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Abstract
Hyper-relational knowledge graphs (HKGs) en-
rich knowledge graphs by extending a triplet to
a hyper-relational fact, where a set of qualifiers
adds auxiliary information to a triplet. While
many HKG representation learning methods have
been proposed, they often fail to effectively utilize
the HKG’s structure. This paper demonstrates that
thoroughly leveraging the structure of an HKG
is crucial for reasoning on HKGs, and a purely
structure-based representation learning method
can achieve state-of-the-art performance on var-
ious link prediction tasks. We propose MAYPL,
which learns to initialize representation vectors
based on the structure of an HKG and employs
an attentive neural message passing consisting of
fact-level message computation and entity-centric
and relation-centric aggregations, thereby comput-
ing the representations based solely on the struc-
ture. Due to its structure-driven learning, MAYPL
can conduct inductive inferences on new entities
and relations. MAYPL outperforms 40 knowledge
graph completion methods in 10 datasets, com-
pared with different baseline methods on different
datasets to be tested from diverse perspectives.

1. Introduction
Knowledge graphs (KGs) provide a structured representa-
tion of human knowledge, which eases organizing the re-
lationships between concepts or objects (Ji et al., 2022).
In KGs, information is represented in the form of a
triplet (Toutanova & Chen, 2015; Bordes et al., 2013), e.g.,
(Finding Nemo, set in, Sydney). Since the sim-
ple triplet form oversimplifies information, hyper-relational
knowledge graphs (HKGs) have been recently proposed to
add auxiliary details by adding qualifiers to a triplet (Rosso
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et al., 2020), where a qualifier consists of a relation and
an entity, e.g., (country, Australia). In HKGs, each
piece of information is represented as a hyper-relational
fact defined as a triplet and its qualifiers, e.g.,

`

(Finding
Nemo, set in, Sydney),{(country, Australia),
(state, New South Wales)}

˘

.

Reasoning and inferring new knowledge on HKGs neces-
sitates understanding and exploiting intricate relationships
among entities and relations. However, most existing stud-
ies on HKGs do not sufficiently utilize the graph structure
of HKGs. For example, transformer-based methods (Wang
et al., 2021; Yu & Yang, 2021; Chung et al., 2023) process
each hyper-relational fact (referred to as a ‘fact’ for brevity)
individually, failing to capture the interconnectedness be-
tween different facts. Some other recent methods (Hu et al.,
2023) use simple one-hop neighbourhood information to
learn representations on HKGs. While StarE (Galkin et al.,
2020) proposes a graph neural network (GNN) layer for
encoding a fact, it turns out that the proposed GNN encod-
ing is redundant and does not critically affect the overall
performance (Yu & Yang, 2021). Recently, HAHE (Luo
et al., 2023) introduces another GNN-based encoding, but
it does not consider relations and the positions of entities
within each fact. Like this, existing HKG methods incor-
porate only limited structural information and fail to utilize
the structures of HKGs effectively.

In this paper, we demonstrate that thoroughly leveraging
an HKG’s structure is crucial for successful reasoning on
HKGs, and a purely structure-based representation learn-
ing can achieve state-of-the-art performance on a range of
transductive and inductive link prediction tasks. We propose
a structure-driven representation learning method, named
MAYPL (Message pAssing framework for hYper-relational
knowledge graph rePresentation Learning), that learns to ini-
tialize the representations of entities and relations based on
their interconnections, co-occurrence, and positions within a
fact. By compressing the information of which entities and
relations are included and how they are connected within
each fact, MAYPL computes fact-level messages, which are
attentively aggregated to entities and relations. Along with
the fact-level structure, the component-level connectivity
is also considered in MAYPL’s attentive neural message
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Table 1: Comparison of MAYPL and existing methods.

Know. Rep. Ind. Inf.

KG KHG NRR HKG ent. rel.

InGram (Lee et al., 2023b) ✓ ✓ ✓
RMPI (Geng et al., 2023) ✓ ✓ ✓
G-MPNN (Yadati, 2020) ✓ △

HCNet (Huang et al., 2024) ✓ ✓
NaLP (Guan et al., 2019) ✓
RAM (Liu et al., 2021b) ✓

StarE (Galkin et al., 2020) ✓
HAHE (Luo et al., 2023) ✓

HyNT (Chung et al., 2023) ✓
QBLP (Ali et al., 2021) ✓ ✓

MAYPL ✓ ✓ ✓
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Figure 1: HKGs cannot be transformed into NRRs or KHGs
without losing information. Details are in Section 2.

passing mechanism. From initialization to link prediction,
MAYPL utilizes only the structure of a given HKG. Since
MAYPL learns how to compute, propagate, and aggregate
messages over a given HKG’s structure, MAYPL can also
handle a new HKG that is different from a training HKG.

While real-world knowledge bases, such as Wiki-
data (Vrandečić & Krötzsch, 2014) and YAGO (Suchanek
et al., 2007), take the form of HKGs, and many recently pro-
posed methods directly handle HKGs (Galkin et al., 2020;
Chung et al., 2023; Luo et al., 2023), some transform the
original HKGs into knowledge hypergraphs (KHGs) (Ya-
dati, 2020) or n-ary relational representations (NRRs) (Guan
et al., 2019; Liu et al., 2021b), putting up with losing some
information provided in the original HKGs. Table 1 com-
pares MAYPL and other existing methods in terms of (i)
the form of knowledge representations (Know. Rep.) and
(ii) the capability of inductive inference (Ind. Inf.). For the
inductive inference, we consider whether a method can han-
dle new entities (ent.) and new relations (rel.). We provide
the details of the compared methods in Section 2 and a com-
plete comparison including more methods in Appendix A.
MAYPL is the only HKG-handling method that can conduct
inductive inference with new entities and relations. Since
MAYPL learns how to compute the representations using an
HKG’s structure, what it learned can be seamlessly applied
to a new HKG. Our main findings and contributions are:

• Employing an HKG’s structure is crucial for HKG
reasoning, and purely structure-based learning can suc-
cessfully solve various link prediction problems.

• MAYPL is the first structure-oriented representation
learning method for HKGs that can be applied in both
transductive and inductive learning settings.

• By learning how to compute representations based
solely on the structure of a given HKG, MAYPL can
make inductive inferences where new entities and rela-
tions appear at inference time.

• MAYPL outperforms 40 different methods on 10
benchmark datasets, where each benchmark is intro-
duced to test a different perspective of a method.1

2. Related Work
N-ary Relational Representations and Knowledge Hy-
pergraphs NRRs (Guan et al., 2019; Liu et al., 2021b) and
KHGs (Fatemi et al., 2020; Abboud et al., 2020) have been
studied to add supplementary information to KGs. While
each fact is represented using a primary triplet and a set of
qualifiers in HKGs, NRRs (Wen et al., 2016) express each
fact using a set of role-value pairs. On the other hand, in
KHGs, each fact is converted into a tuple in the form of
r(v1,¨ ¨ ¨ ,vk), where the order of entities matters. Figure 1
shows the conversions from an HKG to an NRR or a KHG.
In the original HKG shown in Figure 1(a), v3 and v5 are both
incident to r2 due to the facts

`

(v1,r1,v2),{(r2,v3),(r3,v4)}
˘

and
`

(v1,r2,v5), {(r2, v3)}
˘

. However, on the NRR, shown
in Figure 1(b), (v1,r2,v5) is decomposed into (r2 head,v1)
and (r2 tail,v5), and thus, v5 is now incident to a different re-
lation from v3. Alternatively, one can decompose the triplet
into (r2 head,v1) and (r2,v5), in which case, one cannot iden-
tify the tail entity of r2 since (r2,v3) also exists. In the KHG,
shown in Figure 1(c), much information is also lost, e.g.,
the information that v3 is incident to r2 as a qualifier in
both facts is lost. Therefore, an HKG cannot be transformed
into an NRR or a KHG without losing information, which
indicates that it is desirable to handle HKGs directly instead
of converting them into other forms.

NaLP (Guan et al., 2019) and RAM (Liu et al., 2021b)
have been proposed for NRRs, considering the relatedness
between the pairs (Guan et al., 2023; 2019) or the role-aware
modeling (Liu et al., 2021b). For KHGs, G-MPNN (Yadati,

1Our codes are available at https://github.com/
bdi-lab/MAYPL/.
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2020) and HCNet (Huang et al., 2024) have been proposed,
which can partially solve inductive link prediction. While G-
MPNN can handle new entities only one-hop distant from
observed entities, HCNet can handle the case where all
entities are new at inference time. Both G-MPNN and
HCNet cannot handle new relations because they assume
that all relations are observed during training time and learn
representations specific to the observed relations.

Representation Learning on HKGs Many recently pro-
posed HKG methods utilize transformers (Wang et al., 2021;
Yu & Yang, 2021; Chung et al., 2023; Galkin et al., 2020),
including StarE (Galkin et al., 2020) and HyNT (Chung
et al., 2023). While some methods rarely take into account
the graph structure of HKGs and focus on processing facts
individually (Rosso et al., 2020; Guan et al., 2020; Yan et al.,
2022; Xiong et al., 2023), others consider direct neighbors
of entities (Hu et al., 2023) or a GNN-based encoding (Luo
et al., 2023). For example, HAHE (Luo et al., 2023) updates
entity representations using a GNN layer, though it ignores
the information about relations and the positions of compo-
nents. All these methods rely on learning representations
of fixed entities and relations, which limits handling new
entities or relations at inference time. Unlike these, MAYPL
utilizes the fact-level, entity-level and relation-level connec-
tivity structures along with their compositional and posi-
tional information, which enables inductive link prediction
on an entirely new HKG with all new entities and relations.

Inductive KG Completion Inductive KG completion
methods have been proposed to predict missing links in
a new KG different from a training KG (Teru et al., 2020;
Lee et al., 2023b; Geng et al., 2023). While most existing
inductive KG methods assume that only entities are new
and the relations are identical to the training set (Teru et al.,
2020; Zhu et al., 2021), a few recent methods, such as In-
Gram (Lee et al., 2023b) and RMPI (Geng et al., 2023),
allow both entities and relations to differ from the training
set, though they cannot handle HKGs. While QBLP (Ali
et al., 2021) assumes new entities but not new relations in
HKGs, it requires external text features of entities, and its
inductive capability comes from these external features. In
contrast, MAYPL can make inductive inferences on new
entities and relations in HKGs without any extra features.

3. Problem Definitions
Definition 3.1 (Hyper-relational Knowledge Graph). A
hyper-relational knowledge graph is defined as G “

pV,R,Hq where V is a set of entities, R is a set of rela-
tions, and H is a set of hyper-relational facts. A hyper-
relational fact h P H is defined as h P T ˆ PpQq where
T Ď V ˆ R ˆ V is a set of triplets, Q Ď R ˆ V is a set of
qualifiers, and PpQq is the power set of Q.

In a hyper-relational fact
`

pv1, r1, v2q, tpr2, v3qu
˘

, where
pv1, r1, v2q is a primary triplet and pr2, v3q is a qualifier, we
indicate the position of each entity as follows: v1 is a head
entity, v2 is a tail entity, and v3 is a qualifier entity. Similarly,
the position of a relation is specified as follows: r1 is a
primary relation and r2 is a qualifier relation. Transductive
link prediction on HKGs are described in Definition 3.2.

Definition 3.2 (Transductive Link Prediction on HKGs).
Given an HKG, G “ pV,R,Hq, H is decomposed into
three pairwise disjoint sets, such as H “ Htr ∪Hval ∪Htst,
where Htr is a training set, Hval is a validation set, and Htst
is a test set. A transductive link prediction on an HKG is to
predict a missing entity in a hyper-relational fact h P Htst.

On the other hand, in inductive link prediction, a model
is trained on a training HKG and makes predictions on an
inference HKG, as detailed in Definition 3.3.

Definition 3.3 (Inductive Link Prediction on HKGs). Con-
sider a training HKG, G “ pV,R,Hq and an inference
HKG, Ǵ “ pV́, Ŕ, H́q, where V ‰ V́ or R ‰ Ŕ. Note that
H is a training set, and H́ is decomposed into three pairwise
disjoint sets, such as H́ “ H́fct ∪ H́val ∪ H́tst, where H́fct
is a set of observed facts, H́val is a validation set, and H́tst
is a test set. An inductive link prediction on an HKG is to
predict a missing entity in h P H́tst using H́fct.

4. Structural Representation Learning on
Hyper-Relational Knowledge Graphs

Figure 2 shows an overview of MAYPL consisting of a
structure-driven initializer, attentive neural message passing,
and link prediction. While the structure-driven initializer
computes the initial representations of entities and relations
based on their interconnected structure, the attentive neural
message passing module encodes fact-level messages using
the entity and relation representations based on the facts’
composition information, which are attentively aggregated
to entities and relations considering their positions. MAYPL
predicts a missing query entity in an incomplete fact by
selecting the entity with the highest similarity to the query.

4.1. Structure-driven Initializer of MAYPL

A simple message-passing-based initializer, referred to as a
structure-driven initializer, is proposed, which exploits the
interconnections, co-occurrence, and positions of entities
and relations. In the initializer, the representation of an en-
tity v is computed by considering the entities that co-occur
with v in the same facts and the relations incident to v. Sim-
ilarly, the representation of a relation r is computed based
on the relations that co-occur with r in the same facts and
the entities incident to r. In these processes, the positions
of entities and relations within the facts and the positions
of entities for their incident relations are considered. The
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Figure 2: MAYPL consists of a structure-driven initializer, an attentive neural message passing, and link prediction. The
structure-driven initializer initializes the entity and relation representations by exchanging messages among co-occurring
entities and relations within the same facts and considering their positions. In attentive neural message passing, a fact’s
message is computed based on its entities and relations, and the entity and relation representations are updated by attentively
aggregating the facts’ messages to which they belong. Link prediction is performed using the dot product similarity.

initializer outputs the initial representations of entities de-
noted by vp0q P Rd0 for v P V and of relations denoted
by rp0q P Rd0 for r P R, where d0 is the dimension of the
initial representation.

Let the superscript prlq of a vector or a matrix indicate the
rl-th layer, where rl “ 1, ¨ ¨ ¨ , rL and rL is the total num-
ber of layers in the initializer. We set learnable vectors
vinit, rinit P Rd0 that are shared across all entities and re-
lations, respectively. Let rvprlq P Rd0 denote an entity rep-
resentation vector of v in the initializer, and rvp0q “ vinit.
Similarly, let rrprlq P Rd0 denote a relation representation
vector of r in the initializer, and rrp0q “ rinit. To indicate the
position of an entity or a relation in a fact h, we define a
position-indicator function λhpzq that returns the position
of z in h. If z is an entity, λhpzq returns a head entity, tail
entity, or qualifier entity. If z is a relation, λhpzq returns
a primary relation or qualifier relation. Similarly, τrpvq is
defined to return the position of an entity v for a relation r:
a head entity, tail entity, or qualifier entity.2

In the initializer, an entity v’s representation is computed by
aggregating the messages of the entities that co-occur with
v in facts and the relations that are incident to v:

rvprlq
“ AGGRprlq

ent

´

truprl´1q
|u P Vvu, trrprl´1q

|r P Rvu

¯

where Vv is the set of entities that co-occur with v in facts
2While we assume that z is unique in h in λhpzq for brevity,

our implementation correctly returns the position of z even if z is
not unique; the same also applies to τrpvq. Refer to our codes.

and Rv is the set of relations incident to v. The message

aggregation function for entities, AGGRprlq
ent, is defined by

AGGRprlq
ent “

1
ř

uPVv

|Hu∩Hv|

ÿ

uPVv

ÿ

hPHu∩Hv

rU
prlq

λhpvq
ĂW

prlq

λhpuq ruprl´1q

`
1

|Rv|

ÿ

rPRv

rA
prlq

τrpvqrr
prl´1q

where Hv is the set of facts that an entity v belongs to,

rU
prlq

λhpvq,
ĂW

prlq

λhpuq P Rd0ˆd0 are learnable matrices that are
learned depending on the positions of the entities v and u

in h, respectively, and rA
prlq

τrpvq is a learnable matrix that is
learned depending on the position of v with respect to r.

Similarly, a relation r’s representation is computed by ag-
gregating the messages of relations that co-occur with r in
facts and the entities that are incident to r:

rrprlq
“ AGGRprlq

rel

´

tryprl´1q
|y P Rru, trvprl´1q

|v P Vru

¯

where Rr is the set of relations that co-occur with r in
facts and Vr is the set of entities that are incident to r. The
message aggregation function for relations, AGGRprlq

rel, is

AGGRprlq
rel “

1
ř

yPRr

|Hy∩Hr|

ÿ

yPRr

ÿ

hPHy∩Hr

pU
prlq

λhprq
xW

prlq

λhpyqryprl´1q

`
1

|Vr|

ÿ

vPVr

pA
prlq

τrpvqrvprl´1q

where Hr is the set of facts that a relation r belongs to,

pU
prlq

λhprq,
xW

prlq

λhpyq P Rd0ˆd0 are learnable matrices that are
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learned depending on the positions of the relations r and y

in h, respectively, and pA
prlq

τrpvq is a learnable matrix that is
learned depending on the position of v with respect to r.

Motivation and Principles Our structure-driven initial-
izer is designed to compute the initial representations of
entities and relations purely using the structure of an HKG,
contributing to MAYPL’s inductive inference capability.
From a single learnable vector vinit shared across all entities

at the beginning, rvprlq is updated for v P V using AGGRprlq
ent;

what is learned during this process is how to aggregate mes-
sages from the co-occurred entities and incident relations of
each entity. By introducing different learnable projection
matrices for different positions of entities and relations, the
position information is also considered in this aggregation.

Similarly, for relations, AGGRprlq
rel learns to aggregate mes-

sages from the co-occurred relations and incident entities

of each relation. Both AGGRprlq
ent and AGGRprlq

rel can be di-
rectly applied to a new HKG that is different from a training

HKG since AGGRprlq
ent and AGGRprlq

rel have learned how to
aggregate messages on an HKG using its structure. After
rL layers, rvp rLq is computed for v P V and rrp rLq is computed
for r P R, which are fed into the following attentive neural
message passing module.

4.2. Attentive Neural Message Passing

After initializing the representations of entities and rela-
tions, MAYPL updates the entity and relation representa-
tions by message computation and aggregation. Specifically,
MAYPL considers (i) which entities and relations comprise
a fact when computing a fact’s message, (ii) which facts an
entity belongs to when updating an entity representation,
and (iii) which facts a relation belongs to when updating a
relation representation. In this process, not only these com-
position and connectivity information but also the positions
of the entities and relations within each fact are considered.
Let vplq P Rdl denote an entity representation of v, where
dl is the dimension at the l-th layer, l “ 1, ¨ ¨ ¨ , L, and L is
the total number of layers. Let rplq P Rdl denote a relation
representation of r. Note that vp0q “ rvp rLq and rp0q “ rrp rLq.

COMPUTING FACTS’ MESSAGES

Given a fact h P H, let us decompose it as a set of its
relation-entity pairs. For example,

`

pv1, r1, v2q, tpr2, v3qu
˘

is decomposed by tpr1, v1q, pr1, v2q, pr2, v3qu. Let p “

pr, vq P pR ˆ Vqh denote a pair of a relation r and an entity
v in h, where v is incident to r and pR ˆ Vqh is the set
of relation-entity pairs for h. Then, a message pplq of p is
computed by

pplq “ P
plq
λhpvq

´´

W
plq
λhpvq

vpl´1q
¯

d

´

U
plq
λhpvq

rpl´1q
¯¯

where P
plq
λhpvq

P Rdlˆdl , W plq
λhpvq

,U
plq
λhpvq

P Rdlˆdl´1 are
learnable projection matrices which are learned depending
on the position of v in h, and d is the Hadamard product.
By considering pplq for @p P pR ˆ Vqh, a message of h is
computed as follows:

hplq “
1

|pR ˆ Vqh|

ÿ

pPpRˆVqh

pplq (1)

which implies that a message of h is computed by the
position-aware aggregation of its relation-entity pairs.

UPDATE OF ENTITY REPRESENTATIONS

For an entity v P V , let us consider a pair of its incident
relation and the corresponding fact. Let q “ pr, hqv P

pR ˆ Hqv denote a pair of a relation r and a fact h where v
is incident to r in h and pR ˆ Hqv is the set of relation-fact
pairs for v. A message qplq of q is computed by

qplq “ Q
plq
λhpvq

´

hplq d

´

A
plq
λhpvq

rpl´1q
¯¯

(2)

where Q
plq
λhpvq

P Rdlˆdl ,A
plq
λhpvq

P Rdlˆdl´1 are learnable
matrices learned depending on the position of v in h. Note
that qplq is a message for v, which reflects the represen-
tations of its incident relation and the corresponding fact.
Finally, an entity representation vplq of v is computed by an
attentive aggregation of qplq for @q P pR ˆ Hqv as follows:

vplq “
ÿ

qPpRˆHqv

αplq
q,vB

plqqplq, (3)

αplq
q,v “

exp
´

aplq ¨ σ
´

Qplqvpl´1q ` Kplqqplq
¯¯

ř

kPpRˆHqv

exp
´

aplq ¨ σ
´

Qplqvpl´1q ` Kplqkplq
¯¯

where Qplq
P Rdlˆdl´1 ,Kplq,Bplq

P Rdlˆdl are learnable
projection matrices, aplq P Rdl is a learnable vector, and
σp¨q is an activation function. Note that αplq

q,v is the relative
importance of q to v among all relation-fact pairs of v.

UPDATE OF RELATION REPRESENTATIONS

Similarly, for a relation r P R, we consider a pair of its
incident entity and the corresponding fact. Let sq “ pv, hqr P

pV ˆ Hqr denote a pair of an entity v and a fact h where r
is incident to v in h and pV ˆ Hqr is the set of entity-fact
pairs for r. Then, a message sqplq of sq is computed by

sqplq “ sQ
plq
λhprq

´

hplq d

´

sA
plq
λhpvqv

pl´1q
¯¯

(4)

where sQ
plq
λhprq P Rdlˆdl is a learnable matrix learned de-

pending on the position of r in h, and sA
plq
λhpvq P Rdlˆdl´1

is a learnable matrix learned depending on the position of
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v in h. Note that sqplq is a message for r, which reflects the
representations of its incident entity and the corresponding
fact. Finally, a relation representation rplq of r is computed
by an attentive aggregation of sqplq for @sq P pV ˆ Hqr:

rplq “
ÿ

sqPpVˆHqr

sα
plq
sq,r

sB
plq

sqplq, (5)

sα
plq
sq,r “

exp
´

saplq ¨ σ
´

sQ
plq
rpl´1q ` ĎK

plq
sqplq

¯¯

ř

skPpVˆHqr

exp
´

saplq ¨ σ
´

sQ
plq
rpl´1q ` ĎK

plq
skplq

¯¯

where sQ
plq

P Rdlˆdl´1 , ĎK
plq
, sB

plq
P Rdlˆdl are learnable

projection matrices, saplq P Rdl is a learnable vector, and
σp¨q is an activation function. Note that sα

plq
sq,r is the relative

importance of sq to r among all entity-fact pairs of r.

Summary When encoding a fact in Eq.(1), each fact is
decomposed into a set of relation-entity pairs that comprise
the fact, and the fact’s message is computed by aggregat-
ing the pairs’ representations. Each entity’s representation
is updated by attentively aggregating the facts’ messages
to which the entity belongs and the representations of the
corresponding relations, shown in Eq.(2) and Eq.(3). Each
relation’s representation is updated by attentively aggregat-
ing the facts’ messages to which the relation belongs and
the representations of the corresponding entities, shown in
Eq.(4) and Eq.(5). In all these computations and updates,
the positions of entities and relations are considered.

4.3. Link Prediction on HKGs

For link prediction during training, an incomplete fact is
made by dropping an entity from a complete fact in a train-
ing set. For an incomplete fact h, let x denote the missing en-
tity, also called a query entity, and assume that x is incident
to relation r. The initial representation of x is computed by
the structure-driven initializer: starting from rxp0q “ vinit, it

is updated by rxprlq “AGGRprlq
entptrvprl´1q|v P Vxu, trrprl´1quq,

where rl “ 1, ¨ ¨ ¨ , rL and Vx is the set of entities that co-
occur with x in h. Then, given xp0q “ rxp rLq, the attentive
neural message passing is applied by computing the mes-
sage of h by hplq “ 1

|pRˆVqh|

ř

pPpRˆVqh
pplq, followed

by xplq “Bplq
´

Q
plq
λhpxq

´

hplq d

´

A
plq
λhpxq

rpl´1q

¯¯¯

, where
l “ 1, ¨ ¨ ¨ , L and all the model parameters are explained
in Section 4.2. By computing the dot product similarity be-
tween xpLq and each entity representation, MAYPL predicts
the missing entity as the entity with the highest similarity;
the cross-entropy is used for the training loss.

The process of link prediction at inference time is identical
to what is described above, except each incomplete fact is
made from a test set instead of a training set. In inductive
link prediction, an inference HKG, Ǵ, differs from a train-

ing HKG, G (Definition 3.3). At inference time, MAYPL
utilizes the fact set H́fct of Ǵ to initialize the representations
of entities and relations (Section 4.1), update them (Sec-
tion 4.2), and perform link prediction (Section 4.3). Note
that all the model parameters needed in this process are
learned during training; the learned parameters can be di-
rectly applied to the inference HKG that can be different
from a training HKG because, from initialization to link
prediction, what MAYPL learns is how to compute and ag-
gregate messages purely based on the structure of an HKG.

5. Experiments
We use diverse baseline methods presented in Appendix A
and different benchmark datasets detailed in Appendix B.
All results of baselines are obtained from the baselines’
original papers or from the papers that introduced the
datasets (Galkin et al., 2020; Guan et al., 2019; Ali et al.,
2021; Yadati, 2020; Lee et al., 2023b). In Appendix C, we
present which methods are run on which datasets and which
results are obtained from which papers. In all tables of ex-
perimental results, ‘-’ indicates that no result is available for
a model on a benchmark from either the model’s original
paper or the benchmark’s paper; the best result is boldfaced,
the second-best result is underlined, and the third-best result
is italic. The implementation and experimental details of
MAYPL are described in Appendix D. We measure link
prediction performance using three standard metrics: Mean
Reciprocal Rank (MRR), Hit10, and Hit1.

5.1. Transductive Link Prediction on HKGs

Table 2 shows the transductive link prediction results
on HKGs using WD50K (Galkin et al., 2020) and
WikiPeople´ (Wang et al., 2021) datasets, where all meth-
ods are trained using the training set and evaluated on the
validation set for hyperparameter tuning and then trained
again using the union of the training and validation sets with
the selected hyperparameters and tested to predict missing
entities on the facts in the test set. Note that this is the
standard evaluation protocol for these datasets (Galkin et al.,
2020; Wang et al., 2021), and we also follow this protocol.
Models predict entities in the primary triplets (Tri) or all
entities in facts (All). Also, Table 3 shows the results on
WikiPeople (Guan et al., 2019), where the models predict
all entities. Overall, MAYPL outperforms the baselines on
these transductive link prediction tasks.

5.2. Inductive Link Prediction on KGs

Table 4 shows inductive link prediction results on KGs us-
ing NL-50, WK-50, and FB-50 datasets, where all entities
are new, and half of the triplets include new relations at an
inference KG (Lee et al., 2023b). We observe that MAYPL
outperforms the baseline methods with a considerable gap
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Table 2: Transductive link prediction on WD50K and WikiPeople´. Mod-
els predict entities in the primary triplets (Tri) or all entities in facts (All).

WD50K WikiPeople´

MRR Hit10 Hit1 MRR Hit10 Hit1

Tri

NaLP 0.177 0.264 0.131 - - -
HINGE 0.243 0.377 0.176 - - -
StarE 0.349 0.496 0.271 0.491 0.648 0.398

GRAN - - - 0.503 0.620 0.438
Hy-Transformer 0.356 0.498 0.281 0.501 0.634 0.426

HyperFormer 0.366 0.514 0.288 0.473 0.646 0.361
HAHE 0.368 0.516 0.291 0.509 0.639 0.447

ShrinkE 0.345 0.482 0.275 0.485 0.601 0.431
HyNT 0.357 0.501 0.281 - - -

MAYPL 0.381 0.544 0.297 0.519 0.657 0.444

All

HAHE 0.402 0.546 0.327 0.495 0.631 0.420
HyNT 0.383 0.527 0.308 - - -

MAYPL 0.411 0.572 0.326 0.521 0.659 0.446

Table 3: Transductive link prediction on all
entities in facts in WikiPeople.

WikiPeople

MRR Hit10 Hit1

RAE 0.172 0.320 0.102
NaLP 0.338 0.466 0.272
HypE 0.282 0.487 0.148

NeuInfer 0.350 0.467 0.282
RAM 0.380 0.539 0.279
S2S 0.372 0.533 0.277

PolygonE 0.431 0.568 0.334
HyConvE 0.362 0.501 0.275
MSeaKG 0.392 0.553 0.290

tNaLP 0.350 0.471 0.288
HCNet 0.421 0.565 0.344

HyCubE 0.448 0.592 0.368
HJE 0.450 0.582 0.375

MAYPL 0.488 0.635 0.405

Table 4: Inductive link prediction performance on KGs using NL-50, WK-50, and FB-50 datasets.

NL-50 WK-50 FB-50

MRR Hit10 Hit1 MRR Hit10 Hit1 MRR Hit10 Hit1

GraIL (Teru et al., 2020) 0.162 0.288 0.104 - - - - - -
CoMPILE (Mai et al., 2021) 0.194 0.330 0.125 - - - - - -

SNRI (Xu et al., 2022) 0.130 0.187 0.095 - - - - - -
INDIGO (Liu et al., 2021a) 0.167 0.217 0.134 - - - - - -
RMPI (Geng et al., 2023) 0.185 0.307 0.109 - - - - - -

CompGCN (Vashishth et al., 2020) 0.003 0.005 0.000 0.003 0.002 0.001 0.004 0.006 0.002
NodePiece (Galkin et al., 2022) 0.037 0.079 0.013 0.008 0.013 0.002 0.021 0.048 0.006

NeuralLP (Yang et al., 2017) 0.101 0.190 0.064 0.025 0.054 0.007 0.088 0.184 0.043
DRUM (Sadeghian et al., 2019) 0.107 0.193 0.070 0.017 0.046 0.002 0.101 0.191 0.061

BLP (Daza et al., 2021) 0.041 0.093 0.011 0.041 0.092 0.013 0.078 0.156 0.037
QBLP (Ali et al., 2021) 0.048 0.097 0.020 0.035 0.080 0.011 0.071 0.147 0.030

NBFNet (Zhu et al., 2021) 0.225 0.346 0.161 0.062 0.105 0.036 0.130 0.259 0.071
RED-GNN (Zhang & Yao, 2022) 0.179 0.280 0.115 0.058 0.093 0.033 0.129 0.251 0.072

InGram (Lee et al., 2023b) 0.281 0.453 0.193 0.068 0.135 0.034 0.117 0.218 0.067
HyRel (Yang et al., 2024) 0.321 0.520 0.222 0.068 0.138 0.036 0.178 0.333 0.101

InKGE-EIPR (Mu et al., 2024) 0.315 0.529 0.217 0.076 0.164 0.038 0.204 0.376 0.123

MAYPL 0.343 0.508 0.262 0.109 0.230 0.054 0.205 0.361 0.129

on NL-50 and WK-50 and is comparable to the best baseline
in FB-50. The full results on all 12 datasets from (Lee et al.,
2023b) are reported in Table 18 in Appendix E. The re-
sults show that MAYPL’s structure-oriented representation
learning is effective in handling new entities and relations.

5.3. Inductive Link Prediction on HKGs

Table 5 shows inductive link prediction results on
HKGs using WD20K(100)v1 (Ali et al., 2021) and
WD20K(100)v2 (Ali et al., 2021) datasets, where models
predict entities in the primary triplets. Also, Table 6 shows
the results on WP-IND (Yadati, 2020) and MFB-IND (Ya-
dati, 2020), where models predict all entities in facts; the
baselines’ performances are reported using Hit3 instead of

Hit10 in (Yadati, 2020), and thus, MAYPL’s performance
is also measured using Hit3. MAYPL significantly outper-
forms all methods in all metrics on these datasets, showing
MAYPL’s remarkable inductive capability on HKGs.

5.4. Ablation Studies and Qualitative Analysis

Table 7 shows ablation studies of MAYPL on WikiPeople´

(WP´), WK-50, and WD20K(100)v2 (WDv2), where
MRRs are reported. We consider the following variations:
(i) introduce learnable vectors for individual entities and
relations instead of using the structure-driven initializer in
Section 4.1, (ii) remove the attentive neural message pass-
ing in Section 4.2, (iii) let all facts equally contribute to the
update of entities and relations without considering their
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Table 5: Inductive link prediction performance on the primary
triplets in WD20K(100)v1 and WD20K(100)v2.

WD20K(100)v1 WD20K(100)v2

MRR Hit10 Hit1 MRR Hit10 Hit1

BLP 0.057 0.123 0.019 0.040 0.092 0.015
CompGCN 0.104 0.184 0.058 0.026 0.053 0.007

StarE 0.113 0.213 0.062 0.051 0.129 0.014
QBLP (w/o qual.) 0.055 0.126 0.015 0.049 0.097 0.026
QBLP (w/ qual.) 0.107 0.245 0.040 0.067 0.120 0.035

MAYPL 0.486 0.662 0.396 0.298 0.518 0.195

Table 6: Inductive link prediction performance on all entities
of facts in WP-IND and MFB-IND.

WP-IND MFB-IND

MRR Hit3 Hit1 MRR Hit3 Hit1

HGNN 0.072 0.112 0.045 0.121 0.114 0.076
HyperGCN 0.075 0.111 0.049 0.118 0.117 0.074

G-MPNN-sum 0.177 0.191 0.108 0.124 0.123 0.071
G-MPNN-max 0.200 0.214 0.125 0.268 0.283 0.191

HCNet 0.414 0.451 0.352 0.368 0.417 0.223

MAYPL 0.468 0.529 0.363 0.550 0.582 0.469

Table 7: Ablation Studies of MAYPL. MRRs are reported.

WP´ WK-50 WDv2

(i) Learn vp0q, rp0q 0.388 0.061 0.112
(ii) l “ 0 0.109 0.029 0.144
(iii) aplq

“ saplq
“ 0 0.504 0.086 0.210

(iv) rplq
“ sA

plq
rpl´1q 0.519 0.062 0.248

(v) Rep. Hadamard Prod. w/ Concat. 0.518 0.090 0.265
(vi) Diff. Para. for x and v 0.520 0.081 0.179

MAYPL 0.521 0.109 0.298

Table 8: Top 3 similar entities/relations to a target in WP´

based on the initial representations returned by the structure-
driven initializer and the final representations of MAYPL.

Target Initializer Final Rep.

Vancouver
1 Venice Toronto
2 Budapest Victoria
3 Gothenburg Ottawa

computer
scientist

1 psychologist mathematician

2 professeur des
universités

programmer

3 inventor AI researcher

family
1 death type sibling
2 citizen of family name
3 ethnic group father

relative importance in Section 4.2, (iv) compute relation
representations by a simple projection instead of the relation
aggregation in Section 4.2, (v) replace the Hadamard prod-
ucts in computing messages of facts, entities, and relations
with concatenation in Section 4.2 and Section 4.3, (vi) use
different parameters to compute the query representation
and the other entity representations in Section 4.3. While
varying some modules more critically affects performance
in inductive settings (WK-50 and WDv2) than the transduc-
tive setting (WP´), the variations degrade the performance,
validating each module’s contribution in MAYPL.3

3More detailed explanations about these ablation studies are
available in Appendix F. Also, Appendix G provides additional
case studies about MAYPL.

Table 8 shows the top 3 most similar entities or relations
to a target in WP´, where it shows similar entities for en-
tities, i.e., Vancouver or computer scientist, and
similar relations for a relation, i.e., family. Given a target,
the top similar entities/relations are selected by computing
the dot-products between the target and entities/relations
using the initial representations returned by the structure-
driven initializer (Initializer) or the final representations (Fi-
nal Rep.) of MAYPL. While the initializer enables roughly
selecting entities/relations of a similar type or conceptually
relevant ones to the target, the ones chosen by the final repre-
sentations become more relevant and semantically closer to
the target. This shows that our initializer computes reason-
able initial representations, which are effectively refined by
the following attentive neural message passing in MAYPL.

6. Conclusion and Discussion
MAYPL learns representations based on how facts, entities,
and relations are connected, positioned, and organized in
HKGs. Due to its structure-driven learning, MAYPL can
effectively compute representations on a new HKG consist-
ing of new entities and relations unobserved during training
time. Experimental results show that MAYPL outperforms
40 different baseline methods on 10 benchmark datasets in
varied settings, i.e., transductive link prediction on HKGs,
inductive link prediction on KGs, and inductive link predic-
tion on HKGs. MAYPL’s success implies that thoroughly
learning and exploiting the structure of an HKG is necessary
and sufficient for learning representations on HKGs.

Limitations and Future Work Within MAYPL, the pro-
cedure of message computation and aggregation requires
enough computing resources as described in Appendix D.
We plan to further optimize our implementations and apply
cost-effective attention computation, e.g., replace Bahdanau-
style attention (Bahdanau et al., 2015) with Luong-style
attention (Luong et al., 2015), for increasing MAYPL’s scal-
ability. In Table 9, we compare MAYPL and other methods
on WikiPeople´ regarding the training time, the number
of parameters, and MRR, where we present all baselines
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Table 9: The training time, the number of parameters, and
MRR of MAYPL and other methods on WikiPeople´.

Training Time # parameters MRR

StarE 4 days 8.2M 0.491
GRAN 10h ą8.9M 0.503

Hy-Transformer 5h 7.8M 0.501
HyperFormer N/A 67.0M 0.473

HAHE 12h 30.2M 0.509

MAYPL 20h 10.5M 0.519

whose training times and parameter sizes are available. We
believe MAYPL can be applied to question answering (QA)
tasks (Chen et al., 2021), serving as an additional source of
knowledge for pretrained language models. The theoreti-
cal analysis of MAYPL (Lee et al., 2024) and its extension
to various forms of knowledge graphs (Lee et al., 2023a;
Chung & Whang, 2023) remain as future work. Further-
more, by extending MAYPL, we plan to develop foundation
models for KG reasoning (Galkin et al., 2024) applicable to
a wide range of real-world use cases.

Impact Statement
Knowledge representation learning is one of the key tech-
niques of many modern AI applications. We believe our
work can be applied to various applications, such as gen-
erative models, natural language processing (Chen et al.,
2021), robotics (Kwak et al., 2022), and information re-
trieval, and advance the machine learning fields requiring
grounding knowledge and structure-infused representation
vectors. Given that our work eases the automatic comple-
tion of missing knowledge, possible undesirable misuses
of our technique include attempts to predict and disclose
others’ private information with malicious intentions. Such
risks should be monitored, and the readers of this paper are
advised to be aware that our research should not be applied
to such activities.
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A. Comparison of MAYPL with Existing Methods

Table 10: Comparison of MAYPL and all baseline methods regarding their ways of representing knowledge and their
abilities to handle new entities and relations in inductive inference.

Knowledge Representation Inductive Inference

KG KHG NRR HKG new entities new relations

CompGCN (Vashishth et al., 2020) ✓
GraIL (Teru et al., 2020) ✓ ✓

CoMPILE (Mai et al., 2021) ✓ ✓
SNRI (Xu et al., 2022) ✓ ✓

INDIGO (Liu et al., 2021a) ✓ ✓
NeuralLP (Yang et al., 2017) ✓ ✓

DRUM (Sadeghian et al., 2019) ✓ ✓
BLP (Daza et al., 2021) ✓ ✓

NodePiece (Galkin et al., 2022) ✓ ✓
RED-GNN (Zhang & Yao, 2022) ✓ ✓

NBFNet (Zhu et al., 2021) ✓ ✓
RAILD (Gesese et al., 2022) ✓ ✓ ✓

RMPI (Geng et al., 2023) ✓ ✓ ✓
InGram (Lee et al., 2023b) ✓ ✓ ✓
HyRel (Yang et al., 2024) ✓ ✓ ✓

InKGE-EIPR (Mu et al., 2024) ✓ ✓ ✓
HGNN (Feng et al., 2019) △

HyperGCN (Yadati et al., 2019) △
HypE (Fatemi et al., 2020) ✓
G-MPNN (Yadati, 2020) ✓ △

S2S (Di et al., 2021) ✓
HyConvE (Wang et al., 2023) ✓
MSeaKG (Di & Chen, 2023) ✓ ✓

HJE (Li et al., 2024a) ✓
HCNet (Huang et al., 2024) ✓ ✓
HyCubE (Li et al., 2024b) ✓
RAE (Zhang et al., 2018) ✓
NaLP (Guan et al., 2019) ✓
RAM (Liu et al., 2021b) ✓

tNaLP (Guan et al., 2023) ✓
NeuInfer (Guan et al., 2020) ✓
HINGE (Rosso et al., 2020) ✓
StarE (Galkin et al., 2020) ✓
GRAN (Wang et al., 2021) ✓

Hy-Transformer (Yu & Yang, 2021) ✓
PolygonE (Yan et al., 2022) ✓

HyperFormer (Hu et al., 2023) ✓
HAHE (Luo et al., 2023) ✓

ShrinkE (Xiong et al., 2023) ✓
HyNT (Chung et al., 2023) ✓

QBLP (Ali et al., 2021) ✓ ✓

MAYPL ✓ ✓ ✓

Table 10 compares MAYPL and other existing methods in terms of (i) the form of knowledge representations and (ii)
the capability of inductive inference. While KGs only contain triplets, KHGs, NRRs, and HKGs provide more enriched
information by providing additional details. Comparisons between KHGs, NRRs, and HKGs are described in Section 2,
where we show that HKGs are better forms than KHGs and NRRs in preserving the original information of real-world
knowledge bases. For the inductive inference, we consider whether a method can handle new entities and new relations.

Some methods in Table 10 are explained in Section 1 and Section 2. While HGNN (Feng et al., 2019) and HyperGCN (Yadati
et al., 2019) are not originally designed for KGs, they are considered in (Yadati, 2020) since they handle hyperedges. Also,
G-MPNN (Yadati, 2020) can handle new entities only one-hop distant from observed entities, having limited inductive
capability. Thus, these methods are denoted by △ in Table 10.
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Table 11: Datasets for Transductive Link Prediction on HKGs.

|V| |R| |Htr| |Hval| |Htst|

WD50K (Galkin et al., 2020) 47,155 531 166,435 23,913 46,159
WikiPeople´ (Wang et al., 2021) 34,825 178 294,439 37,715 37,712
WikiPeople (Guan et al., 2019) 47,765 193 305,725 38,223 38,281

Table 12: Datasets for Inductive Link Prediction on KGs.

|V| |R| |H| |V́| |Ŕ| |H́fct| |H́val| |H́tst|

NL-100 (Lee et al., 2023b) 1,258 55 7,832 1,709 53 2,378 793 793
NL-75 (Lee et al., 2023b) 2,607 96 11,058 1,578 116 1,818 606 607
NL-50 (Lee et al., 2023b) 4,396 106 17,578 2,335 119 2,576 859 859
NL-25 (Lee et al., 2023b) 4,396 106 17,578 2,146 120 2,230 743 744

WK-100 (Lee et al., 2023b) 9,784 67 49,875 12,136 37 13,487 4,496 4,496
WK-75 (Lee et al., 2023b) 6,853 52 28,741 2,722 65 3,430 1,143 1,144
WK-50 (Lee et al., 2023b) 12,022 72 82,481 9,328 93 9,672 3,224 3,225
WK-25 (Lee et al., 2023b) 12,659 47 41,873 3,228 74 3,391 1,130 1,131
FB-100 (Lee et al., 2023b) 4,659 134 62,809 2,624 77 6,987 2,329 2,329
FB-75 (Lee et al., 2023b) 4,659 134 62,809 2,792 186 9,316 3,106 3,106
FB-50 (Lee et al., 2023b) 5,190 153 85,375 4,445 205 11,636 3,879 3,879
FB-25 (Lee et al., 2023b) 5,190 163 91,571 4,097 216 17,147 5,716 5,716

B. Details of Datasets
Table 11 shows the statistics of datasets for transductive link prediction on HKGs: WD50K (Galkin et al., 2020),
WikiPeople´ (Wang et al., 2021), and WikiPeople (Guan et al., 2019), where WikiPeople´ was generated by remov-
ing the literals from WikiPeople. Although WikiPeople´ was first used by (Rosso et al., 2020), we refer to (Wang et al.,
2021) because it was named WikiPeople´ by (Wang et al., 2021). We noticed that WikiPeople´ was denoted as WikiPeople
in some baselines’ papers, including (Rosso et al., 2020; Galkin et al., 2020; Luo et al., 2023); by examining the statistics
of the datasets used in their official GitHub or reported in the paper, we separate the existing experimental results for
WikiPeople´ and WikiPeople. We used both datasets because these datasets are used in different literatures. WikiPeople´ is
used to compare methods for HKGs such as StarE (Galkin et al., 2020) or HAHE (Luo et al., 2023), while WikiPeople is
used to compare methods for NRRs or KHGs, such as NaLP (Guan et al., 2019) or HCNet (Huang et al., 2024).

For WD50K and WikiPeople´, we adopt the widely-used experimental setting of (Galkin et al., 2020), where a model is
tuned using a validation set and re-trained using both training and validation sets. Since there is no official experimental
results for HINGE (Rosso et al., 2020) using this setting on WikiPeople´, we do not report its results; the results in (Rosso
et al., 2020) are the ones reported after training only using the training set.

The statistics of WD50K in Table 11 differs from that of (Galkin et al., 2020) because (Galkin et al., 2020) also counts some
extra tokens. Also, the number of relations of WikiPeople differs from (Guan et al., 2019) due to the different forms of
knowledge representations. We note that the JF17K dataset (Wen et al., 2016) is another well-known dataset for HKGs, but
the authors who released it (Wen et al., 2016) suggest not using it due to redundant entries. Therefore, we did not use it.
Refer to https://www.site.uottawa.ca/˜yymao/JF17K/.

Table 12 shows the statistics of all 12 datasets for inductive link prediction on KGs: NL-100 (Lee et al., 2023b), NL-75 (Lee
et al., 2023b), NL-50 (Lee et al., 2023b), NL-25 (Lee et al., 2023b), WK-100 (Lee et al., 2023b), WK-75 (Lee et al., 2023b),
WK-50 (Lee et al., 2023b), WK-25 (Lee et al., 2023b), FB-100 (Lee et al., 2023b), FB-75 (Lee et al., 2023b), FB-50 (Lee
et al., 2023b), and FB-25 (Lee et al., 2023b). The full experimental results on these datasets are presented in Appendix E.

Also, Table 13 shows the statistics of datasets for inductive link prediction on HKGs: WD20K(100)v1 (Ali et al., 2021),
WD20K(100)v2 (Ali et al., 2021), WP-IND (Yadati, 2020), and MFB-IND (Yadati, 2020). The statistics of WD20K(100)v1
and WD20K(100)v2 differ from the original paper (Ali et al., 2021) because (Ali et al., 2021) reported the statistics by
only considering at most six qualifiers per fact, whereas we removed this constraint. In addition, (Ali et al., 2021) also
counts some extra tokens, as in (Galkin et al., 2020). On the other hand, in (Yadati, 2020), unseen entities are assumed to
be predefined in WP-IND and MFB-IND, and all other entities are considered as seen entities, regardless of whether they

14

https://www.site.uottawa.ca/~yymao/JF17K/


Structure Is All You Need: Structural Representation Learning on Hyper-Relational Knowledge Graphs

Table 13: Datasets for Inductive Link Prediction on HKGs.

|V| |R| |H| |V́| |Ŕ| |H́fct| |H́val| |H́tst|

WD20K(100)v1 (Ali et al., 2021) 5,785 91 7,785 4,286 74 2,667 295 365
WD20K(100)v2 (Ali et al., 2021) 3,226 56 4,146 5,593 53 4,274 539 678

WP-IND (Yadati, 2020) 4,017 35 4,139 4,463 35 4,690 275 275
MFB-IND (Yadati, 2020) 3,223 22 336,733 3,783 22 344,260 3,763 3,764

actually appear in a training set. However, in our definition, unseen entities are those that do not appear in the training set,
which reduces the number of seen entities |V|. Additionally, we transform hyperedges into hyper-relational facts, which
increases the number of relation labels |R|. Therefore, the statistics we report for WP-IND and MFB-IND differ from those
reported in (Yadati, 2020). Note that although WD20K(100)v1, WD20K(100)v2, WP-IND, and MFB-IND include node
features, MAYPL was trained and evaluated purely based on the graph structure, without utilizing the node features.

C. Coverage of Methods Across Datasets
In Section 5, we compare MAYPL with 40 different baseline methods using 10 benchmark datasets. Also, Appendix E
shows additional experimental results of inductive link prediction on KGs, which add 9 more datasets (NL-100, NL-75,
NL-25, WK-100, WK-75, WK-25, FB-100, FB-75, FB-25) and one more baseline (RAILD ran on NL-100, WK-100, and
FB-100). Thus, MAYPL is compared with 41 baseline methods on 19 datasets in total. Table 14 shows which methods are
ran on which datasets. The baselines’ results are obtained from the baseline’s original paper (marked as ˝) or the paper that
proposed the dataset (marked as ‚). For brevity, NL-75, NL-50, and NL-25 are denoted by NLs, WK-75, WK-50, and
WK-25 are denoted by WKs, and FB-75, FB-50, and FB-25 are denoted by FBs.

D. Implementation and Experimental Details of MAYPL
We provide implementation details of MAYPL. Also, we describe how we ran MAYPL and present the runtime and memory
usage of MAYPL. Our codes are available at https://github.com/bdi-lab/MAYPL.

D.1. Implementation Details of MAYPL

In our implementation of MAYPL, we use the Adam optimizer (Kingma & Ba, 2015), PReLU (He et al., 2015) activation
function, dropout (Srivastava et al., 2014), residual connection (He et al., 2016), label smoothing (Szegedy et al., 2016), and
layer normalization (Ba et al., 2016). All linear projections are followed by a bias term omitted for brevity in the formulas
of Section 4. In the attentive neural message passing, we use multi-heads (Vaswani et al., 2017; Brody et al., 2022). We use
the dynamic split strategy (Lee et al., 2023b) with modifications: instead of creating a spanning tree, we simply use some
portion of a training graph as a message set even if it is not connected and use the remaining facts consisting of entities and
relations in the chosen message set for loss calculation. We use Python 3.9, and PyTorch 2.0.1 with cuda version 11.7.

D.2. Experimental Details, Runtime, and Memory Usage of MAYPL

We provide experimental details of each experiment along with MAYPL’s runtime and memory usage. For runtime, we
report the time required to reproduce the reported results from scratch, including validation and test time. We report the GPU
memory using torch.cuda.max memory allocated() function in PyTorch. The time and memory are rounded for
brevity. Note that d is the dimension of all layers (d “ d0 “ d1 “ ¨ ¨ ¨ “ dL), ϵ is the amount of label smoothing, ebest is the
best epoch, lr is the learning rate, nhead is the number of attention heads, nbatch is the number of batches, δtr is the train graph
ratio, and δdrop is the dropout ratio.

Table 15 shows the best hyperparameters, runtime, and memory usage of MAYPL for WD50K, WikiPeople´, and
WikiPeople. We trained MAYPL on the training set of WikiPeople´ to find the best hyperparameters for both WikiPeople
and WikiPeople´. We chose the best hyperparameters based on the validation performance. After finding the best
hyperparameters, we fixed the best epoch for WikiPeople´ and re-trained MAYPL on WikiPeople´ with training+validation
sets. For WikiPeople, we used the training set of WikiPeople to re-train MAYPL, and tuned the epoch while fixing all
other parameters. For WD50K, we tuned MAYPL on the training set of WD50K, fixed all hyperparameters, and re-trained
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Table 14: Coverage of Methods Across Datasets and the Sources of Baselines’ Results. The baselines’ results are obtained
from the baseline’s original paper (marked as ˝) or the paper that proposed the dataset (marked as ‚). NLs denote NL-75,
NL-50, and NL-25, WKs denote WK-75, WK-50, and WK-25, and FBs denote FB-75, FB-50, and FB-25. In Section 5 and
Appendix E, MAYPL is compared with 41 baseline methods on 19 datasets in total.

NL-100 NLs WK-100 WKs FB-100 FBs WP WP´ WD50K WP-IND MFB-IND WD20K(100)v1 WD20K(100)v2

CompGCN (Vashishth et al., 2020) ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚
GraIL (Teru et al., 2020) ‚ ‚

CoMPILE (Mai et al., 2021) ‚ ‚
SNRI (Xu et al., 2022) ‚ ‚

INDIGO (Liu et al., 2021a) ‚ ‚
NeuralLP (Yang et al., 2017) ‚ ‚ ‚ ‚ ‚ ‚

DRUM (Sadeghian et al., 2019) ‚ ‚ ‚ ‚ ‚ ‚
BLP (Daza et al., 2021) ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚

NodePiece (Galkin et al., 2022) ‚ ‚ ‚ ‚ ‚ ‚
RED-GNN (Zhang & Yao, 2022) ‚ ‚ ‚ ‚ ‚ ‚

NBFNet (Zhu et al., 2021) ‚ ‚ ‚ ‚ ‚ ‚
RAILD (Gesese et al., 2022) ‚ ‚ ‚

RMPI (Geng et al., 2023) ‚ ‚
InGram (Lee et al., 2023b) ˝ ˝ ˝ ˝ ˝ ˝
HyRel (Yang et al., 2024) ˝ ˝ ˝ ˝ ˝ ˝

InKGE-EIPR (Mu et al., 2024) ˝ ˝ ˝ ˝ ˝ ˝
HGNN (Feng et al., 2019) ‚ ‚

HyperGCN (Yadati et al., 2019) ‚ ‚
G-MPNN (Yadati, 2020) ˝ ˝
RAE (Zhang et al., 2018) ‚

HypE (Fatemi et al., 2020) ‚
S2S (Di et al., 2021) ˝

HyConvE (Wang et al., 2023) ˝
MSeaKG (Di & Chen, 2023) ˝

HJE (Li et al., 2024a) ˝
HCNet (Huang et al., 2024) ˝ ˝ ˝
HyCubE (Li et al., 2024b) ˝
NaLP (Guan et al., 2019) ˝ ‚
RAM (Liu et al., 2021b) ˝

tNaLP (Guan et al., 2023) ˝
NeuInfer (Guan et al., 2020) ˝
HINGE (Rosso et al., 2020) ‚
StarE (Galkin et al., 2020) ˝ ˝ ‚ ‚
GRAN (Wang et al., 2021) ˝ ˝

Hy-Transformer (Yu & Yang, 2021) ˝ ˝
PolygonE (Yan et al., 2022) ˝

HyperFormer (Hu et al., 2023) ˝ ˝
HAHE (Luo et al., 2023) ˝ ˝

ShrinkE (Xiong et al., 2023) ˝ ˝
HyNT (Chung et al., 2023) ˝

QBLP (Ali et al., 2021) ‚ ‚ ‚ ‚ ‚ ‚ ˝ ˝
MAYPL ˝ ˝ ˝ ˝ ˝ ˝ ˝ ˝ ˝ ˝ ˝ ˝ ˝

MAYPL on WD50K with training+validation sets. We performed validation every 50 epoch, and stopped training if the
validation performance did not increase for 250 epochs. We ran MAYPL on NVIDIA RTX A6000 with d “ 256.

Table 16 shows the best hyperparameters, runtime, and memory usage of MAYPL for NL-100, NL-75, NL-50, NL-25,
WK-100, WK-75, WK-50, WK-25, FB-100, FB-75, FB-50, and FB-25. MAYPL was trained on a training graph, validated
and tested on an inference graph without re-training. We chose the best hyperparameters based on the validation performance.
We did not adopt the early stop strategy and ran MAYPL for 500 epochs, performing validation every 10 epochs. One
exception is NL-75, which we ran MAYPL for 1000 epochs. We ran MAYPL on NVIDIA RTX 2080 Ti with d “ 32.

Table 17 shows best hyperparameters, runtime, and memory usage of MAYPL for WD20K(100)v1, WD20K(100)v2,
WP-IND, and MFB-IND. MAYPL was trained on a training graph, validated and tested on an inference graph without
re-training. We chose the best hyperparameters based on the validation performance. We did not adopt the early stop
strategy for WD20K(100)v1 and WD20K(100)v2, and we ran MAYPL for 1000 epochs and 500 epochs, respectively, while
performing validation every 10 epochs. For WP-IND, we did not adopt the early stop strategy and ran MAYPL for 2000
epochs while performing validation every 20 epochs. For MFB-IND, we performed validation every 50 epochs, and stopped
training if the validation performance did not increase for 250 epochs. We ran MAYPL on NVIDIA RTX 2080 Ti with
d “ 256 for WD20K(100)v1 and WD20K(100)v2, and d “ 128 for WP-IND. For MFB-IND, we ran MAYPL on NVIDIA
RTX A6000 with d “ 128.
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Table 15: Best hyperparameters, runtime, and memory usage of MAYPL for WD50K, WikiPeople´, and WikiPeople.

Time Memory ϵ ebest lr rL L nhead nbatch δtr δdrop

WD50K 21h 42.8GB 0.05 3000 0.0001 4 6 16 20 0.7 0.2
WikiPeople´ 20h 43.8GB 0.0 2900 0.0001 3 4 32 20 0.7 0.1
WikiPeople 21h 45.8GB 0.0 2400 0.0001 3 4 32 20 0.7 0.1

Table 16: Best hyperparameters, runtime (m: minutes, h: hours), and memory usage of MAYPL for NL-100, NL-75, NL-50,
NL-25, WK-100, WK-75, WK-50, WK-25, FB-100, FB-75, FB-50, and FB-25.

Time Memory ϵ ebest lr rL L nhead nbatch δtr δdrop

NL-100 15m 0.1GB 0.0 160 0.0002 4 4 4 30 0.35 0.05
NL-75 30m 0.1GB 0.0 660 0.0002 4 1 2 35 0.15 0.0
NL-50 55m 0.4GB 0.0 390 0.001 5 8 4 30 0.4 0.1
NL-25 40m 0.5GB 0.0 260 0.002 2 10 2 30 0.5 0.05

WK-100 1h 0.6GB 0.0 410 0.0005 3 5 2 30 0.3 0.05
WK-75 25m 0.5GB 0.0 250 0.0005 4 5 4 30 0.5 0.05
WK-50 35m 1.2GB 0.0 230 0.0002 3 5 8 30 0.3 0.1
WK-25 30m 0.8GB 0.0 300 0.001 3 5 8 30 0.5 0.05
FB-100 50m 0.7GB 0.0 310 0.00015 4 5 4 30 0.3 0.1
FB-75 20m 0.7GB 0.0 140 0.0005 3 5 8 30 0.3 0.1
FB-50 45m 1.1GB 0.0 320 0.001 4 5 4 30 0.35 0.1
FB-25 50m 1.6GB 0.0 390 0.001 3 5 8 30 0.6 0.1

Table 17: Best hyperparameters, runtime (m: minutes, h: hours), and memory usage of MAYPL for WD20K(100)v1,
WD20K(100)v2, WP-IND, and MFB-IND.

Time Memory ϵ ebest lr rL L nhead nbatch δtr δdrop

WD20K(100)v1 2h 3.1GB 0.0 930 0.0001 5 6 32 30 0.5 0.05
WD20K(100)v2 55m 1.2GB 0.0 490 0.0002 3 5 8 30 0.4 0.05

WP-IND 8h 1.4GB 0.0 1800 0.0001 4 10 4 50 0.7 0.1
MFB-IND 7h 27GB 0.0 1550 0.001 3 3 16 20 0.7 0.1

E. Additional Experimental Results of Inductive Link Prediction on KGs
Table 18 shows inductive link prediction performance of MAYPL and other baseline methods on all 12 different datasets
provided in (Lee et al., 2023b). The prefixes in the dataset names denote their origins (WK for Wikidata68K (Gesese et al.,
2022), FB for FB15K237 (Toutanova & Chen, 2015), and NL for NELL-995 (Xiong et al., 2017)), while the suffixes indicate
the ratio of triplets in an inference graph that contains new relations (Lee et al., 2023b). For example, the WK-75 dataset is
extracted from Wikidata68K, and its 75% triplets in the inference graph involve new relations. In Table 6, the best result is
boldfaced, the second-best result is underlined, and the third-best result is italic. Among the baseline methods, RAILD only
can be run on WK-100, FB-100, and NL-100. Also, GraIL, CoMPILE, SNRI, INDIGO, and RMPI are only run on datasets
extracted from NELL-995 due to their scalability issues (Lee et al., 2023b).

On each dataset, we use three standard link prediction metrics, MRR, Hit10, and Hit1. To assess the relative performance of
each model in comparison to the best-performing model for each metric on a given dataset, we compute the loss as follows:

lossmetric,model “
scoremetric,best ´ scoremetric,model

scoremetric,best

where scoremetric,best denotes the performance of the best-performing model using the given metric, and scoremetric,model
denotes the performance of a target model. Since each metric presents a different perspective of a model’s performance,
and a model’s performance varies depending on metrics and ratios of triplets with new relations, we introduce a holistic
measure called the total loss, providing a comprehensive evaluation of a model’s performance across multiple metrics and
varying ratios of triplets with new relations. The total loss of a model is obtained by summing its losses across all metrics
for datasets with the same origin. A lower total loss indicates superior performance.
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Table 18: Inductive Link Prediction Performance on 12 Different Datasets in (Lee et al., 2023b).

WK-100 WK-75 WK-50 WK-25 Total
LossMRR Hit10 Hit1 MRR Hit10 Hit1 MRR Hit10 Hit1 MRR Hit10 Hit1

CompGCN 0.003 0.009 0.000 0.015 0.028 0.003 0.003 0.002 0.001 0.009 0.020 0.000 11.679
NodePiece 0.007 0.018 0.002 0.021 0.052 0.003 0.008 0.013 0.002 0.053 0.122 0.019 10.917
NeuralLP 0.009 0.016 0.005 0.020 0.054 0.004 0.025 0.054 0.007 0.068 0.104 0.046 10.269
DRUM 0.010 0.019 0.004 0.020 0.043 0.007 0.017 0.046 0.002 0.064 0.116 0.035 10.542

BLP 0.012 0.025 0.003 0.043 0.089 0.016 0.041 0.092 0.013 0.125 0.283 0.055 9.003
QBLP 0.012 0.025 0.003 0.044 0.091 0.016 0.035 0.080 0.011 0.116 0.294 0.042 9.222

NBFNet 0.014 0.026 0.005 0.072 0.172 0.028 0.062 0.105 0.036 0.154 0.301 0.092 7.571
RED-GNN 0.096 0.136 0.070 0.172 0.290 0.110 0.058 0.093 0.033 0.170 0.263 0.111 4.864

RAILD 0.026 0.052 0.010 - - - - - - - - - -
InGram 0.107 0.169 0.072 0.247 0.362 0.179 0.068 0.135 0.034 0.186 0.309 0.124 3.342
HyRel 0.091 0.165 0.059 0.255 0.389 0.187 0.068 0.138 0.036 0.191 0.316 0.125 3.403

InKGE-EIPR 0.125 0.209 0.086 0.262 0.380 0.188 0.076 0.164 0.038 0.203 0.330 0.137 2.300

MAYPL 0.139 0.236 0.091 0.290 0.441 0.213 0.109 0.230 0.054 0.275 0.501 0.169 0.000

FB-100 FB-75 FB-50 FB-25 Total
LossMRR Hit10 Hit1 MRR Hit10 Hit1 MRR Hit10 Hit1 MRR Hit10 Hit1

CompGCN 0.015 0.025 0.008 0.013 0.026 0.000 0.004 0.006 0.002 0.003 0.004 0.000 11.698
NodePiece 0.006 0.009 0.001 0.016 0.029 0.007 0.021 0.048 0.006 0.044 0.114 0.011 11.007
NeuralLP 0.026 0.057 0.007 0.056 0.099 0.030 0.088 0.184 0.043 0.164 0.309 0.098 7.897
DRUM 0.034 0.077 0.011 0.065 0.121 0.034 0.101 0.191 0.061 0.175 0.320 0.109 7.350

BLP 0.017 0.035 0.004 0.047 0.085 0.024 0.078 0.156 0.037 0.107 0.212 0.053 9.001
QBLP 0.013 0.026 0.003 0.041 0.084 0.017 0.071 0.147 0.030 0.104 0.226 0.043 9.268

NBFNet 0.072 0.154 0.026 0.089 0.166 0.048 0.130 0.259 0.071 0.224 0.410 0.137 5.768
RED-GNN 0.121 0.263 0.053 0.107 0.201 0.057 0.129 0.251 0.072 0.145 0.284 0.077 6.168

RAILD 0.031 0.048 0.016 - - - - - - - - - -
InGram 0.223 0.371 0.146 0.189 0.325 0.119 0.117 0.218 0.067 0.133 0.271 0.067 4.761
HyRel 0.282 0.463 0.188 0.277 0.433 0.196 0.178 0.333 0.101 0.210 0.420 0.114 1.451

InKGE-EIPR 0.333 0.509 0.245 0.285 0.462 0.195 0.204 0.376 0.123 0.221 0.430 0.125 0.344

MAYPL 0.341 0.512 0.254 0.282 0.436 0.197 0.205 0.361 0.129 0.238 0.438 0.144 0.107

NL-100 NL-75 NL-50 NL-25 Total
LossMRR Hit10 Hit1 MRR Hit10 Hit1 MRR Hit10 Hit1 MRR Hit10 Hit1

GraIL 0.135 0.173 0.114 0.096 0.205 0.036 0.162 0.288 0.104 0.216 0.366 0.160 6.830
CoMPILE 0.123 0.209 0.071 0.178 0.361 0.093 0.194 0.330 0.125 0.189 0.324 0.115 6.180

SNRI 0.042 0.064 0.029 0.088 0.177 0.040 0.130 0.187 0.095 0.190 0.270 0.140 8.226
INDIGO 0.160 0.247 0.109 0.121 0.156 0.098 0.167 0.217 0.134 0.166 0.206 0.134 6.907

RMPI 0.220 0.376 0.136 0.138 0.275 0.061 0.185 0.307 0.109 0.213 0.329 0.130 5.870
CompGCN 0.008 0.014 0.001 0.014 0.025 0.003 0.003 0.005 0.000 0.006 0.010 0.000 11.793
NodePiece 0.012 0.018 0.004 0.042 0.081 0.020 0.037 0.079 0.013 0.098 0.166 0.057 10.446
NeuralLP 0.084 0.181 0.035 0.117 0.273 0.048 0.101 0.190 0.064 0.148 0.271 0.101 8.058
DRUM 0.076 0.138 0.044 0.152 0.313 0.072 0.107 0.193 0.070 0.161 0.264 0.119 7.683

BLP 0.019 0.037 0.006 0.051 0.120 0.012 0.041 0.093 0.011 0.049 0.095 0.024 10.689
QBLP 0.004 0.003 0.000 0.040 0.095 0.007 0.048 0.097 0.020 0.073 0.151 0.027 10.666

NBFNet 0.096 0.199 0.032 0.137 0.255 0.077 0.225 0.346 0.161 0.283 0.417 0.224 5.700
RED-GNN 0.212 0.385 0.114 0.203 0.353 0.129 0.179 0.280 0.115 0.214 0.266 0.166 5.292

RAILD 0.018 0.037 0.005 - - - - - - - - - -
InGram 0.309 0.506 0.212 0.261 0.464 0.167 0.281 0.453 0.193 0.334 0.501 0.241 1.965
HyRel 0.394 0.574 0.299 0.305 0.502 0.205 0.321 0.520 0.222 0.348 0.541 0.263 0.403

InKGE-EIPR 0.333 0.533 0.241 0.318 0.525 0.211 0.315 0.529 0.217 0.350 0.554 0.267 0.684

MAYPL 0.374 0.523 0.301 0.289 0.479 0.201 0.343 0.508 0.262 0.352 0.532 0.262 0.465
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Table 19: Sum of total losses for all 12
datasets provided in (Lee et al., 2023b).

Sum of
Total Losses

CompGCN 35.170
NodePiece 32.370
NeuralLP 26.224
DRUM 25.575

BLP 28.692
QBLP 29.155

NBFNet 19.039
RED-GNN 16.323

InGram 10.068
HyRel 5.257

InKGE-EIPR 3.328

MAYPL 0.572

For datasets derived from Wikidata68K (i.e., WK-100, WK-75, WK-50, WK-
25), MAYPL achieves the best performance across all metrics. Similarly, for
datasets from FB15K237 (i.e., FB-100, FB-75, FB-50, FB-25), MAYPL sig-
nificantly outperforms the baseline models, showing a considerable gap to the
best baseline in the total loss. For datasets extracted from NELL-995 (i.e., NL-
100, NL-75, NL-50, NL-25), MAYPL demonstrates competitive performance
compared to the best-performing baseline, HyRel, while surpassing all the other
baseline methods. Note that HyRel is not as competitive as MAYPL in the
other Wikidata68K and FB15K237 datasets. Table 19 shows the sum of total
losses, i.e., the sum of losses for all metrics over all 12 datasets provided in (Lee
et al., 2023b). This comprehensive evaluation shows that MAYPL substantially
outperforms the baseline methods in inductive link prediction on KGs.

F. More Detailed Explanations about Ablation Studies
In Table 7, we consider six different variations of MAYPL. (i) introduces learn-
able initial representation vectors for individual entities and relations instead of
computing them using the structure-driven initializer described in Section 4.1.
When the initializer is removed, performance significantly drops in both trans-
ductive and inductive settings, which shows the critical role of the structure-driven initializer. (ii) removes the attentive
neural message passing module proposed in Section 4.2 and the initial entity and relation representations are directly used
for link prediction. The considerable performance drop explains the importance of attentive neural message passing. (iii)
does not apply the attention-based aggregation and uses a simple mean aggregation when updating entity and relation
representations in Eq.(3) & Eq.(5). We see that attentively aggregating representations leads to better performance than the
simple mean aggregation. (iv) does not apply the relation aggregation process of Eq.(5) and updates a relation representation
using a simple learnable projection matrix. The performance drop shows the effectiveness of our relation aggregation
module. (v) replaces all Hadamard products with concatenations in computing messages of facts, entities, and relations in
Section 4.2 and Section 4.3. With these changes, the sizes of the corresponding projection matrices are also appropriately
modified. The original design using the Hadamard product is more effective than the concatenation. (vi) separates the
parameters for computing entity representations in Section 4.1 and Section 4.2 and computing a query’s representation in
link prediction in Section 4.3, while the original MAYPL uses the parameters computed in Section 4.1 and Section 4.2 to
perform link prediction in Section 4.3. The performance drop shows the advantage of the parameter sharing in MAYPL.

G. Additional Case Studies about MAYPL
Table 20 shows MAYPL’s top 3 predictions on problems in WikiPeople´, where the ground-truth answers are boldfaced.
Note that MAYPL correctly predicts the answers to these problems, and MAYPL’s top 3 predictions of each problem include
entities of the same type as the answer. For example, in Problem #4, when the answer is Ron Howard, the second and the
third predictions are also directors, James Cameron and Steven Spielberg. In Problem #3 and Problem #4, their
primary triplets are identical: (?, awarded, Oscar for Best Director). However, their answers are different due
to their different qualifiers. MAYPL accurately predicts the answers by appropriately considering the qualifiers in facts.

Table 20: Top 3 predictions made by MAYPL for problems in WikiPeople´. The answer is boldfaced.

Problem #1
`

(Marilyn Monroe, born in, Los Angeles), {(country, USA), (is located in, ?)}
˘

Prediction California, New York, New York City

Problem #2
`

(Steven Spielberg, nominated for, Oscar for Best Director), {(subject of, ?), (for work, Schindler’s List)}
˘

Prediction 66th Oscars, 71st Oscars, 47th Oscars

Problem #3
`

(?, awarded, Oscar for Best Director), {(subject of, 60th Oscars), (for work, The Last Emperor)}
˘

Prediction Bernardo Bertolucci, Miloš Forman, David Byrne

Problem #4
`

(?, awarded, Oscar for Best Director), {(for work, A Beautiful Mind)}
˘

Prediction Ron Howard, James Cameron, Steven Spielberg

19


