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Abstract

Large Language Models (LLMs) have poorer
performance on multilingual reasoning tasks
than on English tasks due to limited pretraining
data for these languages. In this paper, we pro-
pose Knowledge Funnel, a novel multilingual
reasoning framework that improves LLM per-
formance through four steps: (1) Multilingual
Knowledge Alignment, which enhances rea-
soning by leveraging English knowledge; (2)
Entity-Structured Knowledge, which extracts
a structured representation of the question
(3) Dependency Knowledge, which captures
language-specific dependencies such as units
and quantifiers; (4) Calculation and Answer
Generation, which ensures accurate reason-
ing results. Furthermore, it can be combined
with other approaches, such as CoT, to achieve
even better results. Our framework achieves
11.3% and 11.1% improvements over Chain-
of-Thought (CoT) methods on MGSMS8K and
MSVAMP, demonstrating its effectiveness in
enhancing LLMs’ multilingual reasoning capa-
bilities. We will release our code once accep-
tance.

1 Introduction

Large language models (LLMs) have strong rea-
soning capabilities across various reasoning tasks,
whether it is numerical reasoning, commonsense
reasoning or symbolic reasoning (Wei et al., 2022).
But when it comes to multilingual sences, the rea-
soning capabilitiy of LLMs vary between different
languages (Huang et al., 2023a; Shi et al., 2023).
For example, LLMs tend to be more accurate when
solving problems in English compared to the same
questions in other languages. We analyze that it
can be attributed to the training process of LLMs.
Since English serves as the primary language in
training data, models tend to perform well in En-
glish but struggle with other languages due to lim-
ited training resources (She et al., 2024). There are
three key challenges:
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Figure 1: Advantages of structured knowledge represen-
tation: Improving the semantic understanding ability of
LLMs.

1. Limited cross-linguistic generalization:
LLMs often fail to recognize problem rep-
resentations in languages with fewer training
examples.

2. Difficulty in understanding semantic struc-
tures: Complex semantic structures in non-
English languages can lead to misinterpreta-
tion of relationships between entities, which
affects reasoning accuracy.

3. Over-reliance on English alignment: Many
existing methods improve multilingual rea-
soning by aligning non-English problems
with English representations. = However,
native-language training data contain valu-
able linguistic features that should not be over-
looked.

These challenges highlight the need for an ap-
proach that enhances multilingual reasoning ca-
pabilities of LL.Ms.

Existing methods for improving multilingual rea-
soning in LLMs can be categorized into four main
approaches: Direct translation: (Huang et al.,
2023b; Qin et al., 2023) Translating multilingual
questions into English helps align them with the
model’s strengths. However, this approach relies



on high-quality translation and may lose structured
information due to linguistic differences. Chain-
of-Thoughts (COT): (Qin et al., 2023) CoT im-
proves reasoning by optimizing reasoning steps,
but its effectiveness also depends on the language
comprehension of the model, which will cause
the continuous transmission of misunderstandings.
In-Context Learning: (Brown et al., 2020) This
method captures relationships within given exam-
ples but struggles to identify key entities and rela-
tionships beyond the provided context (Min et al.,
2022). Supervised Fine-tuning (SFT): (Zhu et al.,
2024; She et al., 2024) Although SFT improves
performance in specific domains, it has two main
limitations: (i) it requires large-scale labeled data,
which makes it costly, and (ii) fine-tuning on one
specific language can not generalize well across all
languages.

Existing methods primarily focus on optimizing
the reasoning process but overlook the challenges
LLMs face in understanding the semantic struc-
tures of multilingual problems. To this end, we pro-
pose Knowledge Funnel, which leverages struc-
tured knowledge representation to enhance LLMs’
semantic understanding of multilingual problems.
By integrating structured representations into the
reasoning process, our approach aims to improve
LLMs’ multilingual reasoning capabilities. As
shown in Figure 1, LLMs face greater challenges
in understanding questions formulated in natural
language compared to those presented in a struc-
tured format. To address this, we transform natural
language questions into structured knowledge rep-
resentations, which allows the model to recognize
that "0.75 bags per guest" and "1/4 of the guests
will not attend" describe the same underlying rela-
tionship, meanwhile filtering out irrelevant infor-
mation that could interfere with reasoning. Our
framework has the following three highlights:

(1) We leverage a simple yet effective alignment
strategy to transfer LLMs’ reasoning capabilities in
English to other languages. By using English as an
intermediary, we transform non-English problems
into English representations, thereby enhancing the
reasoning ability in low-resource languages.

(2) Since LLMs struggle with understanding the
semantic structures of non-English problems, we
extract structured knowledge representations from
natural language questions, converting complex
multilingual problems into a more interpretable
form.

(3) While LLMs perform poorly in certain lan-
guages, language-specific features remain essen-
tial. Our framework preserves these features by
guiding the model to focus on language-specific
dependency knowledge, ensuring that the valuable
linguistic characteristics learned during training
could be retained.

Extensive experiments demonstrate that our
framework outperforms existing methods, includ-
ing Chain-of-Thought (CoT), across various mul-
tilingual reasoning tasks. The result illustrate that
by improving LLMs’ ability to interpret the se-
mantic structure of multilingual problems while
preserving language-specific knowledge, Knowl-
edge Funnel significantly enhances multilingual
reasoning performance.

Our contributions can be summarized as follows:

1. We proposed a framework called Knowledge
Funnel, which dynamically extracts entity
structured knowledge and language-specific
dependency knowledge from the questions. It
can significantly improve the multi-language
reasoning ability of LLMs at a very low cost.

2. To reflect the scalability of our framework, we
combined our framework with COT and other
methods, and verified it on multiple LLMs
and datasets. Taking GPT-3.5 and MGSM
datasets as examples, the average score of
this framework in all languages has increased
by 30.3% compared to the original method,
11.3% higher than the COT method, and bet-
ter than other baselines.

3. We further extend the framework to multi-
ple reasoning tasks, and the scores in each
language are better than other methods such
as COT, indicating that our framework has
strong generalization.

2 Related Work

This work is closely related to two topics: multilin-
gual reasoning and prompt learning.

2.1 Multilingual Reasoning

Large language model reasoning, which evaluates
the ability of LLMs to handle complex tasks, serves
as a straightforward measure of their efficiency
(She et al., 2024) . These reasoning tasks mainly
include numerical reasoning and commonsense rea-
soning. With the growing interest in multilingual



LLM performance, researchers have begun inves-
tigating how LLMs perform in multilingual envi-
ronments. A common approach to improve perfor-
mance on low-resource languages is pre-translation
inference, which involves translating input ques-
tions into a high-resource pivot language (e.g., En-
glish or Chinese) before querying the LLM to lever-
age the model’s proficiency in the pivot language
(Huang et al., 2023b; Qin et al., 2023).

In addition, Chain-of-Thoughts (CoT) prompt-
ing has proven effective in enhancing complex rea-
soning performance (Sap et al., 2020; Yu et al.,
2023; Liu et al., 2023a) and has been widely ex-
plored in existing studies (Huang et al., 2025). Liu
et al. (2024) proposed several strategies to extend
COT to multilingual scenarios, including "Native-
CoT" where both questions and instructions are in
the native language, "EN-COT" where instructions
are in English, and "XLT" (Huang et al., 2023b),
which involves translating questions into English
and solving them step-by-step. In addition to non-
parametric methods, some works introduce super-
vised fine-tuning (SFT) (She et al., 2024; Zhu et al.,
2024) to enhance the multilingual reasoning abil-
ity of the model. For example, translating English
training data into other languages, or mixing the
original language and target language in a single
query , and then fine-tuning the multilingual large
language model (MLLM) for instructions (Chai
et al., 2024). However, SFT suffers from data
scarcity and catastrophic forgetting problems, and
its cross-domain generalization ability is also lack-
ing (She et al., 2024).

Compared with the above methods, our frame-
work is more suitable for multilingual reasoning:
we pay more attention to the specific knowledge
of different languages, and it is more generalizable
than SFT because it can be applied to different
tasks and different languages at low cost.

2.2 Prompt Learning

Prompt learning is a mainstream research method
to improve the capabilities of LLMs. By designing
a variety of prompt templates, LLMs are guided to
reason in a non-parametric way (Liu et al., 2023b).
Prompt learning can improve model capabilities
without changing parameters and does not rely on
a large amount of labeled data, significantly re-
ducing the cost of model training and has stronger
generalization capabilities. In the field of mul-
tilingual reasoning, Chain-of-Thoughts (COT) is

an efficient and simple method. Common COT
methods include basic CoT prompting (Wei et al.,
2022), complex CoT (Fu et al., 2023) and multilin-
gual CoT (Shi et al., 2023), etc. In addition, Brown
et al. (2020) proposed in-context learning (ICL),
which generates prompts by combining some ex-
amples with instructions, and Puerto et al. (2024)
used LLMs to convert reasoning tasks into code
and execute them with the help of external inter-
preters to solve complex reasoning problems. In
terms of structured prompts, Madaan et al. (2022)
performed few-shot prompts on Codex LLM and
converted the task into a Python graph for process-
ing structured commonsense tasks, further expand-
ing the application scope of prompt learning.

As a prompt learning method, unlike COT and
other methods that focus on inference steps, our
framework focuses on improving the relationship
understanding ability of the model, using a more
concise method to structure the questions, and
can be applied to various multi-language reason-
ing tasks. In addition, our framework can also be
combined with other prompt learning methods to
improve reasoning effects in all aspects.

3 Methodology

In this section, we propose a novel prompting
framework, named Knowledge Funnel, aiming to
improve the performance of LLMs in multilingual
reasoning tasks. The overall framework of our
Knowledge Funnel is shown in Figure2.

3.1 Multilingual Alignment Knowledge

In the first step, all questions are translated into
English by LLMs. This step achieves language
alignment in a simple but effective way, using the
translation capabilities of LLM to convert ques-
tions in all other languages into English. This
step leverages LLMSs’ strong English reasoning
capabilities to mitigate performance degradation
caused by limited training data in non-English lan-
guages, thereby improving the overall performance
of the model in multilingual reasoning tasks. By
using English as an intermediary, we transform
non-English problems into English representations,
so the model can understand the question more ac-
curately, ensuring semantic consistency and logic
during the reasoning process.
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Figure 2: Illustration of our Knowledge Funnel Frame-
work. Our Knowledge Funnel is designed to extract En-
tity Structured Knowledge and Dependency Knowledge
from multilingual questions, optimizing large models’
multilingual reasoning capabilities.

3.2 Entity-Structured Knowledge

Next, named entity recognition (NER) is applied to
extract key entities (e.g., numbers, units, objects)
and their relationships in the question. These rela-
tionships are identified sequentially based on their
textual order, ensuring that critical information is
accurately captured and clearly structured. This
step not only clarifies the connections between
entities, but also ensures that the semantic infor-
mation can be accurately captured and effectively
associated with the corresponding entities. In this
way, the model can clearly identify the semantic
structures in the question and avoid inference er-
rors caused by misinterpretation of relationships.
In addition, relationship extraction helps simplify
problems and makes complex reasoning tasks more
parsable. This step helps eliminate ambiguities, re-
duce reasoning errors, and enhance the model’s
ability to parse complex problems.

3.3 Dependency Knowledge

To preserve language-specific features, the model
is required to identify the dependencies between
values and units, quantifiers, and measurement
words by utilizing the language knowledge learned

by model during the training process. Unlike task-
specific prompting, this approach enables LL.Ms
to automatically handle linguistic dependencies
across languages, ensuring accurate semantic inter-
pretation and reducing inference errors caused by
syntactic variations. The recognition of language-
specific dependencies enhances the model’s ability
to process language characteristics and reduces in-
ference errors caused by differences in language
syntax.

3.4 Calculation And Answer Generation

Finally, the model performs calculations based on
the extracted relationships and dependency knowl-
edge. The computed answer is then translated back
into the original language, ensuring consistency
between input and output while maintaining inter-
pretability in multilingual settings. At this stage,
the final solution to the problem is reached through
the operation of relationships, while the translation
step ensures the seamless connection between dif-
ferent languages, allowing the reasoning task to be
successfully completed in a multilingual environ-
ment.

3.5 Analysis

Our framework offers several advantages:

* Multilingual Alignment Knowledge en-
hances reasoning performance in non-English
languages by leveraging English as an inter-
mediary.

* Entity-Structured Knowledge ensures clar-
ity in question semantics and accurate infor-
mation extraction.

* Dependency Knowledge Extraction enables
the model to recognize and retain language-
specific features, preserving semantic consis-
tency and improving reasoning accuracy.

Additionally, the method is highly scalable. It
is compatible with existing reasoning approaches,
such as Chain-of-Thought (CoT) and In-Context
Learning (TCL), and can be integrated with them
for further performance improvements. Unlike
fine-tuning, which requires large amounts of la-
beled data for specific tasks, our framework
provides a generalizable solution across diverse
multilingual reasoning tasks. Experimental re-
sults demonstrate its effectiveness across differ-
ent datasets, reasoning types (e.g., numerical and



commonsense reasoning), and linguistic domains,
highlighting its broad applicability and robustness.

4 Experimental Setup

In this section, we introduce the experimental set-
tings, including base models, baselines, evaluation
indicators, experimental settings, etc.

4.1 Base Model

In order to evaluate the effectiveness of our frame-
work in improving multilingual reasoning, we
use three LLMs as base models: GPT-3.5-Turbo,
Qwen-7B-Instruct, and Mistral-7B-Instruct-v0.3.
We not only conduct experiments on open source
model(Qwen) and closed source model (GPT-3.5),
but also add the Mistral model, an open source
LLM that focuses on improving reasoning capa-
bilities and is not specifically optimized for mul-
tilingual tasks. Experimenting on this model can
verify whether the framework can improve the mul-
tilingual capabilities of models that are not good at
multilingual capabilities.

4.2 Datasets

To verify the versatility of our framework, we con-
ducted experiments on two multilingual numerical
reasoning datasets, MGSM and MSVAMP, and a
commonsense reasoning dataset, XCOPA.

MGSM (Multilingual Grade School Math):
MGSM (Shi et al., 2023) is a benchmark dataset
of multilingual elementary school math reason-
ing problems. The dataset is translated from the
GSMBSK dataset and contains 11 different lan-
guages, which aims to evaluate the ability of mod-
els to solve math problems in a multilingual envi-
ronment.

MSVAMP (Multilingual Semantic Value
Math Problems): MSVAMP (Chen et al., 2024)
is a math problem dataset focusing on multilin-
gual semantic reasoning, designed to evaluate the
mathematical reasoning and semantic understand-
ing ability of models in different languages. The
dataset contains math problems in multiple lan-
guages, emphasizing the understanding of quantity,
units, and measurement words.

XCOPA (Cross-lingual Choice of Plausible
Alternatives): XCOPA (Ponti et al., 2020) is a
benchmark dataset for multilingual commonsense
reasoning tasks. The questions involve reasoning
scenarios in multiple cultural backgrounds and sup-
port more than ten languages, including English,

Arabic, Chinese, Spanish, French, German, Rus-
sian, etc. It aims to test cross-language reasoning
capabilities and the adaptability of models to dif-
ferent cultural backgrounds.

4.3 Baselines

For comparison, we selected
parameterized methods and
on the same model and dataset.

Basic Prompt: Only the most basic prompt
strategy (such as "Let’s solve the following prob-
lem") is used without any additional prompt strat-
egy. The questions are presented in the original
language and the instructions are presented in En-
glish.

Translate to English: (Trans) The questions
are presented in the original language, and the large
model is prompted in English to translate the prob-
lem into English, and then it is asked to answer it
directly.

English chain-of-thought (EN-COT): The
question is presented in the native language, but
the model is instructed to reason in English using
the phrase "Let’s think step by step in English."

Cross-lingual-thought (XLT): XLT (Huang
et al., 2023b) is an advanced prompting approach
for multilingual tasks, where the model is guided
to translate the question into English and solve it
step-by-step in English.

Must Think More Step (MTMS): MTMS (Jin
et al., 2024) is a prompting strategy that encourages
the model to perform more detailed and gradual
reasoning by explicitly asking it to break down the
problem into smaller steps, ensuring deeper and
more thorough thought processes.

some non-
experimented

4.4 Evaluation Metrics

Accuracy is used to access a model’s ability on
classification tasks and is commonly used for
multichoice and yes/no tests: Accuracy = Ncor-
rect/Ntotal (Jin et al., 2024).

4.5 Experiment Setting

To verify the effectiveness of our framework, we
designed the following experiments:

Ours: Our framework described in Section 3.
We report two versions of our method in the ex-
perimental results: one with only three basic steps,
excluding dependency knowledge (Ours (Basic)),
and another with all steps included (Ours (Full)).
This distinction is made because the effectiveness



Language

Model Method
En Sw Ja Be Th Te Ru Zh De Es Fr AVG
Original 544 256 36.8 352 248 248 46.8 424 392 420 38.0 373
Trans 544 292 29.6 252 304 184 340 432 584 68.8 48.8 40.0
COT 76.0 552 604 42.0 464 156 584 628 700 704 62.0 563
XLT 73.6 68.0 652 604 63.6 37.6 732 68.8 73.6 70.0 69.2 657
MTMS 73.6 584 556 41.6 46.0 164 63.6 63.6 70.0 712 664 569
GPT Ours (Basic) 752 556 604 57.6 556 352 692 644 664 700 664 615
Ours (Full) 744 616 660 60.8 592 328 69.6 71.6 69.6 71.2 66.0 639
Ours (Basic) + few shot 74.0 63.6 652 592 600 368 712 664 668 740 684 64.1
Ours (Full) + few shot ~ 74.0 664 63.6 636 604 360 704 692 704 740 656 649
Ours (Basic) + COT 784 656 732 612 63.6 384 73.6 748 70.8 752 69.2 67.6
Ours (Full) + COT 724 648 664 644 0604 40.8 73.6 69.6 68.0 744 68.8 658
Original 84.0 128 560 512 480 240 736 808 668 712 644 575
Trans 852 248 740 720 788 41.6 83.6 820 740 800 720 69.8
COT 83.6 140 732 61.6 784 392 788 816 740 776 720 66.7
XLT 876 272 784 732 80.8 392 868 832 732 784 732 71.0
MTMS 86.8 172 732 616 764 264 792 80.0 752 784 708 659
Qwen Ours (Basic) 84.0 256 732 688 784 364 808 836 696 752 740 68.1
Ours (Full) 852 272 732 69.6 756 364 79.6 792 720 80.8 732 68.4
Ours (Basic) + few shot 83.6 25.6 740 688 772 392 812 804 764 780 780 68.8
Ours (Full) + few shot 852 24.8 76.0 704 77.6 396 79.6 80.8 79.2 78.0 764 69.8
Ours (Basic) + COT 86.8 28.0 752 744 808 41.2 84.0 82.0 740 81.6 748 712
Ours (Full) + COT 85.6 27.6 744 692 792 380 792 800 732 784 720 68.8
Original 368 24 164 104 7.6 204 220 224 216 216 32 168
Trans 480 52 124 21.6 232 292 400 292 292 312 52 249
COT 536 76 144 80 152 292 30.8 27.6 30.0 304 40 228
XLT 576 124 372 256 320 512 512 432 484 488 40 374
MTMS 552 6.0 140 40 156 304 39.6 30.8 30.0 332 20 237
Mistral Ours (Basic) 544 13.6 304 284 292 40.0 432 400 400 364 7.6 33.0
Ours (Full) 552 13.6 364 28.8 28.8 43.6 444 432 42,0 40.0 8.8 347
Ours (Basic) + few shot 51.2 12.0 38.8 296 33.6 440 480 432 428 440 84 36.0
Ours (Full) + few shot  49.6 11.6 43.6 30.8 35.6 488 460 444 452 452 72 37.1
Ours (Basic) + COT 564 140 36.0 324 332 49.6 47.6 432 456 448 11.2 37.6
Ours (Full) + COT 554 12.8 384 272 324 432 456 424 39.6 43.6 10.8 355

Table 1: Performance Comparison Across Models and Methods in Multilingual Tasks (MGSM Dataset). The

bolded values represent the highest scores, while the underlined values represent the second-highest scores.

of dependency knowledge extraction varies across
different experiments. Both versions are also re-
tained in subsequent combination methods.

Ours+COT: A hybrid approach combining our
framework with COT. After enhancing the seman-
tic understanding ability of the model, it further im-
proves the reasoning ability by guiding the model
to make step-by-step reasoning.

Ours+COT+few-shot: After combining our
framework with COT, a small number of examples
(few-shot) are used to guide the model to help the
model better understand the task and perform ef-
fective reasoning, thereby further improving multi-
language reasoning performance.

5 Results

In our experiments, we evaluated the performance
of different methods on multilingual reasoning
tasks. To ensure the fairness, we set up multi-
ple baselines: the original method without any
prompts (Original), the direct translation method
(Trans), and several mainstream reasoning frame-
works, including Chain-of-Thought (COT), Cross-
lingual-thought (XLT) , and Must Think More Step
(MTMS). All baselines are introduced in Section
4.3. Additionally, we tested our proposed method
and its combination with other reasoning methods,
such as COT and a few-shot setting, to further en-
hance performance.

Our experiments were conducted on two reason-
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Figure 3: Comparison of Accuracy Across Methods on
GPT-3.5 (MGSM Dataset). Both of our frameworks
maintain high accuracy across all languages.

ing tasks: numerical reasoning and commonsense
reasoning. For numerical reasoning, we used the
MGSM and MSVAMP datasets, while for com-
monsense reasoning, we used the XCOPA dataset.
The main results are presented in Tables 1 and
Appendix A.

5.1 Overall Results

Table 1 shows the performance of each method on
the MGSM dataset. The three comparison meth-
ods mainly focus on optimizing reasoning steps,
while our Knowledge Funnel focuses on enhanc-
ing question understanding. As a result, it consis-
tently outperforms traditional methods across all
languages, with particularly significant improve-
ments in languages where the original performance
was lower. For instance, the score of Swahili in-
creased by 29.2% and Thai increased by 30.8%,
demonstrating that languages with weaker initial
performance often suffer from poor relationship
understanding.

From the average score, our Knowledge Funnel
improves model accuracy by 7.6% over COT and
7.0% over MTMS, achieving the best results in
most languages. This highlights its effectiveness in
multilingual reasoning tasks. Additionally, incor-
porating a few-shot setting further enhances multi-
lingual reasoning performance. Furthermore, when
combined with COT , the framework achieves ad-
ditional improvements across all languages, with
an average accuracy increase of 11.3% over COT
and 10.7% over MTMS. This effect is more pro-
nounced in languages where the model already per-
forms well. For example, in Chinese, the hybrid
approach boosts accuracy by an additional 10.4%
compared to our method alone. More importantly,
the average score of our combined framework sur-

passes that of XLT by 1.9%, achieving the best
results in most languages. As shown in Figure 3,
we compared the accuracy of different methods
across various languages, demonstrating that our
framework leads in accuracy across all languages.

5.2 Ablation Study

To analyze the contribution of each step in our
method, we conducted ablation experiments, with
results presented in Table 2:

* Using only step 1 (Multilingual Alignment):
Performing only multilingual alignment with-
out relation analysis leads to a significant drop
in accuracy, highlighting the necessity of deep
relational processing.

* Using only step 2 (Entity Structured
Knowledge) or step 3 (Dependency Knowl-
edge): Extracting either entity structured
knowledge or dependency knowledge in iso-
lation achieves moderate performance, sug-
gesting their complementary roles.

* Omitting Step 1: Performance degrades sig-
nificantly in low-resource languages, empha-
sizing the importance of multilingual align-
ment.

* Omitting Step 2 or Step 3: Accuracy drops
sharply, indicating that both structured and de-
pendency knowledge are crucial for reasoning
performance.

5.3 Case Study

In Figure 3, we present examples where the tra-
ditional Chain-of-Thought (COT) method fails,
while our framework produces accurate results.
These cases highlight how our approach resolves
common errors in multilingual reasoning.

In Figure 3 (a) and 3 (b), language-specific am-
biguities cause COT to misinterpret units and dis-
counts. For instance, in Figure 3 (a), COT confuses
"per dozen eggs" with "per egg", leading to an in-
correct calculation. Similarly, in Figure 3 (b), the
Chinese expression "70% off" is misread by COT
as "a 70% reduction", rather than "70% of the orig-
inal price". Our framework effectively resolves
these issues by incorporating dependency knowl-
edge, ensuring correct numerical interpretation.

Figure 3 (c) and 3 (d) demonstrate how struc-
tural misunderstandings are addressed. In Figure
3 (c), COT fails to parse the relationship between
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Model Method
En Sw Ja Be Th Te Ru Zh De Es Fr AVG
Original 54.4 25.6 36.8 352 248 248 468 424 392 420 38.0 373
+stepl 544 292 29.6 252 304 184 340 432 584 68.8 48.8 40.0
+step2 61.6 528 57.6 412 440 248 620 628 576 628 584 532
GPT +step3 69.2 588 612 456 544 256 660 652 656 656 61.6 58.1
Ours 744 61.6 660 60.8 592 328 67.6 716 69.6 692 66.0 639
-stepl 74.8 58.8 584 584 576 312 676 692 66.0 692 632 61.6
-step2  72.8 612 628 564 560 300 672 688 67.6 70.0 604 61.2
-step3 752 548 604 57.6 556 312 692 632 652 70.0 664 60.8

Table 2: Ablation Study on GPT-3.5 for the MGSM Multilingual Dataset

Tloyd has an egg farm. His chickens lay 252
eggs per day, and he sells a dozen eggs for

QIFFREE—TES. HIRSEX
7 252 FiE, fbESITGES 2 %
7T, SRESRANSERSOHK?

.~ How much money does Lloyd earn
from eqggs per week?

- 252 eggs per day
- 1dozen = 12 eggs

I

Money earned each week = (252 / 12) *2* 7 = 294}
1

252 eggs/day * 7 days/week = 1764 eggs/week
1764 eggs/week * $2/egg $3528/week

nﬁiféﬁl‘—w\iﬁﬁﬂﬁi 3528 5%, x

(Lloyd makes $3,528 a week from eggs.)

(i, spmempeEm 204 3. ]‘/

(Lloyd makes $294 a week from eggs.)
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If they . how many

Marilyn's first album sales were 10 times Harold's.
albums did Harold sell?

the number of albums sold by Marilyn as x
the number of albums sold by Harold is 10x
The total number of albums sold isx + 10x = 11x
the total number of albums sold is 88,000
s0 x = 88,000 / 11 = 8,000
10x = 10 * 8,000 = 80,000

IABEE T 80, 0003KIBH x

(Harold sold 80,000 records)

- Marilyn's sales are 10 times Harold's. }

‘the number of albums sold by Harold is x
the number of albums sold by Marilyn as 10x
Total albums sold = x + 10x = 11x
Given fotal albums sold = 88,000
11x = 88,000
x = 8,000

IRB{BsR T8, 0003KIB A

(Harold sold 8,000 records)

(©
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John adopted a dog. He took the dog to grooming, and
the grooming price is 100 dollars. Because he is a new
customer, the pet groomer gave him

How much money did he spend on grooming this fime?

} - Grooming price: 100 dollars

[ 100 * 0.7 = 70

)
(ommwerron. )of

(John spent $70 on this grooming.)

Discount amount = 100 * 0.7 = 70
Final amount = 100 - 70 = 30

RSOREBIET 30555, x

(John spent $30 on this grooming.)

73 1/4 MEERMRE. MEET 16 [ . Each gift
J2. ARSEA 2 E5T. MERSE? bag costs 2 dollars. How much money will she spend?

i 1

REEEBEERL—AERRY, BE Christina is planning a birthday party and needs gift bags
TN RSR R R SRR 0754, for each invited guest, 0.75 bags per guest, as

- Number of gift bags per guest: 0.75
Total number of guests = 16 * (1 - 1/4) = 12 ;

Total number of gift bags = 12 * 0.75= 9
Total cost = 9 gift bags * $2 = $18

- only 3/4 of the guests will receive gift bags
- Cost per gift bag: 2 dollars

* Total number of gift bags needed = 16 * 0.75 * 3/4 = 12
REMFIFRE 18 % x Total cost = 12 * 2 = $24
(Christina will cost $18.)
[ mwmmEn 2 00 | of

(Christina will cost $24.)

Figure 4: Case study on four examples. The left half of each example illustrates the steps derived from the COT
method, and the right half presents the solution process based on our framework.

two entities’ sales figures, leading to cascading er-
rors through the reasoning process. In Figure 3
(d), COT misinterprets "0.75 bags per guest" and
"1/4 of guests not attending" as separate conditions,
leading to double-counting. Our framework struc-
tures these relationships explicitly, preventing such
misunderstandings.

Overall, by integrating structured knowledge
and dependency knowledge, our framework helps
the model accurately extract and interpret relation-
ships, reducing errors caused by ambiguous expres-
sions across different languages.

6 Conclusion

In this paper, we propose Knowledge Funnel,
a novel prompting framework for multilingual
reasoning. By dynamically extracting entity-

structured knowledge and language-specific de-
pendency knowledge, our method enhances the
model’s ability to understand relationships in non-
English questions, thereby improving multilin-
gual reasoning performance. Experimental results
demonstrate that our framework achieves signifi-
cant improvements across two tasks on three base-
line models, outperforming methods such as COT
and XLT. The experiments and analysis further con-
firm that our framework offers both strong general-
ization capabilities and cost-effective scalability.

Limitations

Similar to previous non-parametric methods, the
effectiveness of our framework depends on the
performance of LLMs. Additionally, due to limita-
tions in computational resources, our experiments



were focused on numerical reasoning and common-
sense reasoning tasks. If resources permit, we plan
to explore the applicability of our framework to a
broader range of multilingual tasks.
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Language

Model Method
En Sw Ja Be Th Ru Zh De Es Fr AVG
Original 770 68.1 684 487 61.8 743 68.0 734 733 734 68.6
GPT CcoT 76.8 65.1 68.8 49.0 60.2 685 690 687 705 688 665
Ours (Basic) 814 744 79.1 66.0 72.1 768 79.1 760 78.0 774 76.0
Ours (Full) 832 770 782 665 764 782 812 772 79.6 788 77.6

Ours (Basic) + COT 81.1 75.1 80.6 66.8 71.8 779 781 783 796 792 769
Ours (Full) + COT 80.6 744 80.0 668 743 780 8l4 760 792 782 769

Table 3: Evaluation of Multilingual Numerical Reasoning Methods on MSVAMP using GPT-3.5

Model Method Language
Et Ht Id It Qu Sw Ta Th Tr Vi Zh AVG
Original 482 49.6 338 368 502 47.0 37.8 460 434 448 370 43.1
GPT COT 770 634 786 822 500 67.0 532 672 79.6 77.0 760 70.1
Ours (Basic) 80.0 624 842 858 50.8 742 608 746 812 766 826 73.9
Ours (Full) 788 630 834 882 502 754 642 77.6 820 814 828 752

Ours (Basic) + COT 80.4 680 836 900 498 760 612 748 86.0 820 854 76.1
Ours (Full) + COT 80.0 642 83.6 88.0 502 748 634 748 834 820 842 753

Table 4: Evaluation of Multilingual Commonsense Reasoning Methods on XCOPA using GPT-3.5
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