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ABSTRACT

Large language models (LLMs) are adept at generating coherent and fluent re-
sponses within conversational contexts. Recent studies also demonstrate that
LLMs can follow the user preference in an extremely long-term setting. Neverthe-
less, there is still lack of comprehensive research exploring LLMs to dynamically
update their knowledge in response to corrections of misinformation provided by
users during dialogue sessions. In this paper, we present a unified framework
termed Knowledge Editing In Conversation (KEIC), along with a 1,781 human-
annotated dataset, devised to assess the efficacy of LLMs in aligning the user up-
date in an in-context setting, wherein the previous chat containing a false statement
that conflicts with the subsequent user update. Through systematic investigations
on more than 25 LLMs using various prompting and retrieval-augmented genera-
tion (RAG) methods, we observe that the contemporary LLMs exhibit a modicum
of proficiency in this task. To enhance their self-correction abilities, we propose a
structured strategy to handle the information update in a multi-turn conversation.
We demonstrate that our approach is effective and suggest insights for research
communities in this emerging and essential issue.

1 INTRODUCTION

Fluidity and inconsistency are characteristics of natural conversations. It is not rare to encounter
scenarios where an individual’s initial statement is based on false or obsolete information. As the
conversation progresses, the speaker may rectify their statements upon recognizing an error or when
presented with fresh information. Intriguingly, the other speaker adapts seamlessly to these changes
and continues carrying on the conversation. From the cognitive psychology perspective, this adap-
tive process involves entailing the information update that has already been in one’s memory.

Over the past few years, the advancements in large language models (LLMs) have fostered an en-
vironment where people find it commonplace to engage in extended conversations with chatbots.
These dialogues often encompass the sharing of daily experiences and emotional exchanges (Zhao
et al., 2025). A critical attribute for LLMs—especially in long-term interaction—is the capacity to
have such adaptability similar to humans, meaning the LLM should be adept at updating any mis-
information or outdated knowledge shared by the human interlocutor earlier in conversation. This
adaptability feature, which we termed in-context knowledge editing (KE) or Knowledge Editing
In Conversation (KEIC), is akin to the intrinsic self-correction (Huang et al., 2024; Kamoi et al.,
2024), and is crucial factor for LLMs to serve as intelligent, long-term conversational companions.

A natural question arises: Do existing LLMs have an (innate) adaptive capacity? Before answering
this, we summarize the advantages that LLMs shall be equipped with once they are proficient at this
task, envision several real-world scenarios that favor models with such capacity, and provide reasons
why prior approaches may not be suitable (see Appendix A for the detailed related work).

These include: (1) Not all false statements require (and should not do so) parameter editing, as some
of them are non-factual (see Figure 1). (2) To achieve KEIC, the LLM shall excel in temporal and
contextualized information in an entire dialogue. (3) End users do not need to prepare examples for
LLMs (Zheng et al., 2023a), nor to re-initiate the dialogue sessions, especially when conversations
grow longer (Zhao et al., 2025). In practice, the model can seamlessly update its knowledge by
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Hello, Allen! How are you doing?

Good to see you, mate. Isn't Betty coming?

Betty's not joining us today. It all started when Coby
threw a tantrum last week..., so she found herself on
a mission to adopt a dog. Because they had the new
member, they kicked off  house renovation.... And as
if that wasn't enough, she has to host a meeting later.

That's a shame. How old is Coby now?

Six. You know Betty has taken to
recording Pipi's daily life?

What? Surely Pipi wouldn't be the dog's name?

She mentioned it somewhere.... (searching for posts)
Oops, the new member is in fact a cat. My bad.

By the way, she hasn't accepted my request. Any idea?

Don't worry, I'll ask her later.

Can I have a look at Pipi?

Here you go.

Wow, this cat is really cute!

Figure 1: An example of u and b chatting. u2

contains the old (false) information (red text);
u4 contains new information (blue text), which
directly corrects the false statement in u2 (con-
nected by “new member”). Note that it is rea-
sonable b′6 inevitably contradicts b3. Though
“this dog is really cute” does not make b con-
tradict himself, it sounds weird as if b ignores
what u said. The KEIC task tests if an LLM can
(1) identify the user update, (2) locate the false
context in a long utterance before the update,
and (3) adapt to this change in a conversation.

KEIC

Decomposition

Arrangement
and Injection

: No

chat history
new fact

: Yes

??

??

  OTC
  Verification
  Reiteration
  Deletion

In-Context KE

Large Language Model (frozen)

Figure 2: An overview of KEIC framework:
Given chat data and a new fact, it decomposes
the chat into disjoint phases and performs opera-
tions to update an LLM’s response. We expound
the CoQA task in §2.1, what a new fact is in §2.2
(how they are generated in §4.1), four compo-
nents in “Decomposition” in §2.3, how to map
arbitrary dialogue into them in §2.4, and four in-
context KE methods for user correction in §3.
Each method has two settings in “Arrangement
and Injection” (whether the new fact is closer to
the false one; see §4.3). We consider an LLM
updates its knowledge if its answer to the same
question is changed (e.g., “No” → “Yes”), then
we evaluate this update behavior (see §4.2). The
terms fact, information, and knowledge all refer
to the context in a conversation in this paper.

patching user mistakes. Moreover, demonstrations often introduce undesired biases (Zhao et al.,
2021; Lu et al., 2022) and overestimate the LLM’s ability. (4) Traditional KE may be impractical
for a few false facts since fine-tuning a few examples tends to overfit. In addition, most end users
do not acquire the skills and resources to access and modify the LLMs (Yuksekgonul et al., 2024).
(5) Current evaluations of KE are limited to testing the generality and specificity around the edited
facts (Cohen et al., 2024), and it remains unclear whether modifying parameters has a significant im-
pact on other task domains (Chen et al., 2023). In contrast, our proposed methodology circumvents
such potential aftermath. (6) Analogous to the previous point of view, since the LLM parameters
are frozen, it is transferable to other downstream tasks and can be shared by many users. Though
maintaining additional models to perform KE preserves the parameters (Mitchell et al., 2022b),
keeping each individual’s memory, classifier, and counterfactual model up-to-date is one of the most
challenging aspects, as they still can be quickly outdated after deployment (Zhang et al., 2023).

The six aforementioned perspectives motivate us to explore whether LLMs can perform KEIC. Prac-
tically, if we can edit an LLM’s in-context knowledge on the fly, there would be no need to modify
its underlying parameters (Rafailov et al., 2023) or maintain additional models to rectify misinfor-
mation (Lewis et al., 2020). As prior research often do not define this task in detail (Kamoi et al.,
2024), we formalize it and propose a unified KEIC framework to measure the adaptability of LLMs.
The main contributions are three-fold:

• We introduce a challenging task for LLMs to be intelligent companions. We formalize the
KEIC framework to decompose a multi-turn dialogue and cope with the misinformation in
the earlier conversation. The concept also applies to hallucination, the notorious problem
of LLMs, and could further improve their reliability in a zero-shot and in-context setting.

• We carefully create a human-annotated dataset for the KEIC task. Our dataset of size 1,781
comprises topics from factual knowledge to non-factual narrative stories.

• We propose four model-agnostic methods, one of which is an iterative algorithm leveraging
external systems for self-correction. Extensive results show that the Reiteration method (in
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Section 3) is overall effective across “thinking” and “non-thinking” LLMs and that GPT-3.5
exhibits a significant performance improvement with our approach.

2 TASK DEFINITION

The KEIC task aims to test if an LLM can dynamically update its knowledge when the user corrects
the original (false) fact. We first outline the CoQA task (Reddy et al., 2019) in Section 2.1 since we
create our KEIC dataset from it. In Section 2.2, we define how to elicit an LLM’s stored knowledge
and formalize its form in a conversation. Finally, we present the KEIC framework in Section 2.3
and show it can fit any chat data (which is beyond CoQA data) in Section 2.4.

2.1 COQA FRAMEWORK

The CoQA task aims to test whether a chatbot can answer the question Qi when a passage P and
previous chat history [Q1, A1, ..., Qi−1, Ai−1] are given. Each question-answer pair (Qi, Ai) is
associated with a consecutive text span of rationale Ri ∈ P that serves as a support sentence for
answering Qi. The conversation flow is denoted as [P,Q1, A1, ..., Qi, Ai]. The term passage is
used interchangeably with story. In our KEIC dataset, we extend each instance from CoQA by
labeling one of the support sentences in the original story as misinformation and adding an effective
fact (see below).

2.2 THE FORM OF AN EFFECTIVE (NEW) FACT

In this paper, the terms fact, information, and knowledge are used interchangeably.1 A common way
to probe an LLM’s knowledge is by asking questions (Levy et al., 2017; De Cao et al., 2021; Zhong
et al., 2021; Meng et al., 2023). We assume fact or knowledge presented in the context C with the
form: (r, q, a), where r ∈ C is the text, q is the question related to r, and a is the answer to q. Given
a fact (r, q, a), it is intuitive (yet informal) to define a new fact (r′, q, a′) as: ∃r′ ̸= r s.t. a′ ̸= a.

To ensure two texts are semantically different, we define a mapping M : X → τ , where X is a text
string and τX = (s, o, r) is the subject-object relation triplet of X . Then, we denote ∆X (or, ∆(X)
to avoid overusing subscript) as the set of tuples that are different from τX :2

∆X =
{
(s′,o,r), (s,o′,r), (s,o,r′) : ∃τX ∈ M(X) ∧ s′ ̸= s ∧ o′ ̸= o ∧ r′ ̸= r

}
(1)

Let Y be an LLM’s output space and a ∈ Y , we formally define new fact (r′, q, a′) as effective iff:3

∃M(r) s.t. M(r′) ∈ ∆(r) and a′ ∈ {x ∈ Y : x ̸= a} (2)

In this work, C is the text in the conversation. We bridge the gap of knowledge and the (Ri, Qi, Ai)
tuple in CoQA since they share the same form. Because answers are free-form in CoQA, we focus
on Yes/No (YN) questions to simplify the analysis, and thus Y = {Yes, No}. For readability, when
the term knowledge is mentioned, we typically refer to the text of knowledge instead of a tuple.

2.3 DECOMPOSITION OF KEIC FRAMEWORK

To adhere to the evaluation framework in (Zheng et al., 2023b), we design our KEIC framework in a
multi-turn fashion. In the KEIC task, there exist (1) a false fact, (2) a new fact, and (3) other contexts
in a conversation; in addition, there also exists (4) a question inquiring whether an LLM’s answer is
changed based on the new fact. Hence, we define four disjoint phases to map each turn into them:

1All refer to the context in a conversation. It is because the term “knowledge editing” is more common than
“information/fact editing,” while “fact update” is less common than “information/knowledge update.”

2Let X be “Alice is Bob’s mom,” the set ∆X can be {(Amy, Bob, isMom), (Alice, Bill, isMom), (Alice,
Bob, isNotMom)}. Symbols with apostrophes denote effective.

3For instance, given a fact (r, q, a) = (Michael Jordan played fifteen seasons in the NBA, Did Jordan
play basketball, Yes) and its triplet M(r) = (Michael Jordan, basketball, play sport), one effective fact is
r′ = “Michael Jordan played fifteen seasons in the MLB” because M(r′) = (Michael Jordan, baseball,
play sport) ∈ ∆(r) and a′ ∈ {No}. Note that the term effective is used when constructing our KEIC dataset.
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• False phase (Tf ) contains a false fact, and the user will correct it later.
• Update phase (Tu) involves in updating misinformation or in-context KE process. Note

that Tu is a general notation for KEIC as we proposed four methods (see Section 3).
• Test phase (Ti) assesses if the update phase rectifies an LLM’s knowledge (i.e., a question).
• Other phase (To) consists of the previous, ongoing chat. One may think any turn here is

more or less unrelated to the update.

2.4 MAPPING ARBITRARY DIALOGUE INTO KEIC FRAMEWORK

To standardize our methods and dataset construction, we elaborate on the Decomposition in Figure 2,
using CoQA data as an example. Another example of real-world chat is in the Appendix. A k-turn
conversation is denoted as [T1, T2, ..., Tk], where Tj is the j-th turn ∀j ∈ [1, k], and each turn
Tj = (uj , bj) is a pair of user and chatbot utterances. We mathematically define the above mapping
process as f : {T1, ..., Tk} → {Tf ,Tu,Ti,To}. For each turn Tj , the mapping f works as follows:

• If either uj or bj (hallucination) contains false information, then Tj ∈ Tf . In CoQA data,
T1 is always in the false phase because we render a piece of text in the passage P obsolete
for the user to correct afterward (and P ∈ u1).

• If uj updates misinformation in the false phase (i.e., uj is effective) or involves in user
correction process, then Tj ∈ Tu. The CoQA data does not have this phase. We devise
four methods for user correction in the update phase (see Section 3).

• If uj consists of the question with which we want to test the LLM, then Tj ∈ Ti. In CoQA,
it is a question and is usually the last turn.

• Any Tj that does not belong to the false, update, and test phases falls into the other phase. In
CoQA, if the i-th question is selected among

{
(Q1, A1), ..., (Qn, An)

}
for the test phase,

then its previous QA pairs
⋃i−1

m=1(Qm, Am) fall into the other phase. If i = 1, then To = ∅.

3 FOUR METHODS FOR USER CORRECTION

We propose four methods (see Figure 3): One-turn correction, Verification, Reiteration, and Dele-
tion.

One-Turn Correction (OTC) One-turn correction is a correction phase (Tc) that contains a
single user correction utterance (baseline). Once an LLM exhibits innate adaptability similar to hu-
mans, a simple OTC shall suffice. We apply the mining approach (Jiang et al., 2020) to extract the
correction utterances from the DailyDialog (Li et al., 2017). Specifically, we select 15 sentences us-
ing 15 keywords. For example, “Wrong. It’s not [old fact], but [new fact].” (explicit) and “Actually,
[new fact].” (implicit) are two types of templates (that is, whether the correction utterances contain
the negation of old fact). Please refer to Appendix B for the nine explicit and six implicit templates
of user correction in this paper.

Verification After the test phase, we launch the Verification phase (Tv) to confirm if an LLM is
sure of its response via re-questioning (“Really? Let’s think about the update.”).

Reiteration As the LLM may overlook the importance of user correction, we introduce a Reiter-
ation phase (Tr) immediately after it (“What’s the new story with the correction? Output new story
and nothing else.”). This approach is inspired from the “War of the Ghosts” experiment (Bartlett,
1995). We define the Reiteration phase as successful if an LLM generates a new passage containing
the new fact in place of the old one (string replacement).

Deletion If an LLM still performs poorly in Verification and Reiteration, we speculate that even
if the false fact is corrected, we still need to modify other contexts in the chat history (because they
may contain old facts). By leveraging the NLI task (Bowman et al., 2015) and retrieval-augmented
generation (RAG) (Lewis et al., 2020), we design an algorithm to iteratively detect (INCONSISTENT
function) and then overwrite (DELETE function) any text containing the old fact in previous chat
history that contradicts the new one, as summarized in Algorithm 1 and proved in Appendix D. The
notion involves fact propagation, where we edit the chat history turn by turn in a top-down fashion.

4
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Claim 1. Algorithm 1 modifies h = [Tf ,To] and returns h∗ = [T∗
f ,T

∗
o] such that h∗ entails Tc.

Computational Linguistics Volume 1, Number 1

Tf

u1: Read and memorize the following story.
Story: CHAPTER XII “Throw your coat down anywhere, Miss
Baldwin,” Wingate invited, as he ushered that young lady into
his rooms soon after eleven o’clock on the following evening...
==========
Have you memorized the story?
b1: Yes, I have memorized the story.

To

u2: Who did Wingate talk to?
b2: Miss Baldwin
u3: What is her first name?
b3: Sarah
u4: Does she smoke?
b4: Yes
u5: When did this exchange happen?
b5: soon after eleven o’clock
u6: On the same evening?
b6: No

Tc

u7: Actually, “he ushered that old lady into his rooms”
b7: No problem at all! I have updated my memory of the story with
the correction you provided. Thank you for letting me know.

Ti

u8: Is Sarah old?
b8: [Chat Completion]

Figure 3
An example of conversation flow utilizing the OTC methodology with respect to KEIC
data. In this example, the tenth template is selected as correction utterance in Tc, and
new knowledge (he ushered that old lady into his rooms) is colored blue in contrast to the
old knowledge highlighted in red (he ushered that young lady into his rooms). Note that the
texts—u1, b1, and b7—in italics are pre-defined and used across all experiments. “[Chat
Completion]” is the slot where the LLM needs to generate the output.

3.4 Deletion (Td)

If a LLM performs poorly on MRE in previous methods, we speculate one of the most
difficult reasons: Even if the original text R ∈ P is corrected by R′, other contexts
may also need modification, as the model still contains the original knowledge in a
conversation that the chatbot might refer to in testing phase. In other words, our work
relies on the following assumption in most cases—The text R stores all the knowledge of
(R,Q,A) in P , and no other context that excludes R can answer the question correctly.
We formally define the previous assumption as follows:

∀C ∈ P \R s.t. A† ∈ (C,Q,A†) and A† ̸= A (4)

10

(a) OTC (Tu = {Tc})
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Tf

u1: Read and memorize the following story.
Story: CHAPTER XII “Throw your coat down anywhere, Miss
Baldwin,” Wingate invited, as he ushered that young lady into
his rooms soon after eleven o’clock on the following evening...
==========
Have you memorized the story?
b1: Yes, I have memorized the story.

To

u2: Who did Wingate talk to?
b2: Miss Baldwin
u3: What is her first name?
b3: Sarah
...
u6: On the same evening?
b6: No

Tc

u7: Actually, “he ushered that old lady into his rooms”
b7: No problem at all! I have updated my memory of the story with
the correction you provided. Thank you for letting me know.

Ti

u8: Is Sarah old?
b8: [Chat Completion]

Tv

u9: Really? Let’s think about the update.
b9: [Chat Completion]
u10: Therefore, based on your previous response, your
answer to the last question is more likely to be ’Yes’, ’No’?
You must output ’Yes’ or ’No’ first.
b10: [Chat Completion]

Figure 4
An example of conversation flow utilizing the Verification methodology with respect
to KEIC data. Bold text in u9 and u10 are templates that are fixed used in Tv. In this
example, the LLM has to sequentially generate the intermediate outputs twice (b8 and
b9) before obtaining the final output (b10). That is, we provide the LLM with input
x = {u1, b1, ..., u8} so that it first generates b8. Subsequently, we expand the input by
appending b8 and u9 to x, so the input becomes {u1, b1, ..., u8, b8, u9}, which is then fed
into the model to generate b9. The process is repeated until we obtain b10. This figure
follows the same convention as depicted in Figure 3.

In a real-world scenario, however, it is not always true. That is,

∃C ∈ P \R s.t. A† ∈ (C,Q,A†) and A† = A (5)

Take Figure 2 as an example. Even if a LLM successfully removes the old knowledge
r5 and replaces it with r′5 through Recall methodology, there are other contexts in a
conversation that also entail Person A cannot go to Japan. For example, A1 (“Can’t join

11

(b) Verification (Tu = {Tc,Tv})

Computational Linguistics Volume 1, Number 1

Tf

u1: Read and memorize the following story.
Story: CHAPTER XII “Throw your coat down anywhere, Miss
Baldwin,” Wingate invited, as he ushered that young lady into
his rooms soon after eleven o’clock on the following evening...
==========
Have you memorized the story?
b1: Yes, I have memorized the story.

To

u2: Who did Wingate talk to?
b2: Miss Baldwin
u3: What is her first name?
b3: Sarah
...
u6: On the same evening?
b6: No

Tc

u7: Actually, “he ushered that old lady into his rooms”
b7: No problem at all! I have updated my memory of the story with
the correction you provided. Thank you for letting me know.

Tr

u8: What’s the new story with the correction? Output new
story and nothing else.
b8: [Chat Completion]

Ti

u9: Is Sarah old?
b9: [Chat Completion]

Figure 5
An illustrative example of conversation flow utilizing the Recall methodology with
respect to KEIC data. Bold text in u8 is the template that is fixed and used in Tr. This
figure follows the same convention as depicted in Figure 4.

you this time. I’ve to look after my kids.”) explicitly entails it. On the other hand, A2 (“By the
way, can you get some souvenirs for me?”) is an implicature (Green 2001). Consequently,
we have no guarantee that the model will respond to the question accordingly based
solely on the correction we provided.7

To tackle this issue, we leverage the task of natural language inference (NLI)
(Bowman et al. 2015; Camburu et al. 2018) and propose an in-context memory re-
encoding (IC-MRE) algorithm to recursively delete any text in previous chat history
that contradicts new knowledge, as summarized in Algorithm 1. The notion of IC-MRE
algorithm involves fact propagation, where we modify the chat history turn by turn
in a top-down fashion. In each iteration j, the INCONSISTENT module detects if the
current history h[j] and the introduced knowledge q are contradictory. If so, the DELETE

7 Although one plausible solution is to design a better template that aligns new knowledge with the
question, it relies heavily on prompt engineering that is time-consuming, and we leave it for future work.

12

(c) Reiteration (Tu = {Tc,Tr})

Figure 3: The prompt for the OTC, Verification, and Reiteration method (see Appendix C for the
Deletion). This data is only for exposition. Both Verification and Reiteration contain the correction
phase (Tc). In Figure 3b, the Verification phase ([T9, T10], or Tv for short) is launched after the
test phase, whereas the correction phase is before it. In Figure 3c, on the other hand, the Reiteration
phase ([T8], or Tr for short) is after the correction phase. The texts (u1, b1, and b7) in italics are
pre-defined (i.e., fixed) and used in all experiments. Bold texts in Verification and Reiteration are
also pre-defined. The variation is the user utterance in the correction phase (we test 15 templates in
this paper). LLMs need to generate texts in “[Chat Completion].”

4 EXPERIMENTS

4.1 DATASET COLLECTION

Algorithm 1 Deletion
Input: KEIC instance I = {Tf ,To,Tc}
Output: modified history h∗ = [T∗

f ,T
∗
o]

1: Let [Tf , To] be [T1, T2, ...] and Tc be Tc

2: h← [Tf , To]
3: Queue.push(Tc)
4: while Queue is not empty do
5: q← Queue.pop()
6: for j← 1, 2, ...,|h| do
7: if INCONSISTENT(h[j], q) then
8: z← DELETE(h[j], q)
9: Queue.push(z)

10: h[j]← z
11: end if
12: end for
13: end while
14: return h

We first discard the CoQA data that does not
have any YN questions. Setting the random
seed to 0, we randomly select one YN ques-
tion for the test phase. Once the test question
is selected, the corresponding support sentence
and previous QA pairs are determined. Hence,
the KEIC framework is aligned with CoQA (see
Section 2.4). The remaining task is to modify
the original support sentence and generate an
effective fact that changes the answer.

To ensure the new support sentences are “ef-
fective, fluent, and ethically sound,” we col-
lect them through Amazon Mechanical Turk
(MTurk). Our task is only visible to workers from English-speaking countries with HIT approval
rate ≥ 95% and |HITs| ≥ 1,000 (Karpinska et al., 2021). Each data is distributed to three work-
ers, and we perform a meticulous examination of their results: They must fill in the blank only—
without altering or pasting the context near the blank—so we can replace the old fact with the
new one while maintaining contextualized, if not global, fluency in the story (e.g., the red and
blue text in Figure 3; see Appendix E for our stringent guidelines). We pay each worker $0.1 or
$0.15 in each assignment. Finally, our KEIC dataset consists of 1,317 data in training set (Dtrain)
and 464 in validation (Dval). Each data has at most three non-trivial and effective corrections
to the original CoQA. The average number of turns in the other phase is 8.27 and 8.48, respec-
tively. We denote DKEIC = Dtrain ∪ Dval (|DKEIC | = 1,781). Our dataset is available at:
https://huggingface.co/datasets/cchhueann/keic.

5
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4.2 MODEL SETUP AND EVALUATION METRIC

We test eight LLMs of varying sizes: GPT (OpenAI, 2022; 2023; 2024; 2025), Gemma (Team
et al., 2024), Gemini (Comanici et al., 2025), Vicuna (Zheng et al., 2023b), Llama (Touvron et al.,
2023; Dubey et al., 2024), Claude (Anthropic, 2024; 2025), DeepSeek-R1 (DeepSeek-AI, 2025), and
Qwen (Team, 2025a;b). By default, we set the temperature to 0 to maximize reproducibility. It is
0.6 in “thinking” LLMs: GPT-5, Gemini 2.5, DeepSeek-R1, Claude 3.7 Sonnet, Qwen3, and QwQ.
All the experiments are run three times to stabilize the performance. We utilize GPT-3.5 (0613)
to implement the two external INCONSISTENT and DELETE modules in Algorithm 1 (the prompts
are in Appendix F). In Verification and Deletion, we apply an answer extraction (AE) step (Kojima
et al., 2022) to guide the model in mapping its last response into Yes/No because many responses do
not start with YN (as shown in Figure 3b).

As for evaluation, we report the accuracy metric (“update”) by using the exact match (Rajpurkar
et al., 2016) in the first token of an LLM’s output and the gold answer. We use the term “update”
to denote the LLM reflects the user’s correction in the last turn when answering the YN question,
and “no update” means the LLM sticks to the old knowledge. Hence, the results of (1) “update”
accuracy and (2) the difference between “update” and “no update” (i.e., “update” − “no update”)
should be high in this task.

4.3 BASELINE METHOD (OTC) AND TWO ARRANGEMENT AND INJECTION SETTINGS

We have two baselines: One contains the simplest update phase (OTC), and the other does not. In
the latter case, we directly replace the old fact in the story with a new one, and the goal is to test the
importance of the update phase within a dialogue since its conversation flow is devoid of the update
phase. In the OTC baseline, we conduct two settings (i.e., when users correct themselves):

• Correct After Mistake (CAM): CAM simulates the user immediately corrects after mak-
ing a false statement. It allows the correction to be contextualized to the misinformation,
making it easier for the chatbot to update the stored knowledge in a conversation.

• Correct Before Asking (CBA): CBA simulates the user corrects the false statement before
asking the test question. This scenario benefits the chatbot because the correction phase is
provided in a more contextualized manner to the test phase. An example is in Figure 3a.

Table 1: The conversation flow of all methods in each setting. For example, as the Reiteration phase
is defined to be applied immediately after the correction phase, the conversation flow of Reiteration
with respect to the CAM and CBA setting is TfTcTrToTi and TfToTcTrTi. We report the
input tokens required for GPT-3.5 (0613) on Dval as a reference. AE stands for Answer Extraction.

Setting (Arrangement and Injection) # Input Tokens (Dval) # APIs

Methodology CAM CBA Total (M) per Data per Data AE

OTC (baseline) TfTcToTi TfToTcTi 21.5 516 (base) 1 ✗

Verification TfTcToTiTv TfToTcTiTv 70.5 1,687 (3.3x) 3 ✓

Reiteration TfTcTrToTi TfToTcTrTi 55.2 1,323 (2.6x) 2 ✗

Deletion N.A. (budget constraint) TfToTcTrTdTi 204.9 147,225 (285x) depends ✓

4.4 OTHER PROPOSED METHODS (VERIFICATION, REITERATION, AND DELETION)

As for the other three methods, we adopt the settings of CAM and CBA, as summarized in Table 1.
In this way, we explore the impact of different correction approaches and investigate the conse-
quences of phase arrangements. We also experiment with the oracle performance of Reiteration
(the Reiteration phase is always successful). Hence, the LLM does not need to generate a new story
before answering the test question (# API calls is 1). Regarding the Deletion, since it is far more
expensive, we only select a subset of the correction phase. In Deletion, we evaluate the test question
by (1) incorporating the modified history and by (2) appending it to the Deletion phase (see Table 1).
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5 RESULTS AND DISCUSSION

We plot the OTC, Verification, and Reiteration results of selected LLMs on DKEIC in Figure 4 (the
average accuracy metric over three runs, based on majority voting (Wang et al., 2023) over
the top-K correction utterances). Figure 5 shows the result of GPT-3.5 (0613) on Dval. As for
Figure 6, the y-axis is the difference of update and no update. In the following section, we focus
on a comprehensive analysis of the GPT LLM, using it as an example to systematically gauge the
state-of-the-art LLM’s result. More experiments and analyses are in Appendix H, including (1)
using LLM itself for evaluation, (2) discussion on whether factual data is difficult to edit, and (3)
correct-in-middle (CIM) experiment.
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(b) Verification
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(c) Reiteration

Figure 4: The best setting of the selected LLMs in each KEIC method on DKEIC (other LLMs
not shown in this figure are in Figures 11 and 12 lest it becomes messy). The y-axis is the average
accuracy (update) in three runs. The x-axis is the top-K correction utterances in update (|K| = 15).
The random guess baseline is 50% of update. In Figure 4a, we observe that these state-of-the-art
LLMs still do not attend to context. Due to the cost constraint, we plot the oracle of Reiteration in
Figure 4c (except GPT-3.5 (0125), GPT-4o (mini), Llama-2 (13B), Llama-3.1 (8B), Vicuna (13B),
and QwQ (32B) LLMs); however, we hypothesize that there should be no significant difference in
Reiteration even if a new story is auto-generated (see Figure 10 in Appendix H for comparison).
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Figure 5: The best setting of each method in
GPT-3.5 (0613) on Dval (with standard devia-
tion). In GPT-3.5 (0613), the baseline with no
update phase is 56.5% (worse than the OTC by
2.2%). The Deletion has only one data point due
to the cost.
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Figure 6: The difference between update and no
update in GPT-3.5 (0125) on Dval. From Fig-
ures 5 and 6, we highlight that, compared to
GPT-3.5, GPT-4 LLMs fail to capture the user
update in the OTC baseline.

Transferability of correction phase We first elaborate on our findings that different types of
correction utterances significantly impact the update performance (explicit vs. implicit). For
instance, in GPT-3.5 (0613), we find that six templates, with only new knowledge to fill in, usually
outperform the other nine in Verication, yet they significantly underperform in OTC and Reiteration.
We speculate that the other nine templates contain the negation of old knowledge, so they may
boost GPT-3.5’s KEIC ability to update the answer in the OTC and Reiteration methods. In other
words, these six templates perform poorly in OTC, suggesting GPT-3.5 does not pay attention to the
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correction phase if it only contains new knowledge. Consequently, after we re-question the model
in Verification and tell it to reflect the update, GPT-3.5 may pay more attention to it and replies the
updated answer. As for the other nine templates, we hypothesize that after re-questioning, the model
is confused about which context is correct, which means even if GPT-3.5’s response was indeed
based on new information, it may return to the old one in the Verification phase, implying GPT-3.5
is not confident of its earlier answer. This observation also explains why there is a drastic drop in
update between the performance of K = 5 and 15 in Figure 4a, as the other type of templates
are poor at capturing the information update in different user correction methods. As for
GPT-3.5 (0125), the performance between two types of correction templates diminishes, for we
found that templates with only new knowledge sometimes underperform the others in Verification.
In this section, we refer to the overall performance when top-1, 3, and 5 templates are selected.

Table 2: Percentage of Update/No Update/Upper Bound on DKEIC using GPT-3.5 (0125). The
standard deviations s across three runs are in parentheses. We define the upper bound performance
as follows: for example, to measure the top-5 upper bound in update, we first select the best five
out of the 15 templates. Then, if any of these triggers an LLM to respond correctly based on the
new fact, we consider that the LLM has KEIC capability in this instance. Verif (Reiter) is the
Verification (Reiteration) method. Maj stands for majority voting. K means we select the Top-
K templates that perform best regarding the update. The Verification method can be viewed as
the Chain-of-Thought (CoT) baseline (Wei et al., 2022; Kojima et al., 2022). Even if we apply an
additional answer extraction turn, the output does not always start with a Yes/No (labeled as “N/A”),
which also happens if there is a tie in majority voting. The sum of update and no update is not 100,
as we exclude “N/A” in the table (due to the space).

Update (↑, Maj) No Update (↓, Maj) Upper Bound (↑)
Setting K OTC Verif Reiter OTC Verif Reiter OTC Verif Reiter

CAM

1 51.5(1.5) 43.9(0.3) 64.6(1.0) 38.3(1.3) 55.5(0.2) 27.7(1.1) 51.5(1.5) 43.9(0.3) 64.6(1.0)
3 49.1(1.0) 41.6(0.5) 63.6(0.3) 44.1(1.1) 57.8(0.5) 30.7(0.6) 58.4(1.4) 61.7(0.8) 69.8(0.1)
5 46.0(0.7) 40.7(0.4) 62.4(0.5) 48.2(0.8) 58.6(0.4) 32.6(0.5) 59.1(1.3) 68.2(0.4) 70.5(0.1)
15 32.9(0.4) 38.3(0.5) 55.9(0.8) 62.5(0.3) 61.1(0.5) 40.4(1.0) 60.8(1.7) 80.7(0.4) 72.4(0.4)

CBA

1 67.2(0.3) 42.0(0.6) 71.7(0.9) 26.7(0.1) 57.4(0.6) 22.9(0.6) 67.2(0.3) 42.0(0.6) 71.7(0.9)
3 67.6(0.3) 41.0(0.6) 72.1(0.9) 28.2(0.3) 58.4(0.6) 23.7(0.9) 74.4(0.2) 62.9(2.0) 76.9(0.7)
5 66.6(0.1) 40.6(1.3) 71.8(1.0) 29.9(0.3) 58.8(1.3) 24.5(1.1) 76.5(0.1) 70.5(0.2) 78.9(1.1)
15 50.3(0.8) 36.9(0.8) 63.3(1.1) 46.8(0.6) 62.5(0.8) 33.7(1.1) 77.9(0.1) 83.3(0.6) 80.5(1.2)

GPT-3.5 exhibits a modicum of KEIC In Table 2, our OTC baseline demonstrates that when se-
lecting the best or top-3 templates and making decisions through majority voting, GPT-3.5 (0125),
on average, tends to self-correct by more than 66% in CBA and by around 50% in CAM. Note that
the CBA setting consistently outperforms CAM in OTC, indicating the model tends to give more
importance to sentences that are in proximity to the current turn. If we look at the best template,
CBA surpasses CAM by 15.7%. Similarly, for K = 3 and 5, the CBA setting continues to outper-
form CAM by around 18% to 20%. Unlike OTC, observe that the CAM setting slightly outperforms
CBA in Verification; however, its best result (43.9%) does not outperform OTC (67.6%) even if we
apply an AE step. Though Verification is not as effective as it might be, its upper bound performance
may be one of the most powerful (83.3%). We also employ GPT-4 LLMs to run the OTC baseline;
surprisingly, even with the aid of AE in GPT-4 and GPT-4o, they are more “stubborn” and stick to
the initial context provided by users or their underlying parametric memories. GPT-4 LLMs are gen-
erally recognized to be more intelligent and more discriminative to the input compared to GPT-3.5;
nonetheless, we deduce it is also more susceptible to being misled by the fluctuating conditions and
is vulnerable to inconsistent contexts in this scenario. We leave it as future work (McKenzie et al.,
2023).

Reiteration is better than OTC In Figure 4c, we find that prompting the LLM to reiterate new
fact has a significant improvement among these LLMs. For instance, GPT-3.5 (0125) has around
72% of update in the CBA setting. Furthermore, the best result of update in Reiteration outperforms
the OTC by a large margin (13.1%) in CAM. Lastly, Reiteration has the smallest number of no
update among these approaches. To delve into the data that GPT-3.5 does not update its knowledge,
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we employ GPT-3.5 (0613) to run our Deletion algorithm. We choose the configurations in the best
performance of update of Reiteration in the CBA setting, and then we extract data instances that
GPT-3.5 (0613) consistently retains its old knowledge in Dval. We construct the “hard” dataset as
follows: Each data in the validation set contains three MTurk responses, and we run all of them three
times using the top-3 correction utterances in the CBA setting. After that, we consider the data hard
only if any run produces the same answer at least two times.

Deletion is one of the strongest user correction methods In Table 3, we deduce that it is not
impossible to let GPT-3.5 (0613) self-correct its knowledge, which could update its knowledge
about 75% in Deletion, outperforming Reiteration by 13.3% (see Table 7 in Appendix H). The
update using only one template in Deletion also outnumbers the upper bound of 15 templates in the
OTC (71.1%), which is on par with that in Reiteration (75.4%). Note that our algorithm can edit
51.9% of the “hard” data on average; nonetheless, this also indicates that GPT-3.5 still fails to edit
nearly half of it. Although GPT-3.5 (0613) demonstrates its ability of self-correction, it comes at
the expense of sacrificing around 15% “easy” data that Reiteration is capable of. On top of that, the
cost is considerably high. We conclude the Deletion experiment by extracting the modified history.

Table 3: The result of Deletion (Algorithm 1) on
Dval. Standard deviations are in parentheses.

Data # data Update (↑) No Update (↓)
Validation 464 74.8 (1.7) 24.5 (1.8)
– Hard 144 51.9 (2.2) 47.7 (2.6)
– Easy 320 85.1 (2.1) 14.1 (2.3)

After we initiate a new chat, we find it has
66.2% of update and 33.3% of no update. Ide-
ally, there should be no significant difference
between these two; however, appending the test
phase to the Deletion phase performs much bet-
ter (8.6%) than initiating a new chat—higher
than the difference between the OTC base-
lines (2.2%). We conjecture that repeated in-
structions boost GPT-3.5’s adaptability.

Key Takeaways We present the ultimate goal for intelligent LLMs in the KEIC task: A single up-
date sentence should effectively edit the LLM’s in-context knowledge, mimicking human behavior.
Considering real-time response requirements and the cost of token usage, incorporating an addi-
tional phase for LLMs to reiterate the updated fact through Reiteration is beneficial. Ideally, there
should be no significant difference in how or when users correct themselves. Nevertheless, our find-
ings reveal that clearly negating the false fact is far more effective than simply stating the updated
information. Additionally, our results highlight a noticeable gap between CAM and CBA settings.
Interestingly, the latest “thinking” LLM, including GPT, Gemini, and Claude LLMs, still cannot
solve this task perfectly. Given that these contemporary LLMs have not fully excelled in the KEIC
task, it would be advantageous to dispatch each component of our framework to specialized or more
robust LLM-based system(s) for now. In this work, we leverage the invaluable, human-annotated
CoQA dataset to assess whether LLMs can capture user updates within long utterances and ex-
tended conversations. Real-world data, however, lacks proper labels. While our algorithm can still
be applied by repetitively scanning the entire chat to delete contradictions, it risks overwriting other
important information. Hence, before LLMs are trained with KEIC, it may be beneficial to maintain
a classifier detecting whether a user is updating knowledge, along with one or more systems capable
of handling the “Decomposition” and “Arrangement and Injection” processes in the background.

6 CONCLUSION

As discrepancies arise in dialogue, either from users to correct themselves or from LLMs to start
hallucinating, the capability of LLMs to accurately and efficiently update information is an essential
yet underexplored issue. Inspired by this, we formalize it and present a unified KEIC framework
to decompose the chat history. Then, we propose a structured approach to systematically gauge the
LLMs’ adaptability. We also release a 1,781 human-annotated dataset and standardize the dataset
construction in this challenging task. Extensive studies on these LLMs have shown, in the main,
that the correction phase containing the negation of the false fact performs better, the update phase
is indispensable, its location also affects the result in each approach, Reiteration is an economical
approach, and the empirical results of Deletion algorithm can let the GPT-3.5 LLM update nearly
75% of fact within a paragraph in extended conversations. Most importantly, the KEIC task does
not disappear with time and the scale of LLMs. Our framework and dataset form the foundation for
constructing chatbots that are not only coherent but adaptive for intelligent companionship.
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2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118, 2024.
URL https://arxiv.org/abs/2408.00118.

Qwen Team. Qwen3 technical report, 2025a. URL https://arxiv.org/abs/2505.09388.

Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025b. URL
https://qwenlm.github.io/blog/qwq-32b/.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023. URL https://arxiv.org/abs/2307.09288.

Oriol Vinyals and Quoc Le. A neural conversational model, 2015. URL https://arxiv.org/
abs/1506.05869.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=1PL1NIMMrw.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed H. Chi,
Quoc V Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large lan-
guage models. In Advances in Neural Information Processing Systems, 2022. URL https:
//openreview.net/forum?id=_VjQlMeSB_J.

Wei Wei, Quoc Le, Andrew Dai, and Jia Li. AirDialogue: An environment for goal-oriented di-
alogue research. In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.),
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp.
3844–3854, Brussels, Belgium, October-November 2018. Association for Computational Lin-
guistics. doi: 10.18653/v1/D18-1419. URL https://aclanthology.org/D18-1419/.

Sean Welleck, Jason Weston, Arthur Szlam, and Kyunghyun Cho. Dialogue natural language infer-
ence. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguis-
tics, pp. 3731–3741, Florence, Italy, July 2019. Association for Computational Linguistics. doi:
10.18653/v1/P19-1363. URL https://aclanthology.org/P19-1363.

Jian Xie, Kai Zhang, Jiangjie Chen, Renze Lou, and Yu Su. Adaptive chameleon or stubborn sloth:
Revealing the behavior of large language models in knowledge conflicts. In The Twelfth Interna-
tional Conference on Learning Representations, 2024. URL https://openreview.net/
forum?id=auKAUJZMO6.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
and Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question
answering. In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.), Proceed-
ings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 2369–
2380, Brussels, Belgium, October-November 2018. Association for Computational Linguistics.
doi: 10.18653/v1/D18-1259. URL https://aclanthology.org/D18-1259.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
ReAct: Synergizing reasoning and acting in language models. In International Conference on

14

https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2505.09388
https://qwenlm.github.io/blog/qwq-32b/
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/1506.05869
https://arxiv.org/abs/1506.05869
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://aclanthology.org/D18-1419/
https://aclanthology.org/P19-1363
https://openreview.net/forum?id=auKAUJZMO6
https://openreview.net/forum?id=auKAUJZMO6
https://aclanthology.org/D18-1259


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Learning Representations (ICLR), 2023. URL https://openreview.net/pdf?id=WE_
vluYUL-X.

Sanghyun Yi, Rahul Goel, Chandra Khatri, Alessandra Cervone, Tagyoung Chung, Behnam He-
dayatnia, Anu Venkatesh, Raefer Gabriel, and Dilek Hakkani-Tur. Towards coherent and en-
gaging spoken dialog response generation using automatic conversation evaluators. In Proceed-
ings of the 12th International Conference on Natural Language Generation, pp. 65–75, Tokyo,
Japan, October–November 2019. Association for Computational Linguistics. doi: 10.18653/v1/
W19-8608. URL https://aclanthology.org/W19-8608.

Mert Yuksekgonul, Federico Bianchi, Joseph Boen, Sheng Liu, Zhi Huang, Carlos Guestrin, and
James Zou. Textgrad: Automatic ”differentiation” via text, 2024. URL https://arxiv.
org/abs/2406.07496.

Ningyu Zhang, Yunzhi Yao, Bozhong Tian, Peng Wang, Shumin Deng, Mengru Wang, Zekun Xi,
Shengyu Mao, Jintian Zhang, Yuansheng Ni, Siyuan Cheng, Ziwen Xu, Xin Xu, Jia-Chen Gu,
Yong Jiang, Pengjun Xie, Fei Huang, Lei Liang, Zhiqiang Zhang, Xiaowei Zhu, Jun Zhou, and
Huajun Chen. A comprehensive study of knowledge editing for large language models, 2024.
URL https://arxiv.org/abs/2401.01286.

Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur Szlam, Douwe Kiela, and Jason Weston. Per-
sonalizing dialogue agents: I have a dog, do you have pets too? In Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
2204–2213, Melbourne, Australia, July 2018. Association for Computational Linguistics. doi:
10.18653/v1/P18-1205. URL https://aclanthology.org/P18-1205.

Zihan Zhang, Meng Fang, Ling Chen, Mohammad-Reza Namazi-Rad, and Jun Wang. How do
large language models capture the ever-changing world knowledge? a review of recent advances.
In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing, pp. 8289–8311, Singapore, December
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.516. URL
https://aclanthology.org/2023.emnlp-main.516/.

Siyan Zhao, Mingyi Hong, Yang Liu, Devamanyu Hazarika, and Kaixiang Lin. Do LLMs recognize
your preferences? evaluating personalized preference following in LLMs. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=QWunLKbBGF.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before use: Im-
proving few-shot performance of language models. In Marina Meila and Tong Zhang (eds.),
Proceedings of the 38th International Conference on Machine Learning, volume 139 of Pro-
ceedings of Machine Learning Research, pp. 12697–12706. PMLR, 18–24 Jul 2021. URL
https://proceedings.mlr.press/v139/zhao21c.html.

Ce Zheng, Lei Li, Qingxiu Dong, Yuxuan Fan, Zhiyong Wu, Jingjing Xu, and Baobao Chang. Can
we edit factual knowledge by in-context learning? In Houda Bouamor, Juan Pino, and Kalika
Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 4862–4876, Singapore, December 2023a. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.emnlp-main.296. URL https://aclanthology.org/2023.
emnlp-main.296.

Chujie Zheng, Jinfeng Zhou, Yinhe Zheng, Libiao Peng, Zhen Guo, Wenquan Wu, Zheng-Yu Niu,
Hua Wu, and Minlie Huang. CDConv: A benchmark for contradiction detection in Chinese con-
versations. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing, pp. 18–29, Abu Dhabi, United Arab Emirates, December 2022. Association for Com-
putational Linguistics. URL https://aclanthology.org/2022.emnlp-main.2.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging LLM-as-a-judge with MT-bench and chatbot arena. In Thirty-seventh Conference on
Neural Information Processing Systems Datasets and Benchmarks Track, 2023b. URL https:
//openreview.net/forum?id=uccHPGDlao.

15

https://openreview.net/pdf?id=WE_vluYUL-X
https://openreview.net/pdf?id=WE_vluYUL-X
https://aclanthology.org/W19-8608
https://arxiv.org/abs/2406.07496
https://arxiv.org/abs/2406.07496
https://arxiv.org/abs/2401.01286
https://aclanthology.org/P18-1205
https://aclanthology.org/2023.emnlp-main.516/
https://openreview.net/forum?id=QWunLKbBGF
https://openreview.net/forum?id=QWunLKbBGF
https://proceedings.mlr.press/v139/zhao21c.html
https://aclanthology.org/2023.emnlp-main.296
https://aclanthology.org/2023.emnlp-main.296
https://aclanthology.org/2022.emnlp-main.2
https://openreview.net/forum?id=uccHPGDlao
https://openreview.net/forum?id=uccHPGDlao


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Zexuan Zhong, Dan Friedman, and Danqi Chen. Factual probing is [MASK]: Learning vs. learn-
ing to recall. In Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-Tur,
Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao Zhou (eds.), Pro-
ceedings of the 2021 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, pp. 5017–5033, Online, June 2021. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.398. URL https:
//aclanthology.org/2021.naacl-main.398.

16

https://aclanthology.org/2021.naacl-main.398
https://aclanthology.org/2021.naacl-main.398


864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

Appendix A is the related work, Appendix B lists 15 correction templates, Appendix C visualizes
the Deletion approach, Appendix D contains the proof of our algorithm, Appendix E details how we
validate MTurk responses and how hard our non-trivial information update is, Appendix F provides
the exact prompt to implement two modules in our algorithm, Appendix G gives more time/cost
estimations, and Appendix H has more experiments.

ETHICS STATEMENT

Any LLM shall not be treated as an authoritative source of facts, even though we test LLMs’ adapt-
ability and use their outputs as a knowledge base. It is important to note that our work could be
potentially exploited by malicious users to produce harmful responses; hence, it should not be used
in any harmful way. Our KEIC dataset is constructed based on the CoQA (and should follow its
license), and the correction templates are excerpted from the DailyDialog dataset. On the other
hand, the new support sentences are generated by MTurk workers and validated by us. We provide
them with ethics statements and manually filter out unsafe or unethical responses while preserving
effectiveness. Nevertheless, as our primary goal is to modify existing knowledge in a passage, some
results might still be offensive or inappropriate for some people. Our framework can be used for
training. To avoid data contamination, however, the update sentences generated by workers should
be used solely for inference unless a publicly available technical report or manuscript explicitly
mentions they are used for training to ensure fairness in LLM evaluations.

LIMITATIONS

KEIC Dataset Our dataset is limited to YN questions and does not cover various open-domain
questions. However, as we take a step forward to construct our dataset in this self-correction task—
which can also be viewed as the zero-shot KE task in chat format (without editing parameters)—we
speculated it would be much easier to edit the misinformation within a short utterance.4 Thus, our
goal is to find an existing dataset where a false fact lies within a long context. Hence, we select
CoQA. After that, we resort to simple YN questions and try to keep our evaluation method noise-
free so as not to increase the interference (as in the case of using LLM itself for evaluation; see
Appendix H.5). Another direction for future work is to expand our work (as there are 5,000 YN
data left unlabeled in the CoQA training set) or test other open-domain questions in the CoQA.

KEIC Framework Our framework is designed for multi-turn chat format, so it may require “fill-
ing” or “padding” in some datasets during the mapping process, in the sense that they are not so
“natural.” For example, the bot utterances in the false and update phase are not in the original
CoQA data (e.g., b1 and b7 in Figure 3a), nor they are all inherently learned or generated by LLMs.
Note, however, that these pre-defined sequences are not necessarily required when applying
our framework to other datasets (see Generalizability of KEIC Framework to Real-World
Datasets below). We pre-fined these texts in this paper as they can be used for evaluating the cur-
rent KEIC capabilities of LLMs uniformly—though, admittedly, all human-generated prompts are
not optimal in this sense—and save the API calls. To assess whether they play an important role
in this task, we additionally conduct the ablation analysis by removing these texts in the OTC (see
Table 5 in Appendix H). Another direction for future work is to propose new approaches to extend
the update phase and explore various combinations of existing in-context KE methods.

Experiments This paper is an in-depth study of the KEIC task, yet the experiments do not cover
other open-domain LLMs. Consequently, constantly testing whether they are on par with GPT-3.5
is also a promising avenue of research. Regarding correction template generation, while we employ
the mining approach to extract 15 templates in this paper, we have not conducted an exhaustive eval-
uation of possible text combinations in other templates due to the cost constraint (they are released

4LLMs may fail at either locating the false utterance within a long story or overwriting it with the updated
fact. Incidentally, our ablation analysis (without FP in Table 5) tests this scenario by removing the context after
the support sentence. We find that the percentage of update increases when the passage is abridged.
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in Appendix B.3). When evaluating our four methodologies, we presume that specific processes are
error-free without confirming whether all these processes fulfill our intended requirements. As a
result, it is also worthwhile to conduct in-depth analyses of Reiteration (e.g., how successful LLMs
are in reiterating the story) and Deletion (e.g., the two modules and extraction templates used in our
algorithm). Similar to the oracle of Reiteration, it is also worth experimenting with the oracle of
Verification. In the Deletion method, there are opportunities to investigate several approaches for
condensing excessively long text that exceeds the conversation limit. Various operations of DELETE,
including masking the old information, have not been implemented. Owing to the cost, we have not
tested whether the Deletion method can substantially boost the performance of other “poor” tem-
plates with only one slot for new knowledge. Other limitations (such as modifying multiple facts
simultaneously or handling more implicit forms of user correction like sarcasm) are beyond the
scope of this research, and we leave them for future work.

MODEL CONFIGURATION

Half precision is used in the Vicuna and Llama LLMs to match the Gemma LLM. We do not set
the system message except in the Vicuna and Llama LLMs. The QwQ and DeepSeek-R1 LLMs
are inferenced via GroqCloud.5 The Claude, Gemini, Llama-3.3 (70B) Qwen3 (14B) LLMs are
inferenced via OpenRouter.6

Model Configuration “thinking”? open-source?

GPT-5 (mini) gpt-5-mini-2025-08-07 Y N
GPT-5 (nano) gpt-5-nano-2025-08-07 Y N
GPT-4o gpt-4o-2024-08-06 N N
GPT-4o (mini) gpt-4o-mini-2024-07-18 N N
GPT-4 gpt-4-1106-preview (2023) N N
GPT-3.5 gpt-3.5-turbo-0125 (2024) N N

gpt-3.5-turbo-0613 (2023) N N

Gemini 2.5 (Flash) gemini-2.5-flash Y N
Gemini 2.5 (Flash-Lite) gemini-2.5-flash-lite Y N

Gemma-2 (27B) gemma-2-27b-it N Y
Gemma-2 (9B) gemma-2-9b-it N Y
Gemma-2 (2B) gemma-2-2b-it N Y

Vicuna (33B) vicuna-33b-v1.3 N Y
Vicuna (13B) vicuna-13b-v1.5-16k N Y
Vicuna (7B) vicuna-7b-v1.5-16k N Y

Llama-3.3 (70B) Llama-3.3-70B-Instruct N Y
Llama-3.2 (3B) Llama-3.2-3B-Instruct N Y
Llama-3.2 (1B) Llama-3.2-1B-Instruct N Y
Llama-3.1 (8B) Llama-3.1-8B-Instruct N Y
Llama-3 (8B) Meta-Llama-3-8B-Instruct N Y
Llama-2 (13B) Llama-2-13b-chat-hf N Y
Llama-2 (7B) Llama-2-7b-chat-hf N Y

Claude 3.7 Sonnet claude-3.7-sonnet:thinking Y N
Claude 3.5 Haiku claude-3.5-haiku-20241022 N N

DeepSeek-R1 (70B) deepseek-r1-distill-llama-70b Y Y

QwQ (32B) qwen-qwq-32b Y Y
Qwen3 (14B) qwen3-14b Y Y
Qwen3 (4B) Qwen3-4B Y Y
Qwen3 (1.7B) Qwen3-1.7B Y Y
Qwen3 (0.6B) Qwen3-0.6B Y Y

5https://console.groq.com/
6https://openrouter.ai/
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GENERALIZABILITY OF KEIC FRAMEWORK TO REAL-WORLD DATASETS

Apart from the CoQA data shown in Section 2.4, we provide an example of real-world conversational
data in the TOD task that our framework applies to, which also does not contain any pre-defined
utterances (as opposed to the CoQA due to its constraint in multi-turn framework):

u1: I am looking for a restaurant. I would like something cheap that has Chinese
food.
b1: I’ve heard good things about the Lucky Star. Need a reservation?
u2: Yes, could you make a reservation for 1 at 20:00 on Saturday?
b2: Your booking was successful. The table will be reserved for 15 minutes.
Reference number is: FDLFKTZM.
u3: Thank you so much for your help!
b3: You’re welcome. Thank you! Have a good day now!
u4: Thanks, you too. Goodbye.
b4: Thank you for using Cambridge Town Info Centre. Good-bye.

Let’s suppose the labeled “1” in u2 is the misinformation that we want to correct. Then, we can
duplicate this turn (T2) and replace the user utterance with an effective user correction (e.g., “Oh,
I’m sorry. Should have been 7, not 1.”). Next, the test question corresponding to this change can
be either “For how many people would I like to make the restaurant reservation?” (open-domain
question) or “Would I like to make a restaurant reservation for 7 people?” (YN question). Finally,
this data will be (OTC in the CAM setting):

To

u1: I am looking for a restaurant. I would like something cheap that has Chinese food.
b1: I’ve heard good things about the Lucky Star. Need a reservation?

Tf

u2: Yes, could you make a reservation for 1 at 20:00 on Saturday?
b2: Your booking was successful. The table will be reserved for 15 minutes.
Reference number is: FDLFKTZM.

Tc

u3: Oh, I’m sorry. Should have been 7, not 1.
b3: Your booking was successful. The table will be reserved for 15 minutes.
Reference number is: FDLFKTZM.

To

u4: Thank you so much for your help!
b4: You’re welcome. Thank you! Have a good day now!
u5: Thanks, you too. Goodbye.
b5: Thank you for using Cambridge Town Info Centre. Good-bye.

Ti

u6: For how many people would I like to make the restaurant reservation?
b6: [Chat Completion]

In this data, the false phase Tf = {T2}, update phase Tu = {T3}, test phase Ti = {T6}, and other
phase To = {T1, T4, T5}.

EXPERIMENTS CONDUCTED

In Table 4, we tabulate experiments conducted on various LLMs in this paper. “Verif” stands for the
Verification method. “Reit” stands for the Reiteration method.
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Table 4: This table summarizes the experiments conducted on various LLMs.

Dtrain (1,317 data) Dval (464 data)

Model OTC Verif Reit OTC Verif Reit Notes

GPT-5 (mini)∥ ✓ ✗ ✓† ✓ ✗ ✓†

GPT-5 (nano)∥ ✓ ✓ ✓† ✓ ✓ ✓†

GPT-4o ✓∗ ✗ ✗ ✓∗ ✗ ✗

GPT-4o (mini) ✓ ✓ ✓ ✓ ✓ ✓ also has Reiteration (oracle) result

GPT-4 ✗ ✗ ✗ ✓∗ ✗ ✗

GPT-3.5 (0125) ✓ ✓ ✓ ✓ ✓ ✓ has TEXTGRAD result on Dval

GPT-3.5 (0613) ✓ ✓ ✓‡ ✓ ✓ ✓ has Deletion (part) on Dval &
ablation analysis on DKEIC

Gemini 2.5 (Flash)∥ ✓ ✗ ✓† ✓ ✗ ✓†

Gemini 2.5 (Flash-Lite)∥ ✓ ✓ ✓† ✓ ✓ ✓†

Gemma-2 (27B) ✓ ✓ ✓† ✓ ✓ ✓†

Gemma-2 (9B) ✓ ✓ ✓ ✓ ✓ ✓ also has Reiteration (oracle) result

Gemma-2 (2B) ✓ ✓ ✓ ✓ ✓ ✓ also has Reiteration (oracle) result

Vicuna (33B) ✓ ✗ ✓† ✓ ✗ ✓†

Vicuna (13B) ✓ ✓ ✓ ✓ ✓ ✓ also has Reiteration (oracle) result

Vicuna (7B) ✓ ✓ ✓ ✓ ✓ ✓ also has Reiteration (oracle) result

Llama-3.3 (70B) ✓∗ ✓ ✓† ✓∗ ✓ ✓†

Llama-3.2 (3B) ✓ ✓ ✓ ✓ ✓ ✓ also has Reiteration (oracle) result

Llama-3.2 (1B) ✓ ✓ ✓ ✓ ✓ ✓ also has Reiteration (oracle) result

Llama-3.1 (8B) ✓ ✓ ✓ ✓ ✓ ✓ also has Reiteration (oracle) result

Llama-3 (8B) ✓ ✓ ✓ ✓ ✓ ✓ also has Reiteration (oracle) result

Llama-2 (13B) ✓ ✓§ ✓ ✓ ✓§ ✓ also has Reiteration (oracle) result

Llama-2 (7B) ✓ ✓§ ✓∥ ✓ ✓§ ✓∥ also has Reiteration (oracle) result

Claude 3.7 Sonnet∥ ✓ ✓ ✓† ✓ ✓ ✓†

Claude 3.5 Haiku∥ ✓∗ ✗ ✓† ✓∗ ✗ ✓†

DeepSeek-R1∥ ✓ ✓ ✓† ✓ ✓ ✓†

QwQ (32B)∥ ✓ ✗ ✓ ✓ ✗ ✓ also has Reiteration (oracle) result

Qwen3 (14B)∥ ✓ ✓ ✓† ✓ ✓ ✓†

Qwen3 (4B)∥ ✓ ✓ ✓† ✓ ✓ ✓†

Qwen3 (1.7B)∥ ✓ ✗ ✓† ✓ ✗ ✓†

Qwen3 (0.6B)∥ ✓ ✓ ✓† ✓ ✓ ✓†

∗ An additional answer extraction (AE) is used in the OTC; otherwise, the update is suspiciously low.
† We only conduct the oracle of Reiteration due to the limitation of budgets/computing resources.
‡ We only experiment the top-6 templates from Dval due to the budget constraint.
§ During the evaluation, the last token in the bot response is also considered (as opposed to the standard

evaluation in Section 4.2), or the update is suspiciously low. We do not use this across other methods or
LLMs since it has zero or little gains from this. Moreover, they should directly answer the user’s Yes/No
question (especially in the AE step of Verification) instead of articulating reasons, apologizing, etc.

∥ We remove all the tokens before “</think>” and remove the restriction that Yes/No should always be at
the beginning. That is, they can be anywhere within the response (“loose” exact match). Note that in
Llama-2 (7B)’s Reiteration and Claude 3.5 Haiku’s OTC and Reiteration, we also use “loose” exact match
even though they are “non-thinking” LLMs.
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A RELATED WORK

On top of adaptability, consistency has long been considered an ongoing and formidable challenge
in the domain of chatbot development (Vinyals & Le, 2015; Li et al., 2016; Zhang et al., 2018), and
a plethora of training methods has been put forward in an attempt to bolster the coherence of chatbot
responses (Yi et al., 2019; Li et al., 2020; Bao et al., 2021; Ouyang et al., 2022; Rafailov et al.,
2023; Ethayarajh et al., 2024). To gauge the aptitude of a chatbot in maintaining consistency, exist-
ing benchmarks that focus on contradiction detection have been employed (Welleck et al., 2019; Nie
et al., 2021; Zheng et al., 2022). These dialogue benchmarks, on the whole, categorize contradictory
responses by chatbots as erroneous, and a common thread amongst most of them is the objective to
deter chatbots from generating responses that conflict with their previous statements. Nevertheless,
an often overlooked aspect of these benchmarks is the dynamism of natural conversations—they
do not consider the information in earlier chat may have been rendered obsolete by the user. In
such cases, to align with the user’s updated information or ever-changing world knowledge, we
highlight that the chatbot sometimes even needs to contradict its previous in-context response or
underlying parametric memory to ensure the conversation remains accurate and coherent. We
hypothesize that these conversational datasets, although aiming to improve an LLM’s consistency
and reduce self-contradiction is of paramount importance, may hamper its adaptability—an emerg-
ing issue of contemporary LLMs. In light of this, balancing between the two seemingly paradoxical
yet highly correlated tasks during training would be one of the key challenges and opportunities for
future work (Rafailov et al., 2023).

In previous work, knowledge editing (KE) typically involved proposing an efficient methodology to
modify the parameters of an LLM (De Cao et al., 2021; Mitchell et al., 2022a; Meng et al., 2023).
Efficient as they may be, these approaches are vulnerable to overfitting, where the edited LLMs do
not generalize well on other inputs or tasks (Cohen et al., 2024). Concurrently, there has been a
surge in exploiting additional system(s) and keeping the LLM unchanged (Mitchell et al., 2022b;
Murty et al., 2022). To this end, their frameworks generally can be broken down into three compo-
nents: a memory storage system that acts as a new knowledge base, a scope classifier that determines
whether the input sequence is relevant to the external memory, and a counterfactual model trained
on new knowledge. In parallel, there exist approaches that utilize external sources or specialized
LLMs to aid or calibrate model predictions (Pan et al., 2019; Yao et al., 2023; Feng et al., 2024; Gou
et al., 2024). In sum, these methods require either parameter modification or additional systems;
they often struggle with the rapid change of information or are incompatible with online conver-
sations (Kamoi et al., 2024; Miao et al., 2024; Zhang et al., 2024). Each fact in the previous KE
datasets is usually a short sentence (De Cao et al., 2021; Meng et al., 2022; Lin et al., 2022), focus-
ing on querying a specific real-world knowledge. On the other hand, the DIALFACT dataset aims to
improve fact-checking performance in chat format (Gupta et al., 2022), yet the dataset is not suit-
able for assessing an LLM’s long-term adaptability. Regarding the QA datasets for benchmarking an
LLM’s self-correction capability, there are HotpotQA (Yang et al., 2018), CommonsenseQA (Tal-
mor et al., 2019) and STRATEGYQA (Geva et al., 2021), to name a few. However, these datasets
do not simulate human interactions in long-term dialogue either. To address this gap, we design the
KEIC framework and create our dataset based on the CoQA (Reddy et al., 2019) in this standard,
which applies to conversational datasets (e.g., in the task-oriented dialogue (TOD) task (Wei et al.,
2018; Budzianowski et al., 2018; Chen & Huang, 2025))7 and non-conversational (e.g., math or
coding) ones.8 Our framework serves as a stepping stone for standardizing dataset construction and

7In the TOD task, the user intents or slot values are discretized into slots. Even though the slot values in these
datasets may change, we found that there is no explicit task aiming to let dialogue systems correct the previous
old intents to our knowledge—at the very least, there are no corresponding action tokens to let them overwrite
the user’s status. The TOD task focuses on (1) expanding the user states in a single domain incrementally or (2)
performing multiple tasks simultaneously. For future work, the act type set should be expanded (e.g., Hotel-
Inform-Update; not merely Hotel-Inform) because the model should actively detect whether the user introduces
new information that contradicts the underlying dialogue state(s) in every turn.

8Take a simple math problem as an example for non-conversational data. A user initially asked an LLM to
evaluate the math question “2 + 3 = ?”. After it responds with “5” (in the false phase), the user can say “Wrong.
It’s not 2, but 4” in the update phase (the entity value “2” is replaced by an effective knowledge update “4”),
and then ask the LLM what the final answer is in the test phase (in this example, an LLM could also directly
correct its answer to 7 within the update phase). Concerning the Reiteration approach, we can ask the LLM
what the new math question is in the subsequent turn, where an LLM should respond “4 + 3 = ?”.
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could facilitate the evaluation of future LLMs across different domains, particularly in aligning user
updates or addressing hallucination, the long-standing problem.

B ALL CORRECTION TEMPLATES USED AND KEYWORDS FOR MINING
APPROACH

We first define 15 keywords (Appendix B.1) to extract the sentences from the DailyDialog dataset,
then we modify it and generate 15 templates (Appendix B.2) in our experiments. In Appendix B.3,
we release all the mined sentences pertaining to human correction utterances in DailyDialog, which
researchers may find useful as it alleviates the need for prompt engineering.

B.1 FIFTEEN KEYWORDS FOR MINING DAILYDIALOG

[“sorry”, “error”, “actual”, “correct”, “mistake”, “mistook”, “oops”, “apologize”, “misunder”, “un-
derst”, “clarif”, “should be”, “forget about”, “forgot about”, “wrong”]

B.2 FIFTEEN CORRECTION TEMPLATES

In the following templates, [O] is replaced by old knowledge, and [N] is the slot for new knowl-
edge. The correction phase (Tc) contains 15 diverse templates that fall into two categories (i.e., how
users correct themselves): Nine templates (index 1 to 9) require the incorporation of both old and
new knowledge for completion, while the remaining six templates (index 10 to 15) feature a single
slot for new knowledge.

1. I think “[O]” is wrong, so it should be “[N]”
2. Oh, I’m sorry. Should have been “[N],” not “[O]”
3. Something is wrong with the story. You can correct it by replacing “[O]” with “[N]”
4. There’s a problem with the story. There’s a mistake on “[O].” It should be “[N]”
5. I wouldn’t say that. “[O]” seems to be correct but actually “[N]”
6. Wrong. It’s not “[O],” but “[N]”
7. No, “[O]” sounds wrong. “[N]”
8. I’m sorry to bring this up, but I mistakenly gave you “[O].” In fact, “[N]”
9. Change “[O]” to “[N]” That was the only thing that I saw that was wrong in the story.

10. Actually, “[N]”
11. It’s “[N].” Sorry. I forgot that the story has been updated.
12. Believe it or not, the truth is the opposite. “[N]”
13. I think there might be an error in the story. I think that “[N]”
14. I think I must have heard wrong. The truth is “[N]”
15. Oh, my mistake. “[N]” I’m sorry for the error.

B.3 SENTENCES MINED FROM DAILYDIALOG

This section contains the prototype of our 15 correction templates used in the correction phase.

B.3.1 TRAINING SET

• Sam, I am so sorry. It was your birthday yesterday and I completely forgot about it.
• Maybe you can correct it by going to a driving range before you play again.
• There’s problem with my bank statement. There’s a mistake on it.
• I wouldn’t say that. They seem to be on good terms but actually they always speak ill of

each other.
• Wrong. It’s not a place name, but a passionate act.
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• No, it sounds wrong. He was born in the 16th century.
• I’m sorry, I didn’t mean to forget our wedding anniversary.
• I thought she was going to call when she was done shopping. It was a misunderstanding.

She was literally screaming on the phone over this.
• Excuse me, Professor. I think there might be an error in my test score. I think that the

percentage is incorrect.
• I think you must have heard wrong. The truth is we are going to be taken over by Trusten.
• Oh, I’m sorry. It completely slipped my mind.
• Well, Yes. There are something wrong actually. Perhaps you can give me some advice.
• It looks like some kind of mistake.
• I think there’s been a misunderstanding!
• Thank you for pointing that out. I mistakenly gave you your friend’s breakfast.
• Oh, I am sorry sir. I forgot to explain that to you. This one is an allowance slip. We made

a mistake in your bill and overcharged you 120 dollars.
• Oh, my mistake. The reservation is for a suite and it is a non-smoking room with a king

bed. I’m sorry for the error.
• I’m afraid there has been a mistake.
• Oh. I made a mistake. I thought the guy on the right was Peckham.
• I apologize. This should not have to be this way.

B.3.2 VALIDATION SET

• Believe it or not, it has the opposite effect. Employees are actually more productive on
casual days.

• Excuse me. Something is wrong with my bank card. Can you help me?
• Oops, no, Daddy can’t watch American Idol, either!
• That was the only thing that I saw that was wrong with the apartment.
• Oh, I’m sorry. should have been 2135-3668, not 3678. I’ve given you a wrong number.
• One moment, please. I have to check if there are rooms available. I’m sorry, ladies. We

have only two double rooms available but they are on different floors. Would you mind
that?

• I’m embarrassed! I forgot completely about them. I’m terribly sorry.
• I’m sorry. Something is wrong with my taxi.

B.3.3 TEST SET

• I think it’s a distance of 180 kilometers from here to London, so it should be a two-hour
drive on the motorway.

• I’m afraid there’s been a mistake.
• Actually, fruits and veggies are really good for you.
• I’m sorry to bring this up, but would it be possible for you to write me a letter of recom-

mendation before you go?
• Sorry, I forgot. I don’t like seafood, neither.
• Oops, cancel that. Change the second call to 7 thirty will you, please?
• Actually, the company will provide you with all of these supplies.
• Well, actually two-thirds of Americans may avoid these places.
• It’s traditional Chinese Medicine. I mix it with hot water like tea. Sorry. I forgot about it.
• I completely forgot about your cat allergy. I took care of a cat for my friend here a few days

ago.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Computational Linguistics Volume 1, Number 1

Tf

u1: Read and memorize the following story.
Story: CHAPTER XII “Throw your coat down anywhere, Miss Baldwin,” Wingate
invited, as he ushered that young lady into his rooms soon after eleven o’clock on
the following evening...
==========
Have you memorized the story?
b1: Yes, I have memorized the story.

Tp

u2: Who did Wingate talk to?
b2: Miss Baldwin
u3: What is her first name?
b3: Sarah
...
u6: On the same evening?
b6: No

Tc

u7: Actually, “he ushered that old lady into his rooms”
b7: No problem at all! I have updated my memory of the story with the correction you
provided. Thank you for letting me know.

Tr

u8: What’s the new story with the correction? Output new story and nothing else.
b8: [Chat Completion]

Td

u9: Story = """[Story Completion]""" Correction = """[Correction Completion]"""
Which parts in the story contradict the correction? If the story entails the
correction, output ‘NO MODIFICATION’. Let’s read the story line by line.
List all the contradictions one by one, if any.
b9: [Chat Completion]
u10: Can you modify the story, one by one, so that the correction entails the story?
b10: [Chat Completion]
u11: QA pair = """ [QA Completion]""" Correction = """[Correction Completion]"""
Does the QA pair contradict the correction? If the QA pair entails the correction,
output ’NO MODIFICATION’. If the QA pair contradicts the correction, explain
why they are contradictory in one sentence. If they are in a neutral relation,
output ’NO MODIFICATION’. Let’s think step by step.
b11: [Chat Completion]
u12: Can you modify the QA pair so that it entails the correction? DO NOT
modify the QA pair by copying the correction. Let’s think step by step.
b12: [Chat Completion]
...
(until Deletion Algorithm terminates)

Ti

ui: Is Sarah old?
bi: [Chat Completion]

Figure 6
The conversation flow of the Deletion methodology. Bold text in from u9 to ui−1 are the
template used in Td. Note that “[Story Completion]” and “[QA Completion]” are the
slots for the h[j], while “[Correction Completion]” is the slot for the q in Algorithm 1.
This figure follows the same convention as depicted in Figure 4.

and ask the model to generate text R′ such that it is an effective information update (in

14

Figure 7: Deletion (Tu = {Tc,Tr,Td})

C THE PROMPT FOR THE DELETION METHOD

The Deletion method is visualized in Figure 7, which follows the same convention as Figure 3.

D CORRECTNESS OF DELETION ALGORITHM

Before we start the proof, we state the following three main objectives (proof sketch):

1. The Deletion algorithm will fix the inconsistent context (Lemma 1).
2. For each edit, the consistency still holds within each turn and the entire conversation history

(Lemma 2).
3. The Deletion algorithm will halt (Lemma 3).

In this paragraph, we further elaborate on the initiative of our Deletion approach. In Section 3, recall
that we mention “even if the false text is corrected, we still need to modify other contexts in the chat
history.”
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In other words, granted those approaches are effective, we may rely heavily on the following condi-
tion: The fact is solely within the support sentence in the story, and no other context that excludes it
can answer the question correctly. We formally define it as follows:

∀C ∈ P \R s.t. A† ∈ (C,Q,A†) and A† ̸= A (3)

In reality, it is not always true. That is,

∃C ∈ P \R s.t. A† ∈ (C,Q,A†) and A† = A (4)

To prove our algorithm summarized in Algorithm 1 is correct, we shall begin by introducing the
notations employed within this Appendix.

Notation 1. Let x, y, z be the text string. |x| denotes the number of of words in x. Let S(x) =
{M(x′) : x′ ∈ x} be the set of subject-object relation triplets of x. Let the history h = [Tf ,To] =
[T1, T2, ..., Tm] be the m-turn conversation (where m ≥ 1), and Tc = Tc is the correction turn that
contains (initial) effective knowledge (R′

i, Qi, A
′
i). Define the text space C = {P}∪{(Ql, Al) : l ∈

[1, i−1]}, CRi = {C : C ∈ C∧A† ∈ (C,Qi, A
†)∧A† = Ai}, and C¬Ri = C \CRi . For readability,

we omit the subscript of Ri, Qi, and Ai. Note that CR ⊂ C and C = h.9

The definition of CR may seem daunting, but it simply conveys that it is the text space containing all
the text strings related to the old knowledge in the passage and previous QA pairs. Likewise, C¬R is
the text space where any text is unrelated to the old knowledge.

Definition 1. Let R× be the contradiction relation. Define

R×(x, y) =

{
1 iff y contradicts x
0 otherwise

Proposition 1 (symmetric of R×). Let p1, p2 be the text. R×(p1, p2) = R×(p2, p1).

Proposition 2. If R×(y, x) = 0 and R×(z, x) = 0, then R×(y ∪ z, x) = 0.

Proposition 3. If R×(z, x) = 0 and R×(z, y) = 0, then R×(z, x ∪ y) = 0.

Example 1. ∀x ∈ CR,R×(x,R
′) = 1.

Example 2. ∀x ∈ C¬R,R×(x,R
′) = 0.

Definition 2. Let R◦ be the entailment relation. Define

R◦(x, y) =

{
1 iff y entails x
0 otherwise

Proposition 4 (transitive of R◦). Let p1, p2, p3 be the text. If R◦(p2, p1) = 1 and R◦(p3, p2) = 1,
then R◦(p3, p1) = 1.

Proposition 5. If R◦(y, x) = 1 and R×(z, x) = 0, then R◦(y ∪ z, x) = 1.

Proposition 6. If R◦(z, x) = 1 and R×(z, y) = 0, then R◦(z, x ∪ y) = 1.

Corollary 1. Given n is finite and pi is the text ∀i ∈ [1, n]. If R◦(pi+1, pi) = 1 ∀i ∈ [1, n − 1],
then R◦(pn, p1) = 1.

Corollary 2. If R◦(x, y) = 1, then R×(y, x) = 0.

Proof. Assume R×(y, x) = 1 is true, then R×(x, y) = 1 by Proposition 1, which contradicts our
assumption that R◦(x, y) = 1.

Corollary 3. Given p1, ..., pn and R◦(pi+1, pi) = 1 ∀i ∈ [1, n−1]. ∀i, j ∈ [1, n], if R◦(pj , pi) = 1,
then R×(pi, pj) = 0.

Definition 3. Let δ be the delete function, δ(x, y) = {z : z = x\c∪c′∧c ∈ x∩CR∧R◦(c
′, y) = 1},

and δmin(x, y) = {z : z ∈ δ(x, y) ∧M(c′) ∈ ∆(c) ∧ |S(c′)| = |S(c)|}.
9Strictly speaking, C ⊂ h since some texts are pre-defined, such as the bot response in the false phase (see

the texts in italics in Figure 3a). Nonetheless, as they should not affect the proofs (irrelevant), we treat them as
equal for simplicity.
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Definition 4. The set Z◦(x, y) = {z′ : z′ = δmin(x, y) ∧R◦(z
′, y) = 1}.

Corollary 4. If z ∈ Z◦(x, y), then z ∈ δmin(x, y).

The KEIC algorithm requires the following three assumptions:
Assumption 1. INCONSISTENT module is perfect. That is, ∀x and y, INCONSISTENT(x, y) =
R×(x, y).
Assumption 2. DELETE module is perfect. That is, ∀x and y, DELETE(x, y) = δmin(x, y) and
z ∈ Z◦(x, y).
Assumption 3. h is finite and consistent. That is, m is finite, |Ti| = |ui| + |bi| is finite, and
R×(Tj , Ti) = 0 ∀i, j ∈ [1,m].

In practice, we do not know (and cannot access) the answer A; however, as we already define the
new knowledge R′ is effective and Y = {Yes, No} in Section 2, we have the following corollary:
Corollary 5. ∀(R,Q,A) and (R′, Q,A′), if A† = A′ in Eq. 3, then A† ̸= A.

Therefore, if we are able to detect all contexts C ∈ CR and effectively edit all of them such that R′

entails C (i.e., R◦(C,R
′) = 1), then any obsolete knowledge (R, Q, A) in CR is deleted:

∄C ∈ CR s.t. A† ∈ (C,Q,A†) and A† = A (5)

In Corollary 5, we know if A† = A, then A† ̸= A′, and thus Eq. 5 can be rewritten as (after
DELETE):

∀C ∈ CR s.t. A† ∈ (C,Q,A†) and A† = A′ (6)

Compared to Eq. 3, observe that we do not access A, and since A′ lies in the text R′, Eq. 6 aligns
with our objective.
Lemma 1. For every iteration j, R◦(z, q) = 1.

Proof. The initial knowledge in q is Tc that contains R′, and the delete function δmin will replace
R with R′ by Definition 3. We only need to consider the case R×(h[j], q) = 1, which means
∃C ∈ h[j]∩CR, and the perfect INCONSISTENT module detects the contradiction between h[j] and
q by Assumption 1. Suppose Assumption 2 is true, we have z ∈ Z◦(h[j], q), and z = δmin(h[j], q)
by Corollary 4. Thus, z = DELETE(h[j], q). Since z ∈ Z◦(h[j], q), we have R◦(z, q) = 1.

As proving the Queue preserves transitivity of entailment in Algorithm 1 is more complicated, we
will prove it later in Lemma 4 and use the following claim first.
Claim 2. For every qi and qj in Queue (i < j), R◦(qj , qi) = 1.
Lemma 2. If the Deletion algorithm terminates and returns history h∗, then ∀T ∗ ∈ h∗,
R×(T

∗, Tc) = 0.

Proof. WLOG, let h∗ = [T ∗
1 , T

∗
2 , ..., T

∗
m], T ∗ = T ∗

k be one of the turns in h∗ (k ∈ [1,m]), and
q be the last element in the Queue so that no element is pushed into the Queue and the algorithm
returns h∗. Define C¬R∩T∗ = {y : y ∈ C¬R ∩ T ∗}, which means no text is modified in C¬R∩T∗ ,
and we define CR∩T∗ = T ∗ \ C¬R∩T∗ . Since R×(y, Tc) = 0 ∀y ∈ C¬R∩T∗ , we only need to
consider the text in CR∩T∗ . By Lemma 1, we know ∀x ∈ CR∩T∗ ,R◦(x, q) = 1, and we have
R◦(q, Tc) = 1 by Corollary 1 and Claim 2. Thus, R◦(x, Tc) = 1 by Proposition 4. Finally, we have
R×(T

∗
k , Tc) = R×(CR∩T∗

k
∪ C¬R∩T∗

k
, Tc) = 0 by Proposition 2, which holds for any k ∈ [1,m].

Therefore, ∀T ∗ ∈ h∗, R×(T
∗, Tc) = 0.

Corollary 6. Tc entails h∗.
Lemma 3. The Deletion algorithm will terminate.

Proof. As the DELETE module is perfect, any text that is being modified will not need to be modified
again by Corollary 3, which means |CR| is decreasing. Since the history h is finite in Assumption 3,
the algorithm will terminate.

To prove Claim 2, we define the notations used in the Definition 5 and 6.
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Notation 2. Let X , Y be the text, X = x1 ∪ x2 and Y = y1 ∪ y2, where x1 ∩ x2 = ∅ and
y1 ∩ y2 = ∅. Recall that τX ∈ M(X) is the subject-object relation triplet of X .

Definition 5. If R×(y1, x1) = 0 ∧ R×(y2, x1) = 0 ∧ R×(y1, x2) = 0 ∧ R◦(y2, x2) = 1 ⇒
R◦(Y,X) = 1.

Proof. Since R×(y1, x1) = 0 and R×(y2, x1) = 0, we have R×(Y, x1) = 0 by Proposition 2.
Similarly, R×(y1, x2) = 0 and R◦(y2, x2) = 1, we have R◦(Y, x2) = 1 by Proposition 5. Finally,
by Proposition 6 we have R◦(Y, x1 ∪ x2) = 1 ⇒ R◦(Y,X) = 1.

While Definition 5 offers a method for identifying whether text X entails another text Y through
a process of decomposition, multiple comparisons between segments of both texts are necessary,
which we cannot overlook. For example, if X = (x1=Mary feels bored, x2=She adopts a cat) and
Y = (y1=Mary adopts a dog instead of a cat, y2=She becomes responsible for taking care of the
pet), we have R◦(y2, x2) = 1, but R×(y1, x2) = 1. To eliminate this issue, we first define the
mapping function F1 and F2 as follows:

F1 : X →
{
xi :

⋃
i

S(xi) = S(X) ∧ S(xi) ∩ S(xj) = ∅ ∀i ̸= j
}

(7)

F2 : (X,Y ) →
{
(xi, yi) : xi ∈ F1(X) ∧ yi ∈ F1(Y ) ∧R×(yj , xi) = 0 ∀i ̸= j

}
(8)

Definition 6. Given Equation 7 and 8, let F2(X,Y ) =
{
(x1, y1), (x2, y2)

}
, ∀x†

1 ∈ S(x1), y
†
1 ∈

S(y1), x†
2 ∈ S(x2), y

†
2 ∈ S(y2). If R×(y

†
1, x

†
1) = 0 and R◦(y

†
2, x

†
2) = 1, then R◦(Y,X) = 1.

If we apply the above definition to the previous example, we have (Mary, cat, adopts) ∈ S(X) and
(Mary, cat, not adopts) ∈ S(Y ), and hence X does not entail Y . Note that finding a proper split
is also tricky, and one solution is each pair of subsets has the same subject, object, or relation. In
addition, Definition 6 requires Assumption 3 to be true so that each subset among X and Y does not
have intra-contradictions if F2 is used.

We reformulate Claim 2 and subsequently establish the following lemma:

Lemma 4. Let a, b′, c′ be the text in the Queue, and the elements are inserted in an ordered se-
quence: a precedes b′, and b′ precedes c′. If R◦(b

′, a) = 1 and R◦(c
′, a) = 1, then R◦(c

′, b′) = 1.

Proof. Assume, without loss of generality, b and c are the texts such that R×(b, a) = 1 and
R×(c, a) = 1. Given that b′ and c′ are in the Queue, we know b′ = δmin(b, a) and c′ = δmin(c, a),
so R◦(b

′, a) = 1 and R◦(c
′, a) = 1. Denote S(b) = {τx : τx ∈ ∆a} ∪ {τy : τy /∈ ∆a},

and S(c) = {τx : τx ∈ ∆a} ∪ {τy : τy /∈ ∆a}. Suppose Assumption 3 is true, we have
R×(τ

†
c , τ

†
b ) = 0 ∀τ †b ∈ {τ : τ /∈ ∆a ∧ τ ∈ S(b)} and τ †c ∈ {τ : τ /∈ ∆a ∧ τ ∈ S(c)}. Af-

ter applying δmin for every τb ∈ {τ : τ ∈ ∆a ∧ τ ∈ S(b)} and τc ∈ {τ : τ ∈ ∆a ∧ τ ∈ S(c)}, we
have τa = τ ′b = τ ′c ⇒ R◦(τ

′
c, τ

′
b) = 1. Therefore, R◦(c

′, b′) = 1.

The main difference between Proposition 4 and Lemma 4 is that Proposition 4 ensures the DELETE
preserves transitivity within one conversation turn, while Lemma 4 ensures the transitivity still holds
across different turns. Note that δmin will not generate additional information by Definition 3. Oth-
erwise, LLMs may generate two contradictory sequences in different conversation turns.10

As Claim 2 is proved, combining Lemma 3 and Corollary 6, we establish the following theorem.

Theorem 1. The Deletion algorithm modifies h = [Tf ,To] and returns h∗ = [T∗
f ,T

∗
o] such that

Tc entails h∗.

As R′ ∈ h∗, the updated history entails new knowledge.

Corollary 7. h∗ entails R′.

10For instance, one turn says, “They’re willing to handle the kids! I can go to Tokyo with you,” whereas
another turn says, “I can’t wait to be in California,” implying they are going to the States.
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E DETAILS OF HUMAN EXAMINATION AND KEIC DATASET

In the KEIC dataset, the ratio of “Yes” to “No” is 6 to 5. Figure 8 shows the detailed instructions
on the MTurk interface in our pilot study, and Figure 9 displays an example. We describe how the
following two KEIC data are generated by three annotators (previous QA pairs are omitted):
Example 3. Story: ...“The information we have at this time is that the 10-year-old did fire the
weapon.” The mother and the 7-year-old were inside the house when the shooting occurred, said
Williams. Williams said the gun belonged to the boy’s mother...
(Q, A): (was anyone with her?, Yes)
Old knowledge: the 7-year-old
New knowledge: (1) her dog (2) the pet dog (3) unborn baby
Example 4. Story: ...Kyle, a Navy SEAL, has been credited as the most successful sniper in United
States military history. Bradley Cooper was nominated for an Academy Award for his portrayal of
Kyle in this winter’s film “American Sniper,” which was based on Kyle’s bestselling autobiography.
The film, directed by...
(Q, A): (was a movie made about him?, yes)
Old knowledge: “American Sniper,” which was based on Kyle’s bestselling autobiography.
New knowledge: (1) “American Sniper,” which was based on Kyle’s comrades bestselling autobiog-
raphy. (2) , but Kyle’s life was not adapted into a movie. (3) “American Sniper,” which was based
on Kyle’s brother bestselling autobiography.

We instruct workers to maintain the fluency of new knowledge because (1) it aligns with the success
of Reiteration, and (2) one of our baselines employs string replacement. Most importantly, free-form
sentences simulate how humans correct themselves. Nevertheless, as our primary goal is effective,
we occasionally accept a few less fluent responses on condition that we cannot think of a better one.

In Example 3, her in the question refers to the mother. Workers should generate a text indicating
she was with something (but not a person) because we want the new answer to be “No.” Invalid
responses, such as “no one,” will be rejected by us because the sentence “The mother and no one
were inside the house ...” sounds unnatural. Analogously, in Example 4, him in the question refers
to Kyle, and valid responses should mention the film American Sniper was not based on Kyle.

We also select the following three examples from the KEIC validation dataset to demonstrate the
difficulty of smoothly integrating new knowledge into the middle of the story.
Example 5. Story: ...On the step, I find the elderly Chinese lady, small and slight, holding the hand
of a little boy. In her other hand, she holds a paper carrier bag. I know this lady...
(Q, A): (Is she carrying something?, Yes)
New knowledge: she is holding a cane

In Example 5, the workers should generate the new knowledge that she is indeed holding something
(as “In her other hand” existed before it), but that thing does change the answer to no. Similarly,
“the diamond ring gleaming on her finger” is another effective update.
Example 6. Story: ...The store was really big, but Mike found the sugar really fast. When Mike was
on his way to the front of the store to pay for the sugar, he saw a toy he had been wanting for a long
time. But Mike only had enough money to pay for the sugar or the toy. Mike didn’t know what to do!
The cake would taste good and would make his mom happy...
(Q, A): (Could he afford everything?, no)
New knowledge: Mike had enough money to pay for both the sugar and the toy, but a voice inside
his head told him not to buy anything unnecessary.

In Example 6, the workers should generate the new knowledge that Mike could afford everything.
However, to maintain the story’s fluency, they still need to invent a dilemma for him.
Example 7. Story: ...Featherless baby birds were inside, crying for food. The mother had nothing
to give, so she quickly flew to the ground and looked in the dirt for food...
(Q, A): (did mom have any?, no)
New knowledge: The mother had some seeds inside her beak but it was not enough for the babies

In Example 7, the workers should generate the new knowledge that the mother bird did have food.
Yet again, they have to come up with a situation so that she still needed to look for food.
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Task

Given a story, a Yes/No question, its corresponding (original) answer, and (original) support sentence (where
you should find the answer to the question, colored red in the story), you need to

(1) Label the original answer as "Yes" or "No", if it does not start with any of it.

      Note: If the original answer starts with Yes (No), you should label the answer as Yes (No), even if below
situation (a) or (b) happens.

      Note: Simply look at question and answer only and try your best to label the answer which should start
with "Yes" or "No", even though you may find that (a) the question is not a Y/N question, (b) the answer or
support sentence is clearly wrong.

      Note: Previous QA pairs are given in the story section to speed up your judgement if you find it hard to
decide.

(2) Given the original answer and support sentence, please identify if the new support sentence is
completely "different" from the original one.

      Note: The definition of different is if the same question is asked, and you only look at new support
sentence, the new answer should start with "Yes" ("No") while the original one is "No" ("Yes").

      Note: if the question is indeed not a Y/N question, then by different we mean the new support sentence
provides new information like another person (Who), quantity (How many/much/old), etc.

      Note: If you still cannot determine whether the new answer is "Yes" or "No" based on new support
sentence (e.g., irrelavant), label it as "Unknown".

(3) Modify new support sentence so that it can replace old support sentence and fit into the story
without any "grammatical" error.

      Note: Be meticulous about punctuation, capitalization, use of tenses, etc.

      Note: Though chances are rare, if new support sentence produces different answer and already fits into
the story with no error, you can safely copy and paste it.

      Note: After modification, new answer (based on your modification) MUST be different from the
original answer.

      Note: Since some support sentences are marked inconsistently, you should know what the good and
bad examples are to avoid potential rejection.

      Note: If previous answer is unknown or you find new support sentence is hard to fit into the story, please
come up with new one. The easiest way (and we recommend you do to so) is to follow the original support
sentence structure and make slight changes which produces different answer.

      Note: Logical errors, errors against historical truths, etc. may occur after modification; however, we
do not care about the text after new support sentence is inserted and are not asking you to fix these. Only
focus on resolving grammatical error.

      Note: Please insert the sentence seamlessly into the story and avoid new grammatical errors or typos in
your response.

Figure 8: Instructions on the MTurk interface. After our pilot study, we removed the second task,
and workers had to generate the new support sentence from scratch (i.e., no reference answer is
given in Figure 9). We still include this figure to give more details in the KEIC task.

View Instruction

Note: Please take your time to click the above "View Instruction" button to fully read the instruction and understand good
and bad examples. We will use machine learning method to reject submissions from workers that are clearly spamming the
task.
UPDATE (June 1, 2023): new statements in blue text is a reminder to avoid misunderstanding of this task. Hope the final
clarification helps workers to refresh the task after reading the instruction and examples but miss one or more our rules
and get undesirable rejections.

Story and Previous QAs
Reminder: To save your time, you do NOT have to read the story "thoroughly" to answer Task 1 and 2, but you need to
pay attention to the context nearby the original support sentence for Task 3.

==========story starts==========

Once upon a time, in a barn near a farm house, there lived a little white kitten named Cotton. Cotton lived high up in a nice warm
place above the barn where all of the farmer's horses slept. But Cotton wasn't alone in her little home above the barn, oh no. She
shared her hay bed with her mommy and 5 other sisters. All of her sisters were cute and fluffy, like Cotton. But she was the only
white one in the bunch. The rest of her sisters were all orange with beautiful white tiger stripes like Cotton's mommy. Being
different made Cotton quite sad. She often wished she looked like the rest of her family. So one day, when Cotton found a can of
the old farmer's orange paint, she used it to paint herself like them. When her mommy and sisters found her they started laughing.
"What are you doing, Cotton?!" "I only wanted to be more like you". Cotton's mommy rubbed her face on Cotton's and said "Oh
Cotton, but your fur is so pretty and special, like you. We would never want you to be any other way". And with that, Cotton's
mommy picked her up and dropped her into a big bucket of water. When Cotton came out she was herself again. Her sisters licked
her face until Cotton's fur was all all dry. "Don't ever do that again, Cotton!" they all cried. "Next time you might mess up that pretty
white fur of yours and we wouldn't want that!" Then Cotton thought, "I change my mind. I like being special".

==========story ends==========

Q: What color was Cotton?
A: white

Q: Where did she live?
A: in a barn

Q: Did she live alone?
A: no

Q: Who did she live with?
A: with her mommy and 5 sisters

Q: What color were her sisters?
A: orange and white

Question, Answer, and Support Sentence
question: Was Cotton happy that she looked different than the rest of her family?

original answer: no

==========original support sentence starts==========

Being different made Cotton quite sad

==========original support sentence ends==========

Previewing Answers Submitted by Workers
This message is only visible to you and will not be shown to Workers.
You can test completing the task below and click "Submit" in order to preview the data and format of the submitted
results.

Task 1: Single Choice
Is the original answer "Yes" or "No"?

 Yes
 No

Task 2: Single Choice
Reminder: Be sure to understand the definition of different in our task.

==========new support sentence starts==========

Being different made Cotton feel special and unique.

==========new support sentence ends==========

Is new answer "different"?

 Yes, they are obviously different.
 No, they are roughly the same.
 Unknown

Task 3: Fill in the Blank
Please generate text while adhering to strict ethical guidelines. Ensure that the generated content does not contain any explicit,
offensive, or inappropriate material, such as sexually explicit content, racist language, or any form of discrimination.

Reminder: Be sure to understand good and bad examples to avoid potential rejection.

For your convenience, the snippet of story, old and new support sentence is provided:

Note: The snippet of story is grammatically correct does NOT necessarily imply the story is grammatically correct (most of them
are punctuation mistakes as further sentences are cropped, see Example 2).

==========snippet of story starts==========

[ABRIDGED] The rest of her sisters were all orange with beautiful white tiger stripes like Cotton's mommy. __________. She often
wished she looked like the rest of her family. [ABRIDGED]

==========snippet of story ends==========

original support sentence: Being different made Cotton quite sad

new support sentence: Being different made Cotton feel special and unique.

Integrate new support sentence seamlessly into the story (i.e., fill in the blank):

Note: DO NOT paste context outside the blank, i.e., __________ (INCLUDING punctuation like periods, commas, etc.)

 

WARNING: Before submission, make sure your response does NOT have any of the following errors; otherwise, we will definitely
reject since you break our rules.

Error 1. New answer based your response is still the same as the original answer. (See ex 1-2 (i.e., example 1 bad response 2))

      Why? Our goal is that your response MUST produce "different" answer if the same question is asked.

Error 2. Your response is irrelevant to the question, or spamming. (See ex 1-3; ex 1-4; ex 5-1)

      Why? Same as above.

Try your best to minimize the number of grammatical error. Be meticulous about punctuation, capitalization, use of tenses, etc.

Figure 9: An example on the MTurk interface. As stated in Section 4.1, workers need to fill in the
blank (since Task 2 and the “new support sentence” in Task 3 have been removed).

F STORY AND QA PAIR EXTRACTION TEMPLATES IN DELETION
ALGORITHM

After all the completions in {u1, b1, b2} are filled (see Figure 7), we initiate a new chat and
ask GPT-3.5 (0613) to extract the story or QA pair based on the last two turns: b3 =
P (x|u1, b1, u2, b2, u3). In practice, we set the maximum iteration per data to 3 in the Deletion
algorithm to avoid a potential infinite loop (e.g., gets “stuck”), which means each turn in the history
will be edited at most three times. In addition, the algorithm will terminate once the number of
tokens reaches a maximum of 16,385.

F.1 STORY EXTRACTION TEMPLATE

u1: Story = “““[Story Completion]””” Correction = “““[Correction Completion]””” Which parts in
the story contradict the correction? If the story entails the correction, output ‘NO MODIFICATION’.
Let’s read the story line by line. List all the contradictions one by one, if any.
b1: [Chat Completion]
u2: Can you modify the story, one by one, so that the correction entails the story?
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b2: [Chat Completion]
u3: Therefore, what is the modified story? Output the modified story and nothing else.

F.2 QA PAIR EXTRACTION TEMPLATE

u1: QA pair = “““[QA Completion]””” Correction = “““[Correction Completion]””” Does the QA
pair contradict the correction? If the QA pair entails the correction, output ‘NO MODIFICATION’.
If the QA pair contradicts the correction, explain why they are contradictory in one sentence. If they
are in a neutral relation, output ‘NO MODIFICATION’. Let’s think step by step.
b1: [Chat Completion]
u2: Can you modify the QA pair so that it entails the correction? DO NOT modify the QA pair by
copying the correction. Let’s think step by step.
b2: [Chat Completion]
u3: Therefore, what is the modified QA pair? Your response must contain two lines only. The first
line is the question, and the second line is the answer. Output the modified QA pair and nothing
else.

G TIME AND COST ESTIMATION

We use 6 RTX 3090 GPUs and 4 RTX 4090 GPUs for LLM inference (Gemma-2, Llama, and
Vicuna). Using GPT-3.5 (0613), the Deletion with only one template in the CBA setting costs
nearly $700 in three runs (it will require around $10,000 to fully explore all 15 templates in the CBA
setting). Note that the cost can be greatly decreased so long as we restrict the action of appending
the conversation history. For instance, we can “reset” the length of conversation to |h| (see Line 6 in
Algorithm 1) by initiating a new chat once an iteration is done, though we do not employ this from
the outset since our goal is to test the Deletion in the scenario of online conversation (see Table 1
and Figure 7). The total number of tokens used when running our KEIC dataset (DKEIC) using
GPT-4o and DeepSeek-R1 LLMs are as follows:

Model GPT-4o GPT-4o (mini) DeepSeek-R1

# Input Tokens 206,304,490 472,618,728 89,667,498
# Output Tokens 4,151,997 16,237,303 43,604,798
Total Cost $557.28 $80.64 $110.42
Experiments OTC (w/ AE) OTC, Verification, Reiteration (oracle) OTC

Observe that # API calls in the OTC (w/ AE) is 2 and # API calls in the oracle of Reiteration is 1. As
for the time estimation for other LLMs (Llama, Vicuna, and Gemma), it depends on the GPU used
and model size. We give a rough estimation as follows (using GeForce RTX 3090): In Reiteration,
they generally need around 20 to 30 seconds to reiterate the story. In Verification, it takes around 3
to 6 seconds when we re-question these LLMs.

H MORE RESULTS AND DISCUSSION

Appendix H.1 provides a comparison of the Reiteration phase with and without the oracle. We
plot each LLM’s update performance on the KEIC dataset in Appendix H.2 (each LLM has its own
figure, which provides more readability compared to Figure 4). The ablation analysis of GPT-3.5
(0613) on DKEIC is in Appendix H.3. Appendix H.4 is the TEXTGRAD (Yuksekgonul et al., 2024)
experiment, a recent zero-shot CoT prompting framework. Appendix H.5 is the analysis of using the
prompting method (i.e., AE step) for LLM evaluation. Lastly, We provide some analysis regarding
whether the factual data is difficult to edit on the fly in Appendix H.6 and conduct placing user
correction in the middle of the conversation in Apppendix H.7.

H.1 REITERATION VS. ORACLE OF REITERATION

The oracle of Reiteration is a way to “sanity-check” whether an LLM is equipped with Reiteration
capability, especially when the budget or computing resources are limited (see Appendix G). In a
real-world scenario, however, this approach can also be thought of as having an external feedback
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or using retrieval-augmented generation, which does not reflect the LLM’s intrinsic self-correction
capabilities (Huang et al., 2024).11 Figure 10 displays their performance in update on DKEIC .
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(a) Llama-2 (7B)
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(b) Llama-2 (13B)
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(c) Llama-3 (8B)
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(d) Llama-3.1 (8B)
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(e) Llama-3.2 (1B)

1 3 5 10 15
Top-K

15

20

25

30

35

40

45

50

55

60

65

70

75

80

Up
da

te
 A

cc
. (

%
)

KEIC

CAM
CBA

Reiteration
Reiteration (Oracle)

(f) Llama-3.2 (3B)
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(g) Vicuna (7B)
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(h) Vicuna (13B)
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(i) Gemma-2 (2B)
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(j) Gemma-2 (9B)
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(k) GPT-4o (mini)
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(l) QwQ (32B)

Figure 10: Reiteration (green) vs. the oracle of Reiteration (purple). We observe that in Llama-
2 (7B), the oracle of Reiteration is higher than the real-world scenario of Reiteration, which may
indicate that the model does not truly understand the process of reiterating a new story. Interestingly,
it is the other way around in Llama-2 (13B). As for other LLMs, we speculate that there is no
significant boost in update when the oracle is applied in our dataset.

H.2 FULL RESULTS OF EACH LLM

Similar to Figure 5, we plot the update of all user correction methods of each LLM on our KEIC
dataset in Figures 11 and 12. In GPT-3.5 (0613), we do not plot all the templates on DKEIC

because we only run Dtrain using the top-6 templates from Dval (due to the cost). Compared to the

11For example, a perfect system that can (1) detect which utterance the user aims to correct in a conversation,
(2) locate the false statement within a long paragraph, and (3) generate a new story on its own (Chen & Shu,
2024; Xie et al., 2024).
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OTC, despite the overall effectiveness of Reiteration on other open-source and proprietary LLMs, it
still leaves a significant room for future work. Our KEIC dataset inherits the properties of CoQA;
therefore, editing a false statement in a passage should be inevitably harder than a single sentence
(not to mention the previous QA pairs often contain the old knowledge). As a result, to use our
dataset to further gauge these LLMs with mediocre adaptability, it is worth experimenting with the
OTC, Verification, and Reiteration approaches in our KEIC dataset so that the sentences after the
support sentence are trimmed (see Appendix H.3).

H.3 ABLATION ANALYSIS

We assess the importance of pre-defined text segments in the template, such as bot responses in
the false and correction phases, through an ablation analysis by removing these segments. We
then compare the results against the OTC baseline of GPT-3.5 (0613) on DKEIC . Moreover, we
conjecture that the knowledge is more difficult to delete in the middle of the story, so we conduct
another experiment by abridging the story so that the support sentence appears at the end. We
tabulate these results in Table 5 and Table 6.

Table 5: Ablation analysis of GPT-3.5 (0613) in the OTC baseline on DKEIC with the removal of
(a) all pre-defined texts from the template (except the user utterance in Tc), (b) the story after old
knowledge, and (c) the multi-turn conversation format. Temp stands for template, FP stands for
full passage, and MT stands for multi-turn. The percentage of update, no update, and upper bound
performance when top-1, 3, 5, and 15 templates are selected are reported. The sum of update and
no update is not 100, as we exclude “N/A” in the table (due to the space).

Update (↑, Maj) No Update (↓, Maj) Upper Bound (↑)
K 1 3 5 15 1 3 5 15 1 3 5 15

OTC (CAM) 42.2 42.2 40.4 26.2 50.2 52.5 54.7 70.0 42.2 52.9 53.9 55.0

(a) without Temp 31.8 30.6 30.2 19.4 56.3 61.2 62.5 75.3 31.8 40.6 42.6 43.5
(b) without FP 52.5 50.0 47.8 34.7 37.1 43.0 45.5 60.2 52.5 59.7 60.8 62.1
(c) without MT 39.7 32.8 30.3 17.4 56.4 63.9 66.6 79.9 39.7 44.8 46.3 47.1

OTC (CBA) 50.4 49.7 49.3 30.2 38.5 41.6 42.1 63.4 50.4 60.6 61.8 63.4

(a) without Temp 39.8 39.9 38.9 24.4 40.3 47.4 48.9 68.6 39.8 49.8 51.8 53.7
(b) without FP 56.4 56.7 56.3 40.1 29.0 31.8 32.4 51.3 56.4 65.4 66.4 67.8
(c) without MT 53.3 47.9 44.5 28.8 41.7 48.5 52.1 68.3 53.3 60.1 61.6 62.6

Table 6: The standard deviations across when top-1, 3, 5, and 15 templates are selected are reported.
This table follows the same convention as Table 5.

Update (Maj) No Update (Maj) Upper Bound

K 1 3 5 15 1 3 5 15 1 3 5 15

OTC (CAM) 1.00 1.43 1.26 0.88 0.54 1.29 1.07 0.66 1.00 0.62 0.79 0.82

(a) without Temp 0.74 0.96 0.70 0.73 0.91 0.61 0.38 0.57 0.74 0.29 0.66 0.67
(b) without FP 0.70 0.70 0.97 1.02 0.51 0.20 0.92 0.84 0.70 0.66 0.69 0.54
(c) without MT 0.91 0.92 0.93 0.51 0.79 0.86 0.89 0.51 0.91 1.00 1.07 1.02

OTC (CBA) 1.64 1.04 0.76 0.73 0.74 0.64 0.77 0.51 1.64 1.51 1.59 1.36

(a) without Temp 1.35 0.97 0.96 0.49 1.07 1.19 1.51 0.41 1.35 0.60 0.68 0.76
(b) without FP 1.02 0.68 0.90 0.20 0.59 0.75 0.91 0.25 1.02 0.97 0.83 0.81
(c) without MT 1.29 1.59 1.36 1.18 1.35 1.41 1.32 1.18 1.29 0.67 0.70 0.37

If we remove those pre-defined templates, the overall update performance drops by around 10% in
both settings, which is not surprising because our pre-defined templates contain bot responses that
GPT-3.5 has memorized the story and the knowledge update in the false phase and correction phase,
respectively. We also find that the knowledge in the middle of the story is, on average, less likely to
be deleted, which is reasonable since the latter part of the story is often based heavily on that false
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(a) GPT-3.5 (0613)
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(b) GPT-3.5 (0125)
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(c) GPT-4o (mini)
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(d) Gemma-2 (2B)
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(e) Gemma-2 (9B)
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(f) Gemma-2 (27B)
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(g) Vicuna (7B)
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(h) Vicuna (13B)
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(i) Vicuna (33B)
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(j) Llama-2 (7B)
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(k) Llama-2 (13B)

1 3 5 10 15
Top-K

15

20

25

30

35

40

45

50

55

60

65

70

75

80

Up
da

te
 A

cc
. (

%
)

KEIC

CAM
CBA

OTC
Verification
Reiteration

(l) Llama-3 (8B)
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(m) Llama-3.2 (1B)
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(n) Llama-3.2 (3B)
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(o) Llama-3.3 (70B)

Figure 11: This figure is the update of methods of each “non-thinking” LLM on DKEIC . The
Reiteration approach with asterisk (*) means the oracle. We observe that the Reiteration approach
is generally more performant than the OTC baseline on contemporary LLMs. Interestingly, GPT-4o
(mini), Gemma-2 (27B), and Llama-3.3 (70B) LLMs significantly perform better in Verification.
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(a) Claude 3.5 Haiku
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(b) Claude 3.7 Sonnet
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(c) DeepSeek-R1 (70B)
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(d) Gemini 2.5 (Flash-Lite)
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(e) Gemini 2.5 (Flash)
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(f) Qwen3 (0.6B)
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(g) Qwen3 (1.7B)
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(h) Qwen3 (4B)
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(i) Qwen3 (14B)
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(j) QwQ (32B)
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(k) GPT-5 (nano)
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(l) GPT-5 (mini)

Figure 12: This figure is the update of methods of “thinking” LLMs on DKEIC (except Claude
3.5 Haiku), which follows the same convention as Figure 11. We observe that the effectiveness
of our Reiteration approach continues to hold in contemporary “thinking” LLMs, which also
show strong robustness and performance when updating in-context knowledge across different
types of templates.

fact.12 It is noteworthy that while the removal of information after the support sentence so that the
knowledge located at the end of the story is much easier for GPT-3.5 to correct, the improvement

12Another way of analyzing this (without trimming the story) is to categorize the false fact’s location in the
story into three classes: beginning, middle, and end. Specifically, we classify the false fact in the story with
length |P | as follows (using the first character’s position x of the false fact): (1) beginning: x < 0.25|P | (531
data); (2) middle: 0.25|P | ≤ x ≤ 0.75|P | (900 data); (3) end: x > 0.75|P | (350 data). Then, we analyze
the OTC baseline of GPT-3.5 (0125) LLM (top-5 majority voting in CBA setting) and find that the averaged
percentage of no update in end data (25.71%) < middle (27.56%) < beginning (33.71%).
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in the CAM and CBA settings is modest, yielding an enhancement of around 7% to 8% on average
compared to the OTC baseline.

GPT-3.5 is better at capturing information update in a multi-turn framework We report the
single-turn result in Table 5 (i.e., without MT).13 Though the best performance of update in single-
turn (53.3%) is higher than multi-turn (50.4%), the overall performance shows that (1) it dramati-
cally underperforms in CAM (see also their upper bound performance), (2) the update significantly
decreases as |K| increases in both setting, especially in the gap between top-1 and top-3, and (3)
the percentage of no update in both settings is consistently higher than the OTC baseline. These
aforementioned observations may indicate that if the input format is single-turn, GPT-3.5 (0613)
does not generalize well on other correction utterances, and the model is more likely to neglect the
new information presented in the middle of context. In other words, GPT-3.5 is generally better at
capturing different user utterances and locations of correction in the multi-turn framework.

Table 7: Percentage of Update/No Update/Upper Bound on Dval using GPT-3.5 (0613). This table
follows the same convention as Table 2, the 0125 version. Note that Figure 5 can be derived from
this table and Table 3.

Update (↑, Maj) No Update (↓, Maj) Upper Bound (↑)
Setting K OTC Verif Reiter OTC Verif Reiter OTC Verif Reiter

CAM

1 46.3(1.4) 53.5(1.2) 65.9(1.7) 46.6(1.1) 36.6(0.6) 26.9(0.8) 46.3(1.4) 53.5(1.2) 65.9(1.7)
3 46.6(2.0) 52.2(0.4) 67.1(1.8) 47.9(2.0) 41.0(1.8) 28.2(1.4) 57.3(0.9) 69.7(1.1) 72.6(1.5)
5 44.5(2.3) 53.1(1.1) 66.7(1.9) 50.5(2.0) 41.8(0.2) 29.0(1.6) 58.7(1.2) 75.4(0.5) 73.8(1.6)
15 29.2(1.6) 49.3(1.0) 57.3(1.1) 67.1(1.2) 47.3(0.8) 39.2(0.9) 60.5(1.1) 85.9(1.0) 75.4(1.2)

CBA

1 58.7(1.2) 48.0(2.3) 61.5(1.4) 32.6(0.8) 36.8(1.3) 24.4(1.0) 58.7(1.2) 48.0(2.3) 61.5(1.4)
3 57.8(1.0) 51.3(1.7) 62.4(0.6) 34.9(0.8) 37.9(1.1) 26.3(1.3) 67.8(0.7) 69.0(3.0) 69.5(1.0)
5 56.9(1.3) 50.5(1.2) 61.8(0.9) 36.1(1.6) 40.2(0.9) 26.9(1.1) 69.3(1.0) 75.7(1.1) 70.8(1.1)
15 36.9(1.6) 41.5(0.9) 51.1(1.9) 57.3(1.0) 52.7(1.0) 40.6(1.5) 71.1(0.4) 86.3(1.4) 72.7(0.5)

H.4 EXPERIMENTS ON THE TEXTGRAD FRAMEWORK

TEXTGRAD is the pioneering work with a released software for universal, automatic “differentia-
tion” via text for LLM-based systems, similar to the PyTorch backprop function. The core idea is that
they treat a black-box LLM or more sophisticated systems as a “single neuron,” so the input/output
of that “neuron” can be both in text form. Thus, the “gradient” with respect to this “neuron” is,
naturally, the text. Prior to OpenAI o1,14 the most recent “think-before-speak” application, they de-
sign an automatic way to prompt the GPT-4o (partly GPT-3.5) to stick to the text objective function,
provide textual (“gradient”) feedback, improve the answer by utilizing various “HTML tags,” which
is effectively a more complicated CoT framework. Notwithstanding their remarkable success across
various tasks, one of the most concerning issues in their current applications is the cost, as either
(1) the internal processes are not publicly available or (2) the token consumption cannot be easily
calculated in advance.

In this paper, we additionally conduct their framework by feeding our best LLM outputs (that is, the
0125 version of GPT-3.5) in the OTC baseline on the validation set into their TEXTGRAD, hoping
to identify the error and update the answer. However, our preliminary results show that, when using
GPT-4o (0513) in the first run (costs around $250), the best performances of (update, no update)
with respect to CAM and CBA are (29.1%, 70.3%) and (27.2%, 72.4%). Moreover, after we set
the backend LLM to GPT-3.5 (0125), the best performance of (update, no update) with respect to
CAM and CBA are (30.3%, 68.9%) and (24.6%, 74.9%) in 3 runs (worse than without applying
their framework). It would be worth experimenting with using their framework directly or tweaking
the prompts (see below).

13If a model does not support multi-turn chat format and we want to test it in the KEIC framework, we have
to incrementally present the model with u1 to obtain b1, then we provide the model with {u1, b1, u2} to acquire
b2, and so forth. One solution is to evaluate it by concatenating multiple conversation turns, but this cannot
reflect the relation across turns (Zheng et al., 2023b).

14https://openai.com/o1/
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The prompts are the following (with a slight modification to the example from their website):15

(1) role description of a variable: “yes/no question to the LLM” (2) role description of an answer:
“concise and accurate answer to the yes/no question (the answer should begin with yes or no)” (3)
evaluation instruction: “Here’s a yes/no question: {question}. Evaluate any given answer to this
yes/no question, be smart, logical, and very critical. Just provide concise feedback.”

H.5 LLM EVALUATION

Figure 13 is the comparison between using exact match only (i.e., default evaluation) and using LLM
itself for evaluation (i.e., w/ AE; see Section 4.2). This figure demonstrates that using the answer
extraction step (i.e., 2nd stage CoT-prompting) for evaluation still lacks some level of explainability
despite its prevalence. For instance, in Llama-3 LLM, we analyze its OTC performance (w/o AE)
and find that the performancce of (update, no update, N/A) when K = 15 is (24.0%, 68.6%, 7.4%)
in CAM and (18.7%, 74.3%, 7.0%) in CBA. However, when AE is performed, they become (40.4%,
59.0%, 0.6%) in CAM and (41.4%, 58.0%, 0.6%) in CBA.
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(a) Gemma-2 (2B)
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(b) Gemma-2 (9B)
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(c) Gemma-2 (27B)
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(d) Vicuna (7B)
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(e) Vicuna (13B)
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(f) Vicuna (33B)
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(g) Llama-2 (7B)
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(h) Llama-2 (13B)
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(i) Llama-3 (8B)

Figure 13: We plot the OTC method (w/ and w/o AE) of Gemma, Vicuna, and Llama LLMs on
DKEIC . We observe that (1) the overall update increases in the Gemma LLMs (though it still does
not outperform the random guess baseline). (2) In Vicuna, there is not much difference in its 7B
and 13B LLMs regarding the top-5 correction templates. (3) Interestingly, the OTC with AE is
significantly worse than without applying in Llama-2 (13B), while it is the other way around in the
7B model.

15https://github.com/zou-group/textgrad
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H.6 FATUAL DATA AND NON-FACTUAL DATA

We classify the CoQA data from “Wikipedia” and “CNN” as factual data, and “Gutenberg,”
“MCTest,” and “RACE” as non-factual.16 Then, we analyze whether factual data is more difficult to
edit an LLM’s in-context knowledge, using GPT-3.5 (0125) and GPT-4o (0806) as an example. We
report the average top-5 update in the CBA setting of OTC in Table 8.

H.7 CORRECT IN MIDDLE (CIM) EXPERIMENT

In addition to the CAM (insert the correction phase after the false) and CBA setting (insert the
correction phase before the test), we also experiment the user correction in the middle of the con-
versation setting. That is, we place the correction phase exactly between the false phase and the test
(the conversation flow is TfToTcToTi). In Table 9, we find that when running the result using
GPT-4o (mini) on DKEIC , the CIM setting is worse than the CAM and CBA in the OTC baseline.

Table 8: In this table, we observe that (1) it is easier to edit the in-context knowledge of non-factual
data and (2) compared to GPT-3.5, there is a significant gap in updating the factual data of GPT-4o.

Model Data Number Update (↑, Maj) No Update (↓, Maj) N/A (↓, Maj)

GPT-3.5 (0125) Factual 776 62.20(0.58) 34.41(0.78) 3.39(0.39)
Non-Factual 1,005 69.95(0.20) 26.43(0.40) 3.62(0.45)

GPT-4o (0806) Factual 776 25.04(1.11) 74.57(1.11) 0.39(0.00)
Non-Factual 1,005 40.73(2.13) 58.47(2.13) 0.80(0.00)

Table 9: We report the OTC baseline of GPT-4o (mini) on DKEIC . This table shows that the update
(accuracy) performance is significantly affected by different locations of user correction. From
the table, we hypothesize that placing the user correction in the middle (i.e., CIM setting) should
perform worse than the CAM or CBA in this task.

GPT-4o (mini) Update (↑, Maj) No Update (↓, Maj)

Setting \K 1 3 5 15 1 3 5 15

CAM 35.8(0.7) 34.2(0.5) 31.1(0.5) 17.1(0.7) 56.5(1.0) 60.4(0.6) 63.8(0.5) 79.3(0.4)

CIM 30.6(0.8) 26.3(0.6) 21.8(0.7) 10.3(0.6) 60.1(1.0) 66.9(0.7) 72.7(0.6) 86.0(0.3)

CBA 43.1(0.6) 38.1(1.2) 31.5(1.2) 15.5(0.7) 43.9(0.4) 52.8(0.9) 61.2(1.1) 79.5(0.2)

16Note that it assumes the real-world fact lies within an LLM’s parametric memory, and vice versa.
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