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Abstract

In human-AI interaction, effective communication relies on aligning the AI agent’s
model with the human user’s mental model – a process known as model reconcilia-
tion. However, existing model reconciliation approaches predominantly assume
deterministic models, overlooking the fact that human knowledge is often uncertain
or probabilistic. To bridge this gap, we present a probabilistic model reconciliation
framework that resolves inconsistencies in MPE outcome probabilities between
an agent’s and a user’s models. Our approach is built on probabilistic logic pro-
gramming (PLP) using ProbLog, where explanations are generated as cost-optimal
model updates that reconcile these probabilistic differences. We develop two search
algorithms – a generic baseline and an optimized version. The latter is guided
by theoretical insights and further extended with greedy and weighted variants to
enhance scalability and efficiency. Our approach is validated through a user study
on explanation types and computational experiments showing that the optimized
version consistently outperforms the generic baseline.

1 Introduction
In human-AI interaction, effective communication relies on aligning the AI agent’s model with the
human user’s mental model, as mismatched understandings can make the agent’s behavior seem
inexplicable [1]. Model reconciliation offers a powerful explainable AI (XAI) approach by adjusting
the human’s model to align with the agent’s understanding [2]. For instance, in planning, it explains
why an agent’s actions are valid in its model but not in the human’s [2]. However, existing model
reconciliation methods assume deterministic user beliefs, treating them as fixed or drawn from a set of
distinct models [3, 4]. This overlooks the uncertainty and graded beliefs typical of human knowledge.
In reality, humans might maintain probabilistic beliefs – degrees of confidence rather than absolute
truths – and ignoring this uncertainty can lead to unconvincing or misaligned explanations.

Probabilistic reasoning addresses uncertainty, capturing graded beliefs and uncertain outcomes.
Inference methods like most probable explanation (MPE) and maximum a posteriori (MAP) are
key: MPE finds the most likely scenario given evidence, while MAP identifies the most probable
hypothesis [5]. These methods are widely applied, from Bayesian networks to probabilistic logic
models. However, model reconciliation has yet to fully account for probabilistic beliefs. An agent
may base decisions on an MPE outcome, while a human might disagree due to different probabilistic
assumptions. Bridging this gap – reconciling probabilistic model differences between an agent and a
human – remains an open challenge.

Despite this gap, model reconciliation has been extensively explored in logic programming systems.
In classical planning and answer set programming (ASP), explanations are generated by modifying

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



logical rules to align beliefs [6, 3]. Meanwhile, probabilistic logic programming (PLP) frameworks
like ProbLog [7] offer a powerful way to handle uncertainty, combining logical rules with probabilistic
semantics. PLP supports diverse inference tasks, including MPE, MAP, and marginal probability
computation, making it a versatile tool for uncertain reasoning. However, while PLP excels at
probabilistic reasoning, it has not been integrated with model reconciliation to generate explanations
that reconcile probabilistic beliefs, leaving a critical gap in existing approaches.

In this paper, we introduce the first probabilistic model reconciliation framework within a PLP setting,
leveraging ProbLog for its expressive power. Our approach allows an agent to reconcile differences
between its probabilistic model and a human’s model by generating cost-optimal explanations that
resolve inconsistencies in MPE outcome probabilities. Our key contributions are as follows:

• Probabilistic Model Reconciliation: We define model reconciliation under uncertainty, addressing
inconsistencies in MPE outcome probabilities between an agent’s and a human’s ProbLog models.

• Cost-Optimal Explanations: We introduce a cost-based model where explanations are minimal
updates that resolve probabilistic differences.

• Algorithms and Scalability: We develop two search algorithms – a generic baseline and an
optimized version. The latter builds on theoretical insights to prune the search space and is further
extended to greedy and weighted variants for improved scalability and efficiency.

• Comprehensive Evaluation: We validate our approach with a user study on explanation costs and
computational tests showing the optimized search’s superior performance.

2 Related Work

Model Reconciliation Problems (MRPs). MRPs have been widely studied in domains like ex-
plainable planning and knowledge representation and reasoning (KR). In explainable planning [8],
Chakraborti et al. defined it as aligning an agent’s (planning) model with a human’s by making mini-
mal changes to the human model, using search methods like A→ to balance explanation completeness
and simplicity [2]. In KR, Vasileiou et al. introduced a general logic-based MRP framework for
classical and hybrid planning problems [9], proposed a hitting-set algorithm to compute minimal sets
of formulas that prove a target conclusion for problems beyond planning [4], and later extended this
approach to generating personalized explanations [10]. Finally, Nguyen et al. reconciled answer-set
programs by identifying minimal rule additions and deletions such that the program yield the same
target conclusion [6, 3]. Beyond deterministic models, Sreedharan et al. addressed uncertainty about
the human’s model by assuming that the human’s model is located within a space of possible human
models maintained by the agent [11], while Vasileiou et al. assumed that the human model is a
probability distribution representing the agent’s uncertainty of the actual human model [12].

These methods share a common limitation: they either assume user beliefs are deterministic or drawn
from a fixed set of models, or do not allow for uncertain agent models. Consequently, these methods
cannot reconcile differences when the agent’s and human’s models involve probability distributions
over facts, rules, or outcomes. Our work addresses this gap through a joint probabilistic framework.

Probabilistic Logic Programming (PLP). PLP integrates probabilistic reasoning with the expressive
power of logic programming, enabling the specification of complex probabilistic models. This line
of research started with Poole [13], who introduced the first PLP framework by extending the logic
programming language Prolog [14], and with Sato [15], whose distribution semantics became the
basis for several PLP systems, such as PRISM [16], ICL [17], ProbLog [7], and LPAD [18]. The
notion of explanation has been explored by the PLP community [19, 5], where explanations are
associated with possible worlds (i.e., truth-value assignments to all atoms in the language). The
most prominent task there is that of the most probable explanation (MPE), which consists of finding
the world with the highest probability given some evidence [20]. However, a world does not show
the chain of inferences of a given explanandum and it is not minimal by definition, since it usually
includes a (possibly large) number of probabilistic facts whose truth value is irrelevant for the
explanandum. An alternative approach is using the proof of an explanandum as an explanation
[21], where a proof is a (minimal) partial world in which the query is true. In this case, one can
easily ensure minimality, but even if the partial world contains no irrelevant facts, it is still not
easy to determine the chain of inferences behind a given query. Finally, Renken et al. leveraged
explanations in PLP as approximation techniques for more efficiently computing weighted model
counting problems [22].
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3 Background
We begin by reviewing the fundamental concepts of logic programming and its probabilistic exten-
sions, with an emphasis on logical inference.

3.1 Logic Programming
An atom is an expression of the form q(t1, . . . , tn), where q is a predicate of arity n, and each ti is a
term. A term ti can be a constant, a variable, or a functor applied to other terms. A literal is either an
atom or its negation ¬q(t1, . . . , tn). An expression is said to be ground if it contains no variables.

Syntactically, a normal clause program – or logic program – is a set of rules. A rule r is an expression
of the form h :→ b1, . . . , bn, where h is an atom, referred to as the head of the rule, denoted by
head(r) = h. The body of the rule consists of a conjunction of literals b1, . . . , bn, and is denoted
by body(r) = {b1, . . . , bn}. The symbol ‘:→’ represents logical implication (↑), and the comma ‘,’
denotes conjunction (↓). Thus, the rule states that h holds whenever all literals in the body are
satisfied. If n = 0, meaning the rule has an empty body, the rule is called a fact.

3.2 Probabilistic Logic Programming
Syntax. A ProbLog program M consists of a set of probabilistic facts F and a set of logic rules
R. Formally, the set of probabilistic facts can be written as F = {f1, f2, . . . , fn}, where each fi

is a ground fact. A probabilistic fact, written as pi :: fi, assigns a probability pi to the fact fi, i.e.,
P (fi) = pi. Each fact is associated with a probability value.

Logic rules define deterministic dependencies between atoms (for simplicity, we assume that all
atoms are ground). An atom that unifies with a probabilistic fact is called a probabilistic atom,
whereas an atom that unifies with the head of a rule is referred to as a derived atom. We assume that
the sets of probabilistic and derived atoms are disjoint.

Semantics. Each ground probabilistic fact pi :: fi defines an atomic choice, in which fi is either
included (with probability pi) or excluded (with probability 1 → pi). A total choice is formed by
making an atomic choice for each fact in F , resulting in a subset C ↔ F of the selected facts. If there
are n probabilistic facts, the number of possible total choices is 2n. From those choices, we derive
the remaining atoms by applying the logic rules.

The probability of a total choice C is computed by treating all atomic choices as independent events:

P (C) =
∏

fi↑C pi ·
∏

fi↑F\C(1 → pi). (1)

3.3 Inference
Given a ground atom q (the query), the relevant ground program M(q) denotes the minimal subset
of the grounded version of the original program M that is sufficient to derive q. Specifically, M(q)
is obtained via backward reasoning from q, recursively identifying all probabilistic facts and rules
necessary for its derivation. This process ensures that only the components relevant to the query are
retained, thereby preserving correctness while enhancing the efficiency of probabilistic inference.

In model reconciliation, the Most Probable Explanation (MPE) inference is employed to identify the
most probable set of assumptions that explain why a given query q holds. This supports alignment
between an agent and a human user by providing interpretable explanations. Formally, the MPE
inference is defined as:

MPE(q | M) = arg maxC(q)↓F(q) P (C(q) | q), (2)

where F(q) is the set of ground probabilistic facts in M(q), and P (C(q) | q) denotes the posterior
probability of selecting the subset C(q) given that q is observed to be true.
Example 1. Consider the following ProbLog program M with query q = wet:

<latexit sha1_base64="s7lJzuTNfOaSRhPG2rheY+cuvCM="></latexit>

0.7 :: rain.
0.7 :: sprinkler.
0.3 :: cloudy.
wet :- rain.
wet :- sprinkler.

0.7 :: a.
0.7 :: b.
0.3 :: c.
d : �a.
d : �b.

where rain, sprinkler, cloudy, and wet are denoted by a, b, c, and d, respectively, for simplicity.
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Ground Probabilistic Facts of M(q): F(q) = {a, b}, since c is irrelevant to query d.

Effective Choices: C(q) ↗
{
{}, {a}, {b}, {a, b}

}
. For C(q) = {a, b}, P (C(q)) = 0.7 ↘ 0.7 = 0.49.

MPE Inference: MPE(q | M) = {a, b}, P (MPE(q | M)) = 0.49 and MPE(¬q | M) = {},
P (MPE(¬q | M)) = 0.09.

4 Probabilistic Model Reconciliation
We now present our framework for generating explanations in PLP. Intuitively, it enables us to
resolve discrepancies between an agent’s and a human’s probabilistic models, caused by incomplete
information, conflicting assumptions, or differing knowledge. Model reconciliation identifies and
explains these differences, fostering a shared understanding between the agent and the human.

4.1 Problem Settings and Assumptions
We consider a setting where an agent and a human user each maintain their own ProbLog programs:
the agent’s model Ma and the human’s model Mh.
Definition 1 (Model Inconsistency). The agent model Ma and the human model Mh are said to be
inconsistent with respect to a query q if one of the following conditions holds:

• Case 1: P (MPE(q|Ma)) > P (MPE(¬q|Ma)), but P (MPE(q|Mh)) < P (MPE(¬q|Mh))
• Case 2: P (MPE(q|Ma)) < P (MPE(¬q|Ma)), but P (MPE(q|Mh)) > P (MPE(¬q|Mh))

In both cases, the agent and the human assign opposite preferences to q and ¬q, indicating a divergence
in belief that motivates the need for model reconciliation.

4.2 Problem Formulation
To resolve the inconsistency between the agent and the human user, the agent must generate an
explanation that allows the human to reconcile their model with that of the agent. To this end, we
propose a logic-based formulation of model reconciliation within the ProbLog framework, referred to
as a P-MRP Explanation. A P-MRP Explanation is formally defined as follows:
Definition 2 (P-MRP Explanation). Given that the agent model Ma and the human model Mh are
inconsistent with respect to query q (as defined in Definition 1), we define ω = ≃ω+, ω↔⇐ as a P-MRP
explanation for q from Ma to Mh if and only if ω+ ↔ Ma, ω↔ ↔ Mh, and the updated human
model M→

h = (Mh ⇒ ω+) \ ω↔ is both valid and consistent with Ma with respect to the query q.

When the human model Mh is updated using a P-MRP explanation ω, new formulae ω+ (including
facts and rules) from Ma are added, and formulae ω↔ from Mh are removed to ensure consistency.

To evaluate the quality of an explanation, we associate a cost with each candidate explanation
ω = ≃ω+, ω↔⇐, quantified by a cost function cost(ω) that, at a high level , reflects the effort needed by
the human to incorporate the explanation. This function serves as the optimization objective and is
defined as follows.
Definition 3 (Explanation Cost). Given an explanation ω = ≃ω+, ω↔⇐, let ω+fact and ω↔fact denote the
sets of probabilistic facts, and ω+rule and ω↔rule denote the sets of rules in ω+ and ω↔, respectively. We
consider the following types of modification:1

• Change-probability (cp): A cost cp is incurred for each fact fi ↗ ω+fact ⇑ ω↔fact, representing a
probability update.

• Add-fact (c+f ): A cost c+f is incurred for each new fact fi ↗ ω+fact \ ω↔fact.
• Add-rule (c+r ): A cost c+r is incurred for each rule r ↗ ω+rule added to the model.
• Delete-rule (c↔r ): A cost c↔r is incurred for each rule r ↗ ω↔rule removed from the model.

The total explanation cost is given by:

cost(ω) = cp · |ω+fact ⇑ ω↔fact| + c+f · |ω+fact \ ω↔fact| + c+r · |ω+rule| + c↔r · |ω↔rule|. (3)

The task of explanation generation can be formulated as an optimization problem, defined as follows.
1We omit delete-fact since it is identical to change-probability that sets the probability of the fact to 0.
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Definition 4 (Optimal Explanation). Let Evalid be the set of all valid P-MRP explanations ω as defined
in Definition 2. Then, an optimal explanation is defined as: ω→ = argminω↑Evalid

cost(ω).
Example 2. Continuing the scenario in Example 1, consider the following two models Ma and Mh.

<latexit sha1_base64="GQ9LrPDCUZT/GFIaAXWkNlKlCpI="></latexit>

Ma :

0.7 :: a.
0.7 :: b.
0.3 :: c.
d : �a.
d : �b.

Mh :
0.3 :: a.
d : �a.

Let the query be d. As shown in Example 1, we have P (MPE(d | Ma)) > P (MPE(¬d | Ma)), but
P (MPE(d | Mh)) = P ({a}) = 0.3 < P (MPE(¬d | Mh)) = P (⇓) = 0.7.

The following set constitutes the set of valid P-MRP explanations for d from Ma to Mh: Evalid =
{≃{0.7 :: a.}, {0.3 :: a.}⇐ , ≃{0.7 :: b., c :→ b.}, ⇓⇐}. Given a modification cost of 1 per change, the
optimal explanation is: ω→ = ≃{0.7 :: a.}, {0.3 :: a.}⇐, where cost(ω→) = 1. This is a change-
probability action, adjusting the probability of fact a from 0.7 to 0.3.

5 Search-Based Explanation Generation
Since computing a cost-optimal explanation under MPE semantics is NP-hard and lies in the !P

2
complexity class [23], we propose two search-based algorithms to solve the optimization problem in
Definition 4. The first is a generic search algorithm that exhaustively explores all explanations to find
a cost-optimal one. To improve efficiency, we introduce an optimized search algorithm with pruning
and cost-guided strategies.

Both algorithms construct explanations by incrementally modifying the human model. Actions are
chosen from a two-level space: first, the type of modification (e.g., adding a fact or rule); second, the
specific element to modify.

To formalize this process, we define the key notations of the agent and human models. Let q be
a query, and let Ma(q) and Mh(q) denote the relevant ground programs under the agent model
Ma and the initial human model Mh, respectively. The human model at timestep t is denoted by
Mh,t, where Mh,0 = Mh. Let Fa and Fh,t denote the sets of ground probabilistic facts in the
agent model and the human model at timestep t. Similarly, let Fa(q) and Fh,t(q) represent the
ground probabilistic facts appearing in the relevant programs Ma(q) and Mh,t(q), and let Ra(q)
and Rh,t(q) denote the corresponding sets of rules. For any ground fact f , we use Pa(f) and Ph,t(f)
to denote its probability in the agent and human models, respectively.

5.1 Generic Search Algorithm
The generic search algorithm exhaustively explores the explanation space without pruning. The
first-level action space consists of four types of model modification operations, defined as:

Atype = {change-probability, add-fact, add-rule, delete-rule}. (4)
Given a selected action type at ↗ Atype at timestep t, the second-level action space specifies the
candidate elements applicable under at:

• If at = change-probability, then the candidate space Ac
t contains shared facts with different

probabilities: Ac
t = {f | f ↗ Fa ⇑ Fh,t(q), Pa(f) ⇔= Ph,t(f)}.

• If at = add-fact, then the candidate space is Aa
t = Fa(q) \ Fh,t, representing facts available in

the agent model but absent from the human model.
• If at = add-rule, then the candidate space is Ar,+

t = Ra(q) \ Rh,t(q), containing rules that can
be added to the human model.

• If at = delete-rule, then the candidate space is Ar,↔
t = Rh,t(q), consisting of rules in the human

model that can be removed. Note that we do not consider deleting rules that were previously added.

At each timestep t, the explanation is represented as ωt = ≃ω+t , ω↔t ⇐, where ω+0 = ω↔0 = ⇓ initially. The
explanation is updated based on the selected action at and element et as follows:

≃ω+t , ω↔t ⇐ =






≃ω+t↔1 ⇒ {Pa(et) :: et}, ω↔t↔1 ⇒ {Ph,t(et) :: et}⇐ at = change-probability,
≃ω+t↔1 ⇒ {Pa(et) :: et}, ω↔t↔1⇐ at = add-fact,
≃ω+t↔1 ⇒ {et}, ω↔t↔1⇐ at = add-rule,
≃ω+t↔1, ω↔t↔1 ⇒ {et}⇐ at = delete-rule.

(5)

5



After each step, the human model is updated by: Mh,t+1 = (Mh ⇒ ω+t ) \ ω↔t .

The search process follows the A→ algorithm, where the heuristic function hgen
t at each timestep t is

defined as the minimum cost among all possible action types:

hgen
t = min{cp, c

+
f , c+r , c↔r }, (6)

where cp, c+f , c+r , and c↔r denote the costs of change-probability, add-fact, add-rule, and delete-rule,
respectively (see Definition 3). Further implementation details can be found in Appendix A.1.

To formally guarantee the correctness of this approach, we present the following validity theorem
and the corresponding proof is provided in Appendix A.2.
Theorem 1 (Validity Guarantee). Given agent and human models Ma and Mh that are inconsistent
with respect to a query q, the search procedure described above is guaranteed to find at least one
valid explanation ω = ≃ω+, ω↔⇐ such that the updated human model M→

h = (Mh ⇒ ω+) \ ω↔ is
consistent with Ma regarding q.

5.2 Optimized Search Algorithm
While the generic search algorithm is complete, it is often inefficient due to the large explanation
space, where many actions are unnecessary for resolving the model inconsistency.

To enhance scalability, we introduce an optimized search algorithm that prunes irrelevant actions
by focusing only on those needed to resolve the specific inconsistency. This approach identifies the
minimal set of actions required, significantly reducing the search space without losing completeness.

To formalize this idea, we first introduce several definitions grounded in the ProbLog framework.
These definitions provide the foundation for a pruning theorem and its proof, enabling precise
reasoning about how model updates affect query outcomes.
Definition 5 (DNF Representation of a Query). Given a ProbLog program M and a query q, let
F(q) = {f1, f2, . . . , fn} denote the set of probabilistic ground atoms in M(q). According to the
semantics of ProbLog, the query q can be represented as a disjunctive normal form (DNF) formula:

q =
∨m

i=1 ri, where ri =
∧ki

j=1 aj
i .

Each clause ri corresponds to a derivation of q and is expressed as a conjunction of literals. Each
literal aj

i is either a ground atom or its negation, i.e., aj
i ↗ F(q) ⇒ {¬f | f ↗ F(q)}.

This representation clarifies that satisfying any single conjunction ri is sufficient for q to hold. Based
on this structure, we now present the following theorem, which characterizes the relationship between
the MPE probabilities and the DNF representation of the query.
Theorem 2. Let M be a ProbLog program and q a query with DNF representation q =

∨m
i=1 ri,

where ri =
∧ki

j=1 aj
i . Then:

• Case 1: P (MPE(q | M)) ↖ P (MPE(¬q | M)) ↙∝ ′i ↗ [m], ∞j ↗ [ki], P (aj
i ) ↖ 0.5.

• Case 2: P (MPE(q | M)) < P (MPE(¬q | M)) ↙∝ ∞i ↗ [m], ′j ↗ [ki], P (aj
i ) < 0.5.

Proof Sketch. We present a proof sketch for Case 1, noting that the proof for Case 2 proceeds
analogously. Full details are provided in Appendix A.3.

(∝) By contradiction: Suppose that q is more probable than ¬q under MPE, yet each clause in its
DNF contains a literal with a probability below 0.5. Flipping any such literal would yield a more
probable explanation favoring ¬q, contradicting the assumption that the MPE favors q.

(↙) If there exists a clause in the DNF of q such that all its literals have probability at least 0.5, then
flipping them to true in the MPE of ¬q results in a more probable explanation that satisfies q.

Based on Theorem 2, we can narrow the explanation search space by focusing on literals or clauses
that are critical for switching the model’s preference between ¬q and q. This allows us to exclude
actions irrelevant to belief change. We now refine the action space for each case in Definition 1.
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Case 1: The agent prefers q while the human prefers ¬q, i.e.,
P (MPE(q | Ma)) > P (MPE(¬q | Ma)), P (MPE(q | Mh)) < P (MPE(¬q | Mh)).

According to Theorem 2, increasing q’s probability in Mh requires strengthening at least one DNF
clause ri with all literals meeting P (aj

i ) ↖ 0.5 in the updated model. This allows us to prune the
first-level action space to:

Atype = {change-probability, add-fact, add-rule}.

The delete-rule action is excluded because increasing q only requires having one clause with all
literals meeting the probability threshold, and deleting clauses does not help achieve this.

Given a selected action type at ↗ Atype at timestep t, the second-level action space defines the set of
applicable candidate elements:

• If at = change-probability, the candidate space is:
Ac

t = {f | f ↗ Fa ⇑ Fh,t(q), sign(Pa(f) → 0.5) ⇔= sign(Ph,t(f) → 0.5)} , (7)
where sign(·) returns the sign of its input, capturing facts where the agent and human disagree on
belief direction.

• If at = add-fact, the candidate space remains the same as in the generic search algorithm.
• If at = add-rule, we first define the current human belief set Bt based on the updated model Mh,t:

Bt = {f | f ↗ Fh,t, Ph,t(f) ↖ 0.5} ⇒ {¬f | f ↗ Fh,t, Ph,t(f) ∈ 0.5}. (8)
That is, if the human assigns a probability strictly above 0.5 to f , we include f ; if the probability is
strictly below 0.5, we include its negation ¬f ; and if Ph,t(f) = 0.5, both f and ¬f are included,
reflecting a state of belief indifference.
According to Theorem 2, addable rules r must have all body literals supported by the current
belief set, i.e., body(r) ↔ Bt. Additionally, to ensure r can increase the probability, the body must
include at least one literal l where Ph,t(l) ⇔= 0.5. Therefore, the final candidate space is:

Ar,+
t = {r | r ↗ Ra(q) \ Rh,t(q), body(r) ↔ Bt, ′l ↗ body(r) s.t. Ph,t(l) ⇔= 0.5} . (9)

Case 2: The agent prefers ¬q while the human prefers q, i.e.,
P (MPE(q | Ma)) < P (MPE(¬q | Ma)), P (MPE(q | Mh)) > P (MPE(¬q | Mh)).

According to Theorem 2, decreasing q’s probability in Mh requires weakening each DNF clause ri

so that at least one of its literals satisfies P (aj
i ) ∈ 0.5 in the updated model. This allows pruning the

first-level action space as follows:

Atype =

{
{change-probability, delete-rule}, if Rh,t(q) ⇔= ⇓,
{change-probability, add-fact, add-rule}, if Rh,t(q) = ⇓.

This distinction depends on whether existing rules Rh,t(q) are present. If Rh,t(q) ⇔= ⇓, only
changing probabilities or deleting rules is effective, as each clause must include at least one literal
with P (aj

i ) ∈ 0.5. If Rh,t(q) = ⇓, new rules or facts can be introduced.

Given a selected action type at ↗ Atype at timestep t, the second-level action space specifies the set
of applicable candidate elements under at.

• If at = change-probability, the candidate space is the same as in Case 1, as defined in Equation 7.
• If at = add-fact, the candidate space is also identical to Case 1.
• If at = add-rule, we define the opposing belief set as:

B↗
t = {f | f ↗ Fh,t, Ph,t(f) < 0.5} ⇒ {¬f | f ↗ Fh,t, Ph,t(f) > 0.5}.

We restrict addable rules r such that at least one literal in the body of r is supported by B↗
t. The

candidate space is thus defined as:
Ar,+

t = {r | r ↗ Ra(q) \ Rh,t(q), body(r) ⇑ B↗
t ⇔= ⇓} .

• If at = delete-rule, we allow the removal of rules whose bodies are fully supported by the current
belief set Bt (as defined in Equation 8). Formally,

Ar,↔
t = {r | r ↗ Rh,t(q), body(r) ↔ Bt} .

Similar to the generic version, we employ A→ search to identify the cost-optimal explanation ω→,
updating ωt as in Equation 5. The refined heuristic function hopt

t , derived from Theorem 2, is defined
separately for two cases at each timestep t. It yields a more informative estimate that accelerates the
search process compared with hgen

t .
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Case 1: When only change-probability actions are allowed, the heuristic estimates the minimal
number of fact probability changes needed for each rule so that all literals in its body have probabilities
of at least 0.5 in the updated model. For each rule r ↗ Rh,t(q), the set of modifiable literals is:

Cr
t = {ε | ε ↗ body(r), Ph,t(ε) < 0.5 ↓ (ε ↗ Ac

t ∋ ¬ε ↗ Ac
t)},

where Ac
t is defined in Equation 7. The number of required modifications is ϑr

t = |Cr
t | if Cr

t ⇔= ⇓, and
ϑr
t = +△ otherwise, indicating that rule r cannot be satisfied by probability adjustment alone.

When only add-rule actions are permitted, the heuristic evaluates whether introducing a new rule can
restore consistency. If the set of addable rules Ar,+

t (defined in Equation 9) is non-empty, adding one
rule suffices. Otherwise, at least one fact must be introduced first.

The heuristic function is then defined as:

hopt
t =

{
min(cp · minr↑Rh,t(q) ϑr

t , c+r ), if Ar,+
t ⇔= ⇓,

min(cp · minr↑Rh,t(q) ϑr
t , c+r + c+f ), if Ar,+

t = ⇓.
(10)

Case 2: If Rh,t(q) ⇔= ⇓, the reasoning process depends on the available action types. When only
delete-rule actions are permitted, we identify the rules that can be removed, namely those whose
body literals all have probabilities not less than 0.5:

Dt = {r | r ↗ Rh,t(q), body(r) ↔ Bt, ′l ↗ body(r) s.t. Ph,t(l) ⇔= 0.5},

where Bt is defined in Equation 8.

When only change-probability actions are allowed, the problem can be reformulated as a set-cover
problem. We define the universe of unsatisfied rules as those not containing any literal ε that lies
outside Ac

t (and its negation) with a probability less than 0.5:

Ut = Rh,t(q) \ {r |↗ Rh,t(q), ′ ε ↗ body(r), ε /↗ Ac
t ↓ ¬ε /↗ Ac

t ↓ Ph,t(ε) < 0.5}. (11)

For each modifiable fact f ↗ Ac
t , the cover subsets are defined as:

Sf = {r ↗ Ut | ′ ε ↗ {f, ¬f} s.t. ε ↗ body(r) ↓ Ph,t(ε) ↖ 0.5 ↓ Pa(ε) < 0.5}.

The goal is to find the smallest collection of such subsets that covers all rules in Ut:

S→ = arg minS→↓{Sf |f↑Ac
t} |S ↗| s.t.

⋃
S↑S→ S = Ut.

Intuitively, this formulation seeks the minimal number of change-probability actions required so that
every rule in Ut contains at least one literal whose probability is no greater than 0.5. Since both f and
¬f may appear in different rules, the optimal cover set S→ may be empty, which requires deleting at
least one rule to restore consistency.

If both delete-rule and change-probability actions are allowed, let x (x < |Dt|) denotes the number of
deleted rules and y the number of change-probability actions required to reach the optimal explanation
from the current state. Removing x rules from Ut can reduce the minimal cover size by at most x,
which gives |S→| → x ∈ y ∈ |S→|. Consequently, the total cost from the current state to the optimal
explanation satisfies x · c↔r + y · cp ↖ |S→| · min(c↔r , cp).

Based on the above analysis, the heuristic function is defined as:

hopt
t =

{
min(|S→| · min(c↔r , cp), |Dt| · c↔r ), if S→ ⇔= ⇓,
c↔r , if S→ = ⇓.

(12)

If Rh,t(q) = ⇓, at least one rule must be added, implying that the heuristic reduces to hopt
t = c+r .

Further implementation details can be found in Appendix A.4.

Solving the exact set-cover is NP-hard. To mitigate computational cost, the rule coverage can be
restricted to those with the smallest body size: Ut = { r ↗ Ut | |body(r)| = minr→↑Ut |body(r↗)| }.
To further improve efficiency, we introduce a greedy variant hgreedy

t , which applies the standard greedy
algorithm to the relaxed set-cover formulation. Building on Weighted A→ properties, the resulting
explanation cost remains bounded when different heuristics are employed, formalized below.
Theorem 3 (Theoretical Guarantee). Let h→

t denote the optimal heuristic value, copt the optimal
explanation cost, and w ↖ 1 the weight of heuristics used in Weighted A→.
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• Both hgen
t and hopt

t are admissible, i.e., hgen
t ∈ h→

t and hopt
t ∈ h→

t . Consequently, Weighted A→

employing w · hgen
t or w · hopt

t as the heuristic guarantees a total cost bounded by w · copt.
• The greedy heuristic hgreedy

t achieves a (1+ ln |Ut|) approximation, i.e., hgreedy
t ∈ (1+ ln |Ut|) ·h→

t ,
where Ut is the universe of unsatisfied rules (see Equation 11). Hence, Weighted A→ using
w · hgreedy

t as the heuristic guarantees a total cost bounded by w · (1 + ln(maxt |Ut|)) · copt, where
maxt |Ut| ∈ |Rh,0(q)| and Rh,0(q) is the set of rules in the initial human model relevant to
query q.

The detailed proof is provided in Appendix A.5.

6 Empirical Evaluations
6.1 Estimating Action Costs via Human-User Study
This study examines how an AI agent, Blitzcrank, explains its decisions in an intelligent warehouse,
determining whether goods should be delivered. Participants compared explanation pairs and chose
the one they felt best clarified the agent’s reasoning. This setup represents one feasible way to
evaluate explanation cost, though not the only possible approach.

Data Collection. We recruited 128 participants via Prolific [24], ensuring a diverse sample.2
Participants were fluent English speakers and were compensated USD 2.00. After attention and
coherence checks, data from 100 participants were retained for analysis.

Table 1: Estimated Costs for
Each Explanation Action.

action ai cost(ai)

change-probability 0.9801
add-fact 0.8688
add-rule 1.0202
delete-rule 1.1511

Cost Estimation. To estimate the relative cognitive effort of
different explanation types, we used the Bradley-Terry model [25]
on the pairwise comparison data. Each action ai had a strength
parameter ϖi, with higher ϖi values indicating greater participant
preference. The cost of an action was defined as the negative of its
strength [26], →ϖi, making more preferred actions correspond to
lower costs. To ensure non-negative costs compatible with search
algorithms (e.g., A→), we exponentiated the negated strength values.
The final cost of each action was defined cost(ai) = e↔εi . Based on
this formulation, the estimated costs for the four explanation actions are shown in Table 1.

6.2 Computational Results
This section evaluates the computational results of Generic Search and Optimized Search algorithms
for model reconciliation. While the algorithms are general to any cost setting, the experiments use
the costs listed in Table 1. All experiments were run on a MacBook Pro (M2, 16GB RAM).

Experimental Setup. Our experiments use two models: Agent and Human.

• Agent Model Ma: Each Ma contains |Fa| = 10, 20, 100, or 1000 probabilistic facts and |Ra| = 5,
10, 50, or 500 rules, respectively, all related to the same query. Facts have randomly assigned
probabilities, and rules have bodies of 2-4 literals, generated based on cases in Definition 1.

• Human Model Mh: Derived from each Ma at four complexity levels l ↗ {20%, 40%, 60%, 80%},
reflecting the percentage of probabilistic facts that differ. Each differing fact has a 1/3 chance
of being: modified (probability flipped), removed, or replaced (new fact). Human model rules
share the same heads as the agent model but are built using existing facts, with the rule count as:
|Rh| = ▽|Ra| · (1 → 1/3 · l)̸.

We generate 100 Agent-Human Model pairs for each configuration, totaling 1,600 pairs (4 Agent
settings ↘ 4 complexity levels ↘ 100 repetitions) for each case in Definition 1.

Evaluation Metrics. All experiments are capped at 600 seconds per run.

• Average Time: The average runtime (in milliseconds) for runs completed within the time limit.
• Average Cost: The mean cost of achieved explanation for runs completed within the time limit.

Results and Analysis. Table 2 compares the two search algorithms under the cases defined in
Definition 1. In Case 1, we report runtime for the generic (hgen

t ) and optimized (hopt
t ) heuristics, along

2Ethics approval was obtained from our university’s IRB. The human-subject study, collected data, and
implementation are released on https://github.com/YODA-Lab/ProbLog-Model-Reconciliation.
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Table 2: Performance Comparison of Two Algorithms across Two Cases in Definition 1.

|Fa| |Ra| l
Case 1 Case 2

Generic Optimized Generic Optimized
hgen

t (ms) hopt
t (ms) copt hgen

t (ms) hopt
t (ms) copt hgreedy

t (ms) cgreedy 2·hopt
t (ms) copt

2 2·hgreedy
t (ms) cgreedy

2

10 5

20% 28.7 34.0 1.46 36.1 33.9 1.64 34.9 1.64 33.2 1.64 35.9 1.64
40% 29.7 34.9 1.67 36.2 34.7 1.47 34.9 1.47 33.9 1.47 35.9 1.47
60% 35.8 33.9 1.95 30.8 33.9 1.37 35.8 1.37 33.8 1.37 35.7 1.37
80% 33.6 35.8 2.14 28.1 34.5 1.28 36.2 1.28 33.8 1.28 36.9 1.28

20 10

20% 1266.8 34.7 1.19 29758.7 (5 t/o)+ 34.6 2.47 36.8 2.47 34.3 2.47 36.1 2.47
40% 1846.7 35.4 1.22 19290.4 (1 t/o) 35.2 2.08 36.0 2.08 34.4 2.08 35.0 2.08
60% 3546.3 35.7 1.38 11657.0 (1 t/o) 35.0 1.92 36.5 1.92 34.9 1.93 36.3 1.93
80% 4406.2 34.6 1.30 3187.1 33.8 1.84 36.7 1.84 34.3 1.84 35.9 1.84

100 50

20% –* 37.0 0.99 – 40.0 8.98 38.0 8.98 37.7 8.99 35.57 8.99
40% – 37.7 0.98 – 228.1 7.93 53.9 7.93 139.0 7.93 40.7 7.93
60% – 39.0 0.98 – 3572.2 7.15 112.6 7.16 1980.9 7.15 43.0 7.16
80% – 39.2 0.98 – 8774.9 (1 t/o) 5.48 136.6 5.48 3874.1 5.50 45.0 5.50

1000 500

20% – 176.5 0.98 – – – – – – – 889.1 80.40
40% – 235.6 0.98 – – – – – – – 3122.3 72.45
60% – 284.7 0.98 – – – – – – – 7554.6 63.34
80% – 331.1 0.98 – – – – – – – 18936.6 57.02

+ “t/o” indicates a timeout.
* “–” denotes that most runs timed out.

with the corresponding optimal costs copt. In Case 2, we further evaluate the greedy heuristic (hgreedy
t )

and the weighted variants (2 · hopt
t and 2 · hgreedy

t ), reporting the resulting costs cgreedy, copt
2 , and cgreedy

2 .

• Runtime Comparison. The optimized heuristic hopt
t substantially reduces runtime compared to

the generic hgen
t across all settings. For instance, in Case 1, runtime decreases by 99.2% (from

4406.2 ms to 34.6 ms) when |Fa| = 20, |Ra| = 10, and l = 80%. In Case 2, the greedy heuristic
hgreedy

t further improves efficiency over hopt
t . Moreover, the weighted variants 2 · hopt

t and 2 · hgreedy
t

offer additional runtime gains. For example, under |Fa| = 100, |Ra| = 50, and l = 80%, hgreedy
t

achieves a 98.4% runtime reduction (from 8774.9 ms to 136.6 ms) compared with hopt
t , while

2 · hopt
t achieves a 55.9% reduction over hopt

t . Notably, 2 · hgreedy
t can effectively produce valid

solutions within the time limit, supported by the theoretical guarantee in Theorem 3.
• Cost Comparison. Focusing on Case 2, for |Fa| ↗ {10, 20, 100}, the observed costs cgreedy,

copt
2 , and cgreedy

2 remain close to the optimal copt. Consistent with Theorem 3 (with w = 2), the
empirical results satisfy the bounds cgreedy ∈ (1 + ln |Rh|) · copt, copt

2 ∈ 2 · copt, and cgreedy
2 ∈

2 · (1 + ln |Rh|) · copt, corroborating the theoretical guarantees.

Further detailed analysis is provided in Appendix A.6. Overall, Optimized Search demonstrates
superior scalability and robustness compared to Generic Search, consistently achieving lower average
runtime. The greedy and weighted variants efficiently handle large-scale models while producing ex-
planations that satisfy the theoretical guarantees established in Theorem 3. These findings underscore
the effectiveness of theoretically guided search strategies for scalable model reconciliation.

7 Conclusion and Discussion
In this paper, we present a model reconciliation framework within probabilistic logic programming
(PLP). Our approach formalizes reconciliation under uncertainty using ProbLog to represent an
agent’s and a human’s probabilistic models, identifying and resolving inconsistencies in MPE
outcome probabilities. We introduce a cost-based explanation model that quantifies the cognitive
effort of model updates, enabling the generation of cost-optimal explanations that minimally adjust the
human’s model. To generate these explanations, we develop two search algorithms: a generic search
algorithm and an optimized search algorithm guided by theoretical insights for pruning the search
space. The optimized algorithm is further extended with greedy and weighted variants to improve
scalability and runtime efficiency. We validate the framework through a user study examining how
explanation types affect user understanding and through computational evaluations demonstrating
that the optimized search consistently outperforms the generic method in both runtime and scalability.

Our framework enhances human-AI interaction by providing clear, cost-optimal explanations for AI
decisions, thereby improving user understanding and trust across domains. By aligning the user’s
mental model with that of the agent, it enables more informed and transparent decision-making.
Despite its strengths, the framework has limitations. As a logic-based approach, it has been evaluated
mainly through computational experiments and a controlled user study, leaving its effectiveness
in real-world settings to be further verified. In future work, we plan to incorporate techniques for
learning user models from feedback to enable personalized and adaptive explanations [27].

10



Acknowledgments and Disclosure of Funding

We thank all the reviewers for their insightful comments and suggestions, which significantly im-
proved this paper. This research is partially supported by the National Science Foundation under
Award No. 2232055. Additional support is provided by the Flemish Government (AI Research
Program), the European Research Council (ERC) under the European Union’s Horizon Europe re-
search and innovation programme (Grant Agreement No. 101142702), and the iBOF/21/075 project.
The views and conclusions expressed in this paper are those of the authors and do not necessarily
reflect the official policies or positions of the sponsoring organizations, agencies, or the United States
government.

References
[1] Sarath Sreedharan, Tathagata Chakraborti, and Subbarao Kambhampati. Explanations as model

reconciliation-a multi-agent perspective. In Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), pages 277–283, 2017.

[2] Tathagata Chakraborti, Sarath Sreedharan, Yu Zhang, and Subbarao Kambhampati. Plan
explanations as model reconciliation: Moving beyond explanation as soliloquy. In Proceedings
of the International Joint Conference on Artificial Intelligence (IJCAI), pages 156–163, 2017.

[3] Tran Cao Son, Van Nguyen, Stylianos Loukas Vasileiou, and William Yeoh. Model reconcil-
iation in logic programs. In Proceedings of the European Conference on Logics in Artificial
Intelligence (JELIA), pages 393–406, 2021.

[4] Stylianos Loukas Vasileiou, Alessandro Previti, and William Yeoh. On exploiting hitting sets
for model reconciliation. In Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI), pages 6514–6521, 2021.

[5] Daan Fierens, Guy Van den Broeck, Ingo Thon, Bernd Gutmann, and Luc De Raedt. Inference
in probabilistic logic programs using weighted CNF’s. In Proceedings of the Conference on
Uncertainty in Artificial Intelligence (UAI), pages 211–220, 2011.

[6] Van Nguyen, Stylianos Loukas Vasileiou, Tran Cao Son, and William Yeoh. Explainable
planning using answer set programming. In Proceedings of the International Conference on
Principles of Knowledge Representation and Reasoning (KR), pages 662–666, 2020.

[7] Daan Fierens, Guy Van den Broeck, Joris Renkens, Dimitar Sht. Shterionov, Bernd Gutmann,
Ingo Thon, Gerda Janssens, and Luc De Raedt. Inference and learning in probabilistic logic
programs using weighted Boolean formulas. Theory and Practice of Logic Programming,
15(3):358–401, 2015.

[8] Maria Fox, Derek Long, and Daniele Magazzeni. Explainable planning. arXiv preprint
arXiv:1709.10256, 2017.

[9] Stylianos Loukas Vasileiou, William Yeoh, Tran Cao Son, Ashwin Kumar, Michael Cashmore,
and Daniele Magazzeni. A logic-based explanation generation framework for classical and
hybrid planning problems. Journal of Artificial Intelligence Research, 73:1473–1534, 2022.

[10] Stylianos Loukas Vasileiou and William Yeoh. PLEASE: Generating personalized explanations
in human-aware planning. In Proceedings of the European Conference on Artificial Intelligence
(ECAI), pages 2411–2418. 2023.

[11] Sarath Sreedharan, Tathagata Chakraborti, and Subbarao Kambhampati. Handling model
uncertainty and multiplicity in explanations via model reconciliation. In Proceedings of the
International Conference on Automated Planning and Scheduling (ICAPS), pages 518–526,
2018.

[12] Stylianos Loukas Vasileiou, William Yeoh, Alessandro Previti, and Tran Cao Son. On generating
monolithic and model reconciling explanations in probabilistic scenarios. Journal of Artificial
Intelligence Research, 84, 2025.

11



[13] David Poole. Probabilistic Horn abduction and Bayesian networks. Artificial Intelligence,
64(1):81–129, 1993.

[14] Peter Flach. Simply Logical - Intelligent Reasoning by Example. Wiley, 1994.

[15] Taisuke Sato. A statistical learning method for logic programs with distribution semantics. In
Proceedings of the International Conference on Logic Programming (ICLP), pages 715–729,
1995.

[16] Taisuke Sato and Yoshitaka Kameya. Parameter learning of logic programs for symbolic-
statistical modeling. Journal of Artificial Intelligence Research, 15:391–454, 2001.

[17] David L Poole. Exploiting the rule structure for decision making within the independent choice
logic. arXiv preprint arXiv:1302.4978, 2013.

[18] Joost Vennekens, Sofie Verbaeten, and Maurice Bruynooghe. Logic programs with annotated
disjunctions. In Proceedings of the International Conference on Logic Programming (ICLP),
pages 431–445, 2004.

[19] Luc De Raedt and Kristian Kersting. Probabilistic inductive logic programming. In Probabilistic
Inductive Logic Programming, pages 1–27. 2008.

[20] Dimitar Shterionov, Joris Renkens, Jonas Vlasselaer, Angelika Kimmig, Wannes Meert, and
Gerda Janssens. The most probable explanation for probabilistic logic programs with annotated
disjunctions. In Proceedings of the International Conference on Inductive Logic Programming
(ILP), pages 139–153, 2015.

[21] Angelika Kimmig, Bart Demoen, Luc De Raedt, Vitor Santos Costa, and Ricardo Rocha. On
the implementation of the probabilistic logic programming language ProbLog. Theory and
Practice of Logic Programming, 11(2-3):235–262, 2011.

[22] Joris Renkens, Angelika Kimmig, Guy Van den Broeck, and Luc De Raedt. Explanation-based
approximate weighted model counting for probabilistic logics. In Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI), pages 2490–2496, 2014.

[23] James D Park. MAP complexity results and approximation methods. In Proceedings of the
Conference on Uncertainty in Artificial Intelligence (UAI), pages 388–396, 2002.

[24] Stefan Palan and Christian Schitter. Prolific.ac – a subject pool for online experiments. Journal
of Behavioral and Experimental Finance, 17:22–27, 2018.

[25] Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the
method of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

[26] Kaivalya Rawal and Himabindu Lakkaraju. Learning recourse costs from pairwise feature
comparisons. arXiv preprint arXiv:2409.13940, 2024.

[27] Yinxu Tang, Stylianos Loukas Vasileiou, and William Yeoh. Does your AI agent get you? a
personalizable framework for approximating human models from argumentation-based dialogue
traces. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pages 14405–
14413, 2025.

12



NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state the paper’s main contributions and
scope. The claims align with the results and accurately reflect the work done.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitation in the conclusion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We provided Theorems 1, 2, and 3, with a proof sketch of Theorem 2 in the
main text. The complete proofs for these theorems are available in Appendices A.2, A.3,
and A.5.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided the detailed algorithms in Section 5, and the corresponding
code is provided via Github link.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The algorithm code and experimental data are provided via Github link.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have specified the settings in Section 6.2, and the algorithm code and
experimental data are provided via Github link.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We present the comparative experimental results summarized in Table 2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The details of the compute resources are provided in Section 6.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research fully complies with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have discussed the impacts in the conclusion.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The algorithm code and experimental data are provided via Github link.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: We have stated this in Section 6.1 of the paper, with the detailed user study
provided via Github link.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: Ethics approval was obtained from our university’s IRB, as stated in Section 6.1
of the paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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