi,l

(
∏

t,t′∈pi

dtt′
∏

t,t′∈pj

dtt′)(ĥ
0
jl,t0

ĥ0
j′l,t0

) (29)

=
∑
i̸=j

pi,pj∈Pi,l

(
∏

t,t′∈pi

dtt′ ĥ
0
jl,t0

)(
∏

t,t′∈pj

dtt′ ĥ
0
j′l,t0

) (30)

=
∑

pi∈Pi,l

(
∏

t,t′∈pi

dtt′ ĥ
0
jl,t0

)
∑

pj∈Pi,l

(
∏

t,t′∈pj

dtt′ ĥ
0
j′l,t0

)−
∑

p′
i∈Pi,l

(
∏

t,t′∈p′
i

dtt′ ĥ
0
j′′l ,t0

)2 (31)

Note that in Equation 31,
∑

pi∈Pi,l
(
∏

t,t′∈pi
dtt′ ĥ

0
jl,t0

) is equal to
∑

pj∈Pi,l
(
∏

t,t′∈pj
dtt′ ĥ

0
j′l,t0

), and∑
p′
i∈Pi,l

(
∏

t,t′∈p′
i
dtt′ ĥ

0
j′′l ,t0

)2 of Equation 31 is equal to
∑

p∈Pi,l
(
∏

j,j′∈p djj′ ĥ
0
jl,t0

)2 of Equation 28, thus for
Equation 27 we have:

var(hl
i,t) =

l−1∏
l′=0

m
(l′)
1 · 0.5l ·

l−1∏
k=0

var(wk
tk,tk+1

) ·
∑

p∈Pi,l

(
∏

j,j′∈p

djj′ ĥ
0
jl,t0

)2 (32)

+

l−1∏
l′=0

m
(l′)
1 · 0.5l ·

l−1∏
k=0

var(wk
tk,tk+1

) ·
∑

pi∈Pi,l

(
∏

t,t′∈pi

dtt′ ĥ
0
jl,t0

)
∑

pj∈Pi,l

(
∏

t,t′∈pj

dtt′ ĥ
0
j′l,t0

) (33)

−
l−1∏
l′=0

m
(l′)
1 · 0.5l ·

l−1∏
k=0

var(wk
tk,tk+1

) ·
∑

p′
i∈Pi,l

(
∏

t,t′∈p′
i

dtt′ ĥ
0
j′′l ,t0

)2 (34)

=

l−1∏
l′=0

m
(l′)
1 · 0.5l ·

l−1∏
k=0

var(wk
tk,tk+1

) · [
∑

p∈Pi,l

(
∏

t,t′∈p

dtt′ ĥ
0
j′′l ,t0

)]2 (35)

=

l−1∏
l′=0

m
(l′)
1 · 0.5l ·

l−1∏
k=0

var(wk
tk,tk+1

) · [Ãlh0]2i (36)

where [v]2i denotes the ith element of the element-wise square of the vector v, Ã is the renormalized adjacent matrix
of the GCN, and h0 is a vector equal to [h0

0, h
0
1, · · · , h0

|N|−1]
T , where h0

i is the mean over elements of h0
i . Note that
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Ãlh0 is the message passing of the GCN with the input as a input graph and mean of node features. In practice, we use
GCN implemented by DGL to accelerate computing Ãlh0. Let i ∈ R|N|×1 be a vector with all ones, we intend to make∑

i var(h
l
i,t) equal to

∑
i var(h

l+1
i,t ). Thus we have:

∑
i

var(hl
i,t) =

∑
i

var(hl+1
i,t ) (37)

l−1∏
l′=0

m
(l′)
1 · 0.5l ·

l−1∏
k=0

var(wk
tk,tk+1

) · iT [Ãlh0]2 =

l∏
l′=0

·0.5l+1 ·
l∏

k=0

var(wk
tk,tk+1

) · iT [Ãl+1h0]2 (38)

var(wl) =
2

m
(l)
1

iT [Ãl−1h0]2

iT [Ãlh0]2
(39)

Assumption 3.7 We use the same experiment setting as in the empirical verification of Assumption 3.1, and calculate the
mean and standard deviation of neurons of the softmax of hL

i . In Table 9, we present evaluated results in the row titled with
Evaluated. The row titled with Expected indicates that we require the mean of evaluated results to be expected numbers to
hold Assumption 3.7. We observe that evaluated results are quite close to expected numbers.

Table 9. Estimation of the success probability of δp.

Datasets
cora pubmed citeseer arxiv

Evaluated 0.14±0.01 0.34±0.02 0.16±0.01 0.024±0.02

Expected 0.14 0.33 0.17 0.025

Proof of Theorem 2 Let’s define the loss function as Loss, and L as the number of layers. The backward gradients of
Loss w.r.t hl

i is ∂Loss
∂hl

i

, of which elements are assumed to be i.i.d. Thus we only consider the variance of ∂Loss
∂hl

i,k

, where hl
i,k

can be any element of hl
i. The variance of ∂Loss

∂hl
i,k

is:

∂Loss

∂hl
i,k

=
∑

t∈N,k′

∂Loss

∂hL
t,k′

∂hL
t,k′

∂hl
i,k

(40)

where

∂hL
t,k′

∂hl
i,k

=
∑

p∈P
il,tL

∂[hL
t,k′ ]p

∂hl
i,k

(41)

where Pil,tL denote the set of all message propagation paths from hl
i to hL

t . We firstly look at
∂hL

t,k′

∂hl
i,k

. [hL
t,k′ ]p is equal to

δL−l
p

∏
j,j′∈p djj′

∑
kL−l

∑
kL−2

· · ·
∑

kl+1
hl
i,kw

l
k,kl+1

wl+1
kl+1,kl+2

· · ·wL−1
kL−1,k′ , Thus we have:

∂[hL
t,k′ ]p

∂hl
i,k

= δL−l
p

∏
j,j′∈p

djj′
∑
kL−l

∑
kL−2

· · ·
∑
kl+1

wl
k,kl+1

wl+1
kl+1,kl+2

· · ·wL−1
kL−1,k′ (42)

and
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var(
∂[hL

t,k′ ]p

∂hl
i,k

) = mL−l−1(
∏

j,j′∈p

djj′)
2ρL−l ·

L−1∏
k=l+1

var(wk
tk,tk+1

) (43)

where the m above is the fan out of each layer, which is different from the one defined in in proof of Theorem 1. Similar to
Equation 27 and its subsequent derivations, we have:

var(
∂hL

t,k′

∂hl
i,k

) = mL−l−1 · ρL−l ·
L−1∏

k=l+1

var(wk
tk,tk+1

) · iT [ÃL−li]2 (44)

Assuming that the loss function is cross entropy, and the label of node t is y(t), we have:

∂Loss

∂hL
t,k′

=


s(hL

t )k′−1
|N| k′ = y(t)

s(hL
t )k′
|N| k′ ̸= y(t)

(45)

where s(v)i is the ith element of the softmax of a vector v. Experiments show that at the first epoch, s(hL
t )k′ is

approximately 1/C, where C is the number of classes. Thus we have:

var(
∂Loss

∂hl
i,k

) = var(
∑

t∈N,k′

∂Loss

∂hL
t,k′

∂hL
t,k′

∂hl
i,k

) (46)

=
∑

t∈N,k′

(
∂Loss

∂hL
t,k′

)2var(
∂hL

t,k′

∂hl
i,k

) (47)

=
1

|N|2
(1− 1

C
) ·mL−l−1 · ρL−l ·

L−1∏
k=l+1

var(wk
tk,tk+1

) · [ÃL−li]2i (48)

Similar to the proof of Theorem 1, we intend to make
∑

i var(
∂Loss
∂hl

i,k

) equal to
∑

i var(
∂Loss

∂hl+1
i,k

), thus we have:

1

|N|2
(1− 1

C
) ·mL−l−1 · ρL−l ·

L−1∏
k=l+1

var(wk
tk,tk+1

) · iT [ÃL−li]2 (49)

=
1

|N|2
(1− 1

C
) ·mL−l−2 · ρL−l−1 ·

L−1∏
k=l+2

var(wk
tk,tk+1

) · iT [ÃL−l−1i]2 (50)

Then we have:

var(wk
tk,tk+1

) =
2

mk
2

iT [ÃL−l−1i]2

iT [ÃL−li]2
(51)

For the last layer var(wL−1), we obtain it by making
∑

i var(
∂Loss
∂hL

i,k

) equal to
∑

i var(
∂Loss
∂hL−1

i,k

). According to Equation 45,

the var(∂Loss
∂hL

i,k

) is approximately equal to 1/(|N|2C). Thus we have:
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|N|
|N|2C

=
1

|N|2
(1− 1

C
) · var(wL−1) · iT [Ãi]2 (52)

var(wL−1) =
|N|

(C − 1)iT [Ãi]2
(53)

B. Experimental Setting
In this section, we present design space of hyperparameter tunning used in Section 5.

B.1. Node Classification

For node classification tasks, we perform a grid search to tune the hyperparameters. We list the hyperparameter tunning
settings in Table 10, where lr and wd denotes the learning rate and the weight decay, respectively, and num layers represents
the number of GNN layers. The patience are used for early-stopping.

Table 10. The hyperparameter tunning setting of experiments in Table 2.

Datasets Hyper-parameters

cora
hidden channels: {32, 64, 128}, num layers: {2, 3, 4}, lr: {1e-3, 5e-3, 1e-2, 5e-2},
epochs: 1000, patience: 20, dropout: {0.0, 0.5}, wd: {0.0, 5e-6}

pubmed
hidden channels: {32, 64, 128}, num layers: {2, 3, 4}, lr: {1e-3, 5e-3, 1e-2, 5e-2},
epochs: 1000, patience: 20, dropout: {0.0, 0.5}, wd: {0.0, 5e-6}

citeseer
hidden channels: {32, 64, 128}, num layers: {2, 3, 4}, lr: {1e-3, 5e-3, 1e-2, 5e-2},
epochs: 1000, patience: 20, dropout: {0.0, 0.5}, wd: {0.0, 5e-6}

arxiv
hidden channels: {128, 256}, num layers: {3, 4, 5}, lr: {1e-3, 5e-3, 1e-2, 5e-2},
epochs: 1000, patience: 100, wd: {0.0, 5e-6, 5e-5}, dropout: {0.0, 0.5}

proteins
hidden channels: {128, 256}, num layers: 3, lr: {1e-3, 5e-3, 1e-2, 5e-2},
dropout: {0.0, 0.5}, wd: {0.0, 5e-6}, epochs: 2000

products
hidden channels: 256, num layers: {3, 4}, lr: {1e-3, 5e-3},
dropout: 0.5, wd: {0.0, 5e-5}, epochs: 100

B.2. Link Prediction

For all OGB datasets, we follow the rules of OGB and employ the same data splitting. We use the Adam optimizer with zero
weight decay. We list the hyperparameter tunning settings for the link prediction tasks in Table 11, where lr represents the
learning rate and num layers represents the number of GNN layers. For NGNN models, we use ngnn type to denote the
position where the non-linear layers are inserted, (for instance, input means applying NGNN to only the input GNN layer),
and use num ngnn layers to denote the number of nonlinear layers in each NGNN block. Since the citation2 datasets is too
large, we use the memory-friendly variants of (NGNN-)GCN and (NGNN-)GraphSAGE, namely ClusterGCN and Neighbor
Sampling(SAGE aggregation).

B.3. Graph Classification

For graph classification tasks, the grid search settings for hyperparameter tunning are listed in Table 12, where lr and wd
denotes the learning rate and the weight decay, respectively, and num layers represents the number of GNN layers. For
NGNN variants, ngnn type refers to the position of the linear layer. For example, input means there is one linear layer
stacked on the first GNN layer, and all means each GNN layer is equipped with a linear layer. num ngnn layers refers to the
number of linear layers in the GNN model. Specific details can be found in (Song et al., 2021).
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Table 11. The hyperparameter tunning setting of experiments in Table 3.

Datasets Models Hyper-parameters

ddi

GCN
lr: {0.002, 0.005}, batch size: {16384, 32768},
dropout: {0.4, 0.5, 0.6}, epoch: {1600, 2400},
num layers: 2, hidden channels: 256

NGNN-GCN

ngnn type: {input, all}, num ngnn layers: 1,
lr: {0.001, 0.0015, 0.002, 0.005}, batch size: {8192, 16384, 32768},
dropout: {0.2, 0.3, 0.4, 0.5, 0.6, 0.7}, epoch: {800, 1600, 2400},
num layers: 2, hidden channels: 256

GraphSAGE
lr: {0.001, 0.002}, batch size: 32768,
dropout: {0.1, 0.2, 0.3, 0.4}, epoch: {800, 1200, 2000},
num layers: 2, hidden channels: 256

NGNN-GraphSAGE

ngnn type: input, num ngnn layers: 1,
lr: {0.0005, 0.001, 0.005}, batch size: {8192, 16384, 32768},
dropout: {0, 0.1, 0.2, 0.3, 0.4}, epoch: {600, 1200, 2000},
num layers: 2, hidden channels: 256

collab

GCN
lr: {0.0005, 0.001}, batch size: {32768, 65536}, dropout: {0.2, 0.3},
epoch: {800, 1200}, num layers: {3, 4}, hidden channels:256

NGNN-GCN

ngnn type: {input, hidden, all}, num ngnn layers: 2,
lr: {0.0005, 0.001, 0.002, 0.005}, batch size: {32768, 65536},
dropout: {0.2, 0.3}, epoch: {800, 1200},
num layers: {3, 4}, hidden channels:256

GraphSAGE
lr: {0.0005, 0.001}, batch size: {65536, 131072}, dropout: 0.2,
epoch: {600, 900}, num layers: 4, hidden channels: 256

NGNN-GraphSAGE

ngnn type: {input, hidden, all}, num ngnn layers: 2,
lr: {0.0005, 0.001, 0.002}, batch size: {32768, 65536, 131072},
dropout: {0, 0.1, 0.2, 0.3}, epoch: {400, 800, 1200},
num layers: {3, 4}, hidden channels: 256

citation2

GCN
lr: {0.0003, 0.0005, 0.001}, batch size: 256, dropout: {0, 0.1, 0.2},
epoch: 200, num layers: 3, hidden channels: 256

NGNN-GCN

ngnn type: {hidden, input}, num ngnn layers: {1, 2},
lr: {0.0003, 0.0005}, batch size: 256,
dropout: {0, 0.1}, epoch: 200, eval step: 10,
num layers: 3, hidden channels: 256

GraphSAGE
lr: {0.0003, 0.0005, 0.001}, batch size: 1024, dropout: {0, 0.2},
epoch: 200, num layers: 3, hidden channels:256

NGNN-GraphSAGE
ngnn type: {hidden, input}, num ngnn layers: {1, 2},
lr: {0.0003, 0.0005, 0.001}, batch size: 1024, dropout: {0, 0.2},
epoch: 200, num layers: 3, hidden channels: 256

ppa

GCN
lr: 0.001, batch size: {32768, 49152, 65536}, dropout: {0.2, 0.3},
epoch: {120, 150}, num layers: {3, 4}, hidden channels: 256

NGNN-GCN
ngnn type: input, num ngnn layers: 2, lr: 0.001,
batch size: {32768, 49152, 65536}, dropout: {0.2, 0.3},
epoch: {120, 150}, num layers: {3, 4}, hidden channels: 256

GraphSAGE
lr: {0.001, 0.0015}, batch size: {49152, 65536}, dropout: 0.2,
epoch: {120, 150}, num layers: 4, hidden channels: 256

NGNN-GraphSAGE
ngnn type: input, num ngnn layers: 2, lr: {0.001, 0.0015},
batch size: {49152, 65536}, dropout: 0.2, epoch: {120, 150},
num layers: {3, 4}, hidden channels: 256
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Table 12. The hyperparameter tunning setting of experiments in Table 4.

Datasets Hyper-parameters

molhiv
lr: {5e-4, 1e-4, 5e-3, 1e-3}, dropout: {0.0, 0.5}, wd: {0.0, 5e-6},
batch size: 32, hidden channels: 300, num layer: 5

molpcba
lr: {5e-4, 1e-4, 5e-3, 1e-3}, dropout: {0.0, 0.5}, wd: {0.0, 5e-6},
batch size: 32, hidden channels: 300, num layer: 5

C. Miscellaneous
We present intermediate steps to derive (3) in following equations.
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=δ(ĥl−1
i )⊙ (

l−2∏
k1=0

⊙

∑
jk1+1∈
N(jk1

)

djk1
jk1+1
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