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Abstract

The widespread usage of generative AI models raises concerns regarding fairness1

and potential discriminatory outcomes. In this work, we define the bias of an2

attribute (e.g., gender or race) as the difference between the probability of its pres-3

ence in the observed distribution and its expected proportion in an ideal reference4

distribution. Despite efforts to study social biases in these models, the origin of5

biases in generation remains unclear. Many components in generative AI models6

may contribute to biases. This study focuses on the inductive bias of unconditional7

generative models, one of the core components, in image generation tasks. We pro-8

pose a standardized bias evaluation framework to study bias shift between training9

and generated data distributions. We train unconditional image generative models10

on the training set and generate images unconditionally. To obtain attribute labels11

for generated images, we train a classifier using ground truth labels. We compare12

the bias of given attributes between generation and data distribution using classifier-13

predicted labels. This absolute difference is named bias shift. Our experiments14

reveal that biases are indeed shifted in image generative models. Different attributes15

exhibit varying bias shifts’ sensitivity towards distribution shifts. We propose a16

taxonomy categorizing attributes as subjective (high sensitivity) or non-subjective17

(low sensitivity), based on whether the classifier’s decision boundary falls within a18

high-density region. We demonstrate an inconsistency between conventional image19

generation metrics and observed bias shifts.20

1 Introduction21

Generative AI models have achieved realistic generation qualities for various modalities including22

text [35, 25], image [28, 29, 8], audio [19], and video [15, 33]. They are consequently employed for23

commercial uses and are available to every internet user across the world. The widespread use of24

these high-performing models, along with the potential social biases embedded in their generation,25

increase the risk of discriminatory outcomes.26

We define the bias of an attribute (e.g., gender or race) as the difference between the probability of its27

presence in the observed distribution and its expected proportion in an ideal reference distribution.28

The ideal reference distribution may be based on social norms or population statistics, etc. A widely29

studied problem is gender or racial bias with respect to occupations [5, 2, 23, 9]. Depending on the30

context, previous works use equality or U.S. labor statistics as the ideal reference distribution.31

Other studies have compared social biases between generated images and training datasets of genera-32

tive AI models, with mixed findings. [9] report that images generated by Stable Diffusion [29] show33

cases of bias and even bias amplification compared to the training data (LAION-5B) [31]. On the34

other hand, [32] conduct similar experiments and discover that bias shift can be mainly attributed to35

discrepancies between training captions and model prompts.36
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Figure 1: Illustrations depicting bias shift. The plots represent the distributions of samples with
respect to the likelihood of an attribute (solid for training data, dashed for generation). The decision
boundary (brown) binarizes the likelihood into positive and negative classes. In each subfigure, the
generation distribution is translated from the training. Bias shift is the difference between red and
blue areas. When the boundary falls in a low-density region (Figs. 1c and 1d), the bias shifts tend to
be small, and vice versa (Figs. 1a and 1b). Detailed discussion is in Section 4.3 with distributions
obtained from real datasets.

Although analyzing biases empirically in publicly available generative AI models is of practical37

significance, identifying the origin of these biases remains a challenge. Modern generative AI systems38

are complex and generative biases can stem from various sources, such as biased datasets [31, 17],39

the conditioning process (including textual prompts, and guidance [6, 14]), pre-trained modules40

(including CLIP [27] and VAE [18]), and inductive bias of the generative models (e.g., diffusion41

process [13], generative adversarial training [10]). While biases in pre-trained models [4, 1] and42

datasets [31] have been widely studied, the impact of inductive biases in generative models remains43

underexplored. Thus, in our experiments, we focus on unconditional pixel-level image generative44

models without any guidance during training or inference.45

We propose a standardized evaluation framework that employs attribute classifiers to study bias shifts46

from training to generated data distributions in unconditional image generative models. Training the47

classifiers requires ground-truth labels for the training and validation sets; hence, our framework is48

applicable to any supervised learning dataset. We train unconditional image generative models using49

the training set and unconditionally generate images. We then use the trained classifiers to predict50

attribute labels for each generated image. We compare the bias for each attribute between the training51

and generated data distributions using classifier-predicted labels. We refer to this absolute difference52

as the bias shift. If bias shift is close to zero, there is no systematic bias exhibited in image generative53

models. We analyse the bias shifts on two real image datasets, CelebA [22] and DeepFashion [21].54

Our findings reveal that bias shifts vary in magnitude across different attributes, indicating varying55

levels of sensitivity to distribution change between generation and training data. We categorize56

attributes as subjective (high sensitivity) and non-subjective (low sensitivity) sets, based on the57

relative sample density at the classifier’s decision boundary. If the classifier is confident in its58

predictions — in other words, the decision boundary lies in a lower-density region (corresponding59

to non-subjective attributes), bias shifts tend to be smaller, and vice versa. Fig. 1 shows translation60

distribution shift as an example to introduce this idea.61

Our bias analysis framework yields the following observations: 1) Biases of attributes shift between62

training and generation distributions for unconditional image generative models. The magnitude of63

bias shift is correlated with the subjectivity of the attribute. 2) Selecting the checkpoint based on64

image generation metrics (FID [12], KID [3], and FLD [16]) does not guarantee the smallest bias65

shifts. Bias should be treated as an independent issue when evaluating generations.66

2 Related Works67

Bias Shift between Train and Generation Previous studies focus on social biases in image68

generation, often concluding that these models are unfair [9, 5] or fail to reflect real-world biases as69

observed in U.S. labor statistics [23, 2]. Few studies attempt to compare bias between the generation70

and training distributions. These efforts often rely on publicly available Stable Diffusion models,71

comparing generated outputs with the LAION-5B training set [31], a large-scale dataset lacking72

explicit attribute labels. Given a text prompt, [9] select a subset of LAION-5B based on pre-trained73

image-prompt similarity, then compare the bias between this subset and the images generated using74

the same prompt. In contrast, [32] select subsets based on keywords in image captions, which may75

overlook relevant images. To avoid this large-scale dataset search and subset comparison, we train76
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Figure 2: Bias evaluation framework. Unconditional generative models are trained on the training
set. The pre-trained classifier is fine-tuned on the training set and validated on the validation set using
ground truth labels and is then used to classify training, validation, and generation sets. The bias
evaluation metrics are calculated based on the classifier-predicted labels.

generative models using datasets with labeled attributes, ensuring reliable bias estimation across both77

the training and generation.78

Bias-related Attribute Label Prediction To calculate bias in generation, the generated images79

need to be assigned attribute labels, which is non-trivial in the case of unconditional generation.80

Some studies [2] infer the labels in the representation space of self-supervised learning models, for81

example, CLIP [27]. Some methods use pre-trained vision language models and conduct zero-shot82

text generation. [5] use BLIP-2 [20] and get the label through visual question answering (VQA).83

[23] use BLIP with VQA task and ViT [7] with image captioning task. However, pre-trained models84

introduce their own biases [4, 1]. Some approaches [9] train an attribute classifier on other available85

supervised learning datasets. In our case, we train the classifier on the same dataset used for bias86

analysis, resulting in more accurate predictions.87

3 Bias Evaluation Method88

3.1 Bias Definition89

In this work, bias for an attribute is defined as the difference between the probability of its presence90

in the observed distribution and its expected proportion in an ideal reference distribution.91

Considering a set of binary attributes1 C for which we want to study bias, each image in the dataset is92

annotated for every attribute. Given an attribute C ∈ C, we can set an ideal probability P ideal(C) for93

this attribute as the reference probability, depending on the context. We denote the probability of this94

attribute in the data distribution as P data(C). We can use either P train(C) or P val(C) as an estimation95

for P data(C) and compare with the reference probability to determine degree of bias. For example, we96

define the bias of the data distribution relative to P ideal(C) as Bdata(C) = P data(C)− P ideal(C). To97

get the bias on the generation set, we need to calculate the proportion for this attribute in the generation98

set P gen(C). We can then measure the bias in the generation Bgen(C) = P gen(C)− P ideal(C).99

3.2 Bias Evaluation Framework100

Fig. 2 illustrates our proposed bias evaluation framework. We train image generative models for101

unconditional image generation using only images from the training set, without feeding ground truth102

labels into the models. We generate 10,000 images for each checkpoint during training. To calculate103

the proportion for each attribute in the generation distribution, we require attribute labels for the104

generated images. We apply a trained classifier, developed using the training and validation sets with105

ground truth labels, to the generated images to obtain classifier-predicted attribute labels.106

The trained classifier inevitably introduces errors, meaning the predicted labels may not match the107

ground truth labels for all images. To ensure consistent bias estimation across different sets, we use108

the trained classifier to predict attribute labels for training and validation sets. In addition, we use109

1The use of binary attributes can be extended to K-way attributes by binarizing the K-way attributes as K
1-vs-all binary attributes.
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Figure 3: Evaluation metrics for image generation throughout training. In 3a and 3b, FID, KID,
and FLD values converge to small values showing the good quality of generated images and good
coverage of modes of the training distribution. In 3c, the positive or slightly negative generalization
gaps indicate that the trained models do not have severe memorization issues.

P val(C) to estimate the probability of attribute C in the data distribution, as the classifier may overfit110

to the training set. By adopting these techniques, we aim to minimize the potential bias introduced by111

the classifier in our bias evaluation framework for generative models.112

Given a binary attribute C ∈ C, we can therefore define bias shift between generation and training113

data as Bshift(C) = |Bgen(C) − Bdata(C)| = |P gen
cls(C) − P val

cls(C)|. The subscript cls stands for114

using classifier-predicted labels. In bias shift, the expected probability for positive attribute C in an115

ideal reference distribution P ideal(C) is canceled out. Bias shift remains the same regardless which116

ideal bias reference we select. If bias shift is close to 0, then the generation distribution and the117

training distribution exhibit the same level of bias for the given attribute.118

Bias shift evaluates changes in bias between data and generation distribution for each attribute119

considered in the study. To provide an overall understanding of the magnitude of bias shift across all120

attributes, we propose to use the average of bias shift across attributes. Average bias shift (ABS)121

evaluates the overall bias shift magnitude across all attributes considered between the training and the122

generated data distributions. This value represents the absolute difference between probabilities and123

is expressed as a percentage. We define this metric as ABS = EC∈CBshift(C).124

4 Experiments125

4.1 Experimental Setup126

Datasets We apply our proposed bias evaluation framework to two real datasets – CelebA [22] and127

DeepFashion [21]. CelebA [22] is a large-scale dataset with 200,000 celebrity facial images, each128

labeled with 40 binary attributes. DeepFashion [21] is a clothes dataset with over 800,000 diverse129

fashion images. More details about these datasets are in Appendix A.130

Backbone models in the framework We follow the setup from [6] to train unconditional ablated131

diffusion models (ADMs)2. We generate 10,000 images per checkpoint using 100 inference steps132

across training. We use a ResNext50 (32x4d) based image classifier [36]. We add a linear layer on133

top as the classification head and fine-tune the last 6 layers of the ResNext50 model. Implementation134

details are in Appendix B.135

Evaluation metrics for Image Generation We use some common metrics, e.g., FID (Fréchet136

Inception Distance) [12] and KID (Kernel Inception Distance) [3], to evaluate the generated images.137

We use FLD (Feature Likelihood Divergence) and generalization gap [16] as two additional metrics138

to gauge the memorization level of the generative models. FLD provides a comprehensive evaluation139

considering not only quality and diversity, but also novelty of generated samples. Positive generaliza-140

tion gap shows no overfitting to the training set. We adopt the implementation3 of [16] and follow141

their suggestion of using DINOv2 [26] as the feature extractor to calculate FID, KID, and FLD. We142

also use a conventional FID implementation4.143

2https://github.com/openai/guided-diffusion
3https://github.com/marcojira/FLD
4https://github.com/mseitzer/pytorch-fid
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Figure 4: Average bias shift (ABS) for CelebA and DeepFashion. For both datasets, shown in
Figs. 4a and 4b, ABS over subjective attributes show a much larger bias shift than non-subjective
ones.

Backbone models performance Figure 3 shows the image generation evaluation metrics for144

CelebA and DeepFashion datasets. In Figs. 3a and 3b, FID and KID converge to small values145

showing the good quality of generated images and good coverage of modes of the data distribution.146

FLD agrees with conventional metrics, showing no severe memorization issues in the generation.147

In Fig. 3c, the positive or slight negative values of generalization gap indicate that no overfitting is148

detected in the trained models. More discussions are in Appendix B.1. For CelebA and DeepFashion149

datasets, the classification accuracy on the validation set for most attributes is over 80%. Overall, the150

average accuracy across attributes is 91.7% for CelebA and 90.5% for DeepFashion. Table 4 and151

Table 5 in Appendix B.2 show in detail the classifier performance for each attribute.152

4.2 Average Bias Shift Evaluation153

Fig. 4 presents the average bias shift (ABS) throughout training. The overall ABS is still perceivable154

when image generation metrics are small, indicating non-negligible bias shifts from the training155

to generation distributions. Looking closer into bias shift for each attribute (Figs. 11 and 12 in156

Section C), we can categorize all attributes into two categories: subjective - large bias shift and157

non-subjective - small bias shift. We present the categorization of attributes in Table 3. In the158

following section 4.3, we will talk about the criteria for the attributes categorization.159

Average bias shift (ABS) for non-subjective attributes (purple dashed lines in Fig. 4) converges to160

small values for both datasets, reaching 0.71% for CelebA and 0.98% for DeepFashion. However,161

subjective attributes exhibit significantly larger ABS, achieving minima of 3.25% for CelebA and162

4.73% for DeepFashion.163

Bias shifts do not consistently follow the image generation metrics, as illustrated by the comparison164

between Figs. 3 and 4. This misalignment highlights that models with superior image generation165

metrics are not necessarily less biased. Bias should be treated as an independent issue, distinct from166

quality and diversity. While diversity metrics typically assess the coverage of modes in the generated167

distribution, bias evaluation should focus on the relative proportions of these modes. For CelebA168

dataset, the bias evaluation metrics plateau between steps 110K and 210K, while the image generation169

metrics continue to improve. We observe similar phenomenon in DeepFashion dataset.170

4.3 Bias shifts’ sensitivity relates to decision boundary171

In this section, we analyze the classifier to explain why some attributes experience greater bias shifts172

than others, leading to the attribute taxonomy presented in Table 3.173

Figs. 5 and 6 show the trained classifier’s pre-sigmoid logits distribution for some attributes of CelebA174

and DeepFashion respectively. The distributions for all attributes are in Appendix B.2. These plots175

provide visualizations of how the data points are distributed in a projected uni-dimensional space. To176

estimate the empirical distributions, we use all the training images, 10,000 images sampled from the177

validation set, and all the 10,000 images in the generation set.178

The main difference between small bias shift and large bias shift attributes is the density at the179

decision boundary. The distribution shifts for different attributes can manifest in various ways, but the180

decision boundaries for large bias shift attributes consistently fall in higher density regions compared181

to those for small bias shift ones. We thus use the density where the decision boundary falls in the182
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Figure 5: CelebA classifier’s pre-sigmoid logits distributions of selected subjective and non-
subjective attributes. The decision boundary for subjective attributes (Fig. 5a, 5b, and 5c) always
falls in a high-density region, while for non-subjective attributes (Fig. 5d, 5e, and 5f) it falls in a
low-density region.
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Figure 6: DeepFashion classifier’s pre-sigmoid logits distributions of selected subjective and
non-subjective attribute. The decision boundary for subjective attributes (Fig. 6a, 6b) always falls in
a high-density region, while for non-subjective attribute (Fig. 6c) it falls in a low-density region.

validation distribution to categorize the attributes. Those with density more than 0.01 are categorized183

as subjective, and vice versa.184

Bias shifts of subjective attributes are more sensitive to distribution shifts compared to non-subjective185

attributes. The distributions for non-subjective attributes still change between training and generation186

sets, but their effects on bias shifts are small. Since the decision boundary falls in a low-density187

region, it is more difficult to transport the density mass from one side of the boundary to the other.188

For example, the distribution of male (Fig. 5e) shifts from training to generation, but the shifts are189

within each side of the decision boundary. This clear classification margin leads to small ABS for190

non-subjective attributes.191

5 Conclusion192

This study focuses on bias shifts with regard to inductive biases of unconditional image generative193

models. We propose a standardized bias analysis framework applicable to any supervised learning194

dataset. Our experimental results show that different attributes have varying bias shifts in response to195

distribution changes. Attributes for which the classifier’s decision boundary falls in a low-density area196

tend to have small bias shifts. We thus categorize all attributes into subjective and non-subjective sets.197

Our analysis results in the following observations: 1) Biases shift between training and generation198

distributions for unconditional image generative models. 2) Selecting the checkpoint with the best199

image generation metrics does not guarantee the smallest bias shifts.200
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A Datasets330

CelebA [22] is a large-scale face attributes dataset with 200,000 celebrity images, each with 40331

attribute annotations. The dataset includes 10,000 celebrities with 20 images for each. These attribute332

annotations cover a wide variety of facial characteristics, ranging from details (e.g., earrings, pointy333

noise, etc.) to outlines (e.g., hair color, gender, age, etc.). We list all 40 attributes in Table 1. Before334

feeding the training images to the model, we centre crop the images and resize them to 128x128335

pixels. Because of the crop, some attributes, e.g., Wearing_Necklace, Wearing_Necktie, are not336

visually grounded in the post-process images. Blurry is also an attribute that we do not include337

since we want the image generation quality to be good. We excluded these attributes in Table 3. We338

follow the Training/Validation/Test set split in the official release. Training set includes the images339

of the first eight thousand identities (with 160 thousand images). Validation set contains the images340

of another one thousand identities (with twenty thousand images). The remaining one thousand341

identities (with twenty thousand images) go for Test set. In our bias analysis framework, we only use342

the Training set and the Validadtion set.343

DeepFashion [21] is a clothes dataset with over 800,000 diverse fashion images, including tops344

and bottoms. No footwears is in this dataset. Each image is associated with 1000 coarse attribute345

annotations about texture, fabric, shape, part, and style of the clothes. These attribute annotations are346

scrapped directly from meta-data of the images. They are thus very noisy and not reliable. Most of347

the attributes have less than 1% positive samples, making the classification problem very imbalanced.348

This dataset also provides a fine-grained annotation subset, where each image is associated with 26349

find-grained attribute annotations. These attributes are presented in Table 1. We train a classifier on350

this subset and apply this trained classifier to the whole dataset and get classifier-predicted labels for351

each image. We follow the Training/Validation/Test set split in the official release. Unlike CelebA352

dataset, the split of DeepFashion dataset is random.353

Table 1: Labeled attributes in CelebA and DeepFashion datasets. CelebA has 40 attributes and
DeepFashion has 26 attributes.

Dataset Attributes

CelebA

5_o_Clock_Shadow, Arched_Eyebrows, Attractive, Bags_Under_Eyes,
Bald, Bangs, Big_Lips, Big_Nose, Black_Hair, Blond_Hair, Blurry,
Brown_Hair,Bushy_Eyebrows, Chubby, Double_Chin, Eyeglasses, Goatee,
Gray_Hair, Heavy_Makeup High_Cheekbones, Male, Mouth_Slightly_Open,
Mustache, Narrow_Eyes, No_Beard, Oval_Face, Pale_Skin, Pointy_Nose,
Receding_Hairline, Rosy_Cheeks, Sideburns, Smiling, Straight_Hair,
Wavy_Hair, Wearing_Earrings, Wearing_Hat, Wearing_Lipstick,
Wearing_Necklace, Wearing_Necktie, Young

DeepFashion

floral, graphic, striped, embroidered, pleated, solid, lattice,
long_sleeve, short_sleeve, sleeveless
maxi_length, mini_length, no_dress,
crew_neckline, v_neckline, square_neckline, no_neckline,
denim, chiffon, cotton, leather, faux, knit,
tight, loose, conventional

B Training Details354

B.1 Diffusion Models355

We follow the training setting of [6] to train the ablated diffusion models (ADMs). Hyperparameters356

and architecture selections are in Table 2. We train models of varying sizes by adjusting the number357

of channels in the U-Net [30] bottleneck layer (32 for tiny, 64 for small, and 256 for large), with358

proportional changes in each layer. In the following sections, we report the results of the large359

diffusion model if the model is not otherwise specified. We train the diffusion using NVIDIA A100360

40GB. The batch size per GPU is set to 16, and we use 8 GPUs to train. During training, we save361

checkpoint for EMA models every 10K steps. We use half precision (FP16) for training and inference.362
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Table 2: Hyperparameters and architecture selection for diffusion models
lr bsz channel res_block dropout diffusion_step inference_step

1e-4 128 256 2 0.3 1000 ddim100

25 ddim25 50 ddim50 100 ddim100 250 ddim250
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Figure 7: ABS and image generation metrics using different inference methods and inference steps
on CelebA dataset. Images generated by DDIM have less bias shifts compared to those by Improved
Diffusion Sampler. FID and KID also show the superiority of DDIM sampler.

For each saved checkpoint, we employ 100 steps in inference to generate 10K images from the363

Gaussian noise. We compare the two inference methods used in ADM [6], one proposed by improved364

diffusion model [24], and DDIM [34]. The results on CelebA dataset are in Fig. 7. Images generated365

by the improved diffusion sampler exhibit more bias shifts than those from DDIM. Although FLD366

shows a slight improvement on improved diffusion sampler, DDIM works better in terms of FID and367

KID using the same steps of inference. Since we want to test less biased generations, we use DDIM368

with 100 steps during inference in our experiments.369

In Fig. 3c, generalization gaps for CelebA and DeepFashion datasets are different. This is because the370

split of the dataset is in different ways. In CelebA dataset, the training and validation sets contain the371

faces of distinct sets of celebrities. In DeepFashion dataset, the training and validation samples are372

split randomly. The distribution difference between training and validation sets of CelebA is larger373

than that of DeepFashion.374

B.2 Resnet Classifiers375

We employ a pre-trained ResNeXt model as the base model. We add a linear layer to top as the376

classification layer. We then fine-tune the last 6 layers of the pre-trained model as well as the377

classification layer using CelebA and DeepFashion dataset. We use AdamW optimizer and learning378

rate at 0.001. We follow a standard training procedure for the classifier training. We train the classifier379

on the train set (with ground truth labels) and choose the best classifier according to the average380

performance across all the considered attributes on the valid set (with ground truth labels). We use381

data augmentations to make the classifier more robust. The data augmentations include random382

horizontal flip, scaling and resizing, etc. This can help the classifier become more reliable when383

applied to the generation set. Previous work indicates that classifiers can amplify the discriminative384

biases in the training set [37, 11]. We use the positive and negative sample ratio to reweigh the385

cross entropy loss terms. This acts as an upsampling of the minority samples and alleviates the386

label imbalance issue. We don’t see the discriminative biases being amplified for most attributes387

according to Figs. 12 and 11 comparing the training ground truth probability and the validation388

classifier-predicted probability. The classifiers’ performances for each attribute are listed in Tables 4389

and 5. For both dataset, the accuracy for most attributes is over 80%. Figs. 8 and 9 show the390

pre-sigmoid logits distributions for each attribute in CelebA and DeepFashion datasets respectively.391
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Table 3: Attribute categorization of subjective and non-subjective for each dataset.
Dataset subjective attributes non-subjective attributes

CelebA

Rosy_Cheeks, Big_Nose, No_Beard, Narrow_Eyes, Arched_Eyebrows, 5-o-Clock_Shadow, Bangs,
High_Cheekbones, Bushy_Eyebrows, Black_Hair, Receding_Hairline, Eyeglasses, Bald, Double_Chin,
Brown_Hair, Straight_Hair, Bags_Under_Eyes, Pointy_Nose, Wearing_Hat, Male, Blond_Hair,
Big_Lips, Mouth_Slightly_Open, Heavy_Makeup, Attractive, Gray_Hair, Mustache, Chubby,
Smiling, Wearing_Lipstick, Wavy_Hair, Young, Oval_Face, Pale_Skin, Sideburns,Goatee,

DeepFashion

Floral, Graphic, Embroidered, Solid, Long_sleeve, Short_sleeve, Striped, Pleated,
Sleeveless, Knit, Chiffon, Cotton, Maxi_length, Mini_length, Leather, Faux,
No_dress, Crew_neckline,V_neckline, No_neckline, Square_neckline,
Loose, Tight, Conventional Lattice, Denim,

Table 4: Classifier performance on validation set of CelebA.
Attr Accuracy Precision Recall F1 AUPR

Eyeglasses 99.58 97.10 96.82 96.96 94.23
Wearing_Hat 98.98 86.31 93.19 89.62 80.75
Bald 98.92 73.33 74.94 74.13 55.47
Male 98.64 98.47 98.32 98.40 97.53
Gray_Hair 97.74 78.09 74.46 76.23 59.39
Sideburns 97.12 82.88 73.30 77.80 62.59
Goatee 96.61 76.83 77.25 77.04 61.03
Double_Chin 96.51 69.99 50.46 58.64 37.75
Pale_Skin 96.41 60.32 48.83 53.97 31.66
Mustache 95.90 60.78 53.14 56.70 34.66
Blurry 95.86 55.59 62.45 58.82 36.49
Wearing_Necktie 95.66 71.41 67.15 69.21 50.34
No_Beard 95.49 97.87 96.62 97.24 97.34
Chubby 95.35 65.18 51.73 57.68 36.67
Bangs 95.26 82.86 85.39 84.10 72.89
Blond_Hair 95.07 82.75 85.86 84.28 73.23
Rosy_Cheeks 94.64 64.32 48.45 55.27 34.69
Receding_Hairline 94.15 59.84 56.82 58.29 37.11
5-o-Clock_Shadow 93.34 77.82 60.90 68.33 52.00
Mouth_Slightly_Open 92.83 92.97 92.07 92.52 89.42
Wearing_Lipstick 92.08 87.96 95.29 91.48 85.92
Smiling 91.50 90.73 91.80 91.26 87.25
Bushy_Eyebrows 91.42 72.05 65.03 68.36 51.84
Heavy_Makeup 91.19 86.20 92.17 89.08 82.50
Narrow_Eyes 90.97 42.41 56.57 48.48 27.25
Wearing_Earings 90.62 82.10 65.00 72.56 60.04
Black_Hair 89.60 71.52 83.33 76.97 63.07
Wearing_Necklace 86.98 43.51 26.71 33.10 20.46
Young 86.42 90.45 91.47 90.96 89.11
High_Cheekbones 86.09 83.47 86.10 84.76 78.11
Brown_Hair 83.41 66.70 62.42 64.49 50.70
Bags_Under_Eyes 83.33 64.93 42.73 51.54 39.63
Arched_Eyebrows 83.08 72.64 55.40 62.86 51.77
Wavy_Hair 83.06 66.23 79.04 72.07 58.15
Straight_Hair 81.97 56.09 56.70 56.39 40.71
Big_Nose 81.63 69.39 46.81 55.91 45.71
Big_Lips 81.28 37.00 31.57 34.07 22.17
Attractive 80.07 78.42 85.09 81.62 74.48
Pointy_Nose 72.97 52.86 47.24 49.89 40.00
Oval_Face 68.34 44.95 57.86 50.59 37.81
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Table 5: Classifier performance on validation set of DeepFashion.
Attr Acc Precision Recall F1 AUPR

lattice 99.48 100.00 50.00 66.67 50.52
square_neckline 98.97 0.00 0.00 0.00 1.03
faux 98.45 50.00 33.33 40.00 17.70
leather 97.94 0.00 0.00 0.00 1.03
pleated 97.42 40.00 50.00 44.45 21.03
maxi_length 96.91 96.00 82.76 88.89 82.03
denim 96.91 87.50 58.33 70.00 53.62
striped 96.39 55.56 62.50 58.82 36.27
loose 94.33 60.00 25.00 35.29 19.64
knit 92.27 52.63 62.50 57.14 35.99
mini_length 91.24 75.61 81.58 78.48 65.29
graphic 90.72 69.70 74.19 71.88 55.83
embroidered 90.72 36.36 26.67 30.77 15.37
long_sleeve 90.72 82.54 88.14 85.25 76.36
short_sleeve 90.21 66.67 73.33 69.84 53.01
no_dress 90.21 90.91 94.49 92.66 89.51
solid 88.14 88.89 88.00 88.44 88.41
floral 87.63 61.90 76.47 68.42 51.46
tight 87.63 61.29 61.29 61.29 43.75
chiffon 87.11 57.69 51.72 54.55 37.06
v_neckline 86.60 70.83 47.22 56.67 43.24
sleeveless 86.08 86.79 87.62 87.20 82.75
conventional 80.93 86.54 89.40 87.95 85.62
no_neckline 75.26 71.26 72.94 72.09 63.84
cotton 75.26 81.34 82.58 81.95 79.03
crew_neckline 71.65 59.30 71.83 64.97 52.91
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Figure 8: The pre-sigmoid logits distribution of each attribute in CelebA.
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Figure 9: The pre-sigmoid logits distribution of each attribute in DeepFashion.
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Figure 10: ABS for conditional settings on CelebA. Bias shifts conditioned on subjective attributes
may exhibit different patterns as shown in Fig. 10d.

C Bias Shift Analysis Per Attribute392

Figs. 12 and 11 show the bias probability for each attribute in CelebA and DeepFashion datasets393

respectively. Probabilities of subjective attributes generally exhibit values distinct from the classifier-394

predicted validation probabilities, resulting in bias shifts in Fig. 4.395

Subjective attributes exhibit more fluctuations throughout training compared to non-subjective ones.396

While the probabilities for many attributes converge before 300K steps, young (Fig. 12aj) still has397

fluctuations. A similar pattern is also witnessed in DeepFashion, where solid (Fig. 11f), as a398

subjective attribute, also exhibits perceivable fluctuations. This suggests that extra caution is needed399

when handling certain subjective attributes using generative models.400

We conduct several runs of training using different random seeds on CelebA dataset. There is401

randomness across different random seeds as the curves for each random seed vary. However, the402

probabilities of each attribute from distinct random seeds generally converge to the same value.403

Therefore, we report results for only one seed in other experiments.404

D Bias Shift Evaluation Conditioned on Anchor Attributes405

Fig. 10 illustrates the conditional setting of bias shift evaluation. We focus on two demographic406

attributes, gender and age. According to our categorization proxy shown in Table 3, gender is407

non-subjective, while age is subjective in CelebA. This categorization may seem counterintuitive at408

first glance.409

We acknowledge that it is not appropriate to naively binarize gender and age. However, due to410

the constraints of the era when the dataset was created, our analysis is restricted to binary gender411

and age attributes. By conducting an empirical analysis based on these binary attributes, we aim412

to highlight the importance of recognizing the fluidity of gender and the variability of age. It is413

important to note that the subjective and non-subjective categorization applies specifically to the414

image-label joint distribution presented in the CelebA dataset and is not universally applicable.415

The bias change trends for probabilities conditioned on non-subjective attributes exhibit similarities416

to those of unconditioned probabilities (See Figs. 10a and 10b). However, we observe that the average417

bias shift for non-subjective attributes become larger when conditioning on Old, which is categorized418

as a subjective attribute in CelebA in our study. A possible explanation for this discrepancy is419

that the classifier-predicted labels of subjective attributes are not always accurate. Therefore, when420

conditioning on subjective attributes, classification errors propagate into the bias analysis pipeline,421

resulting in a distinct pattern of bias shifts.422
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Figure 11: Probabilities of attributes for DeepFashion dataset during training. Please note that it
might seem like some of the subplots are missing the probability lines; they are actually very close to
the x-axis, especially for Square Neckline and Faux.
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(d) Bags Under Eyes
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(k) Brown Hair
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(m) Chubby
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(o) Eyeglasses
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(q) Gray Hair
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200 400 600
Steps (K)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

High_Cheekbones
train cls
valid cls
gen rd1

gen rd2
gen rd3

(s) High Cheekbones
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(u) Mouth Slightly Open
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(w) Narrow Eyes
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Figure 12: The probabilities of attributes in CelebA during training.
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E Samples of generated images423

For different models and different dataset, we sample 80 images from the generation set and present424

them in Figs. 13, 14, 15, 16 and 17.425

Figure 13: Image samples from large diffusion model generations on CelebA dataset.
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Figure 14: Image samples from the small diffusion model trained on CelebA dataset.

Figure 15: Image samples from the BigGAN model trained on CelebA dataset.
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Figure 16: Image samples from the tiny diffusion model trained on CelebA dataset.

Figure 17: Image samples from the large diffusion model trained on DeepFashion dataset.
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