
Proceedings of Machine Learning Research 260:-, 2024 ACML 2024

Towards Robust Saliency Maps

Nham Le∗ nv3le@uwaterloo.ca
University of Waterloo, Canada
Chuqin Geng∗ chuqin.geng@mail.mcgill.ca
McGill University, Canada
Xujie Si six@cs.toronto.edu
University of Toronto, Canada
CIFAR AI Chair, Mila
Arie Gurfinkel arie.gurfinkel@uwaterloo.ca
University of Waterloo, Canada

Editors: Vu Nguyen and Hsuan-Tien Lin

Abstract
Saliency maps are one of the most popular tools to interpret the operation of a neural
network: they compute input features deemed relevant to the final prediction, which are
often subsets of pixels that are easily understandable by a human being. However, it is
known that relying solely on human assessment to judge a saliency map method can be
misleading. In this work, we propose a new neural network verification specification called
saliency-robustness, which aims to use formal methods to prove a relationship between
Vanilla Gradient (VG) – a simple yet surprisingly effective saliency map method – and the
network’s prediction: given a network, if an input x emits a certain VG saliency map, it is
mathematically proven (or disproven) that the network must classify x in a certain way. We
then introduce a novel method that combines both Marabou and Crown/LiRPA– two
state-of-the-art neural network verifiers, to solve the proposed specification. Experiments
on our synthetic dataset and MNIST show that Vanilla Gradient is surprisingly effective as
a certification for the predicted output.

1. Introduction

As deep neural networks (DNNs) continue to advance in complexity and impact, the demand
for explanation methods and tools to interpret key aspects of these models also grows. The
ability to explain how a model operates can be crucial in meeting regulatory requirements
(Goodman and Flaxman, 2017) and assisting developers in debugging the model (Koh and
Liang, 2017). Among the various explanation methods available, one category that stands out
is saliency maps (Simonyan et al., 2014b; Selvaraju et al., 2016; Kim et al., 2017), primarily
due to their interpretability. Saliency maps identify input features that are considered relevant
to the final prediction, often highlighting specific pixels that can be easily understood by
humans. Fig. 1 visualizes an image of a dog and how some different saliency map methods
highlight pixels that are deemed important. However, the abundance of different saliency
map methods raises a methodological question for practitioners: how does one choose between
these numerous options?

*. Main contributors

© 2024 N. Le, C. Geng, X. Si & A. Gurfinkel.

Le Geng Si Gurfinkel

Figure 1: Different saliency map methods of a dog, together with the result of an edge
detection algorithm (Canny, 1986) that does not take the model into account at all.

Thus far, the evaluation of most saliency map methods has heavily relied on subjective
human judgment. The assessment typically follows the approach of “the saliency map is
considered good if it appears visually appealing to me”. While it is necessary to discard
obviously inadequate methods through a sanity check (Adebayo et al., 2018), users of saliency
maps are left to select the appropriate method based on their own visual assessment. As
pointed out in (Adebayo et al., 2018), while we want an explanation to take into account
both the input and the network, human judgment tends to be biased toward the input.
This presents a problem as humans may inadvertently focus on explaining the input itself
rather than understanding the relationship between the input and the model. The issue is
highlighted in Fig. 1, where the Canny edge detector algorithm (Canny, 1986) (which does
not consider the DNN at all and should not be used to explain any DNN) produces a visually
convincing map that bears a resemblance to those generated by some other saliency methods.

In this paper, we propose to use formal methods to mathematically prove or disprove a
relationship between a saliency map and the prediction of the network. As the first work in
this direction, we apply our method with Vanilla Gradient (VG) (Baehrens et al., 2010) –
an elegant yet surprisingly effective formulation of saliency maps: it passes all of the sanity
checks proposed by (Adebayo et al., 2018) while several more modern methods (Smilkov
et al., 2017; Sundararajan et al., 2017; Shrikumar et al., 2017) do not.

Our key insight is our novel concept of saliency-robustness, which states that if the Vanilla
Gradient saliency map EN for the network N is reliable, then two images generating similar
saliency maps should be classified in the same manner by N . This property is essential
because it ensures that EN can genuinely explain why an image belongs to the label “dog”
rather than the label “cat”. Conversely, if this property does not hold, then EN may not
provide accurate explanations. To the best of our knowledge, this is the first time in which

Towards Robust Saliency Maps

a mathematically proven relationship between a saliency map function and a prediction is
attempted.

To solve our proposed saliency-robustness property, we make another insight: computing
the saliency map of a ReLU-activated neural network can be done by solving a system of
linear constraints. Thus, the whole property can be encoded as a set of linear constraints
and solved using an off-the-shelf SMT solver. While this is acceptable as a proof of concept,
it is widely known that off-the-shelf SMT solvers do not scale to solving neural networks of
interesting sizes (Katz et al., 2017). To overcome that challenge, we propose a novel method
to solve the saliency-robustness property more effectively, by combining state-of-the-art
techniques in neural network verification. To sum up, we make the following contributions:

• We propose a novel safety property for a neural network and its Vanilla Gradient
saliency map, called saliency-robustness.

• We show that the proposed property can be verified by solving a constraint satisfiability
problem over linear real arithmetic (LRA).

• We propose a novel method to solve the saliency-robustness problem more effectively,
by combining two state-of-the-art techniques in neural network verification, namely
constraint-based solving (Katz et al., 2019) and Jacobian bounding (Zhang et al., 2019;
Wang et al., 2021; Shi et al., 2022).

• We conduct experiments on our synthetic benchmarks and dataset and a neural network
from VNNCOMP23 (Müller et al., 2023), the annual neural network verification
competition. We find that Vanilla Gradient, despite being the earliest form of the
saliency maps, is a surprisingly good explanation for the tested network.

The rest of the paper is as follows: Section 2 goes over preliminaries and related work,
Section 3 provides a concrete example as well as describes our synthetic dataset, Section 4
goes into details our proposed saliency-robustness property and how to solve it, Section 5
presents our experiments and results, and finally Section 6 summarizes our contributions,
outlines the current limitations of the method, and discusses open problems for future work.

2. Background and Related Work

2.1. ReLU activated neural networks for classification tasks

A neural network classifier N of L layers is a set {(W i, bi) | 1 ≤ i ≤ L}, where W i and bi are
the weight matrix and the bias for layer i, respectively. A neural network N defines a function
FN : Rd0 → RdL (in which d0 and dL are the input and output dimension, respectively). We
define FN (x) = zL(x), where

h0(x) = x (1)

∀i ∈ [1, L] · zi(x) = W ihi−1(x) + bi (2)

∀i ∈ [1, L− 1] · hi(x) = σ(zi(x)) (3)

in which σ is the activation function. Neurons are indexed linearly by v0, v1, In this work,
we focus only on the ReLU activation function, i.e., σ(x) = max(x, 0) element-wise, but the

Le Geng Si Gurfinkel

idea and techniques can be generalized for different activation functions and architectures as
well. Note that convolutional neural nets (CNNs) also fit into this formulation, since CNN
layers are also linear.

We denote the ith element of a vector v as v[i]. The prediction vector FN (x)[i] represents
the score or likelihood for the ith label, and the one with the highest score (argmaxi FN (x)[i])
is often considered as the predicted label of the network N . We denote this output label as
ON (x). When the context is clear, we omit the subscript N and the input x for simplicity.

2.2. Saliency maps

A saliency map function EN : Rd0 → Rd0 highlights features in the input x that E deems
important to the classification of x by N . In its original form (Baehrens et al., 2010), called
Vanilla Gradient, the map computes the gradient explanation EN (x) = ∂FN (x)

∂x , which is a
matrix of size d0× dL, quantifying how much a change in each input dimension would change
the score of a label in a small neighborhood around the input.

Vanilla Gradient suffers from a problem called “gradient saturation” (Shrikumar et al.,
2017): when a pre-ReLU value goes below zero, then the activation is capped at zero and
does not change anymore. From the Vanilla Gradient’s perspective, this value can be −10
or −1, it does not make any difference. To overcome the gradient saturation problem, later
saliency map functions propose different formulations for E, some notable are:

• Gradient ⊙ Input (Shrikumar et al., 2017) computes EN (x) = x⊙ ∂FN (x)
∂x

• Integrated Gradients (Sundararajan et al., 2017) sums over scaled versions of the
input by computing EN (x) = (x− x)×

∫ 1
0

∂FN (x+α(x−x))
∂x dα in which x is a baseline

input that omits a feature in the original input x

• SmoothGrad (Smilkov et al., 2017) averages Vanilla Gradients of noisy copies of an
input, i.e computing EN (x) = 1

N

∑N
i

∂FN (x+gi)
∂x , in which gi are noise vectors drawn

from a normal distribution

• Grad-CAM (Selvaraju et al., 2016) computes the gradient with respect to the feature
map of the last convolutional layer instead of to the input.

We refer curious readers to (Molnar, 2022) for a more comprehensive survey. In this work, we
focus on Vanilla Gradient. While being the earliest form of saliency maps, Vanilla Gradient
passes all the sanity checks proposed by (Adebayo et al., 2018) while many later methods do
not. We leave extending our method to other saliency maps for future work. From this point
on, unless specified otherwise, we use saliency map and Vanilla Gradient interchangeably.

2.3. Adversarial attacks against neural networks and the robustness verification
problem

Given a neural network N , the aim of adversarial attacks is to find a perturbation υ of a
target input x̂, such that x̂ and x̂+ υ are “similar” according to some domain knowledge,
yet O(x̂) ̸= O(x̂+ υ). In this paper, we use the common formulation of “similarity” in the

Towards Robust Saliency Maps

field: two inputs are similar if the L∞ norm of υ is small. Under this formulation, finding an
adversarial example can be defined as solving the following optimization problem:

min||υ||∞ s.t. O(x̂) ̸= O(x̂+ υ) (4)

In practice, it is very hard to formally define “similar”: should an image and a crop of it
be “similar”? Should two sentences differ by one synonym be the same? We refer curious
readers to the survey (Xu et al., 2020) for a comprehensive review of different formulations.

One natural defense against adversarial attacks, called robustness verification, is to prove
that min ||υ||∞ must be greater than some user-specified threshold ϵ. Formally, given that
O(x̂) = ℓ, we verify

∀x′ ∈ B(x̂, ϵ) · O(x′) = ℓ (5)

where B(x̂, ϵ) is a L∞ norm-ball of radius ϵ centered at x: B(x̂, ϵ) = {x′ | ||x̂− x′||∞ ≤ ϵ}.
If Eq. (5) holds, we say that x̂ is ϵ-robust.

2.4. Jacobian bounding

The Vanilla Gradient and the robustness verification problem are connected by the problem
of bounding the Jacobian matrix ∂FN (x)

∂x : the Vanilla Gradient can be viewed as bounding
the Jacobian with ϵ = 0, while in the context of robustness verification, once a local Jacobian
bound is computed, one can know the radius of a guaranteed safe perturbation area in the
input space (Hein and Andriushchenko, 2017; Weng et al., 2018). Efficiently computing a
tight bound for Jacobian (or gradient) is still an open problem for deep neural networks.
Sampling-based approaches (Weng et al., 2018) only estimate an under-estimation, and exact
methods using MIP solver like (Jordan and Dimakis, 2020) are often too costly to scale to
non-trivial networks. Recent advances in computing the bounds for each layer in the forward
computation of a neural network have opened a new research direction into the problem:
(Shi et al., 2022) shows that by viewing the backward computation as a part of a general
computation graph, bounding the Jacobian can be done in the same manner as bounding
the forward layers.

2.5. Neural networks verifiers

As we discuss in Section 4, the robustness verification problem can be encoded as a constraint
satisfiability problem in linear real arithmetic, thus, in theory, can be solved using any off-
the-shelf SMT solver such as Z3 (de Moura and Bjørner, 2008). However, this naive approach
doesn’t scale beyond tiny networks and researchers have invented specialized tools to verify
the robustness of bigger networks perturbed by bigger epsilons. For a more comprehensive
survey of existing verification algorithms and tools for neural networks, we refer curious
readers to (Albarghouthi, 2021). Here, we briefly survey two major classes of neural network
verifiers: constraint-based and abstraction-based.

Constraint-based verifiers SMT solvers usually support multiple theories (e.g. string,
bitvector, etc.) as well as a combination of them, while neural network verifiers only need
to reason about Quantifier-free Linear Real Arithmetic. Thus, dedicated neural network
verifiers can exploit heuristics and architectures that may not be applicable to other theories.

Le Geng Si Gurfinkel

The major solver in this direction is Reluplex (Katz et al., 2017) and its successor
Marabou (Katz et al., 2019). Their main insights are that case-splitting of ReLU can be
handled lazily, and bound-tightening procedures can help fix a ReLU to either its positive or
negative side, thus reducing the number of needed splits.

Abstraction-based verifiers While Constraint-based verifiers such as Marabou can
solve the encoded neural network verification precisely, their scalability remains an issue. One
approach to scalability is to make the problem easier by abstracting (over-approximating) the
semantics of a DNN, in the hope of claiming UNSAT faster in exchange for being imprecise:
when the solver answers SAT, the found assignment may not be a valid one. This approach
is often known as Abstract Interpretation (Cousot and Cousot, 1977). Some of the most
prominent ones are ERAN (Singh et al., 2019, 2018) which uses polyhedrons to approximate
ReLU as well as other activation functions, Crown/LiRPA (Wang et al., 2021) which uses
lines abstraction, and NNV (Tran et al., 2021) which uses StarSet abstraction.

3. A motivating example

In this section, we provide a concrete example to illustrate our idea. We consider a multi-arm
bandit machine with 5 arms, each capable of generating a specific reward by manipulating
its complete state. However, unlike digital arms, these arms are analog and can be pulled at
varying levels of intensity, ranging from 0% to 100%. For instance, if an arm has a reward
value of 300, pulling it at 10% intensity will result in a reward of 30. The rewards for the
five arms are as follows: 100, 100, 300, 100, 300.

To obtain the total reward, the player must pull each arm to an arbitrary level. We can
represent the machine configuration with a five-element vector. For instance, if the machine
has only the first two arms pulled to 50% level, this configuration can be represented by the
vector [0.5, 0.5, 0., 0., 0.]. The total reward is simply the sum of rewards obtained from each
arm. We consider the total reward greater than 300 to be a high reward, and anything less to
be a low reward. However, this information is not revealed to the players. Suppose a player
records several configurations of complete arm states, such as [1.0, 0., 0., 1., 0.]. The player
has a dataset of 20 configurations. They can then train a simple FCN model to predict the
corresponding reward outcome. By analyzing the saliency map, the player realizes that the
third and fifth arms have the highest absolute value of gradients. They can take advantage of
this information to improve their strategy. But they have a burning question: is the saliency
map truly an explanation for the predicted outcome or a mere correlation?

The user looks at the saliency map of the input [1, 1, 0, 1, 1] with respect to the “high
reward” label, which is M = [0.03, 0.23, 2.97, 0.05, 2.5]. If the saliency map is an explanation
for the prediction, then for all input in [0, 1]5, a saliency map similar to M must imply that
the output is classified as “high reward”, the user figures. They look at M and see that the
gap between the high and low values is about 2.5, thus they expect that for all saliency
maps that have L∞ distance to M of less than 1.25 (i.e saliency maps with the same two
arms being highlighted), they should all guarantee the prediction of “high reward”. Using
our method, they verify that it is indeed the case, as shown by Table 1.

Towards Robust Saliency Maps

Figure 2: Five arm bandit.

Z3 Ours

δ = 0.5 3.22s UNSAT 0.8s UNSAT
δ = 0.75 2.8s UNSAT 1.225s UNSAT
δ = 1 2.9s UNSAT 1.258s UNSAT
δ = 1.25 3.36s SAT 2.212s SAT
δ = 1.5 2.78s SAT 0.8s SAT

Table 1: Verifying saliency-robustness for BanditNet

4. Methodology

In this section, we introduce our new verification problem, called the saliency-robustness
problem, how solving it can be seen as solving a constraint satisfiability problem over LRA,
and how to effectively solve it by combining state-of-the-art techniques in neural network
verification.

4.1. The saliency-robustness problem

Given the aim of a saliency map E, we ask the question: if E(x) and E(x′) are “similar”
(according to some metrics or human judgment), must O(x) = O(x′)? If that’s not the
case, then E is hardly a good explanation: if the same set of pixels are important for both
recognizing digit 0 and 1, then that set of features cannot be used to explain why an image
is of the label 0 but not 1.

We formalize this question by the following verification problem

∀x, x′ ∈ Rd0 · O(x) = ℓ ∧ E(x′) ≈ E(x) =⇒ O(x′) = ℓ (6)

in which E(x) ≈ E(x′) indicate that they are similar. There are many different ways
of defining similarity, and we leave exploring different formulations for future work. In

Le Geng Si Gurfinkel

this paper, we use the same notion of similarity that is commonly used in robustness
verification (Albarghouthi, 2021): two saliency maps are similar if they are close in the L∞
norm.

The quantifier in Eq. (6) reflects the ideal scenario in which the property can be verified
in the whole input domain. In practice, this is rarely the case given the scalability of existing
tools. Thus, we aim to solve a ϵ-relaxed problem and aim to push the parameter ϵ higher in
future work. Concretely, we verify inputs in the epsilon vicinity of datapoints (similar to the
robustness problem): given a target input x̂, we check the saliency-robustness property

∀x′ ∈ B(x̂, ϵ) · O(x̂) = ℓ ∧ ||E(x′)− E(x̂)||∞ ≤ δ (7)
=⇒ O(x′) = ℓ (8)

If Eq. (7) holds, we say that E is (ϵ, δ)-robust at x̂. In our motivating example, the user
wants to check queries ranging from (1, 0.5)- to (1, 1.5)-robustness of at x̂ = [1, 1, 0, 1, 1].

Note that per our definition in Section 2.2, E is a 2D matrix computing the gradient
of each input with respect to each label. In many saliency map methods (Selvaraju et al.,
2016; Simonyan et al., 2014a; Kim et al., 2017), it is common to focus on only the gradient
with respect to the label with the highest score (O(x)). From this point on, unless specified
otherwise, we consider E as a gradient vector with respect to the predicted label.

4.2. The saliency-robustness as a constraint satisfiability problem

We show that for any neural network consisting of only linear layers and piecewise-linear
activation functions, Eq. (7) can be encoded into a satisfiability problem over linear real
arithmetic (LRA). First, given a target input x̂ and a neural network N that predicts
ON (x̂) = ℓ, we define the following first-order logic formula

f = ϕF ∧ ϕG ∧ ϕ≈ ∧ ϕP

in which
ϕF = Constraints for forward computation

(encoding ON (x))
ϕG = Constraints for computing gradient

(encoding EN (x))
ϕ≈ = Constraints for gradient similarity
ϕP = Constraints for ϵ-robustness

The forward computation can be encoded using the same encoding used by Marabou (Katz
et al., 2019): for a linear layer zi = W ihi−1+bi, we have the constraint zi[j] =

∑|hi−1|
k=1 W i[j][k]+

bi[j] for each entry in the resulting layer zi; and for a ReLU activation layer hi = ReLU(zi) ,
each entry in the result vector can be encoded using two implications: zi[j] > 0 =⇒ hi[j] =
zi[j] and zi[j] ≤ 0 =⇒ hi[j] = 0.

The backward computation can be encoded recursively as follows. For each layer hi

and zi, we denote ∂hi and ∂zi their gradient vectors. At the last layer zL, we set ∂zL[ℓ] = 1,
and ∂zL[j ̸= ℓ] = 0.

Towards Robust Saliency Maps

For the linear layer zi = W ihi−1 + bi, the jth entry in the gradient of ∂hi−1 is computed
by

∂hi−1[j] =

|zi|∑
k=1

W i[k][j]∂zi[k] (9)

The backward computation for the convolutional layer (which is a specialized version of the
linear layer) can be encoded in a similar manner.

For the ReLU layer hi = ReLU(zi), the jth entry in the gradient of ∂zi is encoded by
two implications

zi[j] > 0 =⇒ ∂zi[j] = ∂hi[j] (10)

zi[j] ≤ 0 =⇒ ∂zi[j] = 0 (11)

The gradient similarity is encoded as bounds on each entry in the vector ∂h0. Given
the precomputed E(x̂) (which can be computed using any off-the-shelf auto-gradient tools
like Pytorch or Tensorflow), we set

∀j ∈ [1, d0] · E(x̂)[j]− δ ≤ ∂h0[j] ≤ E(x̂)[j] + δ (12)

The robustness constraints are encoded as bounds on the input and negation of
conditions on the output:

∀j ∈ [1, d0] · x̂[j]− ϵ ≤ x[j] ≤ x̂[j] + ϵ (13)

∀j ̸= ℓ ∈ [1, dL] ·
∨

zL[j] > zL[ℓ] (14)

Theorem 1 If f is UNSAT, then E is (ϵ, δ)-robust at x̂

Its correctness can be easily derived from Eq. (7) and the construction of f .

4.3. Solving the saliency-robustness problem by combining constraint-based NN
verifiers with Jacobian bounding methods

In this part, we introduce a first cut to effectively verifying the saliency-robustness problem
by combining two state-of-the-art neural network verification techniques – constraint-based
neural network verifier and Jacobian bounding.

Given that the saliency-robustness problem can be encoded as a satisfiability problem over
LRA, it could be solved by any off-the-shelf SMT solver such as Z3 (de Moura and Bjørner,
2008). However, like the robustness problem, which can also be encoded as a satisfiability
problem over LRA, solving the encoding using an off-the-shelf SMT solver hardly scale to
any network of interesting size (Katz et al., 2017).

Le Geng Si Gurfinkel

Adapting constraint-based NN verifiers for solving the saliency-robustness prob-
lem In this paper, we use Marabou (Katz et al., 2019), a dedicated state-of-the-art
constraint-based NN verifier as the core solver. Marabou extends the Simplex (Nelder and
Mead, 1965) algorithm used in linear programming with special mechanisms to handle ReLU
activation function. Like Simplex, at each iteration, Marabou tries to fix a variable so that it
doesn’t violate its constraints. If in Simplex, a violation can only happen when a variable
becomes out-of-bound, in Marabou a violation can also happen when a variable doesn’t satisfy
its activation constraints, thus Marabou extends Simplex’s pivot rules with a PivotForRelu
rule and introduces splitting into the solving loop. Most importantly, Marabou supports
disjunctions, thus allowing it to express and solve more complicated verification specifications,
compared to other tools like Crown/LiRPA that only verifies the robustness property.

Out of the box, Marabou can solve the satisfiability of ϕF ∧ ϕP (which is exactly the
robustness property). Since Marabou only supports disjunctions but not implications,
and doesn’t have strict inequalities, to encode ϕG we model Eq. (10) and Eq. (11) using
disjunction as follows:

zi[j] ≤ 0 ∨ ∂zi[j] = ∂hi[j] (15)

zi[j] ≥ 10−6 ∨ ∂zi[j] = 0 (16)

Note that in Eq. (16) we use a small number to model strict inequality. This is a standard
technique and is also recommended by Marabou’s developer 1. Encoding ϕ≈ in Marabou
is similar to encoding ϕP : we simply set the bounds for each of the entries of ∂x.

Precomputing Jacobian bounds It is not enough to encode the saliency-robustness
problem into the form that Marabou accepts. The core solving loop of Marabou requires
that every variable in the input has to be bounded. Thus, one of the first preprocessing
steps in Marabou is to derive bounds for all variables. Unfortunately, while Marabou
implements many procedures to derive and tighten bounds during the preprocessing phase,
those procedures cannot compute bounds over disjunctions. In practice, that means we must
find a way to effectively bound ∂hi and ∂zi and set them in Marabou manually.

Bounding Jacobian is a hard and open question (Zhang et al., 2019; Shi et al., 2022;
Jordan and Dimakis, 2020), and we do not attempt to solve the problem in this paper.
Instead, we use Crown/LiRPA (Shi et al., 2022) – a state-of-the-art recursive algorithm
to precompute the Jacobian bounds to use with Marabou. To optimize memory usage,
Crown/LiRPA does not maintain the intermediate Jacobian bounds for all layers. We work
around this issues by calling Crown/LiRPA L times, each time marking one layer as the
last layer in the computation graph, thus allowing us to collect the Jacobian bounds for all
L layers in the network.2

5. Evaluation

In this section, we evaluate the saliency-robustness of the Vanilla Gradient, as well as compare
the performance between Z3 – a state-of-the-art SMT solver, and our proposed method. We

1. https://github.com/NeuralNetworkVerification/Marabou/issues/496
2. This is currently the recommended solution suggested by the developers, see https://github.com/

Verified-Intelligence/auto_LiRPA/issues/46

https://github.com/NeuralNetworkVerification/Marabou/issues/496
https://github.com/Verified-Intelligence/auto_LiRPA/issues/46
https://github.com/Verified-Intelligence/auto_LiRPA/issues/46

Towards Robust Saliency Maps

also conduct an experiment showing the relationship between the quality of the Jacobian
bounds and the solving performance.

Z3 Marabou + Crown/LiRPA

Region δ = 0.0001 δ = 0.0001 δ = 0.0005 δ = 0.001
B(x1, 0.05) TIMEOUT 3m46s UNSAT TIMEOUT TIMEOUT
B(x2, 0.03) TIMEOUT 1m34s UNSAT 1m22s UNSAT 5m22s UNSAT
B(x2, 0.05) TIMEOUT TIMEOUT TIMEOUT TIMEOUT
B(x3, 0.03) TIMEOUT ERROR ERROR ERROR
B(x3, 0.05) TIMEOUT TIMEOUT TIMEOUT TIMEOUT
B(x4, 0.03) TIMEOUT ERROR ERROR ERROR
B(x4, 0.05) TIMEOUT 1m19s UNSAT 1m28s UNSAT 3m23s UNSAT
B(x5, 0.05) TIMEOUT ERROR ERROR ERROR
B(x6, 0.05) TIMEOUT 1m44s UNSAT TIMEOUT 1m50s UNSAT
B(x7, 0.05) TIMEOUT TIMEOUT TIMEOUT TIMEOUT

Table 2: Verifying the saliency-robustness property using Z3 and our method at different δs.

5.1. Experiment setup

Our experiments are based on our synthetic dataset for the five-arm bandit problem and
benchmark from VNNCOMP23 (Müller et al., 2023) – the annual neural network verification
competition. We use the MNIST dataset and the pre-trained model mnistfc_256x2, a
2-layers fully connected network with 256 neurons for each layer. Due to the scalability of
both Crown/LiRPA in computing Jacobian bounds and Marabou in solving, experiments
with CNNs or bigger fully connected networks with bigger δs all result in TIMEOUT 3.
Note that by adding extra variables to represent gradients into Marabou, every network
is double in size, i.e., a query verifying the saliency-robustness of a 4-layer network has the
same number of variables and constraints as verifying the robustness property of an 8-layer
network.

Experiments are run on a c5a.16xlarge EC2 instances with 64 cores and 124GB of
RAM. On all benchmarks and in both Z3 and Marabou+Crown/LiRPA, we allow the
solver to use up to 30 cores. The timeout for each query is set to 10 minutes. Unless specified
otherwise, we use the Crown-Optimized method in Crown/LiRPA, and set the number of
refinement iterations to 200 instead of the default value of 20. We call this the Reference
config.

5.2. The saliency-robustness for the five-arm bandits over the whole input
domain

We train BanditNet, a 2 layers Fully-Connected Network with 6 neurons each, on our synthetic
benchmark. For BanditNet, we verify the saliency-robustness for the whole input domain
(ϵ = 1), at different values of δ ranging from 0.5 to 1.5. We run each query using both Z3 and
Marabou+Crown/LiRPA, and results are summarized in Table 1. Z3 performs well on

3. Crown/LiRPA needs at least 40GB of GPU memory to bound the Jacobian of a 2-layer CNN network
with only 8 channels and kernels of size 3× 3

Le Geng Si Gurfinkel

this small network, but even here, we observe a significant difference in performance between
our method and Z3, across all δs, for both SAT and UNSAT queries. Interestingly, we also
observe that the query becomes hardest near the δ border 1.25.

5.3. The saliency-robustness for mnistfc_256x2 in known unsafe regions

To verify the usefulness of Vanilla Gradient as an explanation for the prediction of mnistfc_256x2,
we look at inputs in the benchmarks that are known to have adversarial examples in their
vicinity. If checking the saliency-robustness in the same vicinity returns UNSAT, we can
claim that the Vanilla Gradient is a useful tool to explain the prediction in that region.

In the VNNCOMP23 benchmarks, Marabou can find adversarial examples in 10 regions
centered at 7 inputs at 2 different epsilon values (Table 2). As expected, Z3 does not scale
to this network, while our method can verify 4 out of 10 regions at δ = 0.0001. We also
observe that as we increase δ, our queries become increasingly harder, resulting in more
TIMEOUTs. There is an outlier at region B(x6, 0.05) in which at δ = 0.0005 the query is
timed out but at a harder δ = 0.001 it can be solved again. It is interesting that other than
returning TIMEOUT or SAT/UNSAT, we also observe cases where our method crashes the
solver. Given the limited amount of time, we do not have a clear idea of the root cause of
the crashes and we leave investigating those issues for future work.

5.4. The effect of bound’s tightness on performance

Reference config No optimization 20 refinement iterations

Region Result Result avg × Result avg ×
B(x1, 0.05) 3m46s UNSAT TIMEOUT 2.131 5m21s UNSAT 1
B(x2, 0.03) 1m34s UNSAT 1m11s UNSAT 1.11 1m6s UNSAT 1.014
B(x2, 0.05) TIMEOUT TIMEOUT 1.06 TIMEOUT 1
B(x3, 0.03) ERROR ERROR - ERROR -
B(x3, 0.05) TIMEOUT TIMEOUT 1.05 TIMEOUT 1.002
B(x4, 0.03) ERROR ERROR 1.69 ERROR 1
B(x4, 0.05) 1m19s UNSAT 1m44s UNSAT 1.04 1m12s UNSAT 1
B(x5, 0.05) ERROR ERROR 1.13 ERROR 1
B(x6, 0.05) 1m44s UNSAT TIMEOUT 1.04 1m44s UNSAT 1.004
B(x7, 0.05) TIMEOUT TIMEOUT 1.07 TIMEOUT 1.004

Table 3: The effect of Jacobian bounds on solving the saliency-robustness problem. We use
δ = 0.0001 for this experiment. We show the average increase in Jacobian bounds in the two
“avg ×” columns. The “avg ×” values for B(x3, 0.03) are missing since this query crashes
Crown/LiRPA, thus no bounds were computed.

As a new area of research, the quality of Jacobian bounds is improved rapidly, and in
some cases, newer methods like Crown/LiRPA can produce bounds orders of magnitudes
smaller than older methods (Shi et al., 2022). To get an idea of how big of a difference
different Jacobian bounds can make on our method, we conduct an experiment in which we
turn off all optimizations in Crown/LiRPA, and another experiment in which we keep the
same set of optimizations but use the default number of refinement iterations (20) to obtain

Towards Robust Saliency Maps

looser bounds, then set them in Marabou. Table 3 shows the solving result as well as the
average increase in the size of the obtained bounds. Without any optimization, we can see
that the obtained Jacobian bounds are quite loose (more than 2 times bigger compared with
the optimized bounds), resulting in more TIMEOUTs. In general, running Crown-Optimized
for 20 iterations gives us relatively tight bounds, and the solving performance stays quite
consistent between using 20 iterations and 200 iterations.

6. Conclusion

In this paper, we propose a novel verification problem, called saliency-robustness, which aims
to verify whether a Vanilla Gradient saliency map can serve as an explanation or certification
for a prediction. We model the problem as a constraint satisfiability problem over linear real
arithmetic and show that for small networks, our formulation can be solved by off-the-shelf
SMT solvers like Z3. Furthermore, when Z3 doesn’t scale to networks of bigger sizes, we
propose a method combining constraint-based neural network verifier with Jacobian bounding
to solve it more effectively. Experiments show that our method outperforms Z3 and scales to
the mnistfc_256x2 pre-trained network used in VNNCOMP23.

Limitations and Future Work There are several limitations in this paper and open
problems for future work. First, one thread to validity is the soundness of floating point
arithmetic, which is a known issue in neural network verification in general Katz et al.
(2017). Second, our proposed method is limited in scalability by both components: the
Jacobian bounding algorithm of Crown/LiRPA does not scale to deeper neural networks
and the quality of the bounds degrades significantly as we go deeper Shi et al. (2022), and
Marabou (or any constraint-based NN verifiers for that matter) is inherently slower than
abstraction-based methods in exchange for being precise. Finally, our current method does
not handle non-linear formulations of saliency maps, which are used in many works such as
Integrated Gradients or SmoothGrad. Extending our work to support such saliency map
functions is a challenge for future work.

As the first work at verifying the saliency-robustness property, our proposed method
serves as a proof of concept, and we humbly hope we interest other researchers to build upon
it toward more robust saliency maps.

Acknowledgments

We thank the anonymous reviewers for their insightful comments. This work was supported,
in part, by Individual Discovery Grants from the Natural Sciences and Engineering Research
Council of Canada and the Canada CIFAR AI Chair Program.

References

Julius Adebayo, Justin Gilmer, Michael Muelly, Ian Goodfellow, Moritz Hardt, and Been
Kim. Sanity checks for saliency maps. In Proceedings of the 32nd International Conference
on Neural Information Processing Systems, NIPS’18, page 9525–9536, Red Hook, NY,
USA, 2018. Curran Associates Inc.

Le Geng Si Gurfinkel

Aws Albarghouthi. Introduction to neural network verification. CoRR, abs/2109.10317, 2021.
URL https://arxiv.org/abs/2109.10317.

David Baehrens, Timon Schroeter, Stefan Harmeling, Motoaki Kawanabe, Katja Hansen,
and Klaus-Robert Müller. How to explain individual classification decisions. J. Mach.
Learn. Res., 11:1803–1831, aug 2010. ISSN 1532-4435.

John Canny. A computational approach to edge detection. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, PAMI-8:679 – 698, 12 1986. doi: 10.1109/TPAMI.
1986.4767851.

Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceedings of the
4th ACM SIGACT-SIGPLAN symposium on Principles of programming languages, pages
238–252, 1977.

Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In C. R. Ramakrishnan
and Jakob Rehof, editors, Tools and Algorithms for the Construction and Analysis of
Systems, pages 337–340, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. ISBN
978-3-540-78800-3.

Bryce Goodman and Seth Flaxman. European union regulations on algorithmic decision-
making and a “right to explanation”. AI Magazine, 38(3):50–57, oct 2017. doi: 10.1609/
aimag.v38i3.2741. URL https://doi.org/10.1609%2Faimag.v38i3.2741.

Matthias Hein and Maksym Andriushchenko. Formal guarantees on the robustness
of a classifier against adversarial manipulation. In I. Guyon, U. Von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates,
Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/
e077e1a544eec4f0307cf5c3c721d944-Paper.pdf.

Matt Jordan and Alexandros G Dimakis. Exactly computing the local lipschitz constant
of relu networks. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin,
editors, Advances in Neural Information Processing Systems, volume 33, pages 7344–7353.
Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/
paper/2020/file/5227fa9a19dce7ba113f50a405dcaf09-Paper.pdf.

Guy Katz, Clark Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. Reluplex:
An efficient smt solver for verifying deep neural networks. In Rupak Majumdar and
Viktor Kunčak, editors, Computer Aided Verification, pages 97–117, Cham, 2017. Springer
International Publishing. ISBN 978-3-319-63387-9.

Guy Katz, Derek A. Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus, Rachel Lim,
Parth Shah, Shantanu Thakoor, Haoze Wu, Aleksandar Zeljic, David L. Dill, Mykel J.
Kochenderfer, and Clark W. Barrett. The marabou framework for verification and analysis
of deep neural networks. In CAV (1), volume 11561 of Lecture Notes in Computer Science,
pages 443–452. Springer, 2019.

https://arxiv.org/abs/2109.10317
https://doi.org/10.1609%2Faimag.v38i3.2741
https://proceedings.neurips.cc/paper_files/paper/2017/file/e077e1a544eec4f0307cf5c3c721d944-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/e077e1a544eec4f0307cf5c3c721d944-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/5227fa9a19dce7ba113f50a405dcaf09-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/5227fa9a19dce7ba113f50a405dcaf09-Paper.pdf

Towards Robust Saliency Maps

Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda Viegas,
and Rory Sayres. Interpretability beyond feature attribution: Quantitative testing with
concept activation vectors (tcav). 2017. doi: 10.48550/ARXIV.1711.11279. URL https:
//arxiv.org/abs/1711.11279.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions.
In Proceedings of the 34th International Conference on Machine Learning - Volume 70,
ICML’17, page 1885–1894. JMLR.org, 2017.

Christoph Molnar. Interpretable Machine Learning. 2 edition, 2022. URL https:
//christophm.github.io/interpretable-ml-book.

Mark Niklas Müller, Christopher Brix, Stanley Bak, Changliu Liu, and Taylor T. Johnson.
The third international verification of neural networks competition (vnn-comp 2022):
Summary and results, 2023.

John A. Nelder and Roger Mead. A simplex method for function minimization. Computer
Journal, 7:308–313, 1965.

Ramprasaath R. Selvaraju, Abhishek Das, Ramakrishna Vedantam, Michael Cogswell, Devi
Parikh, and Dhruv Batra. Grad-cam: Why did you say that? visual explanations
from deep networks via gradient-based localization. CoRR, abs/1610.02391, 2016. URL
http://arxiv.org/abs/1610.02391.

Zhouxing Shi, Yihan Wang, Huan Zhang, J. Zico Kolter, and Cho-Jui Hsieh. Efficiently
computing local lipschitz constants of neural networks via bound propagation. In S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neu-
ral Information Processing Systems, volume 35, pages 2350–2364. Curran Associates,
Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
0ff54b4ec4f70b3ae12c8621ca8a49f4-Paper-Conference.pdf.

Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features
through propagating activation differences. In Proceedings of the 34th International
Conference on Machine Learning - Volume 70, ICML’17, page 3145–3153. JMLR.org, 2017.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional
networks: Visualising image classification models and saliency maps. In Yoshua Bengio and
Yann LeCun, editors, 2nd International Conference on Learning Representations, ICLR
2014, Banff, AB, Canada, April 14-16, 2014, Workshop Track Proceedings, 2014a. URL
http://arxiv.org/abs/1312.6034.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional
networks: Visualising image classification models and saliency maps. In Yoshua Bengio and
Yann LeCun, editors, 2nd International Conference on Learning Representations, ICLR
2014, Banff, AB, Canada, April 14-16, 2014, Workshop Track Proceedings, 2014b. URL
http://arxiv.org/abs/1312.6034.

Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, and Martin Vechev. Fast
and effective robustness certification. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,

https://arxiv.org/abs/1711.11279
https://arxiv.org/abs/1711.11279
https://christophm.github.io/interpretable-ml-book
https://christophm.github.io/interpretable-ml-book
http://arxiv.org/abs/1610.02391
https://proceedings.neurips.cc/paper_files/paper/2022/file/0ff54b4ec4f70b3ae12c8621ca8a49f4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/0ff54b4ec4f70b3ae12c8621ca8a49f4-Paper-Conference.pdf
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1312.6034

Le Geng Si Gurfinkel

N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.
cc/paper/2018/file/f2f446980d8e971ef3da97af089481c3-Paper.pdf.

Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. An abstract domain
for certifying neural networks. Proc. ACM Program. Lang., 3(POPL), jan 2019. doi:
10.1145/3290354. URL https://doi.org/10.1145/3290354.

Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda B. Viégas, and Martin Wattenberg.
Smoothgrad: removing noise by adding noise. CoRR, abs/1706.03825, 2017. URL
http://arxiv.org/abs/1706.03825.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks.
CoRR, abs/1703.01365, 2017. URL http://arxiv.org/abs/1703.01365.

Hoang-Dung Tran, Neelanjana Pal, Patrick Musau, Diego Manzanas Lopez, Nathaniel
Hamilton, Xiaodong Yang, Stanley Bak, and Taylor T. Johnson. Robustness verification
of semantic segmentation neural networks using relaxed reachability. In Computer Aided
Verification: 33rd International Conference, CAV 2021, Virtual Event, July 20–23, 2021,
Proceedings, Part I, page 263–286, Berlin, Heidelberg, 2021. Springer-Verlag. ISBN 978-
3-030-81684-1. doi: 10.1007/978-3-030-81685-8_12. URL https://doi.org/10.1007/
978-3-030-81685-8_12.

Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and J Zico Kolter.
Beta-CROWN: Efficient bound propagation with per-neuron split constraints for complete
and incomplete neural network verification. Advances in Neural Information Processing
Systems, 34, 2021.

Tsui-Wei Weng, Huan Zhang, Pin-Yu Chen, Jinfeng Yi, Dong Su, Yupeng Gao, Cho-Jui
Hsieh, and Luca Daniel. Evaluating the robustness of neural networks: An extreme value
theory approach. In International Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=BkUHlMZ0b.

Han Xu, Yao Ma, Haochen Liu, Debayan Deb, Hui Liu, Jiliang Tang, and Anil K. Jain.
Adversarial attacks and defenses in images, graphs and text: A review. International
Journal of Automation and Computing, 17:151–178, 2020.

Huan Zhang, Pengchuan Zhang, and Cho-Jui Hsieh. Recurjac: An efficient recursive
algorithm for bounding jacobian matrix of neural networks and its applications. In
Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First
Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium
on Educational Advances in Artificial Intelligence, AAAI’19/IAAI’19/EAAI’19. AAAI
Press, 2019. ISBN 978-1-57735-809-1. doi: 10.1609/aaai.v33i01.33015757. URL https:
//doi.org/10.1609/aaai.v33i01.33015757.

https://proceedings.neurips.cc/paper/2018/file/f2f446980d8e971ef3da97af089481c3-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/f2f446980d8e971ef3da97af089481c3-Paper.pdf
https://doi.org/10.1145/3290354
http://arxiv.org/abs/1706.03825
http://arxiv.org/abs/1703.01365
https://doi.org/10.1007/978-3-030-81685-8_12
https://doi.org/10.1007/978-3-030-81685-8_12
https://openreview.net/forum?id=BkUHlMZ0b
https://doi.org/10.1609/aaai.v33i01.33015757
https://doi.org/10.1609/aaai.v33i01.33015757

	Introduction
	Background and Related Work
	ReLU activated neural networks for classification tasks
	Saliency maps
	Adversarial attacks against neural networks and the robustness verification problem
	Jacobian bounding
	Neural networks verifiers

	A motivating example
	Methodology
	The saliency-robustness problem
	The saliency-robustness as a constraint satisfiability problem
	Solving the saliency-robustness problem by combining constraint-based NN verifiers with Jacobian bounding methods

	Evaluation
	Experiment setup
	The saliency-robustness for the five-arm bandits over the whole input domain
	The saliency-robustness for mnistfc_256x2 in known unsafe regions
	The effect of bound's tightness on performance

	Conclusion

