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ABSTRACT

Transformers with 2D self-attention are powerful but computationally intensive,
specifically for long sequences due to their quadratic complexity. Therefore,
sparse attention methods attempt to alleviate this cost by limiting attention pat-
terns. However, they often compromise explainability and fail to generalize well
to global dependencies. Therefore, we propose Higher-Order Block-Diagonal
Attention (HOBA), a novel transformer variant that models triplet interactions
utilizing 3D attention tensors and block-diagonal unrolling. HOBA can capture
richer patterns within and across blocks while efficiently modeling long-range de-
pendencies without high computational cost. We use knowledge distillation with
RoBERTa as the teacher to train the HOBA student model. We evaluate HOBA
on five NLP tasks across eight benchmark datasets, comparing it against Full-3D
(without block or cross-block), standard 2D attention, and sparse mechanisms in-
cluding Longformer, BigBird, Local, and Dilated attention. We further isolate the
contributions of block structure and higher-order interactions, confirming HOBA’s
superiority over both dense and sparse baselines. We also demonstrate that allow-
ing cross-block interaction yields significant accuracy gains by enhancing long-
range token dependencies.

1 INTRODUCTION

Computational linguistics has made significant progress using transformer architectures (Liu et al.,
2023; Vaswani et al., 2017). However, these transformer architectures encounter a crucial scala-
bility issue, especially when dealing with long sequence analysis. The root of the problem lies in
the conventional self-attention mechanism, which suffers from quadratic complexity. This makes it
inefficient to process longer sequences or real-time applications such as document processing and
dialogue systems(Brown et al., 2024; Bai et al., 2024). This inefficiency is because 2D attention
computes dense interactions between all pairs of tokens in the sequence. Recent sparse attention
techniques such as Sparse Transformer (Child et al., 2019), Longformer (Beltagy et al., 2020),
BigBird (Zaheer et al., 2020), Reformer (Kitaev et al., 2020), and Linformer (Wang et al., 2020)
lessen this by eliminating token pairs selectively while aiming to preserve key contextual depen-
dencies. These sparse transformers achieve efficiency by limiting attention computations to local
windows, low-rank projections, or global tokens, thereby approximating dense interactions while
preserving important contextual information. However, these methods focus primarily on computa-
tional efficiency while maintaining the fundamental pairwise interaction paradigm.

The transparency of these models is limited by their ability to produce approximated or fragmented
attention maps that are difficult to analyze. Additionally, many of these architectures are devel-
oped with specific applications in mind, such as Longformer for question-answering or summa-
rization (Sun et al., 2025) and Linformer for classification (Wang et al., 2020), resulting in limited
generalizability. Besides this, block-based architectures such as Reformer (Kitaev et al., 2020) also
struggle to model long-range dependencies due to their localized design. Despite comprehensive at-
tention efficiency research, only few attempts to pay higher-order(HO) attention due to its high cubic
computational cost and difficulty in stable training. Models like Jump Attention (Zhou et al., 2022)
and Kronecker-Attention(Gao et al., 2020) explore this direction; however, they remain largely the-
oretical or tailored to niche tasks. So the question comes: Is it possible to design an attention
mechanism that can better capture HO dependencies while still being computationally efficient
and expressive?

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

In this work, we propose a paradigm shift from traditional pairwise attention to HO attention that
models contextual dependencies among token triplets. We introduce Higher-Order Block-Diagonal
Attention (HOBA) for sequence-wise overlapping block decomposition using a diagonal structure to
capture triplet-level interactions efficiently. However, naive 3D attention is infeasible due to its cubic
complexity. Thus, our approach reshapes attention through local HO interactions in the conditioned
sparsity blocks. Basically, HOBA computes a 3D attention tensor in a localized way by focusing on
token triplets within block-diagonal regions. This reduces the complexity from cubic to near-linear
while maintaining expressiveness. HOBA assigns higher attention to semantically coherent token
triplets by demonstrating its power to capture richer contextual dependencies beyond standard pair-
wise 2D interactions. Additionally, HOBA’s cross-block mechanisms allow global context modeling
without sacrificing the efficiency of local processing. We evaluate HOBA on five representative lan-
guage understanding tasks: sentiment analysis, news classification, question classification, natural
language inference, and question answering. We measure HOBA’s practical efficiency by evaluating
its FLOPs, token processing speed, memory utilization, and accuracy. HOBA is modular and highly
extensible, and it can be easily incorporated into other transformer-based models. Its tunable block
size and overlap make it versatile for various tasks and resources. The contributions of this work
are as follows:

1. We design HOBA, the first scalable triplet-based attention mechanism that models HO inter-
actions utilizing localized block-diagonal structures. It dramatically reduces the cubic cost of 3D
attention while maintaining attention granularity by enabling deployment in real-world tasks. We
use knowledge distillation from a pre-trained RoBERTa teacher to train a smaller student(HOBA)
that learns efficiently through soft labels and attention alignment.

2. We incorporate a cross-block mechanism into HOBA that forms token triplets across disjoint
blocks. It allows HOBA to capture global dependencies without sacrificing efficiency. We show that
utilizing cross-block interaction can improve accuracy by up to 13% and reduce loss by up to 0.22,
which proves its essential role in capturing long-range dependencies.

3. We evaluate HOBA across eight datasets on five different NLP tasks and compare with recent
sparse attention models and standard 2D RoBERTa. HOBA consistently performs better with gains
of up to +3.5% by offering the fastest training time up to 2.6× faster compared to strong baselines.
Also, it remains robust across different layer depths and sequence lengths by demonstrating both
effectiveness and generalization in diverse NLP settings.

Why Triplets Over Pairs? HOBA differs from standard 2D attention not because it uses a 3D
tensor, but because the 3D tensor explicitly models third-order token interactions that cannot be cap-
tured by pairwise dot-product attention. In conventional Transformers, each attention score depends
only on the relation between two tokens, limiting the model to binary dependencies (e.g., sub-
ject→verb or adjective→noun). In contrast, HOBA’s triplet attention tensor Aijk = Q⊤

i (Kj ◦Kk)
incorporates the joint context formed by a pair of keys (j, k), enabling the model to compute at-
tention scores based on interactions of two context tokens simultaneously. This provides access to
richer relational structures that naturally arise in language, such as scope resolution and negation
(“not really good”), multi-modifier composition (“very highly unlikely”), and compound noun co-
hesion (“interest rate policy”), all of which depend on three-way configurations rather than isolated
token pairs. Whereas 2D attention must approximate these higher-order effects across multiple lay-
ers, HOBA can express them within a single layer, offering a stronger inductive bias for structured
multi-token reasoning.

2 RELATED WORKS

Higher-Order and Sparse Attention. The quadratic cost of standard self-attention has motivated
extensive work on structured approximations. Sparse attention models such as Longformer and
BigBird introduce local windows and global tokens to lessen computational complexity while main-
taining contextual awareness (Beltagy et al., 2020; Zaheer et al., 2020). Similarly, Linformer offers
low-rank projections to facilitate attention computation (Wang et al., 2020), while Performer and
Routing Transformer replace traditional dot products with kernel-based and routing-based approxi-
mations for improved scalability (Choromanski et al., 2020; Roy et al., 2021). Jump Self-Attention
(JAT) extends this direction by capturing HO dependencies via spectral convolution, enhancing per-
formance in tasks like natural language understanding (Zhou et al., 2022). Likewise, WIGRAPH
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presents a trainable layer that learns global word-level interactions, improving both interpretability
and predictive accuracy in NLP models (Sekhon et al., 2023). Another work proposes Sparse Self-
Attention Fine-tuning (SSAF) that can replace softmax with a controllable sparse transformation to
improve the performance and interpretability of BERT fine-tuning (Cui et al., 2019). Beyond spar-
sity, recent HO transformers reduce computational overhead using Kronecker product factorization
and kernelized attention approximations (Omranpour et al., 2024). Similarly, Graph-Induced At-
tention goes further by embedding syntactic or semantic graph structures directly into the attention
mechanism by enabling stronger inductive bias and structural awareness (Hong et al., 2022). A
conceptual comparison of these higher-order attention methods is provided in Appendix A.7.

Standard Attention and Knowledge Distillation. Transformers like BERT, RoBERTa, and T5
have become foundational in core NLP tasks like sentiment analysis (Nuci et al., 2024), natu-
ral language inference (Raparthy et al., 2023), and topic classification (Kosar et al., 2023). Each
task requires different modeling strengths; sentiment analysis needs polarity sensitivity (Nuci et al.,
2024), NLI demands contextual reasoning (Raparthy et al., 2023), and news classification favors
topical abstraction. To address this diversity, researchers have proposed task-aware attention mech-
anisms (Benarab & Gui, 2022; Roy et al., 2021), modular tuning methods like adapters (Pfeiffer
et al., 2020), and data-centric augmentation techniques (Chai et al., 2024). However, challenges
persist in domain generalization, compositional reasoning, and inference efficiency (Patil & Jadon,
2025). Knowledge distillation processes have been widely adopted to mitigate these challenges.
These methods compress large transformer models by training compact students on softened out-
puts from teacher models using temperature scaling and Kullback-Leibler(KL) divergence (Lu et al.,
2022). In practice, teacher-student setups align final logits or internal attention patterns through KL
or MSE losses, often blending hard and soft supervision (Aguilar et al., 2020; Chen et al., 2021).
Recent methods use progressive stages to gradually shrink the model (Yao et al., 2024), bias-aware
filtering (Zhang et al., 2025), or cooperative schemes (Livanos et al., 2024). Specialized distillation
has also been explored in sentiment and emotion-aware models (Li et al., 2025; Ma et al., 2023).

3 BLOCK-DIAGONAL UNROLLING FRAMEWORK

3.1 PROBLEM FORMULATION

Let X = [x1, x2, . . . , xL] ∈ RL×d be an input sequence of L tokens, where each token embedding
xi ∈ Rd. The goal is to learn a transformation fθ(X) that produces a contextual representation
H ∈ RL×d′

for a variety of natural language tasks. In transformer models, fθ consists of stacked
layers of feedforward networks and self-attention. The self-attention module allows each token to
collect contextual information from the entire sequence.

Given projections Q = XWQ, K = XWK , and V = XWV with learnable parameters
WQ,WK ,WV ∈ Rd×dk , the attention output is computed as

H = Attention(Q,K, V ) = softmax
(

QK⊤
√
dk

)
V (1)

The attention matrix A ∈ RL×L that results from this traditional method captures all paired token
interactions. However, it poses two major challenges. First, the attention operation has quadratic
complexity O(L2d) in both time and memory, which restricts scalability. Second, the fully dense
structure lacks inductive bias, which makes it challenging to interpret and potentially redundant.
To resolve these issues, we propose a reformulated attention operator H̃ = F3D(X), where F3D

captures higher-order(3D) interactions utilizing structured sparsity. Our 3D attention mechanism
replaces the dense 2D attention map with a block-diagonal structure that improves both efficiency
and performance.

3.2 PROPOSED 3D BLOCK-DIAGONAL ATTENTION: HOBA

Our 3D attention mechanism, HOBA, generalizes standard 2D self-attention by introducing a third-
order interaction space. We model interactions among token triplets (xi, xj , xk) instead of comput-
ing attention over all token pairs (xi, xj) and capture richer relational patterns that go beyond simple
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pairwise dependencies. The 3D block-diagonal attention mechanism from end to end is detailed in
Figure 1.

Given an input sequence X = [x1, x2, . . . , xL] ∈ RL×d, 3D attention creates a tensorA ∈ RL×L×L

such that each component Ai,j,k encodes the interaction score among tokens xi, xj , xk. For sim-
plicity, the head dimension is omitted, and below Eqn. (2) is applied independently per head. We
compute the contextual output (hi) for each token by aggregating over this triadic space:

hi =
∑L

j=1

∑L
k=1 αi,j,k · g(xj , xk) (2)

where g(xj , xk) is a function that combines the two context tokens, and αi,j,k is the normalized
attention score over j and k. This approach allows richer semantic modeling, such as resolving
phrase-level sentiment or subject-modifier-object interactions. We approximate hi via block-level
contextual outputs C(m), which are later aggregated into the final sequence representation O. How-
ever, 3D attention faces practical limitations despite its modeling power. It is inherently more expen-
sive in memory and computation than standard 2D attention, and computing full 3D tensors naively
is intractable for long sequences.

(a) 3D Block-Diagonal Attention Processing (b) Classification Pipeline and Pattern Compar-
ison

Figure 1: Complete HOBA unrolling Framework. (a) Once the input sentence is tokenized, we split
the tokens into several blocks and process the 3D tensor parallelly within a block-diagonal spar-
sity pattern that eliminates redundant full-matrix computations. The block-diagonal attention matrix
shows how our method gains computational efficiency by restricting attention to local block regions
while preserving sparse zero-computation areas outside the diagonal blocks. Later, we do overlap
averaging and compute cross-block interactions. Finally, we get the enhanced representation of the
tokens with lowered complexity from O(n²) standard attention to O(nb²) block-diagonal attention.
(b) Enhanced token representations flow through RoBERTa pooling to the final prediction. Addi-
tionally, we show how 3D attention patterns capture richer semantic relationships than standard 2D
attention, leading to improved classification performance.

Due to the computational complexity of simultaneously computing attention scores across query
vectors and multiple key vector pairs in our HO attention mechanism, we use PyTorch’s einsum
operation to implement HO interactions for contracting queries with pairs of keys to form multi-
dimensional attention tensors that capture triplet relationships. It enables the compact implementa-
tion of complex tensor operations that would otherwise require higher multiple matrix multiplica-
tions and reshaping operations.

3.2.1 BLOCK-DIAGONAL UNROLLING

HOBA uses HO interactions in a structured and localized manner to overcome the cubic computa-
tional complexity of 3D attention. Therefore, instead of operating on the full L × L × L attention
cube, which grows cubically with input length, we split the sequence X ∈ RL×d into B non-
overlapping blocks of size b, such that L = B · b.
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Suppose that our sequence has L = 12 tokens and we set block size b = 4, then we can express it
as:

X(1) = [x1, x2, x3, x4], X(2) = [x5, x6, x7, x8], X(3) = [x9, x10, x11, x12].

we compute a local 3D attention tensor A(b) ∈ Rb×b×b for each block X(i). Each entry A(b)
j,k,ℓ

models the interaction between triplets (xj , xk, xℓ) within the block. We traverse diagonal slices of
the cube A(b) rather than iterating over all key pairs (j, k), where j + k = constant. This improves
computational efficiency through parallelism and better cache locality. The block-diagonal structure
reduces the computational complexity from O(L3) to O(B · b3) = O(Lb2), where b ≪ L (details
on accounting for overlap and Cross-Block costs are discussed in Appendix A.6). This formulation
achieves linear scaling with respect to sequence length for a fixed block size b, while preserving the
expressive capacity of HO interactions within local regions (more details in Appendix A.3).

3.2.2 OVERLAPPING BLOCK STRUCTURE

We expand our block partitioning strategy by introducing overlapping blocks to allow smooth infor-
mation flow across block boundaries. Each block X(m) now spans a wider window specified by an
overlap ratio λ ∈ (0, 1). Specifically, block m covers the token positions:

[m · b(1− λ), m · b(1− λ) + b) (3)

This overlapping scheme permits contextual blending across adjacent blocks without substantially
raising the memory footprint. For any token xi that arises in multiple overlapping blocks, we average
its attention outputs from each block to get the final representation:

oi =
1

|Bi|
∑

m∈Bi
o
(m)
i (4)

where Bi represents the set of blocks that include token xi, the overlap-aggregated token output is
oi, and o

(m)
i is the block-specific output.

3.2.3 CROSS-BLOCK INTERACTION MECHANISM

Although local 3D attention captures rich intra-block dependencies, it cannot model global structure.
Thus, we introduce a cross-block attention mechanism based on block-level summaries to address
this. For each block X(m), we calculate a representative vector r(m) ∈ Rd by averaging all token
embeddings within the block:

r(m) = 1
b

∑(m+1)b−1
i=mb hi (5)

We then calculate cross-block attention scores between all block representatives utilizing scaled
dot-product attention:

A(cross)
m,m′ = softmax

(
(r(m))⊤r(m

′)
√
d

)
(6)

Finally, the output representation for token xi is updated by fusing local 3D attention with global
block-level context:

oi = o(local)
i +

∑B−1
m′=0A

(cross)
m,m′ · r(m

′) (7)

where m = ⌊i/b⌋ defines the block index corresponding to token position i. Here oi denotes the
per-token output, and the global matrix O = [o1, . . . , oL] is returned as the final HO representation.

3.3 KNOWLEDGE DISTILLATION WITH HIGHER-ORDER STUDENT

We use knowledge distillation to facilitate stable training of HOBA while preserving architectural
compatibility with RoBERTa. Precisely, we use a 12-layer RoBERTa-base model, fine-tuned on the
target datasets with standard 2D self-attention, as the teacher. The teacher provides soft targets that
capture class probabilities and inter-class similarities. It is often more informative than hard one-hot
labels, specifically when training smaller student models. Our HOBA student model replaces the
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teacher’s 2D attention with block-diagonal HO interactions but inherits embedding and projection
weights to ensure initialization consistency. While it is true that distilling from a 2D teacher con-
strains the absolute upper bound of performance, this setup provides a fair and controlled comparison
by retaining the supervision signal identical across 2D and HOBA students. Moreover, distillation
stabilizes training by preventing overfitting when moving from conventional quadratic attention to
HO tensorized attention. The total loss integrates cross-entropy with ground-truth labels and KL
divergence between the softened student and teacher distributions can be defined as

Ltotal = (1− α) · LCE(zS , y) + α · τ2 · LKL
(
softmax(zS/τ) ∥ softmax(zT /τ)

)
, (8)

where LCE is the cross-entropy loss with ground-truth labels y, LKL is the KL divergence between
teacher and student distributions, τ is the temperature for smoothing, and α ∈ [0, 1] is the balancing
coefficient.

Datasets We evaluate our HOBA method across diverse NLP tasks to demonstrate its general
applicability(See Details in Appendix A.2, Table 8). We focus on five primary task categories:
sentiment analysis(SA), news classiciation(NC), qestion classification(QC), natural language infer-
ence(NLI), and question answering(QA). These datasets express different levels of complexity, from
binary sentiment classification to multi-class reasoning tasks, by facilitating a thorough evaluation
of our method’s effectiveness across diverse linguistic phenomena.

4 RESULTS ANALYSIS

4.1 EXPERIMENTAL SETUP

We compare vanilla RoBERTa models with our proposed HOBA variants under identical training
configurations to ensure fairness. Both models use 3-layer and 6-layer transformer backbones with
hidden size 768, 12 attention heads, and a feed-forward dimension of 3072. Specifically, we use
either a 3-layer or 6-layer architecture with a small batch size of 8 and a maximum input sequence
length of 64 tokens (for 3-layer models) or 128 tokens (for 6-layer models). In HOBA, standard
2D multi-head self-attention is replaced by block-diagonal higher-order attention, with block sizes
b ∈ {16, 64} and overlap ratio 25%. Embeddings and classification heads are initialized from a
pretrained RoBERTa-base teacher to guarantee architectural compatibility. The teacher is a 12-
layer RoBERTa-base model fine-tuned on the target task and kept frozen during student training.
Knowledge distillation is applied using the combined cross-entropy and KL divergence losses with
balancing factor α = 0.3 and temperature τ = 2.0. All models are trained with AdamW (learning
rate 1×10−5, weight decay 0.01), a linear decay schedule with 10% warmup, dropout rate 0.1, batch
size 8, and early stopping after 3 epochs without validation improvement. We train for 5 epochs
depending on the task, and average results across three random seeds (seed = 42) to report mean
and standard deviation. Finally, we report student model performance to highlight the effectiveness
of HOBA compared to the vanilla baseline(see Table 2). We use green color to highlight the best
performer in tables.

4.2 FROM INFEASIBLE FULL-3D ATTENTION TO SPARSE AND FEASIBLE HOBA

Before scaling to large benchmarks, we first conduct a sanity check in a small-scale setting with a
maximum sequence length of 64. This setup helps us isolate the source of HOBA’s performance
gains by evaluating the feasibility of HO attention in its pure form. In particular, we evaluate full 3D
attention without block sparsity or cross-block interactions on two lightweight datasets: SST-2 (10k
samples) and TREC (5k samples). This setting is intentionally simple: the sequence length is short,
the number of classes is small, and the datasets are relatively limited in size. The results in Table 1
show that full 3D attention underperforms, reaching only 82–85% accuracy, and significantly below
both vanilla 2D and HOBA across both 3-layer and 6-layer models. In contrast, HOBA consistently
recovers accuracy, reaching 86–94% and closely matching or even surpassing the 2D baseline.

Later, in large benchmarks, HOBA achieves superior or comparable accuracy (see Table 2) in 8 out
of 10 comparisons. For example, HOBA reaches 97% accuracy on SQuAD with 3 layers and 98%
with 6 layers, consistently outperforming the 2D baseline. On MNLI, HOBA improves from 62%
(2D) to 64% (3-layer) and further to 77% (6-layer), showing benefits on more complex reasoning
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Table 1: SST-2 and TREC results with Full-3D, HOBA, and 2D. Results are mean±std over three
runs. Full-3D underperforms even at L=64, while HOBA recovers accuracy with better stability
and efficiency. HOBA outperforms Full-3D but remains comparable to 2D(due to limited sample
size).

Dataset Classes Accuracy Total Loss

Full-3D HOBA 2D Full-3D HOBA 2D

3-Layer Model

SST-2 2 83.4±0.8 86.9±0.6 88.8±0.5 0.58±0.03 0.46±0.02 0.42±0.02
TREC 3 85.1±0.9 90.7±0.7 92.4±0.6 0.62±0.04 0.48±0.03 0.44±0.02

6-Layer Model

SST-2 2 82.3±0.7 90.4±0.5 91.1±0.4 0.51±0.03 0.39±0.02 0.37±0.02
TREC 3 84.9±0.8 94.1±0.5 94.7±0.4 0.57±0.03 0.36±0.02 0.34±0.02

tasks. In addition to accuracy, HOBA consistently yields lower or comparable loss values: the 3-
layer HOBA loss ranges from 0.36–0.69, compared to 0.28–0.90 in 2D. Moreover, HOBA achieves
10–48% lower KL loss than 2D by exhibiting more efficient knowledge distillation across datasets.
Surprisingly, the 2D model performs slightly better than HOBA on the small TREC dataset (5.5K
samples), due to the limited training size. Since HO attention is designed to capture complex token
triplet interactions, its expressive capacity may be underutilized on small datasets. Additional qual-
itative visualizations on attention patterns and token interaction graphs are provided in Appendix
A.4. Overall, HOBA provides efficient and robust modeling of token triplets within localized blocks,
offering deeper contextual knowledge and outperforming standard 2D attention under more chal-
lenging training conditions.

Table 2: Performance comparison between HOBA and standard 2D attention models across five
datasets. Results averaged over three independent runs.

Dataset Classes Accuracy Total Loss KL Loss

HOBA 2D HOBA 2D HOBA 2D

3-Layer Model

AG News 4 92±0.5% 92±0.4% 0.51±0.02 0.28±0.01 0.18±0.01 0.20±0.01
MNLI 3 64±0.7% 62±0.9% 0.69±0.02 0.61±0.03 0.21±0.01 0.30±0.04
SST 2 80±0.8% 79±0.6% 0.49±0.03 0.90±0.04 0.25±0.08 0.24±0.02
TREC 5 91±0.6% 94±0.5% 0.39±0.02 0.40±0.05 0.14±0.01 0.20±0.01
SQuAD 4 97±0.4% 93±0.6% 0.36±0.02 0.56±0.03 0.11±0.01 0.21±0.06

6-Layer Model

AG News 4 93±0.6% 92±0.5% 0.43±0.03 0.36±0.02 0.13±0.01 0.18±0.01
MNLI 3 77±0.6% 76±0.7% 0.65±0.03 0.98±0.05 0.20±0.02 0.33±0.02
SST 2 81±0.5% 80±0.4% 0.40±0.02 0.45±0.03 0.15±0.01 0.23±0.02
TREC 5 90±0.7% 95±0.5% 0.51±0.03 0.16±0.01 0.15±0.02 0.17±0.01
SQuAD 4 98±0.3% 95±0.4% 0.39±0.02 0.76±0.04 0.12±0.01 0.18±0.02

Scratch Training Behavior. We trained HOBA variants (3 & 6 layers ) from scratch with-
out any distillation using same configuration. Representative results on AG-News (4 classes)
and SST-2 (2 classes) are shown in Table 3. Based on the results, we find that scratch
training is noticeably less stable in the early phase and requires substantially more warm-
up to reach competitive performance. Basically, training without KD exhibits higher gra-
dient noise and slower convergence during the first 8–12k updates, leading to final accura-
cies that are consistently 1–4% lower across seeds. Variance across runs is also meaning-
fully higher, making controlled comparisons with 2D baselines less reliable. These properties
make KD the more appropriate choice for clean architectural comparisons over scratch training.

Table 3: Scratch (S) vs. KD training performance

Model AG-S AG-KD SST2-S SST2-KD
HOBA (3L) 89.1±0.8 92.3±0.3 77.4±0.9 80.3±0.4
HOBA (6L) 87.8±0.9 93.6±0.4 78.4±1.1 81.8±0.5

Comparative Evaluation with Recent 2D
Attention. To the best of our knowl-
edge, no prior work has explored 3D at-
tention mechanisms due to their high com-
putational cost. Thus, we compare HOBA
against recent 2D-based models, WIGRAPH-
RoBERTa (Sekhon et al., 2023), TransEvolve-fullFF-1 (Dutta et al., 2021), and E2LN(R) (Zhang

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

et al., 2024) which closely align with our task objectives. We ensure fair comparison by utilizing
identical configurations for all models, training each for five epochs with sequence length 128 for
AG News and 512 for IMDB. We find that HOBA reaches higher accuracy(see Table 4) in all cases
by demonstrating the benefits of modeling triplet interactions. We exclude popular methods such as
FlashAttention (Dao et al., 2022), Linformer (Wang et al., 2020) etc., from direct benchmarking, as
they focus on kernel-level optimizations or non-attention operators. Our work instead targets struc-
tural improvements to attention via HO block interactions, making these methods complementary
rather than directly comparable.

Table 4: Performance comparison between our HOBA model and recent 2D attention methods.

Model Dataset Acc (Theirs/HOBA) Their Focus Their Interaction

WIGRAPH-RoBERTa AG News 91.52% / 95.22% Word interaction learning 2D
(AAAI ’23) for 2D interaction

TransEvolve-fullFF-1 AG News 90.10% / 91.63% Parameter reduction for 2D
(NIPS ’21) quadratic attention

E2LN(R) IMDB 59.23% / 90.41% Efficient LayerNorm 2D
(ACL ’24) personalization

Comparison with Different Sparse Attention and Long-Context Benchmarks. We test HOBA
on long-sequence sentiment classification tasks using the IMDB, LRA-Text and Yelp Polarity
datasets against several sparse mechanisms such as Longformer (Beltagy et al., 2020), BigBird (Za-
heer et al., 2020), Local (Parmar et al., 2018), Block-diagonal(like ours approach), and Dilated
attention (Hassani & Shi, 2022). These methods are widely adopted because their sparsity patterns
reduce quadratic costs while preserving context. We choose these patterns for a fair comparison as
they capture different trade-offs between locality, global context, and efficiency. The sparse base-
lines are configured with their typical hyperparameters. For instance, Longformer uses a sliding
window of 512, BigBird combines 10% random + 10% global + 80% local links, Local attention
uses a fixed window of 128, and Dilated attention uses a dilation rate of 2, ensuring settings align
with our experimental context. As shown in Table 5, HOBA consistently achieves the best accuracy
at L=512, reaching 93.1% on IMDB and 97.2% on Yelp, while also providing faster training than
Longformer and Local attention.

Table 5: Comparison of HOBA (ours), Longformer, BigBird, and 2D attention baselines (2D Block-
Diagonal, 2D Local, 2D Dilated; all without HO) on IMDB, Yelp Polarity, and LRA–Text across
sequence lengths L = 512–2048. Results are reported as accuracy / loss / training time (minutes).

Dataset L
HOBA (Ours) Longformer BigBird 2D Block-Diagonal 2D Local 2D Dilated

Acc/Loss/Time Acc/Loss/Time Acc/Loss/Time Acc/Loss/Time Acc/Loss/Time Acc/Loss/Time

IMDB 512 93.1/0.23/10m 92.1/0.37/26m 90.4/0.22/15m 77.7/0.51/37m 83.2/0.43/39m 85.0/0.40/35m
2048 – 92.0/0.24/54m 92.1/0.28/38m – – –

Yelp Polarity
512 97.2/0.09/280m 92.0/0.68/690m 95.0/0.08/166m 88.8/0.30/693m 93.4/0.23/711m 91.5/0.26/705m

1024 96.4/0.12/420m 92.1/0.70/1120m 95.3/0.10/240m – – –
2048 95.9/0.16/610m 93.2/0.61/1409m 96.1/0.08/240m – – –

LRA–Text 1024 64.1/1.21/95m 63.8/1.27/210m 65.2/1.19/160m 57.8/1.40/260m 60.3/1.32/275m 62.1/1.29/250m
2048 63.4/1.25/180m 63.1/1.32/380m 65.0/1.22/300m – – –

Across long context settings, HOBA remains stable and competitive even as sequence lengths in-
crease to 1024 and 2048 tokens. On Yelp Polarity, HOBA consistently outperforms Longformer and
remains close to BigBird even at 2k tokens, while maintaining significantly lower inference time.
On the more challenging LRA–Text benchmark, HOBA again matches or exceeds Longformer and
stays within a narrow margin of BigBird, despite using a simpler triplet formulation and without
any specialized long-range architectural tuning. The main benefit comes from HOBA’s ability to
model richer token relationships using structured 3D attention over triplets. Unlike sparse models,
which reduce complexity by restricting which tokens attend to each other, our HOBA model cap-
tures detailed local interactions through block-diagonal attention. This allows better context mod-
eling without requiring long sequences or extensive computation. Therefore, even without support
for sequences longer than 512, HOBA exceeds both Longformer and BigBird within their optimal
settings(i.e., longer sequence length = 2048).
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Efficiency Gains with HOBA. We sweep hidden size (model width) and plot accuracy against total
FLOPs while holding all other hyperparameters fixed: 2 layers, 4 heads, FFN ratio 4H , block size
= 32, sequence length L=128, identical data, optimizer, epochs, and training schedule for a fair
comparison of HOBA to standard 2D attention. FLOPs include attention, QKV/OUT projections,
and FFN. For the smallest width setting (H=64), both HOBA and 2D RoBERTa have roughly 3.3M
parameters, with memory usage of 13.2 MB for HOBA and 14.1 MB for 2D. The throughput is about
1.2k tokens/s for 2D and 1.6k tokens/s for HOBA. Figure 2(a) shows that HOBA achieves better
accuracy at lower compute across all widths. Concretely, HOBA reduces FLOPs by ≈ 8−12%
relative to 2D (e.g., 33.6M→30.2M at width 64; 337.6M→304.0M at width 224) while improving
accuracy by +1.5–3.3 points (e.g., 74.9%→ 76.4%, 85.1%→ 88.4%). Because projections and
the FFN dominate at short contexts (L=128), the observed savings arise solely from the attention
mechanism; the gap is expected to widen for longer sequences where attention costs dominate. The
global Pareto frontier therefore shifts upward with HOBA, implying a better efficiency–performance
trade-off than standard 2D attention at matched training conditions.

Figure 2: Computation vs. accuracy on AG News. (a) Accuracy and FLOPs across hidden widths
for 2D vs. HOBA, showing that HOBA consistently achieves higher accuracy with lower compute.
(b) Accuracy improves as block size increases, but saturates beyond b=32, identifying it as the best
trade-off point.

Generalization Bound via Rademacher Complexity. We analyze why HOBA yields stronger
generalization than standard 2D attention using Rademacher complexity (Bartlett & Mendelson,
2002; Mohri et al., 2018). For a loss ℓ bounded in [0, 1] and Lℓ-Lipschitz, the standard bound states
that with probability at least 1− δ, for any h ∈ H,

L(h) ≤ L̂(h) + 2Lℓ R̂n(H) + 3

√
ln(2/δ)

2n . (9)

where R̂n(H) is the empirical Rademacher complexity. Since HHOBA ⊆ HFull by construction
(block-diagonal masking strictly restricts token interactions), monotonicity of Rademacher com-
plexity implies

R̂n(HHOBA) ≤ R̂n(HFull). (10)

Therefore, whenever the empirical risk of HOBA is comparable to or lower than that of standard 2D
attention, the reduced hypothesis class size guarantees a strictly tighter generalization bound. This
progress stems from enforcing structured block-diagonal and overlapping attention masks, which
limit the effective hypothesis space without sacrificing expressivity. Empirical evidence supports
this theoretical claim (see Table 5, 6, 1, and 2). HOBA not only improves accuracy over 2D but
also achieves 10–48% lower KL loss across datasets, confirming that the restricted hypothesis class
translates into stronger generalization in practice (see Appendix A.1 for the supporting lemma).

4.3 ABLATION STUDY

Impact of Cross-Block Interaction. Cross-block(CB) interaction in HOBA allows the model to
connect information between distant token blocks. This link is especially useful when local atten-
tion alone cannot capture key semantic patterns. We find that enabling cross-block (CB) interaction
consistently improves accuracy for both 2D and HOBA, but the gains are far more pronounced in

9
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HOBA. On AG News and SST-2, HOBA with CB outperforms all other variants. The largest im-
provement is observed on MNLI, where HOBA with CB achieves 64% accuracy, surpassing both
HOBA without CB (57%) and 2D with CB (53%). MNLI involves reasoning across sentence pairs;
therefore, performance depends on connecting information that might sit far apart. Without CB in-
teraction, those links break, and attention becomes limited. HOBA with CB forms triplets spanning
the full sequence by allowing signals to combine across distant blocks. This strengthens reasoning,
lessens noise, and promotes consistent patterns across layers. All these results highlight that while
CB benefits both architectures, its combination with HOBA yields the most robust improvements,
confirming HOBA + CB as the strongest configuration.

Table 6: Ablation study comparing 2D (with and with-
out CB) and HOBA variants (with and without CB).
Results are accuracy/loss (block size 16, 3 layers).

Dataset Classes 2D w/o CB 2D w/ CB HOBA w/ CB HOBA w/o CB

AG News 4 88% / 0.83 89% / 0.52 92% / 0.51 90% / 0.53
SST-2 2 76% / 0.50 77% / 0.49 79% / 0.49 78% / 0.50
MNLI 3 51% / 0.73 53% / 0.71 64% / 0.69 57% / 0.73

Effect of Block Size. At fixed context
(L=128) and capacity (2 layers, width
128, 4 heads, FFN 4H) increasing the
HOBA block size from b=8, 16, 32, 64
steadily improves accuracy from 78.5% to
84.3%, while FLOPs grow roughly lin-
early in b (52M to 160M)(see Figure 2(b)).
Gains saturate beyond b=32 (only +0.3
points at b=64 for ∼1.5× more compute),
identifying b=32 as the best accuracy–
compute trade-off under this setting. We
therefore suggest using b=32 unless longer-range within-block context is required.

Effect of Sequence Length. We conduct a sequence-length study to evaluate the robustness of
HOBA under diverse input lengths across AG News, MNLI, and SST-2 datasets(see Table 9 in
Appendix A.5). Results indicate that performance steadily improves as sequence length increases
from 128 to 384. This trend is evident in tasks requiring deeper contextual understanding like MNLI,
where accuracy increases from 51% to 59% and loss drops notably. This trend also reveals HOBA’s
capacity to capture broader dependencies with its HO structure. Even on SST-2, which has shorter
inputs, increasing the sequence length to 256 increases accuracy. It also reduces loss, indicating that
our model benefits from a longer context window.

Controlled Comparison with a 2D Block-Local Baseline. We construct a controlled experiment
(block size b = 32, overlap λ = 0.25).) on AGNews comparing a 2D block-local attention model
with HOBA (3D), using the same block size, overlap ratio, and cross-block routing. The only
difference is that the 2D baseline performs pairwise (2D) attention, whereas HOBA performs triplet-
wise (3D) attention. The results indicate that HOBA consistently outperforms the matched 2D
baseline, demonstrating that the gains arise from HO (3D) attention rather than the block-local
structure alone. The results indicate that HOBA consistently outperforms the matched 2D baseline,
demonstrating that the gains arise from HO (3D) attention rather than the block-local structure alone.

5 CONCLUSION

Table 7: 2D block-local attention vs. HOBA.

Depth Model Acc. (%) Loss

3-layer 2D Block 88.6 ± 0.3 0.23 ± 0.3
3-layer HOBA (3D) 91.9 ± 0.2 0.21 ± 0.01

6-layer 2D Block 90.1 ± 0.1 0.34 ± 0.04
6-layer HOBA (3D) 93.3 ± 0.2 0.34 ± 0.02

This study proposes HOBA, a novel HO block-
diagonal attention method that models token
triplet interactions to improve contextual repre-
sentation in transformer-based models. HOBA
presents a 3D attention tensor while retaining
computational efficiency through block-diagonal
decomposition, unlike standard 2D attention,
which uses pairwise token dependencies. Fur-
thermore, we evaluate how cross-block interaction further enriches global reasoning without incur-
ring substantial overhead. Extensive experiments across eight benchmark NLP datasets demonstrate
that HOBA achieves competitive or superior accuracy with lower resource usage than vanilla or
other sparse attention baselines. Our work enhances explainability by demonstrating interpretable
token triplet interactions and how cross-block interaction helps the model to capture long-range se-
mantic dependencies across disjoint token regions. In the future, we aim to explore adaptive HO
attention mechanisms with dynamic block structures for NLP applications.
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Reproducibility Statement
We ensure reproducibility by detailing our model architecture, training setup, and evaluation pro-
tocols in the main text, with additional information in Appendix. Our coding implementation is
provided as an anonymized zipped package in the supplementary materials, including scripts for
training, and evaluation.
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A APPENDIX

A.1 PROOF OF LEMMA 1

Lemma 1 (HOBA is a restricted sub-class of full attention). Let HFull be the hypothesis class in-
duced by a transformer with unconstrained (dense) self-attention, and let HHOBA denote the same
architecture with block-diagonal or overlapping attention masks. ThenHHOBA ⊆ HFull.

Setup. Consider a single attention layer with per-head dimension d and additive mask M ∈ RL×L.
The masked attention output is

Attn(Q,K, V ;M) = softmax
(

1√
d
QK⊤ +M

)
V, (11)

where Q,K, V ∈ RL×d are the query, key, and value projections. Let f(X; Θ,M) denote the model
function with parameters Θ and attention mask M , consistent with the general fθ(X) formulation
in the main text. Then f(x; Θ,M) specifies a depth-D transformer (with fixed depth and hidden
size for both models) obtained by composing layers of the masked attention in Eq. (11).
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Classes. Define the mask sets and induced hypothesis classes:

MFull := RL×L,

MHOBA :=
{
M ∈ RL×L : Mij = −∞ if (i, j) lies outside allowed block positions

}
, (12)

HFull :=
{
x 7→ f(x; Θ,M) : Θ arbitrary, M ∈MFull

}
,

HHOBA :=
{
x 7→ f(x; Θ,M) : Θ arbitrary, M ∈MHOBA

}
. (13)

Inclusion. By construction, MHOBA ⊆ MFull, since block-diagonal or overlapping masks are a
strict subset of all possible real-valued masks. Hence, for any (Θ,M) with M ∈ MHOBA, the same
pair (Θ,M) is admissible in HFull. This implies f(·; Θ,M) ∈ HFull, and therefore every function
realizable by HOBA is realizable by the full-attention model:

HHOBA ⊆ HFull.

The argument extends directly to multi-head and multi-layer transformers, since masks are applied
independently per head and per layer, and compositionality preserves inclusion. □

A.2 MORE ON DATASETS

The datasets used in our experiments span multiple NLP tasks, including news categorization (AG
News), natural language inference (MNLI), sentiment analysis (SST, IMDB, Yelp Polarity), question
classification (TREC), and question answering (SQuAD). They vary widely in both scale and input
length: AG News and MNLI contain medium-length sequences with median sizes of about 35–40
tokens, SST and TREC are shorter with median lengths under 20 and 10 tokens respectively, while
SQuAD passages are longer with a median around 150 tokens. IMDB and Yelp Polarity consist
of full-length user reviews, exhibiting much greater input size, with medians of approximately 230
and 150 tokens. This diversity in task type, size, and sequence length provides a comprehensive
benchmark for evaluating both efficiency and effectiveness of attention mechanisms.

Table 8: Dataset Statistics and Task Descriptions

Dataset Task Classes Train Test
AG News NC 4 120K 7.6K
MNLI NLI 3 393K 9.8K
SST SA 2 67K 1.8K
TREC QC 5 5.5K 500
SQuAD QA 4 87K 10.6K
IMDB SA 2 25K 25K
LRA–Text SA 2 250K 25K
Yelp Polarity SA 2 260K 20K

A.3 BLOCK-WISE TENSOR ATTENTION

Our HOBA takes an input sequence X ∈ RL×d and projects it into query, key, and value subspaces
as Q,K1,K2, V1, V2 ∈ RL×d through learned linear transformations (Algorithm 1). The sequence
is divided into overlapping blocks B of size b with overlap ratio λ, and for each block (s, e) ∈ B we
extract the block tensors Q(m),K

(m)
1 ,K

(m)
2 , V

(m)
1 , V

(m)
2 ∈ Rb×d.

Higher-order interaction tensor. Within each block, the 3D attention interaction is computed
using the tensor contraction

T (m) = einsum("ijd,jkd,jld->ijkl", Q(m),K
(m)
1 ,K

(m)
2 ) ∈ Rb×b×b,

where i indexes the query token, (j, k) index paired key tokens, and the embedding dimension d is
contracted out. Softmax over the (j, k) axes yields the triplet attention tensor A(m) ∈ Rb×b×b.
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Value interaction and block output. The corresponding value interaction tensor is

U (m) = einsum("jkd,jld->jkld", V (m)
1 , V

(m)
2 ) ∈ Rb×b×d.

The contextual block output is then obtained by

C(m) = einsum("ijkl,jkld->id", A(m),U (m)) ∈ Rb×d,

which provides one contextual representation per token inside the block.

Aggregation and multi-head computation. All C(m) outputs are accumulated into the global
tensor O with overlap handling. In the multi-head setting, the same computation is applied indepen-
dently for each head h to obtain C

(m)
h , after which the outputs are concatenated across heads and

passed through the usual output projection WO. A pooled summary representation R is obtained via
BLOCKPOOLING and incorporated through CROSSBLOCKATTENTION, yielding the final block-
updated representation.

Algorithm 1 Block-Diagonal Higher-Order Attention

Require: Input X ∈ RL×d, block size b, overlap ratio λ
Ensure: Output O ∈ RL×d

1: // Project to attention subspaces
2: Q,K1,K2, V1, V2 ← XWQ, XWK1 , XWK2 , XWV1 , XWV2

3: // Initialize output and generate overlapping blocks
4: O ← 0L×d, B ← GENERATEBLOCKS(L, b, λ)
5: for each block (s, e) ∈ B do
6: // Extract block tensors
7: Q(m),K

(m)
1 ,K

(m)
2 , V

(m)
1 , V

(m)
2 ← X[s : e]

8: // Compute 3D attention tensor
9: T (m) ← EINSUM("ijd,jkd,jld->ijkl", Q(m),K

(m)
1 ,K

(m)
2 )/

√
d

10: A(m) ← SOFTMAX(T (m))
11: // Value interaction tensor
12: U (m) ← EINSUM("jkd,jld->jkld", V (m)

1 , V
(m)
2 )

13: // Contextual block output
14: C(m) ← EINSUM("ijkl,jkld->id",A(m),U (m))
15: // Accumulate with overlap
16: O[s : e]← O[s : e] + C(m)

17: end for
18: // Cross-block interaction
19: R← BLOCKPOOLING(O,B)
20: O ← O + CROSSBLOCKATTENTION(O,R)
21: // Normalize overlaps and project
22: O ← NORMALIZEOVERLAPS(O)WO

23: return O

A.4 COMPARISON OF TOKEN-LEVEL ATTENTION PATTERNS

We visualize the interaction graphs generated by HOBA and standard 2D models to understand the
qualitative differences in token-level attention patterns. Comparison of attention patterns shown in
Figure 3 and Figure 4 analogizes token-level attention interactions between a standard self-attention
model (left) and the proposed HOBA mechanism (right). Both graphs visualize attention among
tokens in the sentence “Global markets showed uncertainty amid economic volatility.” Edge thick-
ness and color express the relative strength of attention (red = strongest, gray/green = weakest). The
softmax-based model displays dense, diffused relations with limited focus, where many token pairs
acquire comparable attention. In contrast, HOBA shows a structured pattern: fewer but sharper
edges concentrate around key semantic units (e.g., “uncertainty” ↔ [CLS], “Global” ↔ “volatil-
ity”), reflecting its HO block-localized computation. This visualization reveals HOBA’s ability to
highlight salient interactions while filtering irrelevant ones, enhancing interpretability and modeling
focus.
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Figure 3: Comparison of attention patterns between standard 2D attention (left) and our proposed 3D
higher-order attention (right). The 2D plot displays traditional pairwise query-key token interactions,
while the 3D plot shows a key1 × key2 slice for the query token “strong” by capturing triplet
interactions. HOBA assigns a higher weight to semantically relevant triplets such as (“strong,”
“quarterly,” and “earnings”) and reflects its ability to model richer contextual dependencies.

Figure 4: Comparison of Token Interaction Patterns. Left: Traditional 2D self-attention shows
widespread but diluted connections across tokens. Right: HOBA generates sparse, structured at-
tention with strong localized dependencies. Token pairs such as (“uncertainty”, “[CLS]”) and
(“Global”, “volatility”) receive top-rank attention in HOBA, demonstrating its ability to capture
critical HO semantics with sharper focus.

A.5 EFFECT OF SEQUENCE LENGTH ABLATION

Table 9: Sequence length ablation for HOBA (block=32, 6 layers). Accuracy / loss shown.

Dataset L=128 L=256 L=384

AG News 90% / 0.46 91% / 0.48 93% / 0.43
MNLI 51% / 0.72 51% / 0.69 59% / 0.53
SST-2 77% / 0.43 78% / 0.34 N/A

A.6 ACCOUNTING FOR OVERLAP AND CROSS-BLOCK COSTS

This section provides the full derivation of the additional computational terms introduced by overlap-
ping blocks (Eq. 4) and cross-block attention (Eqs. 5–7), complementing the complexity discussion
in Section 3.2.
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(a) Overlap cost (referencing Eq. 4). From Eq. 4, the final token output is obtained by averaging
the block-specific outputs o(m)

i over the set of overlapping blocks Bi that contain token xi:

oi =
1

|Bi|
∑
m∈Bi

o
(m)
i .

Since each token appears in a constant number of overlapping blocks determined by the fixed overlap
ratio λ, this introduces only a constant-factor overhead and therefore does not change the asymptotic
complexity of the model.

(b) Cross-block attention cost (referencing Eqs. 5–7). As defined in Eqs. 5–7, each block sum-
mary representation r(m) is computed by pooling over its b token-level outputs:

r(m) =
1

b

(m+1)b−1∑
i=mb

hi,

where hi denotes the intermediate contextual output for token xi. Cross-block attention is then
performed across all B = L/b blocks. The attention operation over these B block representatives
requires

O(B2d) = O
(
L2

b2
d

)
,

which captures the full cost of global block-to-block interactions.

(c) Final combined complexity. Combining the local 3D block cost O(Lb2d) with the overlap
(constant factor) and the cross-block attention term above, the overall complexity of HOBA is

HOBA(L) = O(Lb2d) +O
(
L2

b2
d

)
,

which correctly includes all contributions from local higher-order interactions, overlap aggregation,
and cross-block attention.

A.7 KEY DIFFERENCE WITH SOTA METHODS

We find that all these prior higher-order attention models (Table 10) operate globally (spectral ker-
nels, full-sequence graphs, dense tensor contractions), resulting in fundamentally different compu-
tational objectives and scaling regimes. We find that their complexity is much higher than HOBA’s
block-local 3D attention, making direct comparison neither methodologically fair nor computation-
ally feasible under matched FLOPs. However, Sparse-attention models (Longformer, BigBird, etc.)
are the appropriate baselines because, like our HOBA, they are specifically designed to reduce the
quadratic cost of self-attention while preserving long-range dependencies. They target the same
efficiency–accuracy trade-off, operate under similar computational budgets, and scale to long se-
quences. Thus, it makes them conceptually and empirically aligned with HOBA’s goals.
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Table 10: Conceptual Comparison of HO Attention Methods and How HOBA Differs.

Method Interaction How HO is Modeled Comp. Structure Limitation How HOBA Differs

Jump Attention (JAT)
(Zhou et al., 2022) Spectral interac-

tions
FFT-based spectral
convs for multi-token
relations

Global conv kernels No explicit triplets;
heavy compute

HOBA computes explicit
((i, j, k)) triplets but
only inside blocks

WIGRAPH
(Sekhon et al., 2023) Graph-based HO Graph propagation for

global relations
Global graph layer Needs full-sequence

graph; not scalable
HOBA uses local 3D
blocks + lightweight
cross-block routing

Graph-Induced Attn
(Hong et al., 2022) Graph-biased dot-

prod
Injects syntactic graph
into 2D attention

Standard attention +
graph bias

Still pairwise; not 3D HOBA directly models
triplets; no external graph
needed

Kernelized HO Attn
(Choromanski et al.,

2020)
Kernel approx. Tensor kernels for HO

interactions
Sequence-wide ten-
sor ops

High memory, ex-
pensive

HOBA uses block-
diagonal factorization;
linear in L for fixed
block size

Sparse HO Self-Attn
(Cui et al., 2019) Sparse structured Sparse softmax patterns Standard 2D atten-

tion
No triadic modeling HOBA performs true 3D

attention over triplets
within blocks
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