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Abstract

Large Language Models (LLMs) require ro-001
bust confidence estimation, particularly in crit-002
ical domains like healthcare and law where003
unreliable outputs can lead to significant con-004
sequences. Despite much recent work in con-005
fidence estimation, current evaluation frame-006
works rely on correctness functions—various007
heuristics that are often noisy, expensive, and008
possibly introduce systematic biases. These009
methodological weaknesses tend to distort eval-010
uation metrics and thus the comparative rank-011
ing of confidence measures. We introduce012
MCQA-Eval, an evaluation framework for as-013
sessing confidence measures in Natural Lan-014
guage Generation (NLG) that eliminates de-015
pendence on an explicit correctness function016
by leveraging gold-standard correctness labels017
from multiple-choice datasets. MCQA-Eval en-018
ables systematic comparison of both internal019
state-based white-box (e.g. logit-based) and020
consistency-based black-box confidence mea-021
sures, providing a unified evaluation method-022
ology across different approaches. Through023
extensive experiments on multiple LLMs and024
widely used QA datasets, we report that025
MCQA-Eval provides efficient and more reliable026
assessments of confidence estimation methods027
than existing approaches.1028

1 Introduction029

Large Language Models (LLMs) demonstrate030

strong performance across natural language pro-031

cessing tasks, yet their architectural complexity032

and limited interpretability can produce unreliable033

outputs. This presents significant challenges in034

critical domains such as healthcare, where output035

errors carry serious consequences. Confidence es-036

timation methods have emerged to quantify output037

reliability. The field connects closely with uncer-038

tainty quantification in natural language generation,039

1Code and data will be released upon publication.

as both address output trustworthiness. Current ap- 040

proaches divide into consistency-based methods, 041

which analyze agreement across multiple outputs, 042

and internal-states methods that leverage model- 043

specific features like output probabilities. Despite 044

advances in these approaches, developing robust 045

evaluation frameworks remains a central challenge. 046

Current evaluation frameworks for NLG confi- 047

dence measures rely on correctness labels to com- 048

pute metrics such as AUROC and AUARC. These 049

frameworks follow a three-step process: gener- 050

ating model predictions, labeling correctness via 051

a function f(·), and calculating metrics. This 052

label-dependent approach faces several constraints. 053

While human evaluation provides reliable correct- 054

ness ground truth, it cannot scale to large datasets. 055

Metrics based on reference matching, such as 056

BLEU and ROUGE, fail to recognize semantically 057

equivalent responses phrased differently. LLM- 058

based evaluators offer greater capability but remain 059

noisy and may introduce systematic biases, such 060

as favoring responses generated by themselves or 061

similar LMs (Panickssery et al., 2024), or prefer- 062

ring longer responses (Lin et al., 2022). Moreover, 063

running such evaluators could be expensive. 064

Flaws in the correctness function f(·) propagate 065

through the evaluation pipeline, affecting metrics 066

like AUROC. This sensitivity becomes particularly 067

problematic when comparing confidence estima- 068

tion methods with similar performance. Such limi- 069

tations underscore the need for evaluation frame- 070

works that establish correctness more reliably. 071

In this paper, we propose MCQA-Eval, a sim- 072

ple, efficient yet effective evaluation framework 073

that eliminates the dependence on unreliable cor- 074

rectness functions. The key insight is to leverage 075

multiple-choice question-answering (QA) datasets, 076

which inherently provide gold-standard answer 077

choices at no cost. With these definitive labels, 078

our framework bypasses the ambiguity of deter- 079

mining correctness via correctness function f(·) 080
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and ensures an objective assessment of confidence081

estimation methods. Rather than replacing exist-082

ing evaluation pipelines, our framework comple-083

ments them, offering an additional lens to assess084

the discriminative power of confidence estimation085

methods. Fig. 1 shows how our proposal (green)086

and the existing evaluation pipeline (blue) differ,087

yet complement each other. Our contributions are088

summarized as follows:089

• We demonstrate that commonly used evaluation090

methods for NLG confidence measures are sen-091

sitive to noise in correctness labels, which can092

lead to misleading conclusions about evaluation093

metrics and rankings of different confidence esti-094

mation approaches.095

• We propose a simple yet effective method that096

utilizes multiple-choice QA datasets to evaluate097

confidence measures, supporting both internal-098

states-based white-box and consistency-based099

black-box methods.100

• Extensive experiments across recent LLMs and101

QA datasets verify that MCQA-Eval produces sta-102

ble evaluations broadly consistent with existing103

methods, while eliminating the need for expen-104

sive correctness functions.105

2 Related Work106

Confidence Estimation Confidence estimation107

is fundamental to machine learning, providing108

mechanisms to assess model reliability and guide109

decision-making across tasks. Early confidence110

estimation research concentrated on classification111

settings, where confidence scores enabled Selec-112

tive Classification (Geifman and El-Yaniv, 2017;113

El-Yaniv et al., 2010; Feng et al., 2022)—allow-114

ing models to abstain from low-quality predictions.115

The rapid advancement of NLG and LLMs has116

brought renewed attention to confidence estima-117

tion. While NLG poses unique challenges due to118

semantic invariance and vast output spaces (Kuhn119

et al., 2023), recent works have advanced the120

field by measuring similarities among sampled re-121

sponses (Lin et al., 2024b) and deriving measures122

from LMs’ internal states (Malinin and Gales; Lin123

et al., 2024a; Azaria and Mitchell, 2023).124

A related aspect is calibration. While exten-125

sively considered in classification (Zhang et al.,126

2020; Kull et al., 2019; Ma and Blaschko, 2021),127

it has received lass attention in NLG. Since the128

distribution of confidence scores could vary signif-129

icantly across different methods due to their under-130

lying principles (Geng et al., 2023; Da et al., 2024), 131

calibrated confidence measures align better with 132

human intuition for probabilities and are more in- 133

terpretable (Guo et al., 2017; Cosmides and Tooby, 134

1996). While this paper focuses on evaluating con- 135

fidence estimation methods, the same framework 136

could be applied to evaluate future NLG calibration 137

methods. We demonstrate this by including results 138

using common calibration metrics like Expected 139

Calibration Error (ECE). 140

Evaluation of Confidence Measures While con- 141

fidence estimation has received considerable at- 142

tention, the evaluation of confidence measures re- 143

mains under-explored. Many evaluation methods 144

have been adapted from the classification literature, 145

including Expected Calibration Error (ECE) (Guo 146

et al., 2017; Xiong et al., 2024) and Area Under 147

the Receiver Operating Characteristic Curve (AU- 148

ROC) (Kuhn et al., 2023). These metrics assess 149

the relationship between confidence scores and pre- 150

diction accuracy, typically requiring high-quality 151

correctness labels for the evaluated responses. 152

However, obtaining reliable correctness labels 153

in NLG is challenging due to factors such as se- 154

mantic variability and ambiguity in open-ended 155

tasks (Novikova et al., 2017). Unlike classifica- 156

tion where correctness is well-defined, NLG cor- 157

rectness is often determined through human an- 158

notation, LLM-based judges, or similarity-based 159

comparisons between the generated and reference 160

answers. These approaches are costly and often 161

unreliable, as correctness judgments can be subjec- 162

tive and inconsistent (Gatt and Krahmer, 2018). 163

Recent works have attempted to mitigate these 164

limitations. To allow for non-binary correctness 165

measures, Rank Calibration Error (RCE) (Huang 166

et al., 2024) and AUARC (Nadeem et al., 2009; 167

Lin et al., 2024b) were introduced, both of which 168

leverage continuous correctness scores. Other ap- 169

proaches focus on improving correctness scores 170

themselves. For example, Lin et al. (2024a) aggre- 171

gates predictions from multiple LLM-based judges 172

and takes a consensus to enhance reliability. 173

Unlike these methods, our proposed framework 174

completely circumvents the need for correctness 175

labels, making it more robust and scalable for eval- 176

uating confidence measures in NLG. 177

Applications of Confidence Measures Confi- 178

dence measures play a crucial role in several down- 179

stream research areas in NLG, particularly in con- 180

formalized NLG and selective generation or gen- 181
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eration with abstention. Stemming from Confor-182

mal Prediction (Papadopoulos et al., 2007), in the183

context of NLG, conformalized methods typically184

aim to create a set of generation that satisfies a185

particular user-defined quality goal (e.g. “correct186

answers”) (Quach et al., 2023; Gui et al., 2024;187

Lee et al., 2024; Yadkori et al., 2024), or providing188

factual guarantees basing on parts of the genera-189

tion (Cherian et al., 2024; Mohri and Hashimoto,190

2024). Selective generation or generation with191

abstention, on the other hand, deals with broader192

considerations that involve refraining from gener-193

ating if the confidence score is low, with goals like194

improving the accuracy on the non-rejected por-195

tion (Ren et al., 2023b; Cole et al., 2023). Good196

confidence measures that can distinguish high and197

low-quality generations are key ingredients to all198

these research directions, and our paper aims to pro-199

vide a better evaluation framework for researchers200

to identify such confidence measures.201

3 Confidence Estimation for NLG202

First, we establish notation and introduce relevant203

definitions. Let M be a language model, x ∈ Σ∗204

be an input prompt, and s = M(x) ∈ Σ∗ be205

the output. Σ denotes the vocabulary, which in-206

cludes tokens from modern tokenizers or natural207

language symbols like alphabet letters. For free-208

form NLG datasets, we typically have reference209

answers A = a1, . . . , am alongside x. A confi-210

dence estimation method is a function that assigns211

a confidence score to model output s given input212

x. Formally, a confidence measure is defined as:213

CM : (x, s) ∈ Σ∗ × Σ∗ 7→ R, (1)214

where CM(x, s) represents the confidence score of215

s. This notation accounts for both model-agnostic216

and model-specific confidence measures.217

3.1 Confidence Estimation Methods218

Existing confidence estimation methods can be219

broadly divided into two categories: Consistency-220

based black-box methods and internal state-based221

white-box methods2.222

Black-Box Methods leverage response consis-223

tency across LLM generations (Lin et al., 2024b;224

Manakul et al., 2023). Higher consistency among225

generated responses indicates higher confidence in226

s. These methods first compute pairwise response227

2We consider logits as an internal states here.

similarities, then derive confidence from the simi- 228

larity matrix. For similarity computation, existing 229

methods use Jaccard similarity, NLI models (He 230

et al., 2021), and BERTScore (Zhang* et al., 2020) 231

for similarity computation. 232

White-Box Methods use the internal states of 233

LLMs—including logit distributions and token- 234

level probabilities—to estimate confidence. Re- 235

cent research has adopted sequence likelihood (Lin 236

et al., 2024a), which computes confidence from 237

the probability of the complete generated response. 238

Perplexity (Vashurin et al., 2024) extends this 239

by normalizing for response length via average 240

sequence likelihood. Recent refinements weigh 241

tokens differently: TokenSAR (Duan et al., 2024) 242

uses NLI for token importance, while Contex- 243

tualized Sequence Likelihood (CSL, and its vari- 244

antCSL-Next) (Lin et al., 2024a) weighs using at- 245

tention values. Other approaches train probes on 246

LLM internal activations and embeddings (Ren 247

et al., 2023a; Azaria and Mitchell, 2023; Li et al., 248

2023). Furthermore, the verbalized confidence 249

(P(true)) (Xiong et al., 2024) elicits explicit 250

“True” or “False” predictions. While this is tech- 251

nically possible by taking the frequency of “True” 252

among multiple sampled generations, in practice 253

it is typically implemented by computing from the 254

logits. Note that uncertainty quantification in NLG 255

is a closely related research direction, yet differs 256

in a key way: uncertainty characterizes the predic- 257

tive distribution rather than a specific s. For more 258

details of this distinction, see Lin et al. (2024b). 259

3.2 Existing Evaluation Methods 260

Intuitively, a higher confidence score should cor- 261

relate with the quality of model generation s and 262

its correctness relative to input x. This assumption 263

underpins selective classification, confidence scor- 264

ing, and uncertainty quantification. In selective 265

classification, also termed prediction with a rejec- 266

tion option, models abstain from low-confidence 267

predictions, thereby reducing error rates while max- 268

imizing coverage (Franc et al., 2023; Geifman and 269

El-Yaniv, 2017). In other words, confidence mea- 270

sures guide selection towards predictions that are 271

likely to be correct. 272

This idea extends naturally to NLG, where con- 273

fidence measures are used to guide selective gen- 274

eration or generation with abstention. Assuming 275

a given correctness function (Huang et al., 2024) 276

f(s;x) ∈ {0, 1}, which tells us whether a response 277
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Confidence Score
𝑪 𝒙𝒊

𝑫𝟏 , 𝒔𝟏 = 𝟑. 𝟑𝟗

𝑪 𝒙𝒊
(𝑫𝟏), 𝒔𝟐 = 𝟏. 𝟐𝟑

…

Evaluation 
Metrics
AUROC
AUARC

ECE

MCQA-Eval
Label(A) : 0
Label(B) : 0
Label(C) : 0
Label(D) : 0
Label(E)  : 1

Exact Match 𝒇 𝒙𝒊, 𝑨 = 𝟎
𝒇 𝒙𝒊, 𝑩 = 𝟎
𝒇 𝒙𝒊, 𝑪 = 𝟎
𝒇 𝒙𝒊, 𝑫 = 𝟎
𝒇 𝒙𝒊, 𝑬 = 𝟏

Correctness

𝑪 𝒙𝒊
(𝑫𝟐), 𝑨 = 𝟏. 𝟔𝟗 

…

𝑪 𝒙𝒊
(𝑫𝟐), 𝑬 = 𝟒. 𝟔𝟐

LLMs 𝓜

Existing evaluation 

Our proposed evaluation 
MCQA-Eval

Correctness From Multiple-
Choice Dataset

Confidence Estimation

Free-form QA Dataset
Q: Who won Super Bowl XX? 
A: Chicago Bears
(TriviaQA 𝑫𝟏)

A : sand 
B : occurs over a wide range
C : forests
D : global warming
E : local weather conditions

Multiple-Choice Dataset
Climate is generally described in 
terms of what?

Reference Matching
Human Evaluation

C : forests
D : global warming
E : local weather conditions

A : sand 
B : occurs over a wide range

Multiple-Choice Dataset (QASC 𝑫𝟐 )
Climate is generally described in terms of what?

Sampled Generation(s)

𝐬𝟏 = Chicago Bears
𝐬𝟐 = Decatur Staleys
…

Correctness
𝒇 𝒔𝟏,Chicago Bears = 𝟏
𝒇(𝒔𝟐,Chicago Bears) = 𝟎

…

Correctness Function

Figure 1: Illustration of the existing evaluation framework (blue) vs our proposed MCQA-Eval (green). Unlike
existing frameworks, we avoid the costly and unreliable correctness function module by using multiple-choice
datasets. This requires slight modification to the confidence estimation steps, which is elaborated in Section 4.

is good or correct3, several evaluation metrics are278

used to assess confidence measures for NLG:279

• Area Under the Receiver Operating Characteris-280

tic Curve (AUROC):281 ∫ ∞

−∞
TPR(t) dFPR(t), (2)282

where TPR(t) (FPR(t)) is the true (false) posi-283

tive rate comparing 1{C(s) > t} and f(s), the284

correctness of s. AUROC measures how well the285

confidence scores distinguish between correct286

and incorrect responses.287

• Area Under the Accuracy-Rejection Curves288

(AUARC) (Nadeem et al., 2009):289 ∫ ∞

−∞
Accuracy(t) dCoverage(t), (3)290

where Accuracy(t) = E{f(s)|C(s) > t} and291

Coverage(t) = P{C(s) > t}. A refinement of292

AUROC designed for abstention-based settings,293

it evaluates the accuracy averaged across differ-294

ent coverage level (i.e. proportion of accepted295

predictions) when rejecting low-confidence pre-296

dictions.297

• Expected Calibration Error (ECE) (Guo et al.,298

2017):299

E
[
|E[f(s)|C(s)]− C(s)|

]
. (4)300

ECE quantifies the alignment between predicted301

confidence scores and actual correctness proba-302

bilities.303

3This could sometimes be relaxed to have a continuous range
of R, instead of {0, 1}, but certain evaluation metrics such
as AUROC require binary correctness labels.

• Rank-Calibratoin Error (RCE) (Huang et al., 304
2024): 305

EC

[
|PC′{reg(C′) ≥ reg(C)} − PC′{C′ ≤ C}|

]
(5) 306

where reg(c) is a regression function for 307

E[f |C = c] and C ′ and C are the confidence 308

values of two independent responses. Unlike 309

ECE, which cannot be directly applied to con- 310

fidence measures that have not been calibrated 311

in the frequency space, RCE directly assesses 312

calibration in the ranking space, and is more gen- 313

erally applicable. 314

While these evaluation metrics are widely used 315

in classification tasks, they all rely on a correct- 316

ness function f(s) to decide if a generation s 317

is correct. However, in NLG, correctness is in- 318

herently difficult to determine, unless s exactly 319

matches one of the reference answers, which is 320

rare except for simple tasks. Currently, correct- 321

ness is often assessed using human evaluation or 322

similarity-based methods: 323

Human Evaluation This remains arguably the 324

most reliable approach. Human evaluation is either 325

used on smaller datasets (Ren et al., 2023b) or to 326

validate automated correctness functions (Kuhn 327

et al., 2023; Lin et al., 2024b,a), but is expensive 328

and unscalable for large-scale dataset evaluation. 329

Similarity-Based Methods In practice, correct- 330

ness is often approximated by computing the simi- 331

larity between s and the reference answers A, in the 332

form of sim(s, A) or sim(s, A|x). To accommo- 333

date metrics like AUROC, a threshold τ is applied 334
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to convert such similarity to {0, 1}:335

f(s,x) =

{
1, if sim(s, A) > τ

0, otherwise.
(6)336

Specifically, there are two common approaches for337

computing similarity. Reference Matching relies338

on lexical-based similarity metrics such as ROUGE339

and BLEU (Hu and Zhou, 2024; Aynetdinov and340

Akbik, 2024; Kuhn et al., 2023), which often fail to341

recognize semantically equivalent answers which342

are phrased differently. LLM Judgment uses a343

LLM as an evaluator (Ren et al., 2023b; Li et al.,344

2024; Tan et al., 2024) and is more flexible. How-345

ever, such methods are computationally expensive346

and are still not fully reliable. Recent studies in-347

dicate that machine-based correctness evaluation348

sometimes only has an accuracy of 85% on popu-349

lar datasets (Kuhn et al., 2023; Lin et al., 2024a).350

3.3 Limitations of Existing Methods351

Flaws in the correctness function inevitably affect352

downstream evaluation metrics such as AUROC353

and thus our conclusions about different confidence354

measures. In this section, we illustrate the limi-355

tations of current confidence evaluation methods356

from two angles: the impact of threshold sensitivity357

and the inherent noise of similarity measures.358

Case Study 1: Threshold Sensitivity A com-359

mon limitation of current practices is the need360

for a predefined threshold τ to convert similarity361

scores into binary correctness labels, as described362

in Eq. (6). The choice of τ could thus impact the363

final evaluation metric. To illustrate this, we vary364

the threshold for CoQA (Reddy et al., 2019) results365

from Lin et al. (2024b), while keeping all other set-366

tings constant. In their work, the threshold was367

manually set to τ = 0.7. However, Fig. 2 suggests368

that Ecc(C), for example, could either rank at the369

top or the bottom depending on τ .370

Case Study 2: Similarity Noise Correctness371

labels, whether derived from human evaluation,372

LLM-based scoring, or reference matching, are in-373

herently noisy. For instance, within LLM-based374

judgments, correctness labels can fluctuate due375

to factors such as prompt variations and how the376

LLM judges were designed and trained. Echoing377

prior observations, Fig. 3 shows examples where378

LLM judgments could either differ between differ-379

ent LLM judges or between different calls to the380

same LLM judge. Lin et al. (2024a) proposes to381

Figure 2: The AUROC ranking of black-box confidence
measures (on LLaMA2-13B and CoQA) is sensitive to
the threshold τ .

Q: Who was the first reigning British 
monarch to make an official visit to 
the USA?
A: George the Sixth
(TriviaQA) 

Response: George III

Llama2 judge score: 0

Llama3 judge score: 0

GPT judge score: 0.8

Different LLM Judges Same LLM Judge 

Context: "…it would be madness 
to accuse a king's favourite unless 
one could prove absolutely the 
truth of what one says…"
Question: Is the ruler most likely to 
believe them?
Answer: No.
Question: Why not?
Reference:  He was the king's 
favorite.
Response: They have no proof.
Evaluation Scores:
 LLaMA-2 Judge: 0.0
 LLaMA-3 Judge: 0.0
 GPT Judge: 0.8

Question: 
Climate is generally 
described in terms of what?

Reference: 
local weather conditions
Response: 
Temperature, humidity, 
wind and precipitation.

Evaluation Scores:
GPT Judge Run 1: 0.4
GPT Judge Run 2: 0.2 
GPT Judge Run 3: 0.7

Figure 3: Using LLM judges as f , while flexible, still
has inherent noise. Different LLMs disagree on whether
a response is correct (left). Even the same LLM (GPT,
right) could deliver different opinions simply due to the
randomness in generation.

set the correctness function f as the consensus of 382

multiple LLMs, which improves the reliability of 383

the correctness of responses LLMs agree on. How- 384

ever, simply ignoring the disagreement could also 385

introduce systematic selection bias. 386

To systematically analyze this effect, we simu- 387

late correctness label noise with Gaussian noise 388

and analyze its effects. We modify the correctness 389

function as: 390

f̃(s;x) = Sigmoid(logit(f(s;x)) + ϵ), ϵ ∼ N (0, σ2).
(7) 391

As shown in Table 1, increasing noise levels can 392

lead to significant instability in ranking different 393

confidence measures. Note that our simulation 394

likely underestimates the issue, because the noise 395

in Eq. (7) is unbiased and does not reflect system- 396

atic bias that may favor certain confidence mea- 397

sures (Lin et al., 2022). 398

While it might be theoretically possible to esti- 399

mate the noise level and its propagation to errors on 400

metrics like AUROC, this requires strong assump- 401

tions (e.g. Eq. (7)), extensive human evaluation, 402

and replication across LLM judges and datasets. 403

This fragility in existing evaluation methods moti- 404
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Ranking 1 2 3 4 5 6

Original Deg(C) Deg(E) Ecc(E) Deg(J) Ecc(C) Ecc(J)
Noisy Deg(C) Deg(E) Deg(J) Ecc(E) Ecc(J) Ecc(C)

Table 1: Ranking of uncertainty quantification methods
before and after noise.

vates our framework, which eliminates dependence405

on uncertain correctness functions.406

4 MCQA-Eval: A framework for407

Assessing Confidence Estimation408

At a high level, existing evaluation frameworks for409

CM includes three main steps (blue path in Fig. 1):410

1. Generate s from M given the input xi.411

2. Determine the correctness label of s using the412

function f(·,x).413

3. Compute evaluation metrics such as AUROC.414

A higher metric value indicates that CM is a415

“better” confidence estimation.416

The main limitation of this general pipeline lies417

in f in step 2. Existing evaluation frameworks418

all implicitly assume step 1—that the confidence419

measure CM must apply to generated sequences420

s. While this might hold for consistency-based421

uncertainty measures, where response divergence422

indicates uncertainty, it does not extend to confi-423

dence measures. In other words, we could relax424

step 1 in order to improve step 2.425

Our main proposal in this paper is to adapt426

multiple-choice datasets to evaluate confidence427

measures designed for free-form NLG. Unlike free-428

form NLG datasets, multiple-choice datasets pro-429

vide inherent correctness values for options, elim-430

inating the need for an explicit correctness func-431

tion. If we simply “pretend” that these options are432

free-form generations from the base LM, we can433

directly evaluate the confidence measure quality.434

As Fig. 1 shows, the approach differs from existing435

evaluation pipelines only in applying confidence436

estimation methods to multiple-choice options.437

Consider the QASC (Khot et al., 2020) dataset as438

an example, each problem comes with a question x439

and a few choices, o1, . . . , oK . Unlike what such440

datasets were designed for, we re-format the input441

prompt as a free-form NLG question, as illustrated442

in Fig. 4, as if the base LLM generated each option443

itself, in different runs. In what follows, we first444

explain explain slight nuances in applying internal445

state-based white-box confidence measures as well446

as consistency-based black-box ones.447

Logit or Internal State-Based Measures typi-448

Provide a concise answer to the following 
question in a short phrase: 
Question: Climate is generally described in terms 
of what? 
Answer: sand 
…
Provide a concise answer to the following 
question in a short phrase:
Question: Climate is generally described in terms 
of what? 
Answer: local weather conditions

Question: "Climate is generally described in terms of what? "
Choices: "text": "sand", "label": "A", "text": "occurs over a wide 
range", "label": "B", "text": "forests", "label": "C", "text": "Global 
warming", "label": "D", "text": "rapid changes occur", "label": "E", 
"text": "local weather conditions", "label": "F“, "text": "measure of 
motion", "label": "G“
Our Prompt: Provide a concise answer to the following question in 
a short phrase:
Q: Climate is generally described in terms of what? 
A:

Original QASC Example Reformatted Prompts With Injected Option

Question: 
Climate is generally 
described in terms 
of what?
Choices: 
 A : sand 
 ….
 ….
 E : local weather 

 conditions

Figure 4: We reformat each option from the multiple-
choice question (left), by injecting the option to a
free-form QA prompt . One could typically apply any
confidence estimation method by treating this option
as if it was generated by the base LM. For black-box
confidence measures that require additional responses,
we only feed the prompt to the base LM.

Algorithm 1 Consistency-based Confidence Esti-
mation for Any Sequences
Input: x, M, candidate sequences A = {a1, . . . , aK}
Output: {CM(x, a1), . . . , CM(x, aK)}
1: Generate S = {s1, . . . , sn} using M for question x
2: Compute pairwise similarity matrix M of S.
3: for each ai ∈ A do
4: Compute a new similarity matrix Mi of S ∪ {ai},

reusing M .
5: Compute confidence score CM(x, ai) using Mi.
6: end for
7: return {CM(x, a1), . . . , CM(x, aK)}

cally examine the internals of a LM when it gener- 449

ates a particular response. The nature of the free- 450

form generation task allows us to simply plug-in 451

the option oi into the corresponding location of the 452

prompt, and extract similar information that allows 453

us to evaluate the confidence4. 454

Consistency-based Confidence Measures Un- 455

like logit-based or internal-state-based measures, 456

consistency-based confidence measures typically 457

rely on an estimate of the predictive distribution, 458

denoted as P(S;x,M), and any response that is 459

closer to the center of the distribution (in the “se- 460

mantic space”) is considered to be of higher confi- 461

dence. Consider methods from Lin et al. (2024b) 462

as an example. To preserve the integrity of the 463

predictive distribution, we first sample n responses 464

from P(S;x,M) as usual, and then iteratively in- 465

clude one option oi at a time to compute its associ- 466

ated confidence score (Rivera et al., 2024; Manakul 467

et al., 2023). Algorithm 1 outlines this process. 468

4In fact, this was the practice to compute SL
for actual generations. For example, https:
//github.com/lorenzkuhn/semantic_uncertainty/
blob/main/code/get_likelihoods.py and https:
//huggingface.co/docs/transformers/perplexity.
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Remarks Our proposal relaxes step 1 at the be-469

ginning of this section, allowing for s∗ = oi not470

sampled from P(S;x,M). This is not to be mis-471

understood as a proposal to replace the current472

pipeline (Section 3.2)—rather, it is complementary.473

The rationale is that if a good confidence measure474

predicts the correctness well, it should perform475

well in both evaluation frameworks. In fact, any476

oi ∈ Σ∗ that does not violate the generation config-477

uration, has a non-zero probability to be sampled478

from P(S;x,M), and a robust confidence mea-479

sure should be expected to model it well.480

5 Experiments481

We demonstrate the advantages of our proposed482

evaluation framework through comprehensive ex-483

periments on multiple LLMs and various confi-484

dence estimation methods.485

5.1 Experimental Setup486

Base LLMs Our experiments use four popu-487

lar open-source LLMs: LLaMA2-7B (Touvron488

et al., 2023), LLaMA3-8B, Phi4-14B (Abdin et al.,489

2024), and Qwen2.5-32b (Yang et al., 2024). These490

models were specifically pretrained on question-491

answering tasks, which minimizes irrelevant re-492

sponses. We include various model sizes for a493

comprehensive analysis.494

Datasets We select five multiple-choice datasets495

with varying levels of complexity from different do-496

mains, including CommonSenseQA(C-QA) (Tal-497

mor et al., 2019), Question Answering via Sen-498

tence Composition (QASC) (Khot et al., 2020),499

MedQA (Jin et al., 2021), RACE-m, and RACE-500

h (Lai et al., 2017). Each dataset consists of in-501

dependent questions with a set of answer options,502

where exactly one option is correct. Evaluating503

different LLMs on datasets from different domains504

and diverse levels of difficulty allows for a more505

comprehensive assessment of model performance506

across a wide range of scenarios. Table 2 provides507

an overview of these datasets and the number of508

questions we use, with detailed descriptions in Ap-509

pendix A.1. The exact prompt formulation for each510

dataset is provided in Appendix A.2.511

Confidence Estimation Methods We compare512

six black-box and six white-box methods. The513

selected methods represent commonly used con-514

fidence estimation baselines. The six black-box515

measures evaluated in our experiments are:516

Dataset Size Options Domain Difficulty

C-QA 1221 5 Commonsense Easy
QASC 926 8 Commonsense Medium
MedQA 1000 5 Medical Hard
RACE-M 1000 4 Reading Comprehension Medium
RACE-H 1000 4 Reading Comprehension Hard

Table 2: Overview of datasets used in this paper.

• Deg (J), Deg (E), Deg (C): These compute the 517

similarity matrix using Jaccard Similarity, NLI 518

entailment and NLI contradiction, respectively. 519

The confidence score is then derived from the 520

degree matrix. 521

• Ecc (J), Ecc (E), Ecc (C): The similarity matrix is 522

obtained using the same method as above, but the 523

confidence score is derived from the embeddings 524

derived from the graph Laplacian. 525

Unlike black-box methods, white-box measures 526

directly use the multiple-choice options as eval- 527

uation responses. We implement six white-box 528

confidence estimation baselines, as introduced in 529

Section 3.1: SL, Perplexity, TokenSAR, CSL, its 530

variant CSL-Next, and P(true). 531

Metrics Following previous works, we use AU- 532

ROC as our primary metric5. Our framework can 533

also be applied to evaluate confidence calibration. 534

We include additional results in Appendix B, re- 535

porting RCE and calibration ECE metrics. 536

Additional details of our experiment can be 537

found in Appendix A. 538

5.2 Experimental Findings 539

This section summarizes our main experimental 540

findings, with detailed results in Appendix B. 541

Comparison With Existing Evaluation Meth- 542

ods We first compare our evaluation method with 543

the existing pipeline (Baseline) using the QASC 544

dataset. For the baseline, we use gpt-4o-mini to 545

obtain correctness labels (by comparing the gen- 546

eration with the correct option). Table 3 shows 547

that varying the threshold significantly impacts the 548

ranking of both black-box and white-box confi- 549

dence estimation methods. Additionally, querying 550

gpt-4o-mini for correctness labels across 926× 20 551

responses takes approximately 2.5 hours. The cost 552

(both economical and time-wise) would be much 553

higher for more advanced LLM judges, or longer 554

prompts from datasets with a “context” (such as 555

CoQA (Reddy et al., 2019)), making large-scale 556

evaluations difficult. 557

5Responses sampled for black-box methods’ are excluded
from AUROC calculations due to uncertain correctness.
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Ranking

τ 1 2 3 4 5 6

Black-box

Baseline

0.5 Deg(C) Deg(E) Ecc(E) Ecc(C) Deg(J) Ecc(J)
0.7 Deg(C) Deg(E) Ecc(C) Ecc(E) Deg(J) Ecc(J)
0.9 Ecc(E) Deg(E) Deg(C) Deg(J) Ecc(J) Ecc(C)

MCQA-Eval N/A Ecc(E) Deg(E) Deg(J) Deg(C) Ecc(J) Ecc(C)

White-box

Baseline

0.5 TokenSAR Perplexity SL CSL CSL-Next P(true)
0.7 TokenSAR Perplexity CSL CSL-Next SL P(true)
0.9 SL TokenSAR Perplexity CSL CSL-Next P(true)

MCQA-Eval N/A SL TokenSAR Perplexity CSL CSL-Next P(true)

Table 3: We analyze how existing LLM-based evalua-
tion methods rank black-box and white-box approaches
by varying τ from 0.9 to 0.5. MCQA-Eval aligns with
the rankings at τ = 0.9, yet requires no overhead for
the correctness function.

On the other hand, MCQA-Eval aligns with base-558

line ranking at τ = 0.9. While it is unclear in this559

case which τ reflects the “most reliable” ranking,560

this experiment suggests that MCQA-Eval’s conclu-561

sion is consistent with existing pipeline. However,562

unlike the Baseline, it does not require the costly563

correctness function(s), thereby reducing computa-564

tional costs and enabling scalable evaluation.565

Comparison Across LLMs We compare confi-566

dence measures across LLMs on the same dataset567

via MCQA-Eval. As shown in Fig. 5 (with addi-568

tional results available in the Appendix B), larger569

LLMs tend to achieve better performance across570

different confidence estimation methods, reflect-571

ing their broader pretraining exposure. The rel-572

atively ranking of various confidence measures573

stay mostly stable. Interestingly, unlike some prior574

results (Lin et al., 2024b; Vashurin et al., 2024),575

P(true) performs very well except for Llama2-7b.576

We hypothesize that this is due to improvement in577

recent LLMs’ abilities in general, which is similar578

to the conjecture in (Vashurin et al., 2024). This579

hypothesis is partially supported by the fact that580

P(true) performs increasingly well as the base581

LM becomes more sophisticated.582

Comparison Across Datasets We compare con-583

fidence measures across datasets of varying dif-584

ficulty with MCQA-Eval. Fig. 6 illustrates these585

results for Phi4-14B. In general, different confi-586

dence measures exhibit larger performance gap on587

simpler datasets such as C-QA, and smaller on588

more professional datasets like MedQA. The gen-589

eral poor performance on harder datasets could be590

attributed to limited capability of the base LM (in591

generating additional responses for black-box mea-592

sures, or in supplying the base logits for white-box593

measures. For black-box measures, similarity met-594

(a) AUROC of different black-box methods.

(b) AUROC of different white-box methods.

Figure 5: (a) and (b) show the performance of 4 dif-
ferent LLMs and 12 different confidence estimation
methods on the C-QA dataset. A higher AUROC indi-
cates better performance.

Figure 6: The performance of Phi-4 using black-box
methods across different datasets.

rics like NLI and Jaccard may also provide limited 595

distinguishing power. We recommend selecting 596

datasets with difficulty levels that align with the 597

capabilities of the language model, making perfor- 598

mance differences more discernible. 599

6 Conclusion 600

In this paper, we propose MCQA-Eval, a simple 601

framework using multiple-choice QA datasets to 602

evaluate confidence measures for natural language 603

generation. We first highlight the unreliability of 604

widely used correctness functions in existing eval- 605

uation frameworks. To address this, we propose 606

an alternative approach that reformulates multiple- 607

choice questions into a free-form QA prompt, en- 608

abling a more efficient evaluation with higher- 609

quality correctness labels. Experiments across di- 610

verse datasets and state-of-the-art LLMs demon- 611

strate that MCQA-Eval produces consistent results 612

aligned with prior research findings, while elimi- 613

nating dependence on costly correctness functions. 614
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Limitations615

While our proposed evaluation framework avoids616

the use of correctness functions, offering speed and617

reliability, it also has its limitations. As noted in618

Section 4, MCQA-Eval should not serve as the only619

evaluation method. Bypassing response generation620

provides no guarantee that injected options resem-621

ble what would otherwise be generated by the base622

LM. If the goal is to evaluate confidence measures623

for a specific LM and its generation, then this gen-624

eration step by definition should not be skipped.625

Further, certain trained confidence measures (e.g.626

linear probes on the LM’s internal states) might627

not generalize as well to injected options, and may628

perform systematically worse in MCQA-Eval than629

in the current framework (although one may argue630

that generalizability should be part of the evalua-631

tion to begin with). Finally, MCQA-Eval currently632

only applies to confidence measures, but we do633

not see a straightforward adaption to uncertainty634

measures. We hope future research could continue635

to improve the evaluation of confidence, and po-636

tentially, of uncertainty measures.637
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Jekaterina Novikova, Ondřej Dušek, Amanda Cercas 818
Curry, and Verena Rieser. 2017. Why we need 819
new evaluation metrics for nlg. arXiv preprint 820
arXiv:1707.06875. 821

Arjun Panickssery, Samuel R Bowman, and Shi Feng. 822
2024. Llm evaluators recognize and favor their own 823
generations. arXiv preprint arXiv:2404.13076. 824

Harris Papadopoulos, Volodya Vovk, and Alex Gam- 825
merman. 2007. Conformal prediction with neural 826
networks. In 19th IEEE International Conference 827
on Tools with Artificial Intelligence (ICTAI 2007), 828
volume 2, pages 388–395. IEEE. 829

10

https://doi.org/10.18653/v1/2024.emnlp-main.18
https://doi.org/10.18653/v1/2024.emnlp-main.18
https://doi.org/10.18653/v1/2024.emnlp-main.18
https://openreview.net/forum?id=VD-AYtP0dve
https://openreview.net/forum?id=VD-AYtP0dve
https://openreview.net/forum?id=VD-AYtP0dve
https://openreview.net/forum?id=glfYOAzh2f
https://openreview.net/forum?id=glfYOAzh2f
https://openreview.net/forum?id=glfYOAzh2f
https://openreview.net/forum?id=aLLuYpn83y
https://openreview.net/forum?id=aLLuYpn83y
https://openreview.net/forum?id=aLLuYpn83y
https://openreview.net/forum?id=aLLuYpn83y
https://openreview.net/forum?id=aLLuYpn83y
https://doi.org/10.18653/v1/2024.emnlp-main.578
https://doi.org/10.18653/v1/2024.emnlp-main.578
https://doi.org/10.18653/v1/2024.emnlp-main.578
https://openreview.net/forum?id=DWkJCSxKU5
https://openreview.net/forum?id=DWkJCSxKU5
https://openreview.net/forum?id=DWkJCSxKU5
https://proceedings.mlr.press/v139/ma21a.html
https://proceedings.mlr.press/v139/ma21a.html
https://proceedings.mlr.press/v139/ma21a.html
https://doi.org/10.18653/v1/2023.emnlp-main.557
https://doi.org/10.18653/v1/2023.emnlp-main.557
https://doi.org/10.18653/v1/2023.emnlp-main.557
https://doi.org/10.18653/v1/2023.emnlp-main.557
https://doi.org/10.18653/v1/2023.emnlp-main.557
https://proceedings.mlr.press/v8/nadeem10a.html
https://proceedings.mlr.press/v8/nadeem10a.html
https://proceedings.mlr.press/v8/nadeem10a.html
https://proceedings.mlr.press/v8/nadeem10a.html
https://proceedings.mlr.press/v8/nadeem10a.html


Victor Quach, Adam Fisch, Tal Schuster, Adam Yala,830
Jae Ho Sohn, Tommi S Jaakkola, and Regina Barzi-831
lay. 2023. Conformal language modeling. In The832
Twelfth International Conference on Learning Rep-833
resentations.834

Siva Reddy, Danqi Chen, and Christopher D. Manning.835
2019. CoQA: A conversational question answering836
challenge. Transactions of the Association for Com-837
putational Linguistics, 7:249–266.838

Jie Ren, Jiaming Luo, Yao Zhao, Kundan Krishna, Mo-839
hammad Saleh, Balaji Lakshminarayanan, and Pe-840
ter J Liu. 2023a. Out-of-distribution detection and841
selective generation for conditional language mod-842
els. In The Eleventh International Conference on843
Learning Representations.844

Jie Ren, Yao Zhao, Tu Vu, Peter J. Liu, and Balaji Lak-845
shminarayanan. 2023b. Self-evaluation improves se-846
lective generation in large language models. In Pro-847
ceedings on "I Can’t Believe It’s Not Better: Failure848
Modes in the Age of Foundation Models" at NeurIPS849
2023 Workshops, volume 239 of Proceedings of Ma-850
chine Learning Research, pages 49–64. PMLR.851

Mauricio Rivera, Jean-François Godbout, Reihaneh852
Rabbany, and Kellin Pelrine. 2024. Combining con-853
fidence elicitation and sample-based methods for un-854
certainty quantification in misinformation mitigation.855
In Proceedings of the 1st Workshop on Uncertainty-856
Aware NLP (UncertaiNLP 2024), pages 114–126, St857
Julians, Malta. Association for Computational Lin-858
guistics.859

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and860
Jonathan Berant. 2019. CommonsenseQA: A ques-861
tion answering challenge targeting commonsense862
knowledge. In Proceedings of the 2019 Conference863
of the North American Chapter of the Association for864
Computational Linguistics: Human Language Tech-865
nologies, Volume 1 (Long and Short Papers), pages866
4149–4158, Minneapolis, Minnesota. Association867
for Computational Linguistics.868

Sijun Tan, Siyuan Zhuang, Kyle Montgomery,869
William Y Tang, Alejandro Cuadron, Chenguang870
Wang, Raluca Ada Popa, and Ion Stoica. 2024.871
Judgebench: A benchmark for evaluating llm-based872
judges. arXiv preprint arXiv:2410.12784.873

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-874
bert, Amjad Almahairi, Yasmine Babaei, Nikolay875
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti876
Bhosale, et al. 2023. Llama 2: Open founda-877
tion and fine-tuned chat models. arXiv preprint878
arXiv:2307.09288.879

Roman Vashurin, Ekaterina Fadeeva, Artem Vazhentsev,880
Lyudmila Rvanova, Akim Tsvigun, Daniil Vasilev,881
Rui Xing, Abdelrahman Boda Sadallah, Kirill Gr-882
ishchenkov, Sergey Petrakov, et al. 2024. Bench-883
marking uncertainty quantification methods for large884
language models with lm-polygraph. arXiv preprint885
arXiv:2406.15627.886

Miao Xiong, Zhiyuan Hu, Xinyang Lu, YIFEI LI, Jie 887
Fu, Junxian He, and Bryan Hooi. 2024. Can LLMs 888
express their uncertainty? an empirical evaluation of 889
confidence elicitation in LLMs. In The Twelfth Inter- 890
national Conference on Learning Representations. 891

Yasin Abbasi Yadkori, Ilja Kuzborskij, David Stutz, An- 892
drás György, Adam Fisch, Arnaud Doucet, Iuliya Be- 893
loshapka, Wei-Hung Weng, Yao-Yuan Yang, Csaba 894
Szepesvári, et al. 2024. Mitigating llm halluci- 895
nations via conformal abstention. arXiv preprint 896
arXiv:2405.01563. 897

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, 898
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, 899
Fei Huang, Haoran Wei, et al. 2024. Qwen2. 5 tech- 900
nical report. arXiv preprint arXiv:2412.15115. 901

Bianca Zadrozny and Charles Elkan. 2001. Learning 902
and making decisions when costs and probabilities 903
are both unknown. In Proceedings of the Seventh 904
ACM SIGKDD International Conference on Knowl- 905
edge Discovery and Data Mining, KDD ’01, page 906
204–213, New York, NY, USA. Association for Com- 907
puting Machinery. 908

Jize Zhang, Bhavya Kailkhura, and T. Yong-Jin Han. 909
2020. Mix-n-match : Ensemble and compositional 910
methods for uncertainty calibration in deep learning. 911
In Proceedings of the 37th International Conference 912
on Machine Learning, volume 119 of Proceedings 913
of Machine Learning Research, pages 11117–11128. 914
PMLR. 915

Tianyi Zhang*, Varsha Kishore*, Felix Wu*, Kilian Q. 916
Weinberger, and Yoav Artzi. 2020. Bertscore: Eval- 917
uating text generation with bert. In International 918
Conference on Learning Representations. 919

11

https://doi.org/10.1162/tacl_a_00266
https://doi.org/10.1162/tacl_a_00266
https://doi.org/10.1162/tacl_a_00266
https://openreview.net/forum?id=kJUS5nD0vPB
https://openreview.net/forum?id=kJUS5nD0vPB
https://openreview.net/forum?id=kJUS5nD0vPB
https://openreview.net/forum?id=kJUS5nD0vPB
https://openreview.net/forum?id=kJUS5nD0vPB
https://proceedings.mlr.press/v239/ren23a.html
https://proceedings.mlr.press/v239/ren23a.html
https://proceedings.mlr.press/v239/ren23a.html
https://aclanthology.org/2024.uncertainlp-1.12/
https://aclanthology.org/2024.uncertainlp-1.12/
https://aclanthology.org/2024.uncertainlp-1.12/
https://aclanthology.org/2024.uncertainlp-1.12/
https://aclanthology.org/2024.uncertainlp-1.12/
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://openreview.net/forum?id=gjeQKFxFpZ
https://openreview.net/forum?id=gjeQKFxFpZ
https://openreview.net/forum?id=gjeQKFxFpZ
https://openreview.net/forum?id=gjeQKFxFpZ
https://openreview.net/forum?id=gjeQKFxFpZ
https://doi.org/10.1145/502512.502540
https://doi.org/10.1145/502512.502540
https://doi.org/10.1145/502512.502540
https://doi.org/10.1145/502512.502540
https://doi.org/10.1145/502512.502540
https://proceedings.mlr.press/v119/zhang20k.html
https://proceedings.mlr.press/v119/zhang20k.html
https://proceedings.mlr.press/v119/zhang20k.html
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr


A Experiments Details920

A.1 Dataset Description921

• C-QA A multiple-choice dataset designed922

for commonsense question answering. Each923

question requires world knowledge and rea-924

soning to determine the correct answer from925

5 given choices. The dataset consists of 1,221926

test questions.927

• QASC A multiple-choice commonsense rea-928

soning dataset with 8 answer choices per ques-929

tion. Compared to C-QA, QASC presents a930

higher level of difficulty. While the dataset931

was originally designed for multi-hop reason-932

ing, our focus is not on evaluating the reason-933

ing capabilities of LLMs. Therefore, we do934

not provide the supporting facts to the model935

and instead present only the question. For our936

experiments, we use the original validation937

set, which includes 926 questions.938

• MedQA A multiple-choice dataset with 5 op-939

tions for answers, specifically designed for940

medical QA. It covers three languages: En-941

glish, simplified Chinese, and traditional Chi-942

nese, and contains 12,723, 34,251, and 14,123943

questions for the three languages, respectively.944

The questions are sourced from professional945

medical board exams, making this dataset par-946

ticularly challenging due to its reliance on spe-947

cialized medical knowledge. For our experi-948

ments, we randomly selected the first 1,000949

questions from the English dataset.950

• RACE-m and RACE-h used in this pa-951

per are derived from the RACE (ReAding952

Comprehension dataset from Examinations)953

dataset, a large-scale machine reading com-954

prehension dataset introduced by Lai et al (Lai955

et al., 2017). RACE comprises 27,933 pas-956

sages and 97,867 questions collected from En-957

glish examinations for Chinese students aged958

12–18. These datasets evaluate a model’s abil-959

ity to comprehend complex passages and an-960

swer questions based on contextual reasoning.961

Each question is accompanied by four answer962

choices, with only one correct option. For963

our experiments, we randomly sampled 1,000964

questions from the entire dataset using a fixed965

random seed of 42 to ensure reproducibility.966

A.2 Prompt Details 967

• We use the following prompt to collect open- 968

form responses for each of the 5 datasets sep- 969

arately. 970

971

• We use the following prompt to elicit P(True) 972

confidence score. The “Possible Answer” is 973

an option from the multiple-choice dataset. 974

975

A.3 Computation Resources 976

To efficiently process multiple queries, we used 977

vLLM (Kwon et al., 2023) for parallel inference. 978

All experiments were conducted on a Linux server 979

running Ubuntu, equipped with an A100 80GB 980

GPU. 981

A.4 Response Generation 982

For black-box methods, we mostly adopt the ex- 983

perimental configurations from Lin et al. (2024b). 984

Sampling-based black-box confidence measures 985

use n = 20 open-form responses per question. 986

The temperature settings for different LLMs are 987

kept at their default values. 988

B Additional Experiments Results 989

B.1 Full Results of Different Evaluation 990

Metrics 991

In the main text, due to space constraints, we only 992

show a subset of the AUROC results. Here, Ta- 993

bles 4 and 5 show the AUROC and AUARC for 994

black-box and white-box confidence measures, re- 995

spectively. Similarly, Tables 6 and 7 present RCE 996

and ECE results. Note that all ECE are based on 997

calibrated confidence measures for fair compar- 998

isons, as some original confidence measures are not 999

even constrained to [0, 1]. For the calibration step, 1000

we applied histogram binning method (Zadrozny 1001

and Elkan, 2001) on all methods. 1002
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Dataset Model AUROC ⇑ AUARC ⇑

Ecc(C) Deg(C) Ecc(E) Deg(E) Ecc(J) Deg(J) Ecc(C) Deg(C) Ecc(E) Deg(E) Ecc(J) Deg(J)

C-QA

Llama2-7b 60.981 66.651 78.629 72.771 67.081 71.668 29.386 33.266 38.221 35.858 34.681 36.915
Llama3-8b 57.590 62.592 80.004 73.734 65.886 76.583 32.062 33.232 38.414 32.648 37.150 38.596
Phi4 67.879 68.413 80.712 69.976 71.447 75.278 32.123 31.596 19.294 30.032 28.570 24.739
Qwen2.5-32b 71.409 73.931 81.885 77.087 69.473 74.645 34.775 37.399 39.926 37.964 36.776 38.808

QASC

Llama2-7b 58.949 61.978 73.221 69.200 61.659 66.877 17.509 19.628 25.724 23.556 21.469 23.251
Llama3-8b 55.121 55.446 74.912 72.033 64.124 72.657 15.785 15.952 25.199 24.163 23.198 25.786
Phi4 65.100 65.553 76.980 67.692 68.496 71.209 20.297 21.063 26.740 21.422 24.067 24.308
Qwen2.5-32b 62.218 61.611 74.546 71.702 64.658 69.131 19.522 19.830 25.695 24.306 23.182 24.510

MedQA

Llama2-7b 53.683 54.129 52.076 52.963 53.137 53.778 21.956 23.105 21.160 22.863 23.454 23.371
Llama3-8b 52.824 53.971 51.641 53.523 55.257 59.552 21.125 22.103 20.390 22.164 25.598 26.617
Phi4 60.055 59.512 54.945 55.261 57.815 65.067 25.081 25.410 22.077 22.940 27.573 29.201
Qwen2.5-32b 60.071 61.737 54.727 58.454 61.564 63.783 24.998 28.045 22.246 26.331 29.848 30.054

RACE-m

Llama2-7b 65.473 64.304 61.022 59.245 67.480 67.760 34.147 36.637 32.570 33.994 38.844 38.904
Llama3-8b 62.385 63.351 61.872 58.711 68.391 73.267 30.774 35.054 31.639 32.491 41.231 43.055
Phi4 66.461 64.344 64.492 58.981 68.124 72.304 34.312 35.355 32.903 32.232 41.311 41.895
Qwen2.5-32b 65.425 67.627 60.268 61.309 75.420 75.746 34.393 37.409 32.092 34.850 44.281 44.585

RACE-h

Llama2-7b 58.991 53.597 57.178 54.037 59.300 59.856 34.147 36.637 32.570 33.994 38.844 38.904
Llama3-8b 56.372 53.560 58.456 54.004 57.488 63.788 27.959 28.483 29.120 27.823 33.912 36.139
Phi4 60.550 53.867 61.263 54.442 59.639 64.385 30.733 28.641 31.411 28.157 34.519 35.710
Qwen2.5-32b 60.012 54.781 55.984 55.657 64.985 66.130 31.049 29.180 30.459 28.921 37.620 37.734

Table 4: AUROC and AUARC for black-box methods, across different models and datasets

Dataset Model AUROC ⇑ AUARC ⇑

P(true) CSL CSL-next SL Perplexity TokenSAR P(true) CSL CSL-next SL Perlexity TokenSAR

C-QA

Llama2-7b 62.278 78.253 74.799 81.390 76.958 77.888 28.401 38.231 36.213 40.178 37.579 37.450
Llama3-8b 82.760 78.423 73.068 81.731 75.503 75.385 40.235 38.191 35.096 40.152 36.368 35.453
Phi4 86.184 77.382 73.477 78.903 75.471 75.722 42.447 37.984 35.749 38.452 36.928 36.630
Qwen2.5-32b 89.892 82.486 77.087 82.143 78.964 79.064 45.449 40.802 38.003 40.596 38.674 38.215

QASC

Llama2-7b 66.198 77.535 76.053 79.589 77.637 77.696 19.815 25.986 25.494 27.632 26.324 25.921
Llama3-8b 86.069 77.970 73.090 80.718 74.531 75.006 30.127 26.215 24.251 28.253 24.442 24.308
Phi4 84.478 77.556 74.596 78.661 75.678 76.222 29.977 26.068 25.246 27.064 25.463 25.307
Qwen2.5-32b 88.998 79.324 73.895 78.598 74.485 75.175 32.992 26.810 24.608 27.387 24.069 23.992

MedQA

Llama2-7b 54.660 55.144 55.852 54.766 55.766 55.703 22.414 24.437 24.888 24.246 24.848 24.795
Llama3-8b 77.493 57.384 57.894 57.919 57.592 57.530 36.884 24.072 25.225 25.879 24.973 24.803
Phi4 86.888 65.550 64.284 63.287 65.588 65.696 42.615 31.671 31.050 30.888 31.752 31.775
Qwen2.5-32b 80.131 63.264 63.712 63.109 62.564 62.164 40.197 27.495 27.754 29.382 27.440 27.221

RACE-m

Llama2-7b 63.965 69.194 70.819 67.568 71.823 71.984 35.543 38.429 39.404 38.870 40.030 40.133
Llama3-8b 82.118 67.317 70.875 69.321 69.851 70.029 47.145 36.953 40.206 40.508 39.144 39.232
Phi4 90.543 68.334 69.5354 68.8049 69.025 69.188 52.457 36.638 38.717 40.314 37.972 38.057
Qwen2.5-32b 56.049 67.294 69.102 73.267 69.147 69.279 29.283 34.913 36.873 42.373 36.220 36.318

RACE-h

Llama2-7b 61.265 61.905 62.481 59.889 63.486 63.465 35.543 38.429 39.404 38.870 40.030 40.133
Llama3-8b 79.466 60.775 63.868 61.253 64.134 64.146 44.910 31.300 34.086 33.463 33.973 33.974
Phi4 87.172 62.253 62.680 60.178 63.391 63.383 50.250 32.395 33.484 33.243 33.547 33.537
Qwen2.5-32b 52.811 61.837 64.047 63.555 64.050 64.024 27.605 31.279 32.714 34.462 32.462 32.458

Table 5: AUROC and AUARC for white-box methods, across different models and datasets

B.2 Additional Visualizations for ROC1003

Curves1004

Fig. 7 presents the ROC curves for Phi4-14B.1005

P(true) achieves much better performance than1006

other confidence measures on the more challeng-1007

ing datasets, likely because Phi4-14B is a relatively1008

advanced model. On the easier datasets, where we1009

could observe a bigger performance gap between1010

different confidence measures, it is also interesting1011

to see that the general shapes (and rankings at dif-1012

ferent FPR) are relatively consistent across C-QA1013

and QASC, suggesting stability of MCQA-Eval.1014

C AI Assistant Usage 1015

We used GPT for grammar checking and Copilot 1016

as an assistive tool. 1017
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(a) C-QA Dataset (b) QASC Dataset

(c) RACE-m Dataset (d) RACE-h Dataset

(e) MedQA Dataset

Figure 7: Comparison of different evaluation metrics using our method to quantify the Phi4-14B model’s confidence
scores across five datasets (C-QA, QASC, RACE-m, RACE-h, MedQA), with increasing difficulty.
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Dataset Model RCE Calibration ECE

Ecc(C) Deg(C) Ecc(E) Deg(E) Ecc(J) Deg(J) Ecc(C) Deg(C) Ecc(E) Deg(E) Ecc(J) Deg(J)

C-QA

Llama2-7b 0.2857 0.143722 0.117486 0.084357 0.271789 0.198744 0.014457 0.064792 0.025161 0.009014 0.009546 0.031801
Llama3-8b 0.28071 0.15255 0.06311 0.041246 0.362527 0.153761 0.013865 0.044074 0.031566 0.016865 0.008845 0.060919
Phi4 0.18881 0.115068 0.067507 0.038771 0.225698 0.218135 0.017734 0.059135 0.040364 0.024237 0.019987 0.056875
Qwen2.5-32b 0.16192 0.114378 0.080021 0.055613 0.278165 0.198222 0.0111 0.087857 0.043406 0.016647 0.014439 0.051092

QASC

Llama2-7b 0.25132 0.162559 0.193186 0.121908 0.331258 0.252667 0.013984 0.020481 0.019263 0.012321 0.003108 0.022164
Llama3-8b 0.28697 0.231308 0.083146 0.057512 0.401264 0.230094 0.003117 0.005336 0.004844 0.009398 0.010951 0.022145
Phi4 0.19064 0.104986 0.066258 0.063753 0.23061 0.225091 0.004181 0.015734 0.012447 0.01108 0.003271 0.026654
Qwen2.5-32b 0.25004 0.142512 0.091264 0.084393 0.31938 0.272657 0.010503 0.020774 0.012144 0.009716 0.004127 0.023387

MedQA

Llama2-7b 0.19817 0.188788 0.231296 0.243174 0.263178 0.213793 0.005909 0.006271 0.006057 0.01008 0.007157 0.008915
Llama3-8b 0.21067 0.190038 0.286932 0.194414 0.290058 0.146904 0.006035 0.006757 0.006424 0.006872 0.01166 0.007277
phi4 0.09127 0.09877 0.208792 0.132527 0.308812 0.087518 0.008327 0.018021 0.0156 0.008231 0.020912 0.016443
Qwen2.5-32b 0.09064 0.089393 0.194414 0.087518 0.234422 0.118149 0.006312 0.01598 0.011337 0.021417 0.014092 0.021119

RACE-m

Llama2-7b 0.09876 0.31881 0.17315 0.27630 0.14502 0.16065 0.04523 0.07009 0.01980 0.01965 0.00778 0.01433
Llama3-8b 0.10252 0.32068 0.12877 0.27005 0.21254 0.04500 0.00939 0.08513 0.00962 0.04675 0.025705 0.03261
phi4 0.06001 0.31756 0.11252 0.26817 0.150655 0.07501 0.01699 0.07599 0.03366 0.01936 0.016385 0.01542
Qwen2.5-32b 0.19378 0.32756 0.18253 0.27505 0.09689 0.1187 0.024623 0.10445 0.02922 0.05540 0.01300 0.02171

RACE-h

Llama2-7b 0.12565 0.36069 0.22441 0.40383 0.29568 0.30881 0.01702 0.06116 0.01635 0.01577 0.020679 0.01569
Llama3-8b 0.20316 0.37007 0.18816 0.42070 0.26192 0.05938 0.01754 0.06838 0.01672 0.02324 0.02597 0.02622
phi4 0.09751 0.36757 0.14627 0.38820 0.26880 0.15878 0.01928 0.06393 0.021709 0.02191 0.02294 0.02502
Qwen2.5-32b 0.11564 0.35069 0.21441 0.35569 0.28505 0.205666 0.01679 0.06562 0.01794 0.02833 0.015137 0.01438

Table 6: RCE and (calibrated) ECE for black-box methods, across different models and datasets

Dataset Model RCE Calibration ECE

P(true) CSL CSL-next SL SL(norm) TokenSAR P(true) CSL CSL-next SL SL(norm) TokenSAR

C-QA

Llama2-7b 0.084386 0.0506 0.041895 0.041267 0.038126 0.034997 0.0102 0.035637 0.041958 0.023881 0.04454 0.027278
Llama3-8b 0.040614 0.03563 0.068102 0.031902 0.057489 0.038742 0.01871 0.034739 0.050008 0.022294 0.04291 0.026352
Phi4 0.043731 0.04626 0.046892 0.043771 0.041858 0.03501 0.0583 0.034232 0.055943 0.019535 0.04302 0.030655
Qwen2.5-32b 0.058105 0.02999 0.044359 0.032513 0.044363 0.059406 0.0369 0.022175 0.046935 0.021905 0.03671 0.021438

QASC

Llama2-7b 0.077448 0.04685 0.078796 0.051258 0.043136 0.045007 0.01119 0.024505 0.037871 0.023245 0.0326 0.023127
Llama3-8b 0.030627 0.04811 0.117522 0.050664 0.08503 0.043753 0.00894 0.020665 0.038958 0.025687 0.03274 0.020785
Phi4 0.082518 0.04437 0.116905 0.066942 0.088115 0.049376 0.02122 0.021401 0.0415 0.028242 0.02548 0.033083
Qwen2.5-32b 0.11997 0.04878 0.062505 0.081237 0.073773 0.041861 0.03096 0.014358 0.040047 0.025111 0.02665 0.023483

MedQA

Llama2-7b 0.181911 0.19254 0.19879 0.191288 0.228796 0.238798 0.00606 0.015623 0.007533 0.00791 0.00669 0.007449
Llama3-8b 0.028131 0.08939 0.121274 0.207542 0.163158 0.178161 0.0166 0.012721 0.008949 0.03 0.00861 0.010613
phi4 0.05126 0.09127 0.115648 0.176285 0.119399 0.116273 0.02853 0.046391 0.05184 0.058272 0.05787 0.05535
Qwen2.5-32b 0.078141 0.06126 0.07314 0.128151 0.088143 0.075015 0.03067 0.020881 0.033491 0.047763 0.03295 0.032673

RACE-m

Llama2-7b 0.16253 0.26130 0.22254 0.13502 0.24317 0.24567 0.00741 0.01935 0.03113 0.01820 0.061396 0.062452
Llama3-8b 0.05938 0.18003 0.09814 0.12752 0.10252 0.12189 0.05006 0.05534 0.04303 0.04812 0.01986 0.02156
phi4 0.09689 0.15753 0.09314 0.09689 0.13127 0.13565 0.02585 0.04808 0.02775 0.032335 0.01727 0.01938
Qwen2.5-32b 0.16940 0.17566 0.17691 0.17691 0.24567 0.25255 0.00695 0.04720 0.05091 0.07564 0.07986 0.08066

RACE-h

Llama2-7b 0.17566 0.31818 0.32318 0.33256 0.31818 0.32256 0.01748 0.02600 0.01719 0.01613 0.021382 0.021339
Llama3-8b 0.05563 0.22316 0.12189 0.15565 0.163782 0.149404 0.045399 0.01684 0.031577 0.034098 0.030134 0.030341
phi4 0.08939 0.19566 0.150030 0.13315 0.19316 0.19566 0.019294 0.035576 0.02874 0.03037 0.02238 0.040637
Qwen2.5-32b 0.24754 0.22254 0.21754 0.21316 0.29505 0.30006 0.016826 0.02004 0.02105 0.022801 0.03156 0.04110

Table 7: RCE and (calibrated) ECE for white-box methods, across different models and datasets
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