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Abstract

Decoder-only large language models (LLMs)
have recently demonstrated impressive capabil-
ities in text generation and reasoning. Nonethe-
less, they have limited applications in si-
multaneous machine translation (SiMT), cur-
rently dominated by encoder-decoder trans-
formers. This study demonstrates that, af-
ter fine-tuning on a small dataset comprising
causally aligned source and target sentence
pairs, a pre-trained open-source LLM can con-
trol input segmentation directly by generat-
ing a special "wait" token. This obviates the
need for a separate policy and enables the
LLM to perform English-German and English-
Russian SiMT tasks with BLEU scores that
are comparable to those of specific state-of-
the-art baselines. We also evaluated closed-
source models such as GPT-4, which displayed
encouraging results in performing the SiMT
task without prior training (zero-shot), indi-
cating a promising avenue for enhancing fu-
ture SiMT systems. The code is available at
https://github.com/RomanKoshkin/transllama.

1 Introduction

Unlike conventional sequential translation, in
which the target text is produced after the end of
the corresponding source sentence (or long phrase),
in simultaneous machine translation (SiMT) the tar-
get text is produced with minimal delay, aiming for
the best listener experience expected from profes-
sional conference interpreters. While recent years
have seen tremendous progress in sentence-based
machine translation, mainstream adoption of SiMT
systems requires solving a range of technical prob-
lems. Perhaps the most important of them is that,
much like human conference interpreters, SiMT
systems must make optimal decisions about when
(rather than how) to translate. In particular, naively
translating each source word immediately results
in compromised target quality, given that the mean-
ing of a source word often makes sense only in the

context of later words. And while waiting until
the end of a sentence might seem a viable solution,
in practice it would introduce unacceptable delays
between the source and target message. Conse-
quently, the development of an effective SiMT sys-
tem necessitates striking a balance between these
two opposite scenarios.

Existing approaches to maintaining an optimal
quality-latency tradeoff in SiMT, conventionally
called policies, fall into two broad categories: fixed
and adaptive. The policy’s role is to signal to a sep-
arately trained translation model when to produce
a partial translation (aka WRITE action (Gu et al.,
2017)) based of the partial input; at other times the
input, which represents either text chunks from an
upstream ASR system (in cascade SiMT systems)
or speech embeddings (in end-to-end systems), is
just read in (READ action). While with a fixed
policy (Dalvi et al., 2018; Ma et al., 2019; Elbayad
et al., 2020; Zhang and Feng, 2021), the decision to
output translation is based on a simple heuristic, an
adaptive policy (Arivazhagan et al., 2019; Ma et al.,
2020b; Zhang and Feng, 2022) can be implemented
as a separately trained model, for example an agent
trained with reinforcement learning (RL) (Gu et al.,
2017; Satija and Pineau, 2016).

To the best of our knowledge, state-of-the-art
SiMT systems use encoder-decoder transformer ar-
chitectures in a sequence-to-sequence paradigm.
However, as of writing this paper the largest –
and generally most expressive – language models
are causal decoder-only architectures. We wanted
to explore the utility of such models for SiMT
tasks, focusing on the English-German and English-
Russian language pairs, and specifically if they can
be harnessed with minimal engineering effort.

Inspired by the recent success of LLMs in trans-
lation (Xu et al., 2024), as well as by their agential
capabilities (Nascimento et al., 2023; Wang et al.,
2024, 2023c) – here we propose TRANSLLAMA, a
policy-free SiMT system, in which an off-the-shelf
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pre-trained decoder-only LLM is fine-tuned on a
dataset of causally aligned source and target sen-
tences. The causality of the source is guaranteed by
inserting one or more <WAIT> tokens into the target
sentence to ensure that target content words never
appear earlier than their closest equivalents in the
source. We call our model policy-free, because as
a result of fine-tuning on a causally aligned dataset
the LLM becomes capable of deciding when to
output translation and when to read in more of the
source, without requiring a separate policy. At in-
ference, the fine-tuned LLM is prompted with part
of a source sentence concatenated with its corre-
sponding (partial) translation and outputs one or
more target tokens until either a full new word or a
<WAIT> token is generated, which signals for more
words to be read in. When extended with an off-
the-shelf ASR model, in addition to text-to-text
translation (T2TT), our system handles speech-to-
speech translation (S2TT) tasks with quality (as
measured by BLEU score (Papineni et al., 2002))
approaching that of some of the recently published
baselines at comparable latencies.

Our main contributions are as follows:

1. We propose a way to fine-tune a pre-trained
LLM for the SiMT task with direct supervi-
sion on a dataset of causally aligned source-
target sentence pairs;

2. We demonstrate that an LLM can perform
both simultaneous translation and input seg-
mentation without a separate policy, with per-
formance approaching or exceeding state of
the art.

The rest of the paper is structured as follows.
Section 2 offers a brief overview of most recent
SiMT literature. In Section 3 we detail our sys-
tem’s architecture, fine-tuning data preparation and
training procedure. In Section 4 we showcase its
performance on en-de and en-ru language direc-
tions. We discuss directions for future work in
Section 5 and limitations in Section 6.

2 Related Work

SiMT systems aim to deliver the best translation
quality, usually measured with BLEU score (Pa-
pineni et al., 2002), while keeping its latency at
an acceptable level. This quality-latency trade-off
is controlled by the "policy", which decides when
to translate (i.e. perform a WRITE action) and
when to receive more input (i.e. perform a READ

action). The various policies described in the litera-
ture can be broadly categorized into fixed and adap-
tive (Zhang et al., 2020). Fixed policies (e.g, wait-k
(Ma et al., 2019)) are simple rules that determine
the timing and order of WRITE and READ actions
irrespective of the context. Early SiMT systems
used chunk-based approaches (Fügen et al., 2007;
Bangalore et al., 2012; Yarmohammadi et al., 2013;
Sridhar et al., 2013), in which the input is split into
sub-sentence phrases and translated independently
of the previous chunk’s context, which compro-
mised translation quality. Attempting to overcome
this limitation, Dalvi et al. (2018) proposed an
incremental decoding approach, in which chunk
translations incorporate previous context encapsu-
lated by an RNN’s hidden states. They showed that
coupled with a simple segmentation strategy, their
approach outperformed existing state of the art. On
the other hand, adaptive policies (e.g. wait-if rules
(Cho and Esipova, 2016)) make READ/WRITE ac-
tions more flexibly by taking account of the partial
source and/or target. Adaptive policies can be im-
plemented as separately trained agents (e.g. with
reinforcement learning) (Grissom II et al., 2014;
Gu et al., 2017; Satija and Pineau, 2016; Alinejad
et al., 2018). In such policies, READ/WRITE ac-
tions can be taken based on attention (Raffel et al.,
2017; Chiu and Raffel, 2018; Arivazhagan et al.,
2019; Ma et al., 2020b), or stability of the model’s
outputs over n steps (so-called local agreement
(Liu et al., 2020a; Ko et al., 2023; Polák et al.,
2022)). More recent studies have also explored
training the policy with binary search Guo et al.
(2023) aiming to maximize the gain in translation
quality per each token read, or cast the problem
of deciding when to translate as a hidden Markov
transformer (Zhang and Feng, 2023), in which hid-
den events correspond to the times at which to
output translation.

Another promising line of work, related to the
present study, aims to fine-tune encoder-decoder
transformers, such as mBART (Liu et al., 2020b),
originally pre-trained for sentence-level transla-
tion, for the SiMT task. For example, Fukuda
et al. (2023); Kano et al. (2022) utilized fine-tuning
on prefix-alignment data and Zhang et al. (2020)
on meaningful units, achieving compelling perfor-
mance on some language pairs.

Finally, in the course of writing this paper, we
became aware of two concurrent projects which
explored the use of fine-tuned LLMs for SiMT in
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LLM (Llama2)

<s>[INST]  <<SYS>> You are a professional … <</SYS>>  Translate this text: I like to [/INST]

<WAIT> generated?Yes: READ action

Generates tokens until new full word or <WAIT>

source
(audio stream)

ASR (Whisper)
Recognizes words from the audio stream 

and adds them to the buffer Word buffer

1

2

3 No: WRITE action
Update the prompt with a new source word and 

the newly generated target word

<s>[INST]  <<SYS>> You are a professional … <</SYS>>  Translate this text: I like to have [/INST] Ich

Update the prompt with a new source word from the buffer

4

“Ich”

Figure 1: Model overview. The source audio stream is processed with an ASR model (1), which saves each
recognized word into the buffer. The initial prompt (2) is built with k source words (k = 3 in this example). When
the buffer has 3 words, the initial prompt is fed into the LLM, which generates output tokens until either a <WAIT>
token or a full word is generated ("Ich" in this example) (3). Then the prompt is updated with a new input ("have")
and target ("Ich") word (WRITE action). Finally, the updated prompt (4) is fed back into the LLM. If <WAIT> is
generated, the prompt is only updated with a new source word from the buffer (READ action).

conjunction with a modified local agreement (Wang
et al., 2023a), and vanilla wait-k (Agostinelli et al.,
2024) policies.

Distinct from previous work, we propose a
policy-free approach, in which an LLM is fine-
tuned for the SiMT task on causally aligned full
source-target sentence pairs, which we describe
below.

3 Method

Although the LLMs we consider in this paper are
designed to process only text input, we add an ASR
stage to enable it to also perform S2TT. Thus, we
follow a cascaded approach shown in Fig. 1.

Causal alignment. Training SiMT models, in-
cluding optimal segmentation policies, with direct
supervision has remained a challenge (Guo et al.,
2023) due to at least three reasons: (1) word or-
der inconsistencies between the source and target,
(2) omissions of words from the target that were
present in the source, and/or (3) additions of words
to the target not explicitly present in the source,
making it difficult to establish unambiguous corre-
spondences between each source and target words.
This is less of a problem for offline translation mod-
els, because they are trained with direct supervision
on pairs of complete source and target sentences,
and both during training and inference the entire
source context is revealed. However, it is not imme-
diately clear how to use direct supervision for the

SiMT task, in which the model must begin trans-
lation based on partial context. Nevertheless, we
believe that direct supervision for the SiMT task
is possible and propose a way to accomplish that
with a causally aligned dataset. In such a dataset,
a target word never appears before its correspond-
ing (when such correspondence can be established)
source word in time, which is defined as the number
of words from the sentence start. In other words,
in a causally aligned source-target sentence pair,
source words are guaranteed to be causal relative
to their corresponding target words. We illustrate
this in Fig. 2.

Note that the causal alignment is not always per-
fect: due to the word length mismatch between the
source and target, not all source words will have
a corresponding target word, and vice versa, not
every target word will have a corresponding word
in the source. However, as we demonstrate below,
fine-tuning an LLM on such a causally aligned
dataset enabled us to achieve results comparable to
some state-of-the-art baselines.

In order to causally align the source and target,
we split each sentence using the word_tokenize
function from the nltk package (Bird et al., 2009),
treating punctuation marks as "words", then find
the best correspondences between the source and
target words with SimAlign (Jalili Sabet et al.,
2020), and finally insert as many <WAIT> tokens
into the target as appropriate. If after alignment the
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en ru en ru en de en de
1 They Они They Они 1 He Er He Er
2 live живут live живут 2 took befreite took <WAIT>
3 in глубоко in <WAIT> 3 one uns one <WAIT>
4 the в the <WAIT> 4 of von of <WAIT>
5 depths конголезских depths глубоко 5 the einer the <WAIT>
6 of джунглях of в 6 worst der worst <WAIT>
7 the , the <WAIT> 7 scourges schlimmsten scourges <WAIT>
8 Congolese где Congolese конголезских 8 of Geißeln of <WAIT>
9 jungle сложно jungle джунглях 9 mankind der mankind <WAIT>
10 and проводить and , 10 away Menschheit away befreite
11 it исследования it где 11 from . from <WAIT>
12 has . has <WAIT> 12 us us uns
13 been been <WAIT> 13 . . von
14 very very <WAIT> 14 ▁▁ einer
15 difficult difficult сложно 15 ▁▁ der
16 to to проводить 16 ▁▁ schlimmsten
17 study study исследования 17 ▁▁ Geißeln
18 them them <WAIT> 18 ▁▁ der
19 . . . 19 ▁▁ Menschheit

20 ▁▁ .

original causally aligned original causally aligned

Figure 2: Causal alignment. Two examples are shown: for en-ru (left) and en-de (right). If time is defined as
the number of words from the beginning of the sentence, before alignment, some target words appear earlier than
their corresponding English equivalents in the source. By inserting <WAIT> tokens, we can shift those target words
into the future, thereby achieving causality for every content word. "_ _" are fillers added at the end of the source
sentence if neccessary to match its length with that of the target. When a target word (e.g. “befreite”) has no directly
corresponding source word, it can be placed anywhere between the neighboring aligned words (“Er” and “uns”).

target becomes longer than the source due to added
<WAIT> tokens, we pad the source at the end with
filler strings ensuring that the aligned source and
target sentences have the same number of "words".
These filler strings are only used for convenient
batching and are dropped before tokenization.

Supervised Fine-Tuning (SFT). We fine-tune
the LLAMA-2 13B and and 70B models Touvron
et al. (2023) 1 to optimize the following objective:

LT2TT = −
|y|∑

t=1

log p(yt|y<t, x≤t) (1)

where yt is the next target token, y<t are previ-
ously generated (and committed) tokens and x≤t

and the partial source tokens revealed up to the
time step t. Following (Touvron et al., 2023), we
zero out the loss on tokens corresponding the to
system message and source, only backpropagating
on the target tokens.

We use batches of prompt-response pairs col-
lated in the following way. Before tokenization,
each aligned sentence-target pair selected from the
causally aligned dataset is trimmed from the right
to leave first l words, where l ∼ U(1, L) and L is
the full length of the causally aligned source-target
pair. After trimming, all the <WAIT> tokens ex-
cept the last one (if present) are dropped, because

1We found that the LLAMA-2-CHAT variants (both 13B
and 70B), when fine-tuned on our causally aligned dataset
performed slightly, but consistently, worse than LLAMA-2,
and we report the results for the latter model only.

they are never plugged back into the input and only
serve the purpose of signaling for more words to
be read in. Likewise, we drop all the fillers (if
present) from the source. Finally, the system mes-
sage, trimmed source and trimmed target are joined
into the prompt (as shown in Fig. 3) and tokenized.
Because there is no <WAIT> token in the LLAMA 2
tokenizer, we use 0 (which originally corresponds
to the <UNK> token). Thus, the model is fine-tuned
to either output the next token of a word or <WAIT>,
if the partial source does not contain sufficient in-
formation needed to predict translation.

To save memory, we loaded the base model
in 4-bit precision using the bitsandbytes library
(Dettmers et al., 2022). This allowed us to fine-
tune LLAMA 2 70B on one NVIDIA A100 80GB
device. We fine-tune the base model with LoRA
(Hu et al., 2022) with r = 16 and α = 32 for 3
epochs with a batch size of 25 and gradient accu-
mulation of 4 steps. We save model checkpoints
every 10 steps and select the one with the lowest
validation loss for inference. For optimization, we
used the paged_adamw_32bit optimizer (Dettmers
et al., 2022) with default parameters, and a learn-
ing rate schedule with a linear warm-up of 10 steps
up to 0.00005, followed by a cosine decay. For
parameter-efficient training, as well as for infer-
ence, we used the transformers2 library.

Inference. At inference, given a prompt (Fig.
3) comprised of a system message, partial source

2https://huggingface.co
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and previously committed partial target, the LLM
greedily generates one or more next tokens. We use
modified wait-k (Ma et al., 2019), in which WRITE
actions are only allowed when the length of the
PARTIAL_SOURCE is equal or greater than k. Since
k controls the tradeoff between quality and latency,
we report results for different values of k. After
a full new word – which may consist of several
tokens – is generated, the prompt is updated by
appending a new source word to the partial source
and the newly generated word to the partial target.
This process is repeated until the LLM generates
the <EOS> token. All the generation parameters
were at default, except top_p which we set to 0.7.
We did not use beam search during generation.

After all the source words have been revealed,
the input is no longer partial and no new words are
added to it, but the generation process continues
until <EOS>. Importantly, if the model generates
the <WAIT> token, a new source word is read in,
but the <WAIT> token itself is not appended to the
partial target. We illustrate the inference process in
Fig. 4 and Algorithm 1.

Algorithm 1 Inference process

partial_target = []
k = WAIT_K
while True:

partial_source = SOURCE [:k]
prompt = " ".join([

SYS_MSG ,
partial_source ,
partial_target ])

# generate until next full word ,
# <EOS > or <WAIT >
if k > len(SOURCE ):

suppress_wait = True
else:

suppress_wait = False

next_word = model.generate(
prompt , suppress_wait)

if next_word == "<EOS >":
break # finish sentence

elif next_word == "<WAIT >":
k += 1 # READ action

else:
partial_target.append(next_word)
k += 1 # WRITE action

Prompt structure. We follow a similar prompt
structure as in Touvron et al. (2023) (Fig. 3).
For the SYSTEM_MESSAGE we used the following
text: "You are a professional conference inter-
preter. Given an English text you translate it

into {TARGET_LANGUAGE} as accurately and as
concisely as possible, NEVER adding comments of
your own. You output translation when the infor-
mation available in the source is unambiguous, oth-
erwise you output the wait token ({WAIT_TOKEN}),
not flanked by anything else. It’s important that
you get this right.". We note that while the system
message is only necessary in zero-shot SiMT sce-
narios – which we discuss below – for consistency
we still kept it in all the experiments reported here,
including those involving supervised fine-tuning.

Automatic speech recognition. Given that the
LLMs are designed to process text input, to enable
S2TT we first need to extract text from input audio,
for which we use Whisper 3 (Radford et al., 2023).
Specifically, for each READ action, a new segment
of audio, lasting 200 ms, is added to any previously
read audio chunks and then processed by Whisper.
This method of fixed audio windowing often re-
sults in partially clipped words. To address this, we
discard the last word predicted by Whisper during
each READ action unless the entire source audio
has been read in. We note that this approach to
online ASR is somewhat naive and has room for
improvement – as indicated by a roughly 1 BLEU
point decrease due to ASR-related errors (Fig. 9).
Since our main objective was to assess the capa-
bility of LLMs to perform SiMT tasks, we leave
exploring ways to decrease ASR errors to future
work.

4 Results

Data. For supervised fine-tuning (SFT), valida-
tion and testing, we used MuST-C v2.0 (Di Gangi
et al., 2019) for English-to-German (en-de) and
English-to-Russian (en-ru) translation direction.
We randomly selected 4000 sentences for training
and 100 sentences for validation. However, since
it is possible that the dataset that LLAMA2 was
pre-trained on and MuST-C v2.0 (including its vali-
dation and test set) might have overlapping content,
we also compiled another test set, which we call
TED-TST-2023. This test set has a similar content
type (TED talks) and follows the same format as
the original MuST-C v2.0, but only includes talks
posted after February 2023. The dataset has two
parts: 102 source-target pairs for en-de and 102 for
en-ru language pair. Unless indicated otherwise,
we report the results obtained on this test set.

T2TT. We first analyzed the T2TT performance
3We used whisper-large-v2.

465



<s>[INST]
<<SYS>>
SYSTEM_MESSAGE
<</SYS>>
Translate this text: PARTIAL_SOURCE [/INST] PARTIAL_TARGET

Figure 3: Prompt structure. «SYS», «/SYS» and [INST], [/INST] are special strings used in Llama to mark the
system message and instruction within the prompt.

PARTIAL_SOURCE PARTIAL_TARGET Prediction
I <WAIT>
I like �
I like to � l�bl�
I like to have � l�bl� <WAIT>
I like to have tea � l�bl� pit~
I like to have tea in � l�bl� pit~ qa�
I like to have tea in the � l�bl� pit~ qa� <WAIT>
I like to have tea in the morning. � l�bl� pit~ qa� po
I like to have tea in the morning. � l�bl� pit~ qa� po utram.
I like to have tea in the morning. � l�bl� pit~ qa� po utram. <EOS>

Figure 4: An illustration of the inference process for the en-ru language pair. Assuming k = 1, given the prompt
with one source and zero target words, the model first outputs <WAIT>, which signals for the next source word to be
read in. At the next step, the model generates the first target word (�), which is plugged into the prompt at the next
step. This process continues until <EOS> is generated.

or our approach on the MuST-C dataset v2.0
(Di Gangi et al., 2019). To get a sense for the
quality-latency tradeoff, we plot BLEU scores
against several different values of k (because k is
the only way to control the translation latency). The
results, shown in Fig. 5, suggest that the LLM’s
size is a major factor determining the translation
quality.

S2TT. We next test fine-tuned LLMs and com-
pare them with two recently published S2TT base-
lines (Fukuda et al., 2023; Papi et al., 2023) (Fig.
6) and in zero-shot mode to OpenAI’s GPT-3.5 and
GPT-4 (Fig. 7). For as fair a comparison as possi-
ble, we ensured that average lagging (AL) of all of
the models was below approximately 2000 ms. For
Llama-2 models we set k = 5 (the other models’
settings are listed in Appendix 5). The boxplots
in Figs. 6, 7 and throughout are drawn based on
data from 10 evaluation runs of the same model
with the same parameters on sentence pairs sam-
pled with replacement from TED-TST-2023. The
results show a degradation of translation quality by
approximately 1 BLEU score point compared to
T2TT mode, which is to be expected due to ASR
errors (Fig. 9).

Zero-shot T2TT. Can the LLMs perform the
SiMT task zero-shot, that is without any prior
fine-tuning? To answer this question, we used
LLMs that had been fine-tuned with RLHF (re-
inforcement learning with human feedback) (Sti-
ennon et al., 2020) for instruction following:
open-source LLAMA2-CHAT, as well as GPT-3.5
(gpt-3.5-turbo-0613) and GPT-4 (gpt-4-0613),
which were among the strongest closed-source
LLMs available at the time of writing this paper.
In general, with the notable exception of GPT-4,
zero-shot performance was poor (Fig. 7). Inspec-
tion of the translations revealed that the models
consistently failed to follow the prompt instruc-
tion, specifically, (1) generating output in English
rather than the target language, (2) adding expressly
prohibited explanatory comments, (3) restating or
summarizing the task, or (4) explaining the reason
for adding <WAIT> tokens). GPT-4 was surpris-
ingly good, performing better than the supervised
fine-tuned LLAMA2-70B, and we speculate that
the performance of GPT-3.5 and GPT-4 could be
further improved with SFT 4, more sophisticated

4SFT was not available for GPT-3.5 and GPT-4 at the time
of writing this paper.
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Llama-2-13b-hf (en-de)
Llama-2-70b-hf (en-de)
gpt-4-0613 (en-de)

Llama-2-13b-hf (en-ru)
Llama-2-70b-hf (en-ru)
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Figure 5: Dependence of latency and quality on k (top panels) and quality-latency tradeoff curves (bottom panels)
for the T2TT mode on the MuST-C v2.0 dataset. Dashed lines mark GPT-4’s sentence-level BLEU scores: black for
en-de and red for en-ru. AL and LAAL are Average Lagging and Length-Adaptive Average Lagging, respectively.

generation strategies and prompt engineering.
Importance of wait tokens. To evaluate the

utility of <WAIT> tokens, we conduct two ablation
experiments. In the first experiment we consider
a zero-shot translation scenario in which GPT-4
was not instructed to use <WAIT> tokens. In the
second experiment, we suppress the generation
of <WAIT> tokens in supervised fine-tuned LLMs.
The results, as indicated in Table 1, reveal that
GPT-4 demonstrates marginally inferior perfor-
mance when k ∈ {1, 2}5 when not instructed about
<WAIT> tokens. However, it is important to note that
in a zero-shot context, GPT-3.5 and GPT-4 seldom
generated <WAIT> tokens (almost never for k > 2).
Therefore, the directive to employ these tokens only
produced a discernible impact for smaller values
of k. By contrast, in the SFT scenario, suppress-
ing <WAIT> tokens led to significantly decreased
performance for both the 13B and 70B versions of
LLAMA-2 (Table 1 (b, c)).

To gain insight into where LLAMA-2 tended
to insert the <WAIT> token, we plot the distribu-
tion of words after which the SFT models gener-

5We did not study the role of <WAIT> tokens for k > 2, as
GPT-4 almost never generates them for those values of k.

ated this token. Fig. 8 shows that the model gen-
erated <WAIT> after function words6 (129 times)
rather than content words (103 times), indicating
that it had learned to choose appropriately between
READ and WRITE actions.

5 Conclusions and Future Directions

We have shown that with minimal fine-tuning and
without resorting to sophisticated training tech-
niques (e.g. checkpoint averaging (Fukuda et al.,
2023)), an off-the-shelf pre-trained LLM can per-
form simultaneous translation and achieve encour-
aging results that rival some of the recent SiMT
models. This opens interesting directions to be
explored in future work, such as multilingual fine-
tuning, self-instruct (Wang et al., 2023b) and hu-
man preference tuning (Ouyang et al., 2022).

There are several reasons to believe that we are
far from unlocking the full potential of LLMs for
SiMT. First, we followed the practice – standard in
the SiMT literature – of evaluating the model on
individual sentences randomly sampled from con-

6Tagged with these Penn Treebank POS-tags: CC, DT, EX,
IN, MD, PDT, POS, PRP$, RB, RBR, RBS, RP, TO, WDT,
WP, WP$, WRB
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k w/ <WAIT> w/o <WAIT>

1 15.23 14.88
2 17.17 15.66

(a)

k w/ <WAIT> w/o <WAIT>

1 14.76 10.80
2 14.97 11.94
4 17.42 15.67

(b)

k w/ <WAIT> w/o <WAIT>

1 17.17 4.64
2 16.83 7.84
4 19.24 14.80

(c)

Table 1: Removing the instruction to generate or suppressing the <WAIT> token degrades performance. The numbers
indicate BLEU scores on TED-TST-2023 (en-de) in T2TT mode for GPT-4 (a), 13B (b) and 70B (c) Llama-2.

Fukuda et al.
(2023)

Llama-70b
(SFT)

Llama-13b
(SFT)

Papi et al.
(2023)

15

16

17

18

19

20

21

22

23

BL
EU

Figure 6: S2TT performance of SFT LLAMA-2 and two
recently published models on the en-de language pair
on TED-TST-2023. See also Table 3.
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Figure 7: Zero-shot S2TT performance or our approach
compared with GPT-3.5 and GPT-4 on the en-de lan-
guage pair on TED-TST-2023.

tinuous prose. However, many (if not the majority
of) short sentences are ambiguous when taken out
of context. Even human conference interpreters
routinely prepare for an upcoming translation job,
studying relevant materials, which means that they
do not have to translate sentences taken out of con-
text. For this reason, we believe that the most
straightforward way to boost the performance of
future LLM-based SiMT systems is to insert back-
ground information into the prompt. Second, the
big difference in zero-shot performance between
GPT-3.5 and GPT-4 suggests that size is likely the
biggest factor determining the model’s translation
quality, and that further gains can be achieved once
SFT becomes available for these closed-source
models.
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Figure 8: After fine-tuning, LLAMA-2 generates
<WAIT> tokens predominantly after function words
(especially articles and prepositions).
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Figure 9: Performance decrease due to ASR-related
errors. In T2TT mode, Llama2-70b performs by about
1 BLEU score point better than the same model on the
same data in S2TT mode.

6 Limitations

Several performance bottlenecks impede the real-
world application of our SiMT approach in its
current form, notably the system message, whose
length frequently exceeds that of the source sen-
tence, leading to substantial slowdowns (refer to
Table 2). Additionally, the ASR subsystem and
weight quantization introduce further delays. To ad-
dress these issues, instead of using a separate ASR
model, future work might rely on an end-to-end ap-
proach similar to Fathullah et al. (2024), in which
input audio is directly mapped into the LLM’s em-
bedding space, reducing the system’s overall la-
tency. Efficient quantization schemes, faster al-

468



gorithms and hardware support for low bit-width
arithmetic are also promising directions. Finally,
because LLAMA-2 was trained predominantly on
English text, its tokenizer represents English more
efficiently than other languages. That is, fewer
tokens on average are needed to encode a text in
English than a text of the same length (in charac-
ters) in another, less represented, language. Thus,
future LLMs pre-trained on a linguistically more
balanced dataset, might be faster at inference in
SiMT tasks.

Acknowledgements

The first author acknowledges financial support
from KAKENHI grant JP23KJ2131 and Google.

References
Victor Agostinelli, Max Wild, Matthew Raffel, Kazi

Fuad, and Lizhong Chen. 2024. Simul-LLM: A
framework for exploring high-quality simultaneous
translation with large language models. In Proceed-
ings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 10530–10541, Bangkok, Thailand. As-
sociation for Computational Linguistics.

Ashkan Alinejad, Maryam Siahbani, and Anoop Sarkar.
2018. Prediction improves simultaneous neural ma-
chine translation. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 3022–3027, Brussels, Belgium.
Association for Computational Linguistics.

Naveen Arivazhagan, Colin Cherry, Wolfgang
Macherey, Chung-Cheng Chiu, Semih Yavuz, Ruom-
ing Pang, Wei Li, and Colin Raffel. 2019. Monotonic
infinite lookback attention for simultaneous machine
translation. In Proceedings of the 57th Annual
Meeting of the Association for Computational
Linguistics, pages 1313–1323, Florence, Italy.
Association for Computational Linguistics.

Srinivas Bangalore, Vivek Kumar Rangarajan Sridhar,
Prakash Kolan, Ladan Golipour, and Aura Jimenez.
2012. Real-time incremental speech-to-speech trans-
lation of dialogs. In Proceedings of the 2012 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 437–445.

Steven Bird, Ewan Klein, and Edward Loper. 2009. Nat-
ural language processing with Python: analyzing text
with the natural language toolkit. " O’Reilly Media,
Inc.".

Colin Cherry and George Foster. 2019. Thinking slow
about latency evaluation for simultaneous machine
translation. arXiv preprint arXiv:1906.00048.

Chung-Cheng Chiu and Colin Raffel. 2018. Monotonic
chunkwise attention. In 6th International Conference
on Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings. OpenReview.net.

Kyunghyun Cho and Masha Esipova. 2016. Can neu-
ral machine translation do simultaneous translation?
arXiv preprint arXiv:1606.02012.

Fahim Dalvi, Nadir Durrani, Hassan Sajjad, and Stephan
Vogel. 2018. Incremental decoding and training
methods for simultaneous translation in neural ma-
chine translation. In Proceedings of the 2018 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 2 (Short Papers), pages
493–499, New Orleans, Louisiana. Association for
Computational Linguistics.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. 2022. Gpt3.int8(): 8-bit matrix multi-
plication for transformers at scale. In Advances in
Neural Information Processing Systems, volume 35,
pages 30318–30332. Curran Associates, Inc.

Mattia A. Di Gangi, Roldano Cattoni, Luisa Bentivogli,
Matteo Negri, and Marco Turchi. 2019. MuST-C: a
Multilingual Speech Translation Corpus. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 2012–2017, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Maha Elbayad, Laurent Besacier, and Jakob Verbeek.
2020. Efficient Wait-k Models for Simultaneous Ma-
chine Translation. In Proc. Interspeech 2020, pages
1461–1465.

Yassir Fathullah, Chunyang Wu, Egor Lakomkin, Jun-
teng Jia, Yuan Shangguan, Ke Li, Jinxi Guo, Wenhan
Xiong, Jay Mahadeokar, Ozlem Kalinli, Christian
Fuegen, and Mike Seltzer. 2024. Prompting large
language models with speech recognition abilities.
In ICASSP 2024 - 2024 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 13351–13355.

Christian Fügen, Alex Waibel, and Muntsin Kolss. 2007.
Simultaneous translation of lectures and speeches.
Machine translation, 21:209–252.

Ryo Fukuda, Yuta Nishikawa, Yasumasa Kano, Yuka
Ko, Tomoya Yanagita, Kosuke Doi, Mana Makinae,
Sakriani Sakti, Katsuhito Sudoh, and Satoshi Naka-
mura. 2023. NAIST simultaneous speech-to-speech
translation system for IWSLT 2023. In Proceedings
of the 20th International Conference on Spoken Lan-
guage Translation (IWSLT 2023), pages 330–340,
Toronto, Canada (in-person and online). Association
for Computational Linguistics.

469

https://doi.org/10.18653/v1/2024.acl-long.567
https://doi.org/10.18653/v1/2024.acl-long.567
https://doi.org/10.18653/v1/2024.acl-long.567
https://doi.org/10.18653/v1/D18-1337
https://doi.org/10.18653/v1/D18-1337
https://doi.org/10.18653/v1/P19-1126
https://doi.org/10.18653/v1/P19-1126
https://doi.org/10.18653/v1/P19-1126
http://arxiv.org/abs/1906.00048
http://arxiv.org/abs/1906.00048
http://arxiv.org/abs/1906.00048
https://openreview.net/forum?id=Hko85plCW
https://openreview.net/forum?id=Hko85plCW
http://arxiv.org/abs/1606.02012
http://arxiv.org/abs/1606.02012
https://doi.org/10.18653/v1/N18-2079
https://doi.org/10.18653/v1/N18-2079
https://doi.org/10.18653/v1/N18-2079
https://proceedings.neurips.cc/paper_files/paper/2022/file/c3ba4962c05c49636d4c6206a97e9c8a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/c3ba4962c05c49636d4c6206a97e9c8a-Paper-Conference.pdf
https://doi.org/10.18653/v1/N19-1202
https://doi.org/10.18653/v1/N19-1202
https://doi.org/10.21437/Interspeech.2020-1241
https://doi.org/10.21437/Interspeech.2020-1241
https://doi.org/10.1109/ICASSP48485.2024.10447605
https://doi.org/10.1109/ICASSP48485.2024.10447605
https://doi.org/10.18653/v1/2023.iwslt-1.31
https://doi.org/10.18653/v1/2023.iwslt-1.31


Alvin Grissom II, He He, Jordan Boyd-Graber, John
Morgan, and Hal Daumé III. 2014. Don’t until the
final verb wait: Reinforcement learning for simul-
taneous machine translation. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1342–1352,
Doha, Qatar. Association for Computational Linguis-
tics.

Jiatao Gu, Graham Neubig, Kyunghyun Cho, and Vic-
tor O.K. Li. 2017. Learning to translate in real-time
with neural machine translation. In Proceedings of
the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume
1, Long Papers, pages 1053–1062, Valencia, Spain.
Association for Computational Linguistics.

Shoutao Guo, Shaolei Zhang, and Yang Feng. 2023.
Learning optimal policy for simultaneous machine
translation via binary search. In Proceedings of the
61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
2318–2333, Toronto, Canada. Association for Com-
putational Linguistics.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2022. LoRA: Low-rank adaptation of large
language models. In International Conference on
Learning Representations.

Masoud Jalili Sabet, Philipp Dufter, François Yvon,
and Hinrich Schütze. 2020. SimAlign: High qual-
ity word alignments without parallel training data
using static and contextualized embeddings. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2020, pages 1627–1643, Online. Association
for Computational Linguistics.

Yasumasa Kano, Katsuhito Sudoh, and Satoshi Naka-
mura. 2022. Simultaneous neural machine transla-
tion with prefix alignment. In Proceedings of the
19th International Conference on Spoken Language
Translation (IWSLT 2022), pages 22–31, Dublin, Ire-
land (in-person and online). Association for Compu-
tational Linguistics.

Yuka Ko, Ryo Fukuda, Yuta Nishikawa, Yasumasa
Kano, Katsuhito Sudoh, and Satoshi Nakamura. 2023.
Tagged end-to-end simultaneous speech translation
training using simultaneous interpretation data. In
Proceedings of the 20th International Conference on
Spoken Language Translation (IWSLT 2023), pages
363–375, Toronto, Canada (in-person and online).
Association for Computational Linguistics.

Danni Liu, Gerasimos Spanakis, and Jan Niehues.
2020a. Low-Latency Sequence-to-Sequence Speech
Recognition and Translation by Partial Hypothesis
Selection. In Proc. Interspeech 2020, pages 3620–
3624.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020b. Multilingual denoising

pre-training for neural machine translation. Transac-
tions of the Association for Computational Linguis-
tics, 8:726–742.

Mingbo Ma, Liang Huang, Hao Xiong, Renjie Zheng,
Kaibo Liu, Baigong Zheng, Chuanqiang Zhang,
Zhongjun He, Hairong Liu, Xing Li, Hua Wu, and
Haifeng Wang. 2019. STACL: Simultaneous trans-
lation with implicit anticipation and controllable la-
tency using prefix-to-prefix framework. In Proceed-
ings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 3025–3036, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Xutai Ma, Mohammad Javad Dousti, Changhan Wang,
Jiatao Gu, and Juan Pino. 2020a. SIMULEVAL: An
evaluation toolkit for simultaneous translation. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 144–150, Online. Association
for Computational Linguistics.

Xutai Ma, Juan Miguel Pino, James Cross, Liezl Pu-
zon, and Jiatao Gu. 2020b. Monotonic multihead
attention. In International Conference on Learning
Representations.

Nathalia Nascimento, Paulo Alencar, and Donald
Cowan. 2023. Gpt-in-the-loop: Supporting adap-
tation in multiagent systems. In 2023 IEEE Inter-
national Conference on Big Data (BigData), pages
4674–4683.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in neural in-
formation processing systems, 35:27730–27744.

Sara Papi, Marco Gaido, Matteo Negri, and Marco
Turchi. 2022. Over-generation cannot be rewarded:
Length-adaptive average lagging for simultaneous
speech translation. In Proceedings of the Third Work-
shop on Automatic Simultaneous Translation, pages
12–17, Online. Association for Computational Lin-
guistics.

Sara Papi, Matteo Negri, and Marco Turchi. 2023. At-
tention as a guide for simultaneous speech translation.
In Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 13340–13356, Toronto, Canada.
Association for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

470

https://doi.org/10.3115/v1/D14-1140
https://doi.org/10.3115/v1/D14-1140
https://doi.org/10.3115/v1/D14-1140
https://aclanthology.org/E17-1099
https://aclanthology.org/E17-1099
https://doi.org/10.18653/v1/2023.acl-long.130
https://doi.org/10.18653/v1/2023.acl-long.130
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.18653/v1/2020.findings-emnlp.147
https://doi.org/10.18653/v1/2020.findings-emnlp.147
https://doi.org/10.18653/v1/2020.findings-emnlp.147
https://doi.org/10.18653/v1/2022.iwslt-1.3
https://doi.org/10.18653/v1/2022.iwslt-1.3
https://doi.org/10.18653/v1/2023.iwslt-1.34
https://doi.org/10.18653/v1/2023.iwslt-1.34
https://doi.org/10.21437/Interspeech.2020-2897
https://doi.org/10.21437/Interspeech.2020-2897
https://doi.org/10.21437/Interspeech.2020-2897
https://doi.org/10.1162/tacl_a_00343
https://doi.org/10.1162/tacl_a_00343
https://doi.org/10.18653/v1/P19-1289
https://doi.org/10.18653/v1/P19-1289
https://doi.org/10.18653/v1/P19-1289
https://doi.org/10.18653/v1/2020.emnlp-demos.19
https://doi.org/10.18653/v1/2020.emnlp-demos.19
https://openreview.net/forum?id=Hyg96gBKPS
https://openreview.net/forum?id=Hyg96gBKPS
https://doi.org/10.1109/BigData59044.2023.10386490
https://doi.org/10.1109/BigData59044.2023.10386490
https://doi.org/10.18653/v1/2022.autosimtrans-1.2
https://doi.org/10.18653/v1/2022.autosimtrans-1.2
https://doi.org/10.18653/v1/2022.autosimtrans-1.2
https://doi.org/10.18653/v1/2023.acl-long.745
https://doi.org/10.18653/v1/2023.acl-long.745
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135


Peter Polák, Ngoc-Quan Pham, Tuan Nam Nguyen,
Danni Liu, Carlos Mullov, Jan Niehues, Ondřej Bo-
jar, and Alexander Waibel. 2022. CUNI-KIT system
for simultaneous speech translation task at IWSLT
2022. In Proceedings of the 19th International Con-
ference on Spoken Language Translation (IWSLT
2022), pages 277–285, Dublin, Ireland (in-person
and online). Association for Computational Linguis-
tics.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-
man, Christine McLeavey, and Ilya Sutskever. 2023.
Robust speech recognition via large-scale weak su-
pervision. In International Conference on Machine
Learning, pages 28492–28518. PMLR.

Colin Raffel, Minh-Thang Luong, Peter J. Liu, Ron J.
Weiss, and Douglas Eck. 2017. Online and linear-
time attention by enforcing monotonic alignments.
In Proceedings of the 34th International Conference
on Machine Learning - Volume 70, ICML’17, page
2837–2846. JMLR.org.

Harsh Satija and Joelle Pineau. 2016. Simultaneous ma-
chine translation using deep reinforcement learning.
In ICML 2016 Workshop on Abstraction in Reinforce-
ment Learning.

Vivek Kumar Rangarajan Sridhar, John Chen, Srinivas
Bangalore, Andrej Ljolje, and Rathinavelu Chengal-
varayan. 2013. Segmentation strategies for stream-
ing speech translation. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 230–238.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel
Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. 2020. Learn-
ing to summarize with human feedback. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 3008–3021. Curran Associates,
Inc.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas

Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao
Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang,
Xu Chen, Yankai Lin, et al. 2024. A survey on large
language model based autonomous agents. Frontiers
of Computer Science, 18(6):186345.

Minghan Wang, Jinming Zhao, Thuy-Trang Vu, Fate-
meh Shiri, Ehsan Shareghi, and Gholamreza Haffari.
2023a. Simultaneous machine translation with large
language models. arXiv preprint arXiv:2309.06706.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023b. Self-instruct: Aligning language
models with self-generated instructions. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 13484–13508, Toronto, Canada. Association
for Computational Linguistics.

Zekun Wang, Ge Zhang, Kexin Yang, Ning Shi,
Wangchunshu Zhou, Shaochun Hao, Guangzheng
Xiong, Yizhi Li, Mong Yuan Sim, Xiuying Chen,
Qingqing Zhu, Zhenzhu Yang, Adam Nik, Qi Liu,
Chenghua Lin, Shi Wang, Ruibo Liu, Wenhu Chen,
Ke Xu, Dayiheng Liu, Yike Guo, and Jie Fu. 2023c.
Interactive natural language processing.

Haoran Xu, Young Jin Kim, Amr Sharaf, and Hany Has-
san Awadalla. 2024. A paradigm shift in machine
translation: Boosting translation performance of
large language models. In The Twelfth International
Conference on Learning Representations.

Mahsa Yarmohammadi, Vivek Kumar Rangarajan Srid-
har, Srinivas Bangalore, and Baskaran Sankaran.
2013. Incremental segmentation and decoding strate-
gies for simultaneous translation. In Proceedings of
the Sixth International Joint Conference on Natural
Language Processing, pages 1032–1036.

Ruiqing Zhang, Chuanqiang Zhang, Zhongjun He, Hua
Wu, and Haifeng Wang. 2020. Learning adaptive
segmentation policy for simultaneous translation. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 2280–2289, Online. Association for Computa-
tional Linguistics.

Shaolei Zhang and Yang Feng. 2021. Universal simul-
taneous machine translation with mixture-of-experts
wait-k policy. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 7306–7317, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Shaolei Zhang and Yang Feng. 2022. Information-
transport-based policy for simultaneous translation.
In Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, pages 992–
1013, Abu Dhabi, United Arab Emirates. Association
for Computational Linguistics.

471

https://doi.org/10.18653/v1/2022.iwslt-1.24
https://doi.org/10.18653/v1/2022.iwslt-1.24
https://doi.org/10.18653/v1/2022.iwslt-1.24
https://proceedings.neurips.cc/paper_files/paper/2020/file/1f89885d556929e98d3ef9b86448f951-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1f89885d556929e98d3ef9b86448f951-Paper.pdf
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
http://arxiv.org/abs/2305.13246
https://openreview.net/forum?id=farT6XXntP
https://openreview.net/forum?id=farT6XXntP
https://openreview.net/forum?id=farT6XXntP
https://doi.org/10.18653/v1/2020.emnlp-main.178
https://doi.org/10.18653/v1/2020.emnlp-main.178
https://doi.org/10.18653/v1/2021.emnlp-main.581
https://doi.org/10.18653/v1/2021.emnlp-main.581
https://doi.org/10.18653/v1/2021.emnlp-main.581
https://doi.org/10.18653/v1/2022.emnlp-main.65
https://doi.org/10.18653/v1/2022.emnlp-main.65


Shaolei Zhang and Yang Feng. 2023. Hidden markov
transformer for simultaneous machine translation. In
International Conference on Learning Representa-
tions.

472

https://openreview.net/forum?id=9y0HFvaAYD6
https://openreview.net/forum?id=9y0HFvaAYD6


Appendix

A Examples of translation

A.1 en-de

Source: But in Antarctica, some scientists who are
normally pretty levelheaded are getting a little bit
freaked out, I would say, is a fair definition, about
the lowest level ever, at this point in the year, of
sea ice.

TransLLaMa: Aber in der Antarktis, einige Wis-
senschaftler, die normalerweise recht nüchtern sind,
werden ein wenig verängstigt, würde ich sagen, ist
eine gerechte Definition über den niedrigsten Stand,
den wir jemals zu diesem Zeitpunkt im Jahr von
Meereis hatten.

Back translation: But in Antarctica, some sci-
entists who are normally quite sober are getting a
little frightened, I would say, is a fair definition of
the lowest level we’ve ever had of sea ice at this
point in the year.

Source: I remember when there were so many
fossil fuel delegates in Madrid, but by the time we
got to Glasgow a year and a half ago, the delegates
from the fossil fuel companies made up a larger
group than the largest national delegation.

TransLLaMa: Ich erinnere mich an die Zeit, als
es so viele Delegierte der fossilen Brennstoffind-
ustrie in Madrid gab, aber als wir ein Jahr und
ein halbes später in Glasgow waren, machten die
Delegierten der fossilen Brennstoffunternehmen
eine größere Gruppe aus als die größte nationale
Delegation.

Back translation: I remember when there were
so many fossil fuel industry delegates in Madrid,
but when we were in Glasgow a year and a half
later, the fossil fuel company delegates made up a
larger group than the largest national delegation.

Source: And I’m a really positive person, so it’s
actually difficult to say this, but the way we do
philanthropy right now, the way we’ve done it for
decades, is broken.

TransLLaMa: Ich bin eine sehr positive Person,
also ist es für mich eigentlich schwierig, das zu
sagen, aber die Art und Weise, wie wir Philan-
thropie betreiben, die Art und Weise, wie wir es
seit Jahrzehnten betreiben, ist kaputt.

Back translation: I’m a very positive person, so
it’s actually hard for me to say this, but the way we
do philanthropy, the way we’ve done it for decades,
is broken.

Source: Work norms, of course, differ around

the world, but we replicated our original American
result in South Korea, which is known by the num-
bers to be one of the hardest-working countries in
the OECD, and in France, which is known for other
strengths.

TransLLaMa: Natürlich unterscheiden sich die
Arbeitsnormen in der Welt, aber wir konnten unser
ursprüngliches Ergebnis in den USA in Südkorea
wiederholen, das bekannt ist als eines der härtesten
arbeitenden Länder in der OECD, und in Frankre-
ich, das für andere Stärken bekannt ist.

Back translation: Of course, labor standards vary
around the world, but we were able to replicate our
original result in the US in South Korea, known as
one of the hardest working countries in the OECD,
and in France, known for other strengths.

A.2 en-ru

Source: A few years ago, I called for toothpaste
from my hotel room, and it was delivered to me by
a robot.

TransLLaMa: Neskol~ko let nazad �
poprosila zubnu� pastu iz moego nomera
v otele i ona byla dostavlena mne
robotom.

Back translation: A few years ago I asked for
toothpaste from my hotel room and it was delivered
to me by robot.

Source: It conducted the first quantum video
call, and it launched the first drone that can carry a
passenger in air.

TransLLaMa: Ona provela pervu� video-
konferenci� s ispol~zovaniem kvan-
tovyh tehnologi� i zapustila per-
vy� bespilotny� samolet, sposobny�
perevozit~ passa�ira v vozduhe.

Back translation: She held the first video con-
ference using quantum technology and launched
the first unmanned aircraft capable of carrying a
passenger in the air.

Source: And it’s really gratifying to hear from
people like Raymond who are using the technology
we are building, and others, for so many wonderful
things.

TransLLaMa: I �to de�stvitel~no
pri�tno slyxat~ ot l�de�, kak Ra�-
mond, kotorye ispol~zu�t tehnologii,
kotorye my sozda�m, i drugie, dl� takih
zameqatel~nyh vewe�.
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model mode quantization system message size, bn param. RTF

Ours T2TT 16-bit no 13 1.7
Ours T2TT 4-bit no 13 2.2
Ours T2TT 16-bit yes 13 2.9
Ours T2TT 4-bit yes 13 4.2
Ours S2TT 16-bit no 13 5.9
Ours S2TT 4-bit no 13 7.6
Ours S2TT 16-bit yes 13 8.0
Ours S2TT 4-bit yes 13 9.3
Ours T2TT 4-bit no 70 14.6
Ours T2TT 4-bit yes 70 20.2
Ours S2TT 4-bit no 70 15.3
Ours S2TT 4-bit yes 70 23.9
GPT-4 T2TT unknown yes unknown 1.5
GPT-4 S2TT unknown yes unknown 4.8
Fukuda et al. (2023) S2TT 16-bit N/A 1.04 0.7
Papi et al. (2023) S2TT 16-bit N/A 0.176 1.4

Table 2: Comparison of our system’s inference times across varying sizes with selected baselines on en-de.
Real-time factor (RTF) is the ratio of the amount of time taken to process source audio to the length of the source
audio itself. RTF less than one means the model is faster than real time. The RTF was calculated based on the
known length of the audio corresponding to the source transcripts and the time to complete translation of that text.
For T2TT mode, the source audio transcripts were fed directly to the LLM. We note that removing the system
message from the prompt speeds up inference with no noticeable drop in quality for supervised fine-tuned models.
Loading our model’s weights with 16-bit (instead of 4-bit) quantization further accelerates inference. Finally, the
use of ASR in S2TT mode substantially reduces system speed.

System BLEU LAAL AL AP DAL

gpt-3.5-turbo-0613 (zero-shot) 2.08 (0.24) 2637.11 (252.79) 2574.98 (230.95) 0.35 (0.0) 2477.55 (146.26)

gpt-4-0613 (zero-shot) 21.82 (2.81) 2448.86 (74.74) 1998.63 (110.91) 0.94 (0.03) 2813.47 (69.48)

Llama-70b-hf (SFT) 18.41 (1.4) 2107.57 (59.68) 1619.64 (76.47) 0.84 (0.02) 2454.72 (67.84)

Llama-13b-hf (SFT) 17.07 (0.68) 2358.89 (34.11) 1880.76 (61.77) 0.88 (0.02) 2735.34 (40.88)

Papi et al. (2023) 17.01 (1.0) 2295.72 (41.54) 1867.1 (148.69) 0.77 (0.01) 3251.38 (139.12)

Fukuda et al. (2023) 21.08 (1.41) 2005.39 (71.04) 1397.33 (85.74) 0.9 (0.01) 3066.15 (122.01)

Table 3: Mean performance metrics on en-de of Llama-2 (SFT) compared to some recent S2TT systems and
GPT-3.5 and GPT-4 (zero-shot). Then mean and standard deviation (in brackets) are computed over 10 runs of the
same model on 102 source-target pairs sampled with replacement from TED-TST-2023. Here we report additional
comparisons including latency performance measured using several different metrics, including Average Lagging
(AL) (Ma et al., 2019), Length Adaptive Average Lagging (LAAL) (Papi et al., 2022), Average Proportion (AP)
(Cho and Esipova, 2016) and Differentiable Average Lagging (DAL) (Cherry and Foster, 2019).

System BLEU LAAL AL AP DAL

gpt-3.5-turbo-0613 (zero-shot) 0.14 (0.1) 2876.85 (240.03) 2861.22 (245.91) 0.28 (0.04) 2661.22 (231.0)

gpt-4-0613 (zero-shot) 16.86 (2.27) 2022.81 (20.3) 1584.38 (91.81) 0.82 (0.04) 2390.11 (23.65)

Llama-70b-hf (SFT) 20.96 (1.71) 2252.75 (49.77) 1937.76 (62.75) 0.9 (0.08) 2676.56 (62.11)

Llama-13b-hf (SFT) 16.9 (1.52) 2238.6 (48.38) 1917.46 (90.38) 0.87 (0.03) 2641.01 (45.73)

Table 4: Mean performance metrics on en-ru of Llama-2 (SFT) compared to some recent S2TT systems and
GPT-3.5 and GPT-4 (zero-shot). Then mean and standard deviation (in brackets) are computed over 10 runs of the
same model on 102 source-target pairs sampled with replacement from TED-TST-2023.
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Figure 10: Dependence of latency and quality on k (top panels) and quality-latency tradeoff curves (bottom
panels) for the S2TT mode on the TED-TST-2023 dataset. For reference, dashed lines indicated GPT-4’s
sentence-level (i.e. with k set to the sentence length) BLEU scores: black for en-de and red for en-ru.
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Figure 11: S2TT en-ru performance of our method on TED-TST-2023. Left panel: supervised fine-tuned
LLAMA-2. Right panel: zero-shot S2TT performance of LLAMA-2-CHAT. All the runs were on TED-TST-2023,
with k = 5 to ensure AL around 2000 ms. Each of the boxplots is drawn based on data from 10 evaluation runs on
sentences randomly sampled with replacement from the test set.
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Figure 12: Average lagging in S2TT mode for the English-Russian language pair. Left panel: supervised
fine-tuned LLAMA-2. Right panel: zero-shot S2TT performance of LLAMA-2-CHAT. All the runs were on
TED-TST-2023, with k = 5 to ensure AL around 2000 ms. Each of the boxplots is drawn based on data from 10
evaluation runs on sentences randomly sampled with replacement from the test set.

baseline Papi et al. (2023) Fukuda et al. (2023)
parameters extract-attn-from-layer 5 source-segment-size 950

frame-num 2 la-n 2
attn-threshold 0.25 beam 5
speech-segment-factor 8 sacrebleu-tokenizer 13a

Table 5: Parameters used for comparisons with baselines on the S2ST en-de task. For Papi et al. (2023)
we used the open-source implementation of the model (https://github.com/hlt-mt/FBK-fairseq/tree/
master/fbk_works). For Fukuda et al. (2023) we obtained the source code of the model and
weights on request from the authors. All the evaluations were run in SimulEval (Ma et al., 2020a)
(https://github.com/facebookresearch/SimulEval).
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