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Abstract

Accurately attributing credit or blame for outcomes to past actions is crucial for
sample-efficient reinforcement learning. While temporal-difference learning with
A-returns is the most commonly used approach, it attributes credit based on the tem-
poral proximity of actions and outcomes—a heuristic that may be overly simplistic
in complex environments. Hindsight-based approaches offer an alternative by using
a model that leverages future information to more explicitly credit previous actions
that were critical to achieving specific outcomes. Recent work has shown that
predicting past actions using future rewards can be effective for hindsight credit
assignment in Markovian environments. However, we show that the associated
credit-assignment algorithm suboptimally handles immediate rewards, potentially
resulting in high variance even with perfect hindsight models. We introduce a
simple correction that resolves this issue.

1 Introduction

Building on the principles of dynamic programming (Bellman, 1954), temporal-difference (TD)
learning has become a central component of modern reinforcement learning (RL). Methods such as
A-returns (Watkins, 1989) and its online counterpart, TD(\) (Sutton, 1988), form the basis for credit
assignment in many widely adopted RL algorithms.

Although these methods are simple and reliable, they rely on the temporal proximity of actions and
outcomes for credit assignment (Daley et al., 2024), which can hinder their ability to efficiently solve
certain challenging credit assignment problems (Pignatelli et al., 2024). As alternatives to A-return-
based credit assignment, hindsight-based approaches have been proposed, including Upside-Down
RL (Schmidhuber, 2019) and Hindsight Credit Assignment (HCA) (Harutyunyan et al., 2019).

In HCA, interaction sequences are stored in memory (up to some maximum context length), and the
agent learns a hindsight model to directly associate rewards with state-action pairs in the context.
This enables the agent to explicitly form associations across distant transitions without incurring an
exponential decay like with A-returns (Arjona-Medina et al., 2019).

With the proper setup, it may be possible that HCA presents advantages over A-return-based temporal
difference, similar to some benefits that attention-based architectures (e.g., Schmidhuber (1992);
Bahdanau et al. (2015); Vaswani et al. (2017)) provide over standard recurrent neural networks
(RNNs) for sequence modeling. For instance, consider a dataset consisting of sequences of the
following form:
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1.1 1
a,Ty,To, T3 - ..

2 .2 2
@, T7,T5, T3 ...

3.3 .3
bz, x5, 25 ...

4 .4 4
b, a7, 25,25 . ..

where 2 are sampled from some noisy distribution over tokens. A transformer could skip over the
noisy inputs to associate the final value of 1 to the token a in the first position (similarly for 0 and b).
In contrast, a vanilla RNN would struggle due to the long and noisy delay between the crucial token
and the output value.

Similar to attention, some hindsight-based credit assignment approaches, like State-HCA (Harutyun-
yan et al., 2019), can estimate action-values by considering the pairwise relationships between all
time steps in a sequence. State-HCA relies on learning and using a hindsight model — a type of
multi-step inverse-dynamics model- to facilitate credit assignment. The hindsight model predicts
a distribution over actions in a particular state using additional information, such as a future state.
The predicted distribution from the hindsight model is used to re-weight the relevance of an action
towards achieving a particular reward.

Meulemans et al. (2023) show that using future states for hindsight, like in state-HCA, can cause
the algorithm to degenerate to a high-variance REINFORCE estimator (Williams, 1992) in many
Markovian environments. To fix this, they suggest using future rewards instead of future states.
They also propose a policy gradient estimator, Counterfactual Contribution Analysis (COCOA), that
removes the need for learning a reward model, which was required by the State-HCA algorithm
introduced by Harutyunyan et al. (2019).

In this paper, we show that the variance of the COCOA policy gradient estimator can be excessively
high even with the perfect hindsight model. The higher variance is a consequence of the different
treatment of immediate rewards compared to later rewards. We propose a modified algorithm,
Reward-HCA (R-HCA) that resolves this issue by showing that it is also possible to incorporate the
immediate rewards with hindsight re-weighting.

2 Preliminaries

Consider the standard Markov Decision Process (MDP) formulation with state space S, action space
A, reward space R, and discount factor . At time step ¢ € {0,1,2...}, the agent observes state
S; € S, takes action A; € A and receives reward R; € R.

The agent acts with a policy 7 : & — A(A) that maps states to distributions over actions.
Starting from the initial state Sy, the agent interacts with the MDP to generate a trajectory
7 = (S0, Ao, Ro, S1, A1, Ry, ...). We denote the distribution over trajectories starting from state s
and acting with policy 7 by T (s, 7). Similarly, we denote the distribution over trajectories starting
from (s, a) and acting with policy 7 by 7 (s, a, 7).

The discounted return of a trajectory 7 is given by Z(7) = >_,~ 7" R:. The state value V,(s) =
E 7 (s, [Z(T)] represents the expected return from state s when following policy . Similarly, the

action value Q (s, a) = E; 7 (s,a,x) [Z(7)] represents the expected return when starting from state s,
taking action a and then following policy 7. The advantage is defined as A (s,a) = Qr(s,a)—Vz(s).

2.1 Advantage Actor-Critic

In the actor-critic framework, the policy (actor) is updated via a discounted approximation to the
policy gradient. The update aims to improve the policy by taking a gradient step to increase the

generalized advantage estimate (Schulman et al., 2015), fl? AE(W”\),

VVa(So) = Y Ve log mo (A Sp) AFAPOY. (1)
>0



The advantages are estimated using a learned value function or critic V : § — R. Let §; =
Ry + 9V (St11) — V(St), then

AtGAE(%/\) - Z(’y)\)l&%l-

1>0

The critic is trained with temporal-difference using A-return targets (Sutton et al., 1998). Such
advantage estimates are commonly used in on-policy actor-critic approaches, including algorithms
like A2C (Mnih et al., 2016) and PPO (Schulman et al., 2017).

2.2 Hindsight Credit Assignment

Hindsight Credit Assignment (HCA) uses a learned hindsight distribution to estimate targets for
policy updates. Here we describe a generalization of the original State-HCA (Harutyunyan et al.,
2019) that incorporates rewarding outcomes, as presented by Meulemans et al. (2023).

HCA-like approaches rely on a hindsight distribution A} (a|s, u), which encodes the probability that
the agent chose action a in state s given that it observes a future rewarding outcome u, k steps after
observing s, while following 7. As noted in previous work, using the hindsight distribution, the
action-value function can be re-expressed as

QW(S, CL) = T(S, CL) + ETNT(sm—) Z (}M> ’YkRk . (2)

2\ nals)

The outcome Uy, can take different forms. In the original state-HCA formulation, U}, = Si. Meule-
mans et al. (2023) propose a general form of Uy, = f(Sk, Ay, Ry) that can be used to reduce the
variance of the policy gradient estimator. As a specific instance, they introduce COCOA-reward,
where U, = Ry.

We approximate the hindsight distribution using a learned model hy(als, 7, w). With this learned
hindsight model and a reward model #(s, a), one could use an all-action policy gradient to update the
actor’s parameters, 6,

. h7(alSt, U
VVa(S0) =D D Vemo(alSy) [r(Se,a) + (W) YRek|, 3
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where the (-), , hotation is used to denote the stop gradient operation or ‘detaching’ from the
computation graph.

To avoid the computational overhead of learning a reward model, Meulemans et al. (2023) propose
the following policy gradient update:

. hi(alS, U
vvw<so>=Zvelogm<At|st>Rt+vaamz(’M) PR @
sg

>0 acA E>1 mo(alSt)

This update reduces to REINFORCE in the special case where fAL}CT (alSt, Ugr) = I(As), where I(+)
the indicator function placing all probability mass on the action that was actually taken, A;.

Learning the hindsight model The success of HCA-like approaches depends on learning an
accurate hindsight model (ﬁg). Training this model is a supervised learning task that maximizes the
likelihood of observed actions given states and future outcomes. Inaccurate hindsight models may be
the major factor limiting the broader applicability of these methods (Alipov et al., 2021).

Learning an accurate hindsight model presents significant challenges. Since even the true hindsight
distribution is policy-dependent, the hindsight model must be continuously updated as the policy



changes. As the policy evolves, it introduces non-stationary action targets for state-future information
pairs, complicating the learning process. Due to these reasons, hindsight models are typically trained
with the latest interaction data and cannot reliably leverage replay buffers.

To address the challenges of policy dependence, previous work introduces the concept of a policy
prior (Alipov et al., 2021; Meulemans et al., 2023). Rather than predicting the full hindsight
distribution, the hindsight model learns only the correction or difference relative to the current
policy’s outputs. This enables more stable learning of hindsight models as policies evolve during
training, and it provides a principled baseline prediction for past actions, one that does not rely on
future information.

3 Illustrating the problem

Hindsight-based approaches are often motivated by examples like the one presented in our introduction
— where one early situation is crucial to achieving a positive or negative outcome, with noise in the
middle. This feature is also exemplified in the umbrella problem, which is commonly used to evaluate
credit assignment capabilities (Osband et al., 2019).

In this section, we consider an episodic Markov decision process (MDP) based on the umbrella
problem. We show that COCOA struggles in this environment even when using predictions from the
ground-truth/perfect hindsight model. The failure can be attributed to the fact that the COCOA update
(see update in Equation 4) does not reduce the variance associated with the immediate rewards.

Environment details The environment is parameterized by horizon H. The agent has two available
actions at each time step, ag and a;. Actions do not have any influence after the first time step. The
action taken in the first step is reflected in subsequent states via Boolean indicators.

Concretely, the state s; consists of 5 components s}, s?,s?, s¢,s?. The first component s; is a

continuous variable indicating the time remaining; at time step t, it is 1 — ¢/H. The next two
components, s?, sf are Booleans that indicate context, which is set with first state, i.e., every time the
environment is reset. With 50% chance s3 = 1 or s = 0, s} is the Boolean not applied to s7. These
values remain fixed for the entire episode. The following two components are also a pair of Booleans.
These are initially zero s§ = 0, sj = 0. After the first step, they are set to s} = 1, s} = 0 if the first
action was ag, otherwise s} = 0,7 = 1.

At every time step other than the final one, the agent receives a reward of —2/H or 3/ H with uniform
probability. On the final step, if the context matches the result of the first action (if s, = s%;), the
agent receives a reward of 1/H. Otherwise, the agent receives a reward of —1/H. The environment
is depicted in Figure 1.

A[) =a
_— _—
Ro~ {~2/H,3/H)} Ry~ {—-2/H,3/H)} Ry~ {—2/H,3/H}

Figure 1: Illustration of the environment considered in Section 3. Black indicates the state component
is zero, and white indicates that it is one. The agent receives noisy rewards on all steps apart from the
final one. In the final step, the agent receives a positive reward if the context matches the consequence
of the first action.
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Figure 2: The probability that the policy assigns to the optimal action on the first time step in the
Umbrella environment. Agents are trained with the ground-truth hindsight model. The COCOA agent
learns slowly compared to the modified approach (R-HCA) we introduce in Section 4.

Evaluation We set the horizon H = 50 and the discount factor v = 1 for our experiment. We
consider U, = Ry, as in COCOA-reward (Meulemans et al., 2023). We train an actor network with
data collected episodically using updates and the ground-truth hindsight function,

I(ap) if u=1/H,s*=0,8"=0,83=1,8%=0,

I(ap) if w=-1/H,s*=0,8°=0,5=0,5>=1,
hi(s,u) =< I(ay) if u=1/H,s*=0,8°=0,83=0,52=1,

I(a1) if uw=-1/H,s*=0,8>=0,s3=1,52=0,

m(s) otherwise.

We evaluate agents by considering the probability that they take the optimal action in the two possible
starting states. Figure 2 shows that even when using the ground truth hindsight model, COCOA
provides relatively poor updates for learning a policy.

The failure of COCOA can be attributed to the first term in Equation 4, Y, Vg log mg(A¢|S;) Ry,
which can dominate the overall sum. This failure mode can be avoided by using an update similar
to the original HCA update, assuming that the agent can access an accurate reward model (see
Equation 3). Since the immediate rewards in this environment never depend on the action, the
gradient ), , V7 (S, a)mg(alS;) will be zero.

Our experiment shows that replacing the reward model’s predictions with an update that uses the
sampled reward may not be a safe choice in general. In the next section we show that the update can
be fixed without using a reward model by using our update, which we call R-HCA.

This issue is less prominent in a very similar key-to-door environment considered in the COCOA
paper (Meulemans et al., 2023) because there is no noisy reward at the first step where the agent
needs to pick up a key.

4 R-HCA

In this section, we propose a modification to COCOA-reward that resolves the issue arising due to
how it handles immediate rewards. We show that it is possible to derive a hindsight estimator that
weighs the immediate reward with an appropriate hindsight re-weighting.

Recall the COCOA-reward update,

. hT(alS s Rtk
VVi(So) = Z Vo log mo(A¢|Se) Ry + Z Vor(a|St) Z (M) YRy
sg

>0 acA E>1 mo(alS:)



As illustrated in Section 3, separating immediate and subsequent rewards in this manner can lead to
high variance updates due to the first term even when using predictions from the perfect hindsight
model.

To overcome this problem, we can modify the update as follows,

hT(alS, R
- S Emrn s (B
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We see that this update includes the first reward with hindsight ratio weighting. Next, we prove that
this is indeed a valid policy gradient update. The proof is inspired by the work of Alipov et al. (2021),
who show that a similar trick can be applied to state-HCA when rewards are a function of solely the
next state.

Proposition 1. Consider an action a and state s; for which w(a|s;) > 0. Let T (s¢, ) be distributions
over trajectories starting from state s; when the agent acts with policy w. Then we have

hi (alse, Riti)
s ) = ETN St,T kk—7R
Qx (54, a) T (s1,m) 27 7 (a|s:) o

k>0

Proof. We can define the action-value function at s;, a as

5t7 Z Z’Y Rt+k - 7"|St7 )7"7

reR k>0

where P (R;+r = 7|st, a) is the probability of getting reward r & steps in the future under the
policy-environment distribution and R is the set of possible values for the reward.

We can apply the Bayes rule:

Qu(sr,a) = Z Z wP(alsy, Riyr = 1) P (Ryyp = 7’|St)r

reR k>0 P (als)

The first term in the numerator is the probability from the hindsight model (by definition), and the
denominator is the action probability under the policy. This can be simplified to

hT |S ,R k)
Qﬂ'(stva) = ETNT(Sf ™) Z kWRtJrk

k>0
O

We obtain the update in Equation 5 by taking an all-action policy gradient. We call our associated
algorithm R-HCA (see Algorithm 1).

S Using learned hindsight models

We revisit the environment introduced in Section 3. Recall that Figure 2 shows that an agent trained
with our R-HCA and the ground-truth hindsight model learns very quickly.

Here, we consider performance when the hindsight model is learned together with the actor.

Actor-Critic details The actor and critic are Multi-Layer Perceptrons with no shared parameters
with rectified linear (ReLU) units. The actor and critic are updated at the end of each episode. The
hindsight-based approaches, R-HCA and COCOA, do not need a critic while operating in episodic
settings. Further details are provided in Appendix A.1.
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Figure 3: The probability that the policy assigns to the optimal action on the first time step in
the umbrella environment. COCOA and R-HCA agents are trained with learned hindsight model.
The solid line is the average over 10 seeds, and the shading denotes 95% bootstrapped confidence
intervals.

Learning hindsight models The hindsight model takes as input the state, policy logits at state,
future reward encoded as a discrete distribution (Imani and White, 2018), and the time elapsed
between the state and reward. It predicts a probability distribution over actions as its output. Similar
to the actor, the hindsight model is updated on an episodic basis using the data from the latest episode.
Further details about the training and architecture are provided in Appendix A.1.

Evaluation We present results for R-HCA, COCOA-reward and A2C()\), with A € {0,0.8,1}.
We consider different choices of the learning rate and entropy bonus coefficient. For R-HCA and
COCOA, we also consider choices for the learning rate of the hindsight model. The considered and
selected hyperparameters for all approaches are reported in Appendix A.2. We report the results for
the best setting of each approach in in Figure 3.

Figure 3 shows that R-HCA outperforms COCOA-reward when using learned hindsight models.
It also shows that both the hindsight-based approaches, R-HCA and COCOA-reward, outperform
A-return-based actor-critic in this problem.

Algorithm 1 R-HCA (Episodic, v = 1)
for episode=1,2... do
G(i,a) =0 Vi,a
Collect episode T = (S, Ao, Ro, S1, A1, R1,...SH, A, Ry, Sterminal) USINg Ty
fori=0,1,2... H do
forj=4i+1...Hdo
fora=1,2,...|4| do
G(i,a) = G(i,a) +
end for
end for
end for
{Update the actor/policy}
Take gradient step with loss L, = — ZiH:O > acamo(alSi)G(i,a)
{Train the hindsight model }
Take gradient step with loss Lj, = Zfio Zj; CrossEntropy(I(A4;), E;T_i(.|5i, R;))
end for

h7_;(alS:,Ry)

mo(alS;) Rj




6 Related Work

Our method extends the Hindsight Credit Assignment (HCA) framework (Harutyunyan et al., 2019).
Specifically, we build on the work by Meulemans et al. (2023), who investigate which future features
hindsight models should be conditioned on. They propose COCOA, which uses future rewards or
features encoding reward-specific information for hindsight-based credit assignment. Compared
to COCOA, our R-HCA algorithm improves the assignment of credit associated with immediate
rewards.

Several other works have aimed to enhance the original HCA formulation. Some approaches suggest
redistributing TD-errors instead of rewards to improve State-HCA (Young, 2019; Alipov et al., 2021),
while another work designs a more stable method for estimating the hindsight ratio (Velu et al., 2023).
These complementary ideas could potentially be applied with our R-HCA algorithm.

More broadly, HCA can be viewed as a model-based approach to credit assignment. Other model-
based methods for credit assignment include differentiating through a learned model (Werbos, 1987,
Schmidhuber, 1990; Heess et al., 2015) and using models to chunk or compress trajectories (Ramesh
et al., 2024). In contrast to these approaches, which rely on a forward-dynamics model, HCA
leverages a multi-step inverse dynamics model to associate rewards with state-action pairs.

HCA also shares similarities with other RL approaches that utilize supervised learning objectives,
such as upside-down reinforcement learning (UDRL; Schmidhuber (2019)). UDRL similarly involves
learning a hindsight model, typically conditioned on future returns. However, UDRL-like approaches
use this model to directly select actions and modify the future information toward more desirable
outcomes for policy improvement. In contrast, HCA maintains a separate actor and uses the hindsight
model’s predictions to increase the estimated advantage.

Beyond HCA and other model-based approaches, several methods aim to improve credit assignment in
RL through related mechanisms. These include learning future-conditioned baselines (Mesnard et al.,
2021; Nota et al., 2021; Mesnard et al., 2023), retrospectively redistributing returns or identifying
critical steps in trajectories (Arjona-Medina et al., 2019; Hung et al., 2019; Sun et al., 2023), and
approaches that predict synthetic reward contributions in advance (Raposo et al., 2021). Finally,
hindsight re-labeling of goals has proven effective in goal-conditioned RL by enabling more efficient
use of collected data (Andrychowicz et al., 2017; Rauber et al., 2019).

7 Conclusion

In this paper, we introduce R-HCA, a credit assignment algorithm that learns a hindsight model
to associate future rewards with previous states and actions. Our method addresses an important
limitation of the previously proposed COCOA estimator, which exhibits unnecessarily high variance
even when using the perfect hindsight model. We resolve this issue by deriving an estimator that
incorporates immediate rewards with hindsight re-weighting. Our experimental results on a noisy
umbrella problem demonstrate the benefits of our proposed modification.

While hindsight-based approaches show promise, their success has largely been limited to envi-
ronments with favorable structure, where learning an accurate hindsight model is relatively simple.
Future work should focus on evaluating and developing approaches that remain effective even when
learning a hindsight model presents greater challenges.
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A Implementation details

A.1 Neural network architectures

Actor-Critic The actor network is composed of 3 hidden layers with 512 hidden units and ReLU
non-linearity. The critic network shares no parameters with the actor and is also composed of 3 hidden
layers with 512 hidden units and ReLLU non-linearity. Note that the hindsight-based approaches
(R-HCA and COCOA) do not use a critic in the episodic setting considered here.

Hindsight Model The hindsight model (A7 (.| s, 71 1)) takes as input a state, future reward, policy
logits at the state, and the time elapsed between the state and reward. The final output is a logit for
each action.

The model architecture consists of a state encoder, a future reward and time-difference encoder, and a
gating mechanism to mix the policy log probabilities.

State encoding The state is linearly projected to a vector in R?, followed by a 3-layer neural network
(with ReLU) that maintains the hidden dimension size (d) and by a linear projection to d x |.A|, where
|A| is the number of possible actions. In our experiment, we set d = 512.

Reward and time-difference encoding The scalar reward is modified to a ‘two-hot’ categorical
distribution (Imani and White, 2018). We use 51 bins between -0.3 and 0.3 in the considered
environment. The two-hot reward is linearly encoded to a d-dimensional vector and additively
combined with a learned positional encoding corresponding to the number of timesteps between the
state and reward (k in our notation). This is followed by a network similar to the state encoding, a
3-layer neural network (with ReLU) that maintains the hidden dimension size (d) and by a linear
projection to d x |A.

‘We obtain the non-gated hindsight model predictions by an element-wise multiplication of the two
d x | A| feature sets from the state and reward encodings and then sum over the d-dimensions to
obtain a prediction vector of size |.A|. The non-gated prediction is combined with the policy logits at
the state via a gate as we describe below.

Gating We use a gating network to selectively mix the policy logits. With this, the hindsight model
only needs to selectively learn the difference between the policy’s outputs which helps to handle the
problem of changing policies.

The state, reward, and time difference are encoded linearly and pass through a 3-layer network with
d hidden units, followed by a final projection to a 2-dimensional output. The gate network outputs
two values that lie in [0, 1]. The final prediction is obtained as a linear combination of the non-gated
prediction and the policy logits.
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A.2 Hyperparameter selection

We consider different choices of the learning rate (LR) and entropy bonus coefficient (EB). On-
policy actor-critic approaches are commonly trained with an entropy bonus to prevent premature
convergence to a deterministic policy (Williams and Peng, 1991; Mnih et al., 2016). We initially
considered EB € {0.001, 0.0001, 0.00001} and did not find any approach to be particularly sensitive
to the entropy bonus coefficient, so we set it to 0.0001 for all approaches.

The actor and critic networks are trained with the RMSProp optimizer. The considered and selected
learning rates for all approaches are reported in Table 1.

For R-HCA and COCOA, we also consider choices for the learning rate of the hindsight model
(LRH). The hindsight models are trained with the Adam optimizer. Table 2 presents the considered
and selected values.

Table 1: Considered and selected hyperparameters for the actor (and critic in the case of AC).

Algorithm Candidate LR Selected LR
AC(0) {le — 5,5e — 5,1e — 4,5e — 4,1e — 3} 5e — 5
AC(0.8) {le —5,5e — 5,1e — 4,5e — 4,1le — 3} 5e — 5
AC(1) {le — 5,5e — 5,1e — 4,5e — 4,1e — 3} le—4
COCOA-reward {le —5,5e —5,1e — 4,5e — 4,1e — 3} 5¢ — 5
R-HCA {le — 5,5e — 5,1e — 4,5e — 4,1e — 3} 5e — 5

Table 2: Considered and selected hyperparameters for the hindsight model.

Algorithm Candidate LRH Selected LRH
COCOA-reward {le —5,5¢ —5,1e — 4,5¢ — 4} 5e — 5
R-HCA {le = 5,5e — 5,1e — 4,5e — 4} 5e —5
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