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Abstract

Span identification aims at identifying specific001
text spans from a text input and classifying002
them into pre-defined categories. Different003
from previous works that merely leverage the004
Subordinate (SUB) relation (i.e. if a span is an005
instance of a certain category) to train mod-006
els, this paper for the first time explores the007
Peer (PR) relation, which indicates that two008
spans are instances of the same category and009
share similar features. Specifically, a novel010
Peer Data Augmentation (PeerDA) approach is011
proposed which employs span pairs with the PR012
relation as the augmentation data for training.013
PeerDA has two unique advantages: (1) There014
are a large number of PR span pairs for aug-015
menting the training data. (2) The augmented016
data can prevent the trained model from over-017
fitting the superficial span-category mapping018
by pushing the model to leverage the span se-019
mantics. Experimental results on ten datasets020
over four diverse tasks across seven domains021
demonstrate the effectiveness of PeerDA. No-022
tably, PeerDA achieves state-of-the-art results023
on six of them.1024

1 Introduction025

Span Identification (SpanID) is a family of Natural026

Language Processing (NLP) tasks with the goal of027

detecting specific text spans and further classify-028

ing them into pre-defined categories (Papay et al.,029

2020). It serves as the initial step for complex text030

analysis by narrowing down the search scopes of031

important spans, which holds a pivotal position in032

the field of NLP (Ding et al., 2021). Recently, dif-033

ferent domain-specific SpanID tasks, such as social034

media Named Entity Recognition (NER) (Derczyn-035

ski et al., 2017), Aspect Based Sentiment Analysis036

(ABSA) (Liu, 2012), Contract Clause Extraction037

(CCE) (Chalkidis et al., 2017) and Span Based Pro-038

paganda Detection (SBPD) (Da San Martino et al.,039

2019), have emerged for various NLP applications.040

1Our code and data are available at github.com/XXX.
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NER
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Hawaii London Hangzhou
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…

CCE ABSA …

SUB

PR PR

PR

Context: Gotta dress up for London fashion week and party in style!

Original data SUB Query:


Answer:

Highlight the parts (if any) related to “LOC”. 
Details: the name of politically or geographically 
defined locations such as cities, provinces, etc.

London

Augmented data

PR Query-1:

Answer:

Highlight the parts (if any) similar to “Hawaii”.

London

PR Query-2:

Answer:

Highlight the parts (if any) similar to “Hangzhou”.

London

(a) Relations in SpanID

(b) SpanID in MRC Paradigm

SUB SUB

Figure 1: (a) Illustrations of Subordinate (SUB) and Peer
(PR) relations in SpanID tasks. (b) The constructions
of augmented data with PR relations in MRC paradigm.
We use NER here for demonstration purpose.

Precisely, as shown in Figure 1 (a), the process 041

of SpanID can be summarized as accurately ex- 042

tracting span-category Subordinate (SUB) relation 043

— if a span is an instance of a certain category. 044

Early works (Chiu and Nichols, 2016) typically 045

tackle SpanID tasks as a sequence tagging problem, 046

where the SUB relation is recognized via predict- 047

ing the category for each input token under certain 048

context. Recently, to better utilize category seman- 049

tics, many efforts have been made on reformulating 050

SpanID tasks as a Machine Reading Comprehen- 051

sion (MRC) problem (Liu et al., 2020; Yang et al., 052

2021). As shown by the example in Figure 1 (b), 053

such formulation first creates a SUB query for each 054

category and then recognizes the SUB relation by 055

detecting relevant spans in the input text (i.e., con- 056

text) as answers to the category query. 057

However, only leveraging the SUB relation in 058

the training data to build SpanID models may suf- 059

fer from two limitations: 1) Over-fitting: With 060

only SUB relation, SpanID models tend to capture 061

the superficial span-category correlations. Such 062

correlations may misguide the models to ignore 063
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the semantics of the given span but make predic-064

tions based on the memorized span-category pat-065

terns, which hurts the generalization capability of066

the models. 2) Data Scarcity: For low-resource067

scenarios or long-tailed categories, the number of068

span-category pairs with SUB relation (SUB pairs)069

could be very limited and insufficient to learn a070

reliable SpanID model.071

In this paper, we explore the span-span Peer072

(PR) relation to alleviate the above limitations.073

Specifically, the PR relation indicates that two074

spans are two different instances of the same cat-075

egory. The major difference between PR relation076

and SUB relation is that the former one intends077

to correlate two spans without giving the cate-078

gories they belong to. For example, in Figure 1079

(a), "Hawaii" and "London" are connected with the080

PR relation because they are instances of the same081

category. By jointly recognizing SUB relation and082

PR relation in the input text, the model is enforced083

to favor the usage of span semantics instead of084

span-category patterns for prediction, reducing the085

risk of over-fitting. In addition, the number of span-086

span pairs with the PR relation (PR pairs) grows087

quadratically over the number of SUB pairs. There-088

fore, we can still construct a reasonable number of089

training data with PR pairs for categories having090

insufficient examples.091

In this paper, with the aim of leveraging the PR092

relation to enhance SpanID models, we propose a093

Peer Data Augmentation (PeerDA) approach that094

treats PR pairs as a kind of augmented training data.095

To achieve this, as depicted in Figure 1 (b), we ex-096

tend the usage of the original training data into two097

views. The first view is the SUB-based training098

data. It is used to directly solve the SpanID tasks099

by extracting the SUB relation, which is the typical100

formulation of MRC-based approaches. The sec-101

ond view is the PR-based training data. It is our102

augmentation to enrich the semantics of spans by103

extracting the PR relation in the original training104

data, where one span is used to identify its peer105

from the input context. Note that our PR-based106

training data can be easily formulated into the MRC107

paradigm. Therefore, the knowledge learned from108

such augmentation data can be directly transferred109

to enhance the model’s capability to capture SUB110

relation (i.e., the SpanID tasks).111

To better accommodate the MRC-style SUB and112

PR data, we develop a stronger and more memory-113

efficient MRC model. Compared to the designs114

in Li et al. (2020b), our model introduces a bilin- 115

ear component to calculate the span scores and 116

consistently achieves better performance with a 4 117

times smaller memory consumption. Besides, we 118

propose a margin-based contrastive learning strat- 119

egy to additionally model the negative spans to the 120

query (e.g., when querying the context in Figure 1 121

for “ORG” entities, “London” becomes a negative 122

span) so that the spans from different categories 123

are separated more apart in the semantic space. 124

We evaluate the effectiveness of PeerDA on ten 125

datasets across seven domains, from four differ- 126

ent SpanID tasks, namely, NER, ABSA, CCE, 127

and SBPD. Experimental results show that extract- 128

ing PR relation benefits the learning of semantics 129

and encourages models to identify more possible 130

spans. As a result, PeerDA is a new state-of-the-art 131

(SOTA) method on six SpanID datasets. Our anal- 132

yses further demonstrate the capability of PeerDA 133

to alleviate scarcity and over-fitting issues. 134

Our contributions are summarized as follows: 135

(1) We propose a novel PeerDA approach to tackle 136

SpanID tasks via augmenting training data with 137

PR relation. (2) We conduct extensive experiments 138

on ten datasets, including four different SpanID 139

tasks across seven domains, and achieve SOTA 140

performance on six SpanID datasets. (3) PeerDA 141

is more effective in low-resource scenarios or long- 142

tailed categories and thus, it alleviates the scarcity 143

issue. Meanwhile, PeerDA pushes models to weigh 144

more on the span semantics to prevent over-fitting. 145

2 Related Work 146

DA for SpanID: DA, which increases the diversity 147

of training data at a low cost, is a widely-adopted 148

solution to address data scarcity (Feng et al., 2021). 149

In the scope of SpanID, existing DA approaches 150

aim to introduce more span-category patterns, in- 151

cluding: (1) Word Replacement that keeps the la- 152

bels unchanged but replaces or paraphrases some 153

context tokens either using simple rules (Wei and 154

Zou, 2019; Dai and Adel, 2020) or strong language 155

models (Kobayashi, 2018; Wu et al., 2019; Li et al., 156

2020a). (2) Self-training is to continually train the 157

model on its predicted data (Xie et al., 2019, 2020), 158

which shows promising results on NER (Wang 159

et al., 2020), and propaganda detection (Hou et al., 160

2021). (3) Distantly Supervised Training focuses 161

on leveraging external knowledge to roughly la- 162

bel spans in the target tasks. For example, Huang 163

et al. (2021) leverage Wikipedia to create distant 164
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labels for NER. Chen et al. (2021) transfer data165

from high-resource to low-resource domains. Jain166

et al. (2019); Li et al. (2020c) tackle cross-lingual167

NER by projecting labels from high-resource to168

low-resource languages. Differently, the motiva-169

tion of PeerDA is to leverage the augmented data170

to enhance models’ capability on semantic under-171

standing by minimizing(maximizing) the distances172

between semantically similar(distant) spans.173

MRC: MRC is to extract an answer span from a174

relevant context conditioned on a given query. It175

is initially designed to solve question answering176

tasks (Hermann et al., 2015), while recent trends177

have shown great advantages of formulating NLP178

tasks as MRC problems. In the context of SpanID,179

Li et al. (2020b) address the nested NER issues by180

decomposing nested entities under multiple queries.181

Mao et al. (2021) tackle ABSA by combining as-182

pect term extraction and sentiment polarity classifi-183

cation in a dual MRC framework. Hendrycks et al.184

(2021) tackle CCE with MRC to deal with the ex-185

traction of long clauses. Moreover, other tasks such186

as relation extraction (Li et al., 2019a), event de-187

tection (Liu et al., 2020, 2021), and summarization188

(McCann et al., 2018) are also reported to benefit189

from the MRC paradigm.190

3 PeerDA191

Overview of SpanID: Given the input text192

X = {x1, ..., xn}, SpanID is to detect all ap-193

propriate spans {xk}Kk=1 and classify them with194

proper labels {yk}Kk=1, where each span xk =195

{xsk , xsk+1, ..., xek−1, xek} is a subsequence of196

X satisfying sk ≤ ek and the label comes from a197

predefined category set Y (e.g. "Person" in NER).198

3.1 Training Data Construction199

The training data D consists of two parts: (1) The200

SUB-based training data DSUB, where the query201

is about a category and the MRC context is the202

input text. (2) The PR-based training data DPR is203

constructed with PR pairs, where one span is used204

to create the query and the input text containing the205

second span serves as the MRC context.206

3.1.1 SUB-based Training Data207

First, we need to transform the original training208

examples into (query, context, answers) triples fol-209

lowing the paradigm of MRC (Li et al., 2020b). To210

extract the SUB relation between categories and211

relevant spans, a natural language query QSUB
y is212

constructed to reflect the semantics of each cate- 213

gory y. Following Hendrycks et al. (2021), we 214

include both category mention [Men]y and its def- 215

inition [Def]y from the annotation guideline (or 216

Wikipedia if the guideline is not accessible) in the 217

query to introduce more comprehensive semantics: 218

QSUB
y = Highlight the parts (if any)

related to [Men]y. Details : [Def]y.
(1) 219

Given the input text X as the context, the an- 220

swers to QSUB
y are the spans belonging to category 221

y. Then we can obtain one MRC example denoted 222

as (QSUB
y , X , {xk | xk ∈ X, yk = y}Kk=1). To 223

guarantee the identification of all possible spans, 224

we create |Y | training examples by querying the 225

input text with each pre-defined category. 226

3.1.2 PR-based training data 227

To construct augmented data that derived from the 228

PR relation, we first create a category-wise span set 229

Sy that includes all training spans with category y: 230

Sy = {xk | (xk, yk) ∈ DSUB, yk = y} (2) 231

Obviously, any two different spans in Sy have 232

the same category and shall hold the PR relation. 233

Therefore, we pair every two different spans in Sy 234

to create a peer set Py: 235

Py = {(xq,xa) | xq,xa ∈ Sy,x
q ̸= xa} (3) 236

For each PR pair (xq,xa) in Py, we can con- 237

struct one training example by constructing the 238

query with the first span xq: 239

QPR
y = Highlight the parts (if any)

similar to x q .
(4) 240

Then we treat the text Xa containing the second 241

span xa as the MRC context to be queried and xa 242

as the answer to QPR
y . Note that there may exist 243

more than one span in Xa satisfying PR relation 244

with xq, we set all of them as the valid answers 245

to QPR
y , yielding one training example (QPR

y , Xa, 246

{xa
k | xa

k ∈ Xa, yak = y}Kk=1) of our PeerDA. 247

Theoretically, given the span set Sy, there are 248

only |Sy| SUB pairs in the training data but we can 249

obtain |Sy| × (|Sy| − 1) PR pairs to construct DPR. 250

Such a large number of augmented data shall hold 251

great potential to enrich spans’ semantics. How- 252

ever, putting all PR-based examples into training 253

would exacerbate the skewed data distribution issue 254

since the long-tailed categories get fewer PR pairs 255

3



for augmentation and also increase the training cost.256

Therefore, as the first step for DA with the PR rela-257

tion, we propose three augmentation strategies to258

control the size and distribution of augmented data.259

PeerDA-Size: This is to increase the size of aug-260

mented data while keeping the data distribution261

unchanged. Specifically, for each category y, we262

randomly sample λ|Sy| PR pairs from Py. Then263

we collect all sampled PR pairs to construct DPR,264

where λ is the DA rate to control the size of DPR.265

PeerDA-Categ: Categories are not evenly dis-266

tributed in the training data, and in general SpanID267

models perform poorly on long-tailed categories.268

To tackle this, we propose PeerDA-Categ to aug-269

ment more training data for long-tailed categories.270

Specifically, let y∗ denote the category having the271

largest span set of size |Sy∗ |. We sample up to272

|Sy∗ | − |Sy| PR pairs from Py for each category273

y and construct a category-balanced training set274

DPR using all sampled pairs. Except for the ex-275

treme cases where |Sy| is smaller than
√
|Sy∗ |, we276

would get the same size of the training data for277

each category after the augmentation, which signif-278

icantly increases the exposure for spans from the279

long-tailed categories.280

PeerDA-Both (The final version of PeerDA): To281

take advantage of the above two strategies, we fur-282

ther propose PeerDA-Both to maintain the data283

distribution while effectively increasing the size of284

training data. In PeerDA-Both, we randomly sam-285

ple max(λ|Sy∗ |+ (|Sy∗ | − |Sy|), 0) PR pairs from286

Py for each category y to construct DPR, where287

λ|Sy∗ | determines the size of the augmented data,288

and |Sy∗ | − |Sy| controls the data distribution.289

3.1.3 Data Balance290

We combine the DSUB and the DPR created above291

as the final training data. Since an input text usu-292

ally mentions spans from a few categories, when293

converting the text into the MRC paradigm, many294

of the |Y | examples are unanswerable. If a SpanID295

model is trained on this unbalanced data, then the296

model may favor the majority of the training ex-297

amples and output an empty span. To balance an-298

swerable and unanswerable examples, we follow299

Hendrycks et al. (2021) to randomly remove some300

unanswerable examples from the training data.301

3.2 Model Architecture302

As shown in Figure 2, to achieve the detection of303

multiple spans for the given query, we follow Li304

His 1942 novel “ The Family of Pascual Duarte ” is considered the most 

Work of Art

NORP Person

popular work of fiction in Spanish since Cervantes ’s “ Don Quixote ” 

Work of Art

Figure 2: Example of extracting multiple spans in NER.

et al. (2020b) to build the MRC model. Compared 305

to the original designs, we further optimize the 306

computation of span scores following a general 307

way of Luong et al. (2015). 308

Specifically, the base model consists of three 309

components: an encoder, a span predictor, and a 310

start-end selector. First, given the concatenation 311

of the query Q and the context X as the MRC 312

input X = {[CLS],Q, [SEP],X, [SEP]}, where 313

[CLS], [SEP] are special tokens, the encoder would 314

encode the input text into hidden states H: 315

H = ENCODER(X) (5) 316

Second, the span predictor consists of two binary 317

classifiers, one to predict whether each context to- 318

ken is the start index of the answer, and the other 319

to predict whether the token is the end index: 320

Pstart = HW s Pend = HW e (6) 321

where W s,W e ∈ Rd×2 are the weights of two 322

classifiers and d is the dimension of hidden states. 323

The span predictor would output multiple start and 324

end indexes for the given query and context. 325

Third, the start-end selector matches each start 326

index to each end index and selects the most pos- 327

sible spans from all combinations as the outputs. 328

Different from the concat way that would create a 329

large R|X|×|X|×2d-shape tensor (Li et al., 2020b), 330

we leverage a general way following Luong et al. 331

(2015) to compute the span score, consuming fewer 332

resources for better training efficiency: 333

Ps,e = FFN(Hs)
THe (7) 334

where FFN is the feed-forward network (Vaswani 335

et al., 2017), Ps,e denotes the likelihood of Xs:e to 336

form a possible answer. 337

3.3 Training Objective 338

The standard objective is to minimize the cross- 339

entropy loss (CE) between above three predictions 340

and their corresponding ground-truth labels, i.e., 341

Ystart, Yend, Ys,e (Li et al., 2020b): 342

Lmrc = CE(σ(Pstart), Ystart) + CE(σ(Pend), Yend)

+ CE(σ(Ps,e), Ys,e)
(8) 343

where σ is the sigmoid function. 344

However, these objectives only capture the se- 345

mantic similarity between the query and positive 346
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Task NER ABSA SBPD CCE

Dataset OntoNotes5 WNUT17 Movie Restaurant Weibo Lap14 Rest14 News20 Social21 CUAD
Domain mixed social movie restaurant social laptop restaurant news social legal
# Train 60.0k 3.4k 7.8k 7.7k 1.3k 2.7k 2.7k 0.4k 0.7k 0.5k
# Test 8.3k 1.3k 2.0k 1.5k 0.3k 0.8k 0.8k 75 (dev) 0.2k 0.1k
# Category 11 6 12 8 4 1 / 3 1 / 3 14 20 41

Table 1: Statistics on the ten SpanID datasets. Note that 1 / 3 denotes that there is 1 category in ATE and 3 categories
in UABSA. dev denotes that we evaluate News20 on the dev set.

spans (i.e., the span instances of the query cate-347

gory). In this paper, we propose to explicitly sepa-348

rate the query and its negative spans (i.e., the span349

instances of other categories) apart with a margin-350

based contrastive learning strategy, for better dis-351

tinguishing the spans from different categories.352

Specifically, given the MRC input X with query353

of category y, there may be multiple positive spans354

X+
= {xk ∈ X, yk = y} and negative spans355

X−
= {xk′ ∈ X, yk′ ̸= y}. We leverage the356

following margin-based contrastive loss to penalize357

negative spans (Chechik et al., 2010):358

Lct = max
xk∈X+

x
k′∈X−

max(0,M − (σ(Psk,ek )− σ(Psk′ ,ek′ )))

(9)359

where M is the margin term, max(·, ·) is to se-360

lect the larger one from two candidates, and the361

span score Psk,ek can be regarded as the semantic362

similarity between the query and the target span363

xk. Note that our contrastive loss maximizes the364

similarity difference between the query and the365

most confusing positive and negative span pairs366

(Max-Min), which we demonstrate to be effective367

in Sec. 5.3.368

Finally, the overall training objective is:369

L = Lmrc + αLct (10)370

where α is the balance rate.371

4 Experimental Setup372

4.1 Tasks373

We conduct experiments on four SpanID tasks from374

diverse domains, including NER, ABSA, Contract375

Clause Extraction (CCE), and Span Based Propa-376

ganda Detection (SBPD). The dataset statistics are377

summarized in Table 1. The detailed task descrip-378

tion can be found in Appendix A.1.379

NER: We evaluate five datasets, including four En-380

glish datasets: OntoNotes52 (Pradhan et al., 2013),381

2In order to conduct robustness experiments in Sec. A.4,
we use the datasets from Lin et al. (2021) with 11 entity types.

WNUT17 (Derczynski et al., 2017), Movie (Liu 382

et al., 2013b), and Restaurant (Liu et al., 2013a) 383

and a Chinese dataset Weibo (Peng and Dredze, 384

2015). We use micro-averaged Precision, Recall, 385

and F1 as evaluation metrics. 386

ABSA: We explore two ABSA sub-tasks: Aspect 387

Term Extraction (ATE) to only extract aspect 388

terms, and Unified Aspect Based Sentiment Anal- 389

ysis (UABSA) to jointly identify aspect terms and 390

their sentiment polarities. We evaluate the two 391

sub-tasks on two datasets, including the laptop do- 392

main Lap14 and restaurant domain Rest14. We 393

use micro-averaged F1 as the evaluation metric. 394

SBPD: It aims to detect both the text fragment 395

where a persuasion technique is used and its tech- 396

nique type. We use News20 and Social21 from 397

SemEval shared tasks (Da San Martino et al., 2020; 398

Dimitrov et al., 2021). For News20, we report the 399

results on its dev set since the test set is not pub- 400

licly available. We use micro-averaged Precision, 401

Recall, and F1 as evaluation metrics. 402

CCE: It is a legal task to detect and classify con- 403

tract clauses into relevant clause types, such as 404

"Governing Law". We conduct CCE experiments 405

using CUAD (Hendrycks et al., 2021). We fol- 406

low Hendrycks et al. (2021) to use Area Under the 407

Precision-Recall Curve (AUPR) and Precision at 408

80% Recall (P@0.8R) as the evaluation metrics. 409

4.2 Implementations 410

Since legal SpanID tasks have a lower tolerance 411

for missing important spans, we do not include 412

start-end selector (i.e. CE(Ps,e, Ys,e) and αLct in 413

Eq. (10)) in the CCE models but follow Hendrycks 414

et al. (2021) to output top 20 spans from span pre- 415

dictor for each input example in order to extract 416

spans as much as possible. While for NER, ABSA, 417

and SBPD, we use our optimized architecture and 418

objective. For fair comparison with existing works, 419

our models utilize BERT (Devlin et al., 2019) as 420

the text encoder for ABSA and RoBERTa (Liu 421

et al., 2019) for NER, CCE, and SBPD. Detailed 422
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Methods OntoNotes5 WNUT17 Movie Restaurant Weibo

P R F1 P R F1 P R F1 P R F1 P R F1

RB-CRF+RM CL-KL T-NER KaNa RoBERTa+BS
SOTA 92.8 92.4 92.6 - - 60.5 - - 71.2 80.9 80.0 80.4 70.2 75.4 72.7

Base
Tagging 91.0 91.8 91.4 62.1 48.2 54.3 73.0 72.8 72.9 80.6 80.7 80.7 70.8 71.0 70.9
MRC 92.4 91.8 92.1 66.4 40.7 50.5 70.3 73.3 71.8 81.4 79.9 80.6 73.6 64.4 68.7
PeerDA 91.9 92.6 92.4 71.1 46.9 56.5 77.9 72.3 75.0 81.3 82.8 82.1 70.0 73.3 71.6

Large
Tagging 93.0 92.3 92.6 69.4 46.2 55.4 74.2 74.0 74.1 80.9 82.0 81.4 71.4 69.2 70.3
MRC 92.8 91.8 92.3 72.4 41.7 52.9 76.7 73.2 74.9 81.6 81.7 81.7 72.2 66.8 69.4
PeerDA 92.8 93.7 93.3 70.9 48.0 57.2 78.5 73.1 75.7 81.8 82.5 82.2 73.4 71.6 72.5

Table 2: Performance on NER datasets. The best models are bolded.

configurations can be found in Appendix A.423

4.3 Baselines424

Note that our main contribution is to provide a425

new perspective to treat the PR relation as a kind426

of training data for augmentation. Therefore, we427

compare with models built on the same encoder-428

only PLMs (Devlin et al., 2019; Liu et al., 2019).429

We are not focusing on pushing the SOTA results to430

new heights though some of the baselines already431

achieved SOTA performance.432

NER: We compare with Tagging (Liu et al., 2019)433

and MRC (Li et al., 2020b) baselines. We also re-434

port the previous best approaches for each dataset,435

including RB-CRF+RM (Lin et al., 2021), CL-KL436

(Wang et al., 2021), T-NER (Ushio and Camacho-437

Collados, 2021) KaNa (Nie et al., 2021), and438

RoBERTa+BS (Zhu and Li, 2022).439

ABSA: In addition to MRC baseline, we also com-440

pare with previous approaches on top of BERT.441

These are SPAN-BERT (Hu et al., 2019), IMN-442

BERT (He et al., 2019), RACL (Chen and Qian,443

2020) and Dual-MRC (Mao et al., 2021).444

SBPD: For News20 we only compare with MRC445

baseline due to the lack of related work. For So-446

cial21, we compare with top three approaches on447

its leaderboard, namely, Volta (Gupta et al., 2021),448

HOMADOS (Kaczyński and Przybyła, 2021), and449

TeamFPAI (Hou et al., 2021).450

CCE: We compare with (1) MRC basline, (2)451

stronger text encoders, including ALBERT (Lan452

et al., 2019) and DeBERTa (He et al., 2020), and453

(3) the model continually pretrained on contracts:454

RoBERTa + CP (Hendrycks et al., 2021).455

Methods Lap14 Rest14

UABSA ATE UABSA ATE

SPAN-BERT 61.3 82.3 73.7 86.7
IMN-BERT 61.7 77.6 70.7 84.1
RACL 63.4 81.8 75.4 86.4
Dual-MRC 65.9 82.5 76.0 86.6

MRC (Large) 63.2 83.9 72.9 86.8
PeerDA 65.9 84.6 73.9 86.8

Table 3: Performance on two ABSA subtasks on two
datasets. Results are averages F1 over 5 runs.

5 Results 456

5.1 Comparison Results 457

NER: Table 2 shows the performance on five NER 458

datasets. Our PeerDA significantly outperforms 459

the Tagging and MRC baselines. Precisely, com- 460

pared to RoBERTabase MRC, PeerDA obtains 0.3, 461

6.0, 3.2, 1.5, and 2.9 F1 gains on five datasets re- 462

spectively. When implemented on RoBERTalarge, 463

our PeerDA can further boost the performance and 464

establishes new SOTA on three datasets, namely, 465

OntoNotes5, Movie, and Restaurant. Note that 466

the major improvement of PeerDA over MRC 467

comes from higher Recall. It implies that PeerDA 468

encourages models to give more span predictions. 469

ABSA: Table 3 depicts the results on ABSA. Com- 470

pared to previous approaches, PeerDA mostly 471

achieves better results on two subtasks, where it 472

outperforms vanilla MRC by 2.7 and 1.0 F1 on 473

UABSA for two domains respectively. 474

SBPD: The results of two SBPD tasks are pre- 475

sented in Table 4. PeerDA outperforms MRC by 476

8.2 and 9.2 F1 and achieves SOTA performance on 477

News20 and Social21 respectively. 478

CCE: The results of CCE are shown in Table 5. 479

PeerDA surpasses MRC by 8.7 AUPR and 13.3 480
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Methods News20 Social21

P R F1 P R F1

Volta - - - 50.1 46.4 48.2
HOMADOS - - - 41.2 40.3 40.7
TeamFPAI - - - 65.2 28.6 39.7

MRC (Base) 10.5 53.5 17.6 55.8 43.5 48.9
PeerDA 21.8 31.5 25.8 49.4 70.6 58.1

Table 4: PeerDA performance on two SBPD datasets.

Methods #Params AUPR P@0.8R

ALBERTxxlarge 223M 38.4 31.0
RoBERTabase + CP 125M 45.2 34.1
RoBERTalarge 355M 48.2 38.1
DeBERTaxlarge 900M 47.8 44.0

MRC (Base) 125M 43.6 32.2
PeerDA 125M 52.3 45.5

Table 5: PeerDA performance on CCE.

P@0.8R and even surpasses the model of extremely481

large size (DeBERTaxlarge) by 4.5 AUPR, reach-482

ing SOTA performance on CUAD.483

5.2 Analysis on Augmentation Strategies484

To explore how the size and category distribution485

of the augmented data affect the SpanID tasks,486

we conduct ablation study on the three augmen-487

tation strategies mentioned in Sec. 3.1.2, depicted488

in Table 6. Overall, all of the PeerDA variants489

are clearly superior to the MRC baseline and the490

PeerDA-both considering both data size and dis-491

tribution issues performs the best. Another inter-492

esting finding is that PeerDA-Categ significantly493

outperforms PeerDA-Size on SBPD and CCE. We494

attribute the phenomenon to the fact that SBPD495

and CCE have a larger number of categories and496

consequently, the MRC model is more prone to the497

issue of skewed data distribution. Under this cir-498

cumstance, PeerDA-Categ, the variant designed for499

compensating the long-tailed categories, can bring500

larger performance gains over MRC model. On the501

other hand, if the skewed data distribution is not502

severe (e.g. NER), or the category shows a weak503

correlation with the spans (i.e. UABSA), PeerDA-504

Size is more appropriate than PeerDA-Categ.505

5.3 Analysis on Model Designs506

Calculation of Ps,e (Top part of Table 7) Un-507

der the same experimental setup (RoBERTabase,508

batch size=32, sequence length=192, fp16), using509

our general method (Eq. (7)) to compute span510

score Ps,e greatly reduces the memory footprint511

by more than 4 times with no performance drop,512

Ablation Type NER UABSA SBPD CCE Avg.

MRC 72.7 68.1 33.3 43.6 54.4
PeerDA-Size 74.6 69.7 38.5 48.7 57.9
PeerDA-Categ 74.2 69.3 40.4 51.3 58.8
PeerDA-Both (final) 75.5 69.9 42.0 52.3 59.9

Table 6: Ablation study on data augmentation strategies.
The results (F1 for NER, UABSA, and SBPD. AUPR
for CCE) are averaged of all datasets in each task.

Ablation Type |GPU| NER UABSA SBPD Avg.

Calculation of Ps,e

concat 1x 74.5 69.2 40.3 61.3
general (final) 0.23x 75.0 69.4 40.8 61.7

Contrastive Loss

Average 0.23x 75.1 69.6 37.6 60.8
Max-Min (final) 0.23x 75.5 69.9 42.0 62.4

Table 7: Ablation study on model designs. The F1

scores are averaged of all datasets in each task. The
|GPU| column denotes the GPU memory footprint of
each variant under the same experimental setup.

compared to the original concat method. Therefore, 513

our general method allows a larger batch size for 514

accelerating the training. 515

Contrastive Loss (Bottom part of Table 7) After 516

we have settled on the general scoring function, we 517

further investigate different methods to compute 518

contrastive loss. We find that the Average method, 519

which averages similarity differences between the 520

query and all pairs of positive and negative spans, 521

would affect SpanID performance when the task 522

has more long-tailed categories (i.e. SBPD). While 523

our Max-Min (strategy in Eq.(9)) is a relaxed regu- 524

larization, which empirically is more suitable for 525

SpanID tasks and consistently performs better than 526

the Average method. 527

6 Further Discussions 528

In this section, we make further discussions to bring 529

valuable insights of our PeerDA approach. 530

Out-of-domain Evaluation: We conduct out-of- 531

domain evaluation on four English NER datasets, 532

where the model is trained on OntoNotes5, the 533

largest dataset among them, and evaluated on the 534

test part of another three datasets. Since these four 535

datasets are from different domains and differ sub- 536

stantially in their categories, this setting largely 537

eliminates the impact of superficial span-category 538

patterns and thus it can faithfully reflect how well 539
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Figure 3: Performance on low-resource scenarios. We select one dataset for each SpanID task and report the test
results (AUPR for CCE and F1 for others) from the models trained on different proportions of the training data.

SRC → TGT RoBERTabase RoBERTalarge

MRC PeerDA MRC PeerDA

Onto. → WNUT17 43.1 46.8 44.2 46.9
Onto. → Rest. 1.6 5.0 2.7 11.0
Onto. → Movie 25.0 26.7 26.7 27.8
Average 23.3 26.2 24.5 28.6

Table 8: F1 scores on NER cross-domain transfer, where
models trained on source-domain training data (SRC)
are evaluated on target-domain test sets (TGT).

25 20 15 10 5 0 5 10 15 20
Similarity

0.0

0.1

0.2

0.3

0.4

0.5

De
ns

ity

PeerDA Cat.-Pos.
PeerDA Cat.-Neg.
MRC Cat.-Pos.
MRC Cat.-Neg.

Figure 4: The distribution of similarity score between
categories and their corresponding positive/negative
spans on Ontonotes5 test set.

the MRC model exploits span semantics for predic-540

tion. The results are presented in Table 8. PeerDA541

can significantly exceed MRC on all three transfer542

pairs. On average, PeerDA achieves 2.9 and 4.1 F1543

gains over base-size MRC and large-size MRC re-544

spectively. These results verify our postulation that545

modeling the PR relation allows models to weigh546

more on the semantics for making predictions, and547

thus mitigates the over-fitting issue.548

Semantic Distance: To gain a deeper understand-549

ing of the way in which PeerDA enhances model550

performance, we consider the span score (Eq. 7) as551

a measure of semantic similarity between a query552

and a span. In this context, we can create queries553

for all categories and visualize the similarity distri- 554

bution between the categories and their correspond- 555

ing positive and negative spans on Ontonote5 test 556

set. As shown in Figure 4, we can observe that 557

the use of PeerDA leads to an increased semantic 558

similarity between spans and their corresponding 559

categories, resulting in higher confidence in the pre- 560

diction of correct spans. Furthermore, PeerDA has 561

been shown to also create a larger similarity gap 562

between positive and negative spans, facilitating 563

their distinction. 564

Low-resource Evaluation: We simulate low- 565

resource scenarios by randomly selecting 10%, 566

30%, 50%, and 100% of the training data for train- 567

ing SpanID models and show the comparison re- 568

sults between PeerDA and MRC on four SpanID 569

tasks in Figure 3. As can be seen, our PeerDA 570

further enhances the MRC model in all sizes of 571

training data and the overall trends are consistent 572

across the above four tasks. When training PeerDA 573

with 50% of the training data, it can reach or even 574

exceed the performance of MRC trained on the full 575

training set. These results demonstrate the effec- 576

tiveness of our PeerDA in low-resource scenarios. 577

7 Conclusions 578

In this paper, we propose a novel PeerDA approach 579

for SpanID tasks to augment training data from the 580

perspective of capturing the PR relation. PeerDA 581

has two unique advantages: (1) It is capable to 582

leverage abundant but previously unused PR rela- 583

tion as additional training data. (2) It alleviates the 584

over-fitting issue of MRC models by pushing the 585

models to weigh more on semantics. We conduct 586

extensive experiments to verify the effectiveness 587

of PeerDA. Further in-depth analyses demonstrate 588

that the improvement of PeerDA comes from a 589

better semantic understanding capability. 590
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Limitations591

In this section, we discuss the limitations of this592

work as follows:593

• PeerDA leverages labeled spans in the existing594

training set to conduct data augmentation. This595

means that PeerDA improves the semantics learn-596

ing of existing labeled spans, but is ineffective597

to classify other spans outside the training set.598

Therefore, it would be beneficial to engage outer599

source knowledge (e.g. Wikipedia), where a vari-600

ety of important entities and text spans can also601

be better learned with our PeerDA approach.602

• Since PeerDA is designed in the MRC formula-603

tion on top of the encoder-only Pre-trained Lan-604

guage Models (PLMs) (Devlin et al., 2019; Liu605

et al., 2019), it is not comparable with other meth-606

ods built on encoder-decoder PLMs (Yan et al.,607

2021b; Chen et al., 2022; Zhang et al., 2021;608

Yan et al., 2021a). It would be of great value to609

try PeerDA on encoder-decoder PLMs such as610

BART (Lewis et al., 2020) and T5 (Raffel et al.,611

2020), to see whether PeerDA is a general ap-612

proach regardless of model architecture.613

• As shown in Table 12, although PeerDA can sig-614

nificantly alleviate the Missing Predictions, the615

most prevailing error in the MRC model, PeerDA616

also introduces some new errors, i.e. Multiple la-617

bels and Incorrect Label. It should be noted that618

those problematic spans are usually observed in619

different span sets, where they would learn differ-620

ent category semantics from their peers. There-621

fore, we speculate that those spans tend to lever-622

age the learned category semantics more than623

their context information to determine their cate-624

gories. We hope such finding can shed light on625

future research to further improve PeerDA.626
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stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,747
and Phil Blunsom. 2015. Teaching machines to read748
and comprehend. In Proceedings of the 28th Interna-749
tional Conference on Neural Information Processing750
Systems-Volume 1, pages 1693–1701.751

Xiaolong Hou, Junsong Ren, Gang Rao, Lianxin Lian,752
Zhihao Ruan, Yang Mo, and JIanping Shen. 2021.753

FPAI at SemEval-2021 task 6: BERT-MRC for pro- 754
paganda techniques detection. In Proceedings of the 755
15th International Workshop on Semantic Evaluation 756
(SemEval-2021), pages 1056–1060, Online. Associa- 757
tion for Computational Linguistics. 758

Minghao Hu, Yuxing Peng, Zhen Huang, Dongsheng 759
Li, and Yiwei Lv. 2019. Open-domain targeted senti- 760
ment analysis via span-based extraction and classifi- 761
cation. In Proceedings of the 57th Annual Meeting of 762
the Association for Computational Linguistics, pages 763
537–546, Florence, Italy. Association for Computa- 764
tional Linguistics. 765

Jiaxin Huang, Chunyuan Li, Krishan Subudhi, Damien 766
Jose, Shobana Balakrishnan, Weizhu Chen, Baolin 767
Peng, Jianfeng Gao, and Jiawei Han. 2021. Few- 768
shot named entity recognition: An empirical baseline 769
study. In Proceedings of the 2021 Conference on 770
Empirical Methods in Natural Language Process- 771
ing, pages 10408–10423, Online and Punta Cana, 772
Dominican Republic. Association for Computational 773
Linguistics. 774

Alankar Jain, Bhargavi Paranjape, and Zachary C. Lip- 775
ton. 2019. Entity projection via machine transla- 776
tion for cross-lingual NER. In Proceedings of the 777
2019 Conference on Empirical Methods in Natu- 778
ral Language Processing and the 9th International 779
Joint Conference on Natural Language Processing 780
(EMNLP-IJCNLP), pages 1083–1092, Hong Kong, 781
China. Association for Computational Linguistics. 782
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A Appendix1039

A.1 Task Overview1040

We conduct experiments on four SpanID tasks1041

with diverse domains, including Named Entity1042

Recognition (NER), Aspect Based Sentiment Anal-1043

ysis (ABSA), Contract Clause Extraction (CCE)1044

and Span Based Propaganda Detection (SBPD), to1045

show the overall effectiveness of our PeerDA. The1046

dataset statistics are summarized in Table 1.1047

NER is a traditional SpanID task, where spans1048

denote the named entities in the input text and cate-1049

gory labels denote their associated entity types. We1050

evaluate five datasets from four domains:1051

• OntoNotes5 (Pradhan et al., 2013) is a large-1052

scale mixed domain NER dataset covering News,1053

Blog and Dialogue. To make a fair comparison1054

in the robustness experiments in Sec. A.4, we1055

use the datasets from Lin et al. (2021), which1056

only add adversarial attack to the 11 entity types,1057

while leaving out 7 numerical types.1058

• WNUT17 (Derczynski et al., 2017) is a bench-1059

mark NER dataset in social media domain.1060

For fair comparison, we follow the data pre-1061

processing protocols in Nie et al. (2020).1062

• Movie (Liu et al., 2013b) is a movie domain1063

dataset containing movie queries, where long1064

spans are annotated such as a movie’s origin or1065

plot. We use the defaulted data split strategy into1066

train, test sets.1067

• Restaurant (Liu et al., 2013a) contains queries1068

in restaurant domain. Similar to Movie, we use1069

the defaulted data split strategy.1070

• Weibo (Peng and Dredze, 2015) is a Chinese1071

benchmark NER dataset in social media domain.1072

We exactly follow the official data split strategy1073

into train, dev and test sets.1074

ABSA (Li et al., 2019b; Chen and Qian, 2020)1075

is a fine-grained sentiment analysis task centering1076

at aspect terms. We explore two ABSA sub-tasks:1077

• Aspect Term Extraction (ATE) is to extract as-1078

pect terms, where there is only one query asking1079

if there are any aspect terms in the input text.1080

• Unified Aspect Based Sentiment Analysis1081

(UABSA) is to jointly extract aspect terms and1082

predict their sentiment polarities. We formulate it1083

as a SpanID task by treating the sentiment polar- 1084

ities, namely, positive, negative, and neutral, as 1085

three category labels, and aspect terms as spans. 1086

We evaluate the two sub-tasks on two datasets, 1087

including the laptop domain dataset Lap14 and 1088

restaurant domain dataset Rest14 from SemEval 1089

Shared tasks (Pontiki et al., 2014). We use the 1090

processed data from Zhang et al. (2021). 1091

CCE is a legal NLP task to detect and classify 1092

contract clauses into relevant clause types, such as 1093

"Governing Law" and "Uncapped Liability". The 1094

goal of CCE is to reduce the labor of legal profes- 1095

sionals in reviewing contracts of dozens or hun- 1096

dreds of pages long. CCE is also a kind of SpanID 1097

task where spans are those contract clauses that 1098

warrant review or analysis and labels are prede- 1099

fined clause types. We conduct experiments on 1100

CCE using CUAD (Hendrycks et al., 2021), where 1101

they annotate contracts from Electronic Data Gath- 1102

ering, Analysis and Retrieval (EDGAR) with 41 1103

clause types. We follow Hendrycks et al. (2021) to 1104

split the contracts into segments within the length 1105

limitation of pretrained language models and treat 1106

each individual segment as one example. We also 1107

follow their data split strategy. 1108

SBPD (Da San Martino et al., 2019) is a typical 1109

SpanID task that aims to detect both the text frag- 1110

ment (i.e. spans) where a persuasion technique is 1111

being used as well as its technique type (i.e. cat- 1112

egory labels). We use the News20 and Social21 1113

from two SemEval shared tasks (Da San Martino 1114

et al., 2020; Dimitrov et al., 2021) and follow the 1115

official data split strategy. Note that News20 does 1116

not provide the golden label for the test set. There- 1117

fore, we evaluate News20 on the dev set. 1118

A.2 Implementations 1119

We use Huggingface’s implementations of BERT 1120

and RoBERTa (Wolf et al., 2020) 3. The hyper- 1121

parameters can be found in Table 9. We use Tesla 1122

V100 GPU cards for conducting all the experi- 1123

ments. We follow the default learning rate sched- 1124

ule and dropout settings used in BERT. We use 1125

AdamW (Loshchilov and Hutter, 2019) as our opti- 1126

mizer. The margin term M is set to 0 for NER and 1127

ABSA, and 1 for SBPD. The balance rate α is set 1128

to 0.1. 1129

3Chinese RoBERTa is from https://github.com/ymcui/
Chinese-BERT-wwm.
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Dataset OnteNote5 WNUT17 Movie Restaurant Weibo Lap14 Rest14 CUAD News20 Social21

Query Length 32 32 64 64 64 24 24 256 80 80
Input Length 160 160 160 128 192 128 128 512 200 200
Batch Size 32 32 32 32 8 16 16 16 16 16
Learning Rate 2e-5 1e-5 1e-5 1e-5 1e-5 2e-5 2e-5 5e-5 2e-5 3e-5
λ 1 1 1 1 1 1 1 -0.5 0.5 1

Table 9: Hyper-parameters settings.

Figure 5: Performance in terms of different DA rate λ. We vary λ to get different volumes of PR-based training
data.

A.3 Effect of DA Rate1130

We vary the DA rate λ to investigate how the vol-1131

ume of PR-based training data affect the SpanID1132

models performance.1133

Figure 5 shows the effect of different λ in four1134

SpanID tasks. PeerDA mostly improves the MRC1135

in all different trials of λ and we suggest that some1136

parameter tuning for λ is beneficial to obtain opti-1137

mal results.1138

Another observation is that too large λ would do1139

harm to the performance. Especially on CCE, due1140

to the skewed distribution and a large number of1141

categories, PeerDA can produce a huge size of PR-1142

based training data. We speculate that too much1143

PR-based training data would affect the learning of1144

BL-based training data and thus affect the model’s1145

ability to solve a SpanID task, causing the optimal1146

λ to be a negative value. In addition, too much PR-1147

based training data would also increase the training1148

cost. As a result, we should maintain an appropriate1149

ratio of BL-based and PR-based training data to1150

keep a reasonable performance on SpanID tasks.1151

A.4 Robustness:1152

To verify the advantage of PeerDA against the1153

adversarial attack, we conduct robustness experi-1154

ments using the adversarial dev set of OntoNotes51155

(Lin et al., 2021) on NER and adversarial test set1156

Methods OntoNotes5 Lap14

Ori Adv. Ori. Adv.
full entity context

Tagging 89.8 56.6 61.9 83.6 62.3 44.5
MRC 90.0 55.3 61.3 83.3 63.2 46.9
PeerDA 90.1 55.9 61.0 84.1 65.9 50.1

Table 10: Robustness experiments against adversarial
attacks. The results are reported on both original (Ori.)
sets and the adversarial (Adv.) sets.

of Lap14 (Xing et al., 2020) on UABSA. Table 1157

10 shows the performance on the original and the 1158

adversarial sets. On OntoNotes5 full adversarial 1159

set, PeerDA improves the robustness of the model 1160

compared to MRC but slightly degrades compared 1161

to Tagging. To investigate why this happens, we 1162

evaluate each type of adversarial attack indepen- 1163

dently, including entity attack that replaces entities 1164

to other entities not presented in the training set 1165

and context attack that replaces the context of en- 1166

tities. It shows that PeerDA does not work well 1167

on entity attack because we only use entities in the 1168

training set to conduct data augmentation, which 1169

is intrinsically ineffective to this adversarial attack. 1170

This motivates us to engage outer source knowl- 1171

edge (e.g. Wikipedia) into our PeerDA approach 1172

in future work. On Lap14, PeerDA significantly 1173

improves Tagging and MRC by 5.6 and 3.2 F1 on 1174

the adversarial set respectively. 1175
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Methods OntoNotes5 Lap14 CUAD Social21

MRC+MenReplace 91.1 63.7 45.2 50.8
PeerDA 92.4 65.9 52.3 58.1

Table 11: Performance on peer-driven DA approaches.

A.5 Peer-driven DA:1176

We compare PeerDA with Mention Replacement1177

(MenReplace) (Dai and Adel, 2020), another Peer-1178

driven DA approach randomly replaces a span men-1179

tion in the context with another mention of the same1180

category in the training set. The results of four1181

SpanID tasks are presented in Table 11. PeerDA1182

exhibits better performance than MenReplace on1183

all four tasks. In addition, MenReplace would eas-1184

ily break the text coherence as a result of putting1185

span mentions into the incompatible context, while1186

PeerDA can do a more natural augmentation with-1187

out harming the context.1188

A.6 Error Analysis:1189

In order to know the typical failure of PeerDA, we1190

randomly sample 100 error cases from Ontonotes51191

test set for analysis. As shown in Table 12, there1192

are four major groups:1193

• Multiple Labels: PeerDA would assign multiple1194

labels to the same detected span. And in most1195

cases (35/41), this error occurs among similar1196

categories, such as LOC, GPE, and ORG.1197

• Incorrect Label: Although spans are correctly1198

detected, PeerDA assigns them the wrong cate-1199

gories. Note that MRC even cannot detect many1200

of those spans (23/37). As a result, PeerDA sig-1201

nificantly improves the model’s capability to de-1202

tect spans, but still faces challenges in category1203

classification.1204

• Missing Prediction: Compared to MRC, PeerDA1205

tends to predict more spans. Therefore it alle-1206

viates the missing prediction issue that MRC1207

mostly suffers.1208

• Other Errors: There are several other errors, such1209

as the incorrect span boundary caused by articles1210

or nested entities.1211
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Multiple Labels

I’m in Atlanta.
Gold: ("Atlanta", GPE)
PeerDA: ("Atlanta", GPE); ("Atlanta", LOC) (41%)
MRC: ("Atlanta", GPE) ("Atlanta", LOC) (3%)

Incorrect Label

Why did it take us to get Sixty Minutes to do basic reporting to verify facts?
Gold: ("Sixty Minutes", ORG)
PeerDA: ("Sixty Minutes", WORK_OF_ART) (37%)
MRC: ("Sixty Minutes", WORK_OF_ART) (20%)

Missing Prediction

Coming to a retailer near you, PlayStation pandemonium.
Gold: ("PlayStation", PRODUCT)
PeerDA: ∅ (19%)
MRC: ∅ (74%)

Other Errors

I was guarded uh by the British Royal Marines actually because unfortunately they’ve had now um
uh roadside bombs down there not suicide bombs.
Gold: ("the British Royal Marines",ORG)
PeerDA: ("Royal Marines",ORG) (3%)
MRC: ("Royal Marines",ORG) (3%)

Table 12: Error analysis of base-sized PeerDA and MRC models on Ontonotes5 test set. We randomly select 100
examples from the test set and compare the predictions and error percentage of the two models.
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