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Abstract. The growing demand for solving large-scale, data-intensive
linear and conic optimization problems, particularly in applications such
as artificial intelligence and machine learning, has highlighted the limita-
tions of classical interior point methods (IPMs). Despite their favorable
polynomial-time convergence, conventional IPMs often suffer from high
per-iteration computational costs, especially for dense problem instances.
Recent advances in quantum computing, particularly quantum linear
system solvers, offer promising avenues to accelerate the most computa-
tionally intensive steps of IPMs. However, practical challenges such as
quantum error, hardware noise, and sensitivity to poorly conditioned sys-
tems remain significant obstacles. In response, a series of Quantum IPMs
(QIPMs) have been developed to address these challenges, incorporating
techniques such as feasibility maintenance, iterative refinement, and pre-
conditioning. In this work, we review this line of research with a focus
on our recent contributions, including a novel almost-exact QIPM frame-
work. This hybrid quantum-classical approach constructs and solves the
Newton system entirely on a quantum computer, while performing solu-
tion updates classically. Crucially, all matrix-vector operations are exe-
cuted on quantum hardware, enabling the method to achieve an optimal
worst-case scalability w.r.t dimension, surpassing the scalability of exist-
ing classical and quantum IPMs.

Keywords: Quantum Interior Point Method · Quantum Linear System
Algorithm · Iterative Refinement · Preconditioning · Linear Optimization
· Conic Optimization.

1 Introduction

In this paper, we review recent advances in Quantum Interior Point Methods
(QIPMs) for linear optimization (LO) problems. The standard form LO problem
is minimizing a linear objective function over a polyhedron, formally defined as

min
x∈Rn

cTx

s.t. Ax = b,

x ≥ 0,

(P)
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where A ∈ Rm×n, b ∈ Rm, and c ∈ Rn. It is well-known that there is a dual
problem associated with the primal problem as

max
(y,s)∈Rm×Rn

bT y

s.t. AT y+s = c,

s ≥ 0.

(D)

By the strong duality theorem [1], all optimal solutions, if they exist, belong to
the set PD∗, which is defined as

PD∗ ={(x, y, s) ∈ Rn+m+n : Ax = b, AT y + s = c,

xT s = 0, (x, s) ≥ 0}.

Linear optimization plays a foundational role in a broad range of fields, in-
cluding machine learning, operations research, logistics, and finance. Historically,
the Simplex algorithm [2] was among the first prominent methods to solve LO
problems. While highly effective in many practical instances, Simplex methods
can exhibit exponential-time behavior in the worst case [3]. In contrast, the
introduction of Interior Point Methods (IPMs) marked a major breakthrough
in optimization. Starting with Karmarkar’s projective algorithm [4], IPMs have
evolved into the most theoretically efficient class of algorithms for solving LO
problems, offering polynomial-time complexity with robust convergence guaran-
tees.

Modern IPMs exploit the geometry of the central path, an analytic trajec-
tory defined by a set of perturbed optimality conditions, which guides iterates
toward the optimal solution [1, 5]. When initialized appropriately, IPMs follow
this path using Newton’s method, requiring approximately O(

√
n log(1/ϵ)) it-

erations to obtain an ϵ-approximate solution [1]. However, a significant compu-
tational bottleneck in IPMs lies in solving the Newton linear system at each
iteration. Classical direct methods such as Cholesky factorization incur O(n3)
complexity, which becomes intractable for large-scale, dense problems. Iterative
methods, including conjugate gradient (CG) solvers [6, 7], mitigate this chal-
lenge with lower per-iteration costs but at the expense of increased sensitivity
to matrix conditioning and convergence accuracy.

To further enhance the scalability of IPMs, several improvements have been
introduced. These include partial update techniques and low-rank updates, which
reduce the cost of computing Newton directions and yield the best-known classi-
cal total complexity of O(n3L) for LO problems [1]. More recently, the incorpora-
tion of advanced tools such as fast matrix multiplication, spectral sparsification,
and stochastic methods have pushed the complexity to O(nω log(n/ϵ)), where
ω < 2.3729 is the matrix multiplication exponent [8–10]. Alternatively, first-order
methods like the primal-dual hybrid gradient (PDHG) algorithm have demon-
strated empirical success in solving large-scale LO problems, although they lack
rigorous theoretical complexity bounds [11,12].

Alongside these classical advances, quantum computing has emerged as a
powerful paradigm capable of accelerating various computational tasks. Quan-
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tum algorithms such as Shor’s factoring algorithm [13] and Grover’s search al-
gorithm [14] have showcased the potential of quantum computers to achieve
polynomial or even exponential speedups. Of particular interest for optimiza-
tion is the class of quantum linear system algorithms (QLSAs), pioneered by the
Harrow-Hassidim-Lloyd (HHL) algorithm [15]. HHL and its successors [16–18]
solve sparse quantum linear systems with exponential speedups under certain as-
sumptions, although they exhibit unfavorable dependence on condition number,
sparsity, and required precision.

Motivated by the capabilities of quantum computing, researchers have sought
to integrate quantum solvers into classical optimization frameworks. This ef-
fort has led to the development of Quantum Interior Point Methods (QIPMs),
which aim to exploit quantum acceleration in solving the Newton systems aris-
ing in IPMs. Notable contributions include quantum subroutines for the Sim-
plex method [19], QAOA for binary optimization [20], and quantum multiplica-
tive weight update methods for semidefinite optimization [21, 22]. For linear
and semidefinite programming, QIPMs have demonstrated potential polynomial
speedups in terms of problem dimension [23, 24]. However, these early QIPMs
faced substantial challenges. The hybrid nature of QIPMs necessitates the ex-
traction of classical information from quantum states at each iteration, typically
via quantum tomography algorithms (QTAs). These steps often introduce sig-
nificant error and computational overhead, diminishing the overall efficiency of
the method.

To overcome these limitations, a series of research efforts has led to the de-
velopment of improved QIPMs. By incorporating iterative refinement and pre-
conditioning techniques, recent frameworks reduce the impact of quantum errors
and ill-conditioning, achieving exponential improvements with respect to preci-
sion and condition number compared to earlier quantum methods [25–27]. For
instance, Wu et al. [28] introduced a dual logarithmic barrier-based QIPM with
improved iteration complexity and memory access efficiency via QRAM.

In this work, we review some of these advancements with a focus on the
novel, almost-exact QIPM framework that achieves provable quantum advan-
tage. In our proposed approach, the Newton system is both constructed and
solved entirely on a quantum computer, while classical computation is reserved
only for solution updates. All matrix-vector products, the most expensive com-
ponents in classical QIPMs, are offloaded to quantum hardware, reducing total
runtime. Our hybrid quantum-classical framework achieves optimal worst-case
scaling of O(n2) for fully dense linear optimization problems, outperforming both
classical IPMs and existing QIPMs in terms of dimensional complexity.

This framework supports inexact quantum operations, such as quantum ma-
trix inversion and matrix-vector/matrix-matrix multiplication, through the use
of iterative refinement. Crucially, unlike prior QIPMs, our method eliminates
all classical matrix operations, resulting in a total classical arithmetic cost of
O(n2 log(1/ϵ)). This asymptotically improves upon previous QIPMs by a factor
of O(

√
n) and offers a provable quantum speedup, as any classical analog would

require at least O(n2.5) operations.
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The structure of the paper is as follows. In Section 2, we discuss how novel
reformulations aid in maintaining feasibility and achieving the best-known it-
eration complexity for QIPMs. Section 3 reviews how iterative refinement and
preconditioning techniques can mitigate the effects of ill-conditioning and en-
hance the precision of QIPMs. In Section 4, we review recent advancements in
Quantum Linear System Algorithms (QLSAs) and Quantum Tomography. Sec-
tion 5 presents the state-of-the-art QIPM based on a novel Almost-Exact IPM
framework that achieves optimal scaling. In Section 6, we explore the applica-
tions and implications of recent QIPM advancements in artificial intelligence and
machine learning. Finally, Section 7 concludes the paper and outlines directions
for future work.

2 Inexact Feasible QIPMs

In the general scheme of IPMs, we apply the Newton method to the perturbed
optimality conditions iteratively to approach an optimal solution by tracing the
so-called central path. There are three reformulations of Newton systems to cal-
culate the Newton direction at each step of IPMs in the classical IPM literature.
The prevailing system is the Normal Equation System (NES) defined as

AD2AT∆y = Ax− βµAS−1e,

where A ∈ Rm×n is the constraint matrix, D = diag(x)1/2diag(s)−1/2 is the
diagonal scaling matrix, and µ = xT s

n is the complementarity measure.
One major issue is that an inexact solution to any traditional Newton systems

calculated by a QLSA+QTA subroutine may lead to infeasibility. To properly
address this infeasibility, inexact infeasible QIPM (II-QIPM) [25] has been de-
veloped which has O(n2 log( 1ϵ )) iteration complexity, where n is the number of
variables and ϵ is the target optimality gap.

To improve this complexity, we propose two inexact feasible QIPMs (IF-
QIPMs) using two novel reformulations of Newton systems. First, we use a basis
for null-space of A, stored in columns of the matrix V to reformulate the Newton
system in the Orthogonal Subspaces system (OSS) [29] as

[
−XAT SV

] [∆y
λ

]
= βµe−Xs. (OSS)

We prove that the inexact solution for OSS solution provides a feasible Newton
direction.

In another paper, we propose another system that is a modified version of the
NES and it is more adaptable for quantum singular value transformation [26].
We prove the iteration complexity for both IF-QIPMs is O(

√
n log( 1ϵ )) which

leads to considerable polynomial speed-up in the complexity of QIPMs.
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3 Iterative Refinement and Preconditioning

Another challenge in QIPMs is that their complexity has polynomial dependence
on 1

ϵ because of the QTA’s overhead. This means previous QIPMs are not poly-
nomial time algorithms as one needs to reach 1

ϵ = O(2L) to find an exact optimal
solution for an LO problem, where L is the binary length of input data. We use
an iterative refinement technique to address this issue [26,29].

Iterative refinement has been widely used in classical numerical algorithms to
improve the accuracy of solutions to linear systems. We adapt this technique to
iteratively use limited-precision IF-QIPM to obtain a higher-precision solution.
We prove that iteratively refined IF-QIPMs (IR-IF-QIPMs) have exponentially
improved complexity w.r.t precision compared to previous QIPMs.

The last challenge in QIPMs is that QLSAs are sensitive to the condition
number of linear systems arising in QIPMs and Newton systems are usually ill-
conditioned. There are two major sources of ill-conditioning in QIPMs. First, for
degenerate LO problems, the sequence of coefficient matrices of Newton systems
converge to a singular matrix. i.e., their condition number grows to infinity.
We show that a properly adapted iterative regiment technique helps with issues
as we stop QIPMs early when the condition number is comparatively small
enough. Another source of ill-conditioning is the ill-conditioned input matrix A.
We address this issue by preconditioning the Newton system. In addition, we
show how this particular preconditioner can be applied on a quantum machine
without excessive cost [26].

4 Improved QLSA+QTA Subroutine for QIPMs

The idea of using iterative refinement for quantum algorithms is further used to
develop improved QLSA+QTA subroutine for QIPMs [30]. The most efficient
QLSA to solve a linear system of the form Mz = σ with O(log(pϵ )κ∥M∥F )
inquiries to QRAM [31], where p is the system dimension, representing an ex-
ponential speedup over classical algorithms. A major hurdle lies in the fact that
QLSAs solve Quantum Linear System Problems (QLSPs) and so the result is
a quantum state, which deviates from the classical definition of the solution of
LSPs. Consequently, a Quantum Tomography Algorithm (QTA) is essential to
extract a classical solution. The best time complexity of QTA is O(pϱϵ ), where ϱ
represents the upper bound on the norm of the solution.

The overall complexity of QLSA and QTA combined is O(log(pϵ )
pκ2∥σ∥

ϵ ). In
comparison to the conjugate gradient method (CGM), its query complexity ex-
hibits a better dependence on sparsity with unfavorable dependence on precision
and condition number. An iterative classical-quantum linear system algorithm
(ICQLSA) has been proposed which exponentially improves the time complexity
of Quantum Linear Solvers, providing a classical solution with high precision up
to O(log(p|σ|ϵ )pκ2) queries to QRAM [30].

This new advancement enables us to do the calculations in high precision set-
tings where ϵ = 2−2L which is almost exact for the solution of the LO problems.
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Thus we can also do matrix-vector multiplications on the quantum machine.
Using ICQLSA and Quantum mat-vec product within the IR-IF-QIPM leads to
optimal scaling O(n2κAL) as the worst case complexity for solving LO can not
have better dimension dependence than quadratic as storing and reading dense
matrix A need O(n2) arithmetic operations.

5 The state-of-the-art QIPM

In this section, we develop an almost exact quantum interior point method for
solving linear optimization problems. Assuming that the input data is all integer,
we denote the binary length of the input data by

L = mn+m+ n+
∑
i,j

⌈log2(|aij |+ 1)⌉

+
∑
i

⌈log2(|ci|+ 1)⌉+
∑
j

⌈log2(|bj |+ 1)⌉,

where aij represents the ij-element of matrix A. The optimal partition is also
defined as

B = {j ∈ {1, . . . , n} : x∗
j > 0 for some (x∗, y∗, s∗) ∈ PD∗},

N = {j ∈ {1, . . . , n} : s∗j > 0 for some (x∗, y∗, s∗) ∈ PD∗}.

The following lemma is a classical result first proved by [32].

Lemma 1. Let (x∗, y∗, s∗) ∈ PD∗ be a basic solution. If x∗
i > 0, then we have

x∗
i ≥ 2−L. If s∗i > 0, then we have s∗i ≥ 2−L.

Lemma 1 is a fundamental result in the complexity analysis of IPMs. It
means that after enough number of iterations of IPMs, a decision variable can
be rounded to zero if it is smaller than 2−L. Then, by a rounding procedure, one
can find an exact optimal solution for linear optimization [1,33]. In the proposed
algorithm, all calculations happen on a quantum machine with precision ϵ = 2−tL

where t is a small constant, less than 10. This high level of accuracy justifies
describing the algorithm as almost-exact. The only calculation that happens on
a classical computer is updating the solution and vector-vector summation. In
this paper, we use the dual logarithmic barrier method, which has a simple
framework. At each step of the dual log barrier IPM, we need to solve the
following Newton system[

I AT

AS−2 0

] [
∆s
∆y

]
=

[
0

1
µ (b−AS−1e)

]
, (1)

where S = diag(s). Let ∆̂s = S−2∆s, we can have the system[
S2 AT

A 0

] [
∆̂s
∆y

]
=

[
0

1
µ (b−AS−1e)

]
. (2)
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One can easily verify that M =

[
S2 AT

A 0

]
is a symmetric positive definite matrix,

and so the system (2) has a unique solution [1]. Given s, one can build block-

encodings of implementing matrix M and preparing state σ =

[
0

1
µ (b−AS−1e)

]
efficiently, assuming that matrix A stored in QRAM in advance. The general
steps of the proposed almost exact QIPM using a short-step framework are
described in Algorithm 1.

Algorithm 1 Almost Exact QIPM
INPUT Dual feasible solution (y0, s0), µ0 > 0, 0 < θ < 1, and δ

(
(y0, s0), µ0

)
< 1

2
,

where δ is the proximity measure from [1,28]
Store A, b, c on QRAM
k ← 1
while µ > 2−2L do

(∆yk, ∆̂s
k
)← Solve system 2 with precision ϵ = 2−tL

yk+1 ← yk +∆yk

sk+1 ← sk + (Sk)2∆̂s
k

µk+1 = (1− θ)µk

k ← k + 1
end while

As we analyze the worst-case complexity, we assume m = O(n) and matrices
are fully dense.

Theorem 1. Number of iterations for Algorithm 1 has upper bound

O(
√
nL).

We prove the theorem in the next section.

Proof of Theorem 1 Suppose we start with a strictly feasible solution (x0, y0, s0).
In the dual logarithmic barrier IPM, we do not compute the value of x and y
but they exist. We have

Ax0 = b, AT y0 + s0 = c, s0 > 0.

Then we use a quantum subroutine to compute an inexact ∆s0 with associated
error ξ1. After a full Newton step, we have

Ax1 = b, AT y1 + s1 = c+ ξ1, s1 > 0.

Now we get a feasible solution for problem (A, b, c + ξ1). We do another full
Newton step, then we have

Ax2 = b, AT y2 + s2 = c+ ξ1 + ξ2, s2 > 0.



8 Mohammadisiahroudi et al.

We can keep doing this until we have

Axk = b, AT yk + sk = c+

k∑
i=1

ξi, sk > 0.

Then, we can rewrite all of them into

Axj = b, AT yj + sj +

k∑
j+1≤k

ξl = c+ rk, sj > 0,

where rk =
∑k

i=1 ξi. This implies we obtained a series of feasible iterates for
problem (A, b, c+rk). When their Newton steps are obtained exactly for problem
(A, b, c + rk), then this series converges to an optimal solution for the problem
in O(

√
n) iterations. However, if their Newton steps are inexact but satisfy the

conditions in [28], the
√
n complexity still holds. But these Newton steps are

artificial steps because we do not know exactly the errors ξi. We need to show
the actual Newton steps we inexactly compute are close enough to these artificial
Newton steps and the inexactness is acceptable for the convergence conditions.

In the first iteration, the actual and artificial Newton steps are computed as

∆s0 = −AT
(
AS−2

0 AT
)−1 1

µ0

(
b− µ0AS−1

0 e
)
+ ξ1

∆s̃0 = −AT
(
AS̃−2

0 AT
)−1 1

µ0

(
b− µ0AS̃−1

0 e
)
,

where
S̃0 = S0 + rk.

According to [28], we need∥∥∥S̃−1
0 (∆s0 −∆s̃0)

∥∥∥
2
≤ 0.1δc̃(s̃0, µ0),

where δc̃ is the proximity measure for the perturbed problem (A, b, c̃) with c̃ =
c+ rk. This condition can be guaranteed when∥∥∥(S0S̃

−1
0 (I − S0S̃

−1
0 ))

∥∥∥
2
≤ 0.033δc̃(s̃0, µ0),∥∥∥I − (S0S̃

−1
0 )2

∥∥∥
2
≤ 0.033,∥∥∥S̃−1

0 ξ1

∥∥∥
2
≤ 0.033δc̃(s̃0, µ0).

(3)

Notice that all three conditions can be satisfied by pushing ξi to be small as long
as δc̃ is not zero, which can be inferred by the approximate value of δ. We discuss
the value of ξi later in the section. This proves that our inexact Newton step is
a feasible inexact Newton step for the perturbed problem. Then, according to
Theorem 3.3 of [28], we have the O(

√
nL) complexity.
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After O(
√
nL) iterations, we have an x̃ > 0 such that

Ax̃ = b,

AT yk + sk = c+ rk,

(x̃)T sk ≤ 2−2L,

where rk =
∑k

i=1 ξi. It is easy to verify that (x̃, yk, sk) is a 2−tL-optimal solution
for the perturbed problem (A, b, c+rk), and one can calculate the exact optimal
solution by a rounding procedure. It is easy to verify that ∥rk∥ ≤ 2(1−t)L. In
the remaining, we show how we can retrieve an optimal solution of the original
problem with a rounding procedure from the optimal solution for the perturbed
problem.

It is straightforward to see that (x̃, yk, sk) is in a 2(1−t)L-neighborhood of the
optimal set for the original problem (A, b, c). As the smallest nonzero element
of s∗ and x∗ is greater than 2−L, using partitions B and N of this solution, by
solving a constrained least squares problem, an optimal solution for the original
problem can be obtained. For the details of the rounding procedures, refer to
Chapter 7 of [33].

It is worth noting that the rounding procedures are strongly polynomial-
time methods. They can also be quantized using quantum linear system solvers;
however, we do not explore the cost and implementation details of rounding
procedures in this paper, as it is beyond the scope of this paper.

5.1 Quantum Subroutine

In this section, we analyze the complexity of building and solving system (2).
We use the general scheme of the Quantum Tomography framework of [30, 34].
We assume that we have access to a large enough QRAM, and we store data
A, b, c initially on QRAM with worst-case O(n2) complexity. At each state we
need to store s on QRAM and build and solve System (2) using the iterative
quantum linear solver of [34]. At each iteration of Algorithm 2, the only classical
operation is updating the solution by a vector summation with O(n) arithmetic
operations. In the following, we calculate the cost of quantum operations.

Lemma 2. Given A and S stored on QRAM, the following statements are true:

– We can construct a block-encoding of M using O(polylog(nϵ )) queries to
QRAM.

– We can prepare the the state |r⟩ using O(polylog(nϵ )) queries to QRAM.
– We can apply M−1 using Õn,κ, 1ϵ

(κ∥A∥F ) queries to QRAM. 1

– Norm estimation of pk and rk costs Õn,κ, 1ϵ
(κ∥A∥F ) queries to QRAM.

The proof of Lemma 2 is the direct result of Prepositions 1 to 6 of [24].

1 The Õα,β (g(x)) notation indicates that quantities polylogarithmic in α, β and g(x)
are suppressed.
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Algorithm 2 Quantum Linear Solver
INPUT (A, b, c) stored on QRAM,
Store s on QRAM
k ← 1
zk ← 0
while ∥∆yk −∆yk−1∥ > 2−4L do

Prepare State |rk⟩ = |σ −Mzk⟩
Apply inverse of block encoding of M using QSVT [31]
Extract classical solution pk

∥pk∥ = M−1rk

∥M−1rk∥ via Tomography [35] with precision
ϵ = 10−2

Estimate norm of ∥pk∥ and ∥rk∥
zk+1 ← zk + pk

∥rk∥
k ← k + 1

end while

Lemma 3. The number of iterations of Algorithm 2 is at most O(L).

The proof of Lemma 3 is based on [34]. Additionally, the total complexity of
Algorithm 2 is based on the analysis provided by [34].

Theorem 2. Assuming (A, b, c) is stored on QRAM, Algorithm 2 can find a
2−tL-precision solution for System (2) with

ÕnκL(nκ∥A∥F )

iterations.

5.2 Proposed IR-AE-QIPM

In this section, we discuss how to use the iterative refinement method (IR) for LO
problems to improve complexity as in [28] and provide the full description of our
proposed algorithm. The first iterative refinement for LO has been proposed by
[36]. Mohammadisiahroudi et al. [25] first showed that using iterative refinement
can improve the complexity of QIPMs w.r.t precision and condition number.
Further, in [29], the quadratically convergent iterative refinement scheme was
proposed for feasible IPMs. An IR for dual log-barrier QIPM has been developed
in [28].

In [28], the iterative refinement method for the LO problem works as follows:

1. Start with the original problem and solve it to a low accuracy;
2. If the accuracy of the original problem is not enough, construct a refining

problem using the current iteration values; otherwise, the algorithm halts;
3. Solve the refining problem to a low accuracy and update the solution to the

original problem; then, go to step 2.

In our proposed algorithm, after each solve, we have a feasible solution to a
perturbed problem. To use the iterative refinement method, we need to construct
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a solution to the original problem from the solution to a perturbed problem. To
do so, we need a projection procedure. We use Algorithm 2 to solve the following
problem

min
y

∥AT y + sk − c∥2,

which is equivalent to
AAT y = A(c− sk).

Then we have
s = c−AT y.

According to the argument in the previous section, this (y, s) is feasible for the
original problem with a duality gap bounded by twice of the low accuracy. Then,
we can use the IR to refine the solution to high accuracy as in [28].

To get the full complexity of the proposed algorithm, we discuss the accuracy
needed for ξi. In the first iteration, we need conditions (3). Theoretically, ∆c̃

might be zero, which implies the corresponding Newton system right-hand side
is zero. We do not need to solve such Newton systems. Instead, we check the
norm of the right-hand side vector. If the norm is too small (≤ 2−4L), we update
µ without computing the Newton step. Then, conditions (3) can be guaranteed
when

∥ξi∥2 ≤ poly

(
2−4L

nκAS−1
0

)
≈ poly(2−4L), ∀i ∈ [k].

This bound also works for the remaining iterations. Now, we present the pseu-
docode of our proposed algorithm and the main theorem.

Algorithm 3 Iteratively Refined Almost Exact QIPM
INPUT Dual feasible solution (y0, s0), µ0 > 0, 0 < θ < 1, δ

(
(y0, s0), µ0

)
< 1

2
,

∇(0) = 1, 0 < ζ ≪ ζ̃
Store A, b, c on QRAM
k ← 1
(y1, s1)← Solve dual problem with accuracy ζ̃
while ∇(k−1) < 1

ζ
do

∇(k) ← ∇(k−1) × 1

ζ̃

Construct the IR problem as in [28]
(ŷ, ŝ)← Solve IR problem with accuracy ζ̃ and project into proper subspace
yk+1 ← yk + 1

∇(k) ŷ

sk+1 ← c−AT y(k)

k ← k + 1
end while

Theorem 3 (Lemma 13 of [28]). Algorithm 3 terminates after O( log(ζ)
log(ζ̂)

) it-
erations.
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For our purpose, we use ζ = 2−tL and ζ̂ is constant. Thus the outer iteration
has iteration bound O(L). We also have a matrix-vector product at each step of
this IR scheme with cost O(n2) arithmetic operations.

The major challenge in AE-QIPM Algorithm 1 is that the complexity of the
quantum solver depends on the condition number, and the condition number
grows in each iteration of AE-QIPM. As in IR Algorithm 3, we stop AE-QIPM
early at fixed precision. It has been shown that with early termination κ(k) =
O(κ0) where κ0 is the condition number of the coefficient matrix for (y0, s0) and
it is constant [28].

5.3 Total Complexity

In this section, we put together all the elements discussed in the previous sections
to calculate the total worst-case complexity of IR-AE-QIPM.
Theorem 4. Algorithm 3 produces a 2(1−t)L precise optimal solution of the LO
problem using at most

Õκ0,n,∥A∥F
(n1.5Lκ0))

queries to QRAM and O(n2L) classical arithmetic operations.

Proof. The number of iterations of IR is bounded by O(L) based on Theorem 3.
At each iteration we have O(n2) cost of a classical matrix-vector product and the
cost of AE-QIPM to solve the refining problem. Additionally to address ∥A∥F
in the complexity, one can initially normalize data by ∥A∥F , and inconsequence
final precision should be increased by ∥A∥F which appears in polylog. The quan-
tum complexity is Õn,L,∥A∥F

(n1.5κ0L) queries to QRAM, and O(nL) arithmetic
operations at each step of AE-QIPM. Thus the total queries to QRAM is

Õκ0,n(n
1.5Lκ0)),

and the total number of classical arithmetic operations is bounded by O(n2L).

Table 1 compares the complexity of the proposed IR-AE-QIPM with other
classical and quantum IPMs. As we can see, the total complexity of our ap-
proaches outperforms previous complexities. In the last line of the table, we
show the complexity of the classical counterpart of the IR-AE-IPM using CG
to solve the system. As we can see, the total complexity can not be better than
n2.5 in the classical version. This exhibits a clear quantum advantage compared
to other algorithms in the literature. It should be mentioned that the quantum
complexity of all QIPMs is the number of queries to QRAM. Without QRAM
assumptions, some overheads may appear in complexities, although the quantum
central path method of [37] is QRAM-free.

6 Applications in AI and Machine Learning

The integration of QLSAs and QIPMs has shown promising potential to acceler-
ate core problems in machine learning. This section highlights the key applica-
tions that can benefit from these quantum techniques, as demonstrated in recent
studies including [27,39].
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Table 1. Worst-case Complexity of different IPMs for LO

Algorithm Linear System Solver Quantum Complexity Classical Complexity

IPM with Partial Updates [1] Low rank updates O(n3L)

Feasible IPM [1] Cholesky O(n3.5L)

II-IPM [7] PCG O(n5Lχ̄2)

Robust IPM [8] Fast Mat-Mul and Partial Update O(nwL)

Quantum Central Path [37] Hamiltonian Evolution Õ(n3.5 ω
ϵ
)

IR-IF-IPM [26] PCG Õµ0(n3.5Lχ̄2)

IR-IF-QIPM [29] QLSA+QTA Õn,κA,∥A∥,∥b∥,µ0(n1.5Lκ2
Aω

5) Õµ0(n2.5L)

IR-IF-QIPM [26] Precond+QLSA+QTA Õn,∥A∥F , 1
ϵ
(n1.5Lχ̄2) Õµ0(n2.5L)

IPM with approximate Newton steps [38] Q-spectral Approx. Õn, 1
ζ
(n5.5) Õ 1

ζ
(n1.5)

Quantum Dual-log Barrier [28] QLSA+QTA Õn,κ0,µ0,∥A∥F

(
n1.5κ0L

)
O(n2.5L)

Proposed IR-AE-QIPM IQLSA+Quant Mat-Vec Õn,κ0,∥A∥F (n
1.5Lκ0) O(n2L)

Classical IR-AE-IPM CGM O(n2.5Lκ0)

Quantum-enhanced regression is one of the most direct applications of QL-
SAs in machine learning. Ordinary Least Squares (OLS), Weighted Least Squares
(WLS), and Generalized Least Squares (GLS) problems can all be reduced
to solving linear systems of the form (XTX)β = XT y, which QLSAs can
handle efficiently. When paired with quantum tomography algorithms (QTAs),
these solvers can retrieve classical solutions for model training and inference.
The incorporation of iterative refinement techniques further enables exponential
speedups with respect to precision, overcoming the classical bottleneck caused
by ill-conditioning. Specifically, recQLSAs offer:

– Exponential speedup w.r.t. dimension in state preparation.
– Exponential speedup w.r.t. precision via iterative refinement.
– Milder dependence on condition number through adaptive regularization.

Many sophisticated machine learning models, such as Support Vector Ma-
chines (SVMs) and Lasso Regression, can be formulated as Linearly Constrained
Quadratic Optimization (LCQO) problems. These problems are ideal candidates
for QIPMs, which leverage QLSAs to solve Newton systems arising in Interior
Point Methods. [27] proposed an Inexact Feasible QIPM (IF-QIPM) that pre-
serves feasibility of iterates using orthogonal subspace systems (OSS), enabling
the solution of LCQO problems including:

– Lasso Regression: Promotes sparse solutions using ℓ1 regularization. Refor-
mulated as an LCQO problem, it can be solved with improved complexity
using IF-QIPMs.

– Soft-Margin Support Vector Machines: Reformulated as LCQO using vari-
able splitting and slack variables. QIPMs achieve better complexity in high-
dimensional regimes.

These quantum-enhanced formulations demonstrate:

– Polynomial speedup w.r.t. dimension n over classical IPMs.
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– Exponential speedup w.r.t. precision and condition number over previous
QIPMs.

– Improved feasibility guarantees through OSS-based feasibility maintenance.

Together, these applications showcase the growing relevance of QLSAs and
QIPMs in machine learning, particularly as hardware capabilities advance. The
combination of quantum speedups in dimension, precision, and matrix condition-
ing illustrates a compelling path forward for quantum-enhanced data science.

7 Conclusions

In this work, we presented recent advances in the development of Quantum In-
terior Point Methods (QIPMs) for Linear Optimization. By integrating iterative
refinement and preconditioning techniques, we tackled two major challenges in-
herent in QLSA-based QIPMs: the inexactness of quantum solvers and their sen-
sitivity to the condition number of the Newton system. We further introduced a
novel Almost-Exact Interior Point Method framework, in which all matrix-vector
operations and Newton system computations are performed on a quantum com-
puter. This approach delivers a provable quantum speedup over classical IPMs.

To achieve exponentially small error in the computed Newton steps, we em-
bed iterative refinement both internally within the quantum solver and exter-
nally across IPM iterations. As a result, the overall algorithm attains an optimal
worst-case complexity of O(n2) for fully dense linear optimization problems.

A key limitation of the proposed method is its dependence on Quantum Ran-
dom Access Memory (QRAM), the physical implementation of which remains
an open challenge. However, alternative approaches can be explored to mitigate
this dependency. For example, circuit-based QRAM constructions [40], recent de-
velopments in Quantum Singular Value Transformation (QSVT) without block
encoding [41], or sparse-access input models offer promising directions for de-
veloping QRAM-free variants of the algorithm. Moreover, a detailed resource
estimation study, such as the framework in [42], is essential for evaluating the
real-world feasibility and quantum advantage of the proposed method.

Future research could also focus on extending this framework to a primal-
dual Almost-Exact QIPM applicable to both linear and semidefinite optimization
problems. Primal-dual methods, particularly those based on self-dual embedding
formulations, offer the advantage of not requiring an initial strictly feasible in-
terior point, thus expanding the applicability of QIPMs in practice.
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