
Published as a conference paper at COLM 2025

REPOST: Scalable Repository-Level
Coding Environment Construction with Sandbox Testing

Yiqing Xie1 Alex Xie1 Divyanshu Sheth1 Pengfei Liu2 Daniel Fried1 Carolyn Rosé1

1Carnegie Mellon University 2Shanghai Jiao Tong University
yiqingxi@andrew.cmu.edu

Abstract

We present REPOST, a scalable method to construct repository-level code
generation environments that provide execution feedback, which can be
used for both training and evaluation. Unlike existing works that require
building the entire repository for execution, which is challenging for both
human and LLMs, we provide execution feedback with sandbox testing,
which isolates the target function and its dependencies to a separate script
for testing. Sandbox testing reduces the complexity of external depen-
dencies and enables constructing environments at a large scale. We use
our method to construct REPOST-TRAIN, a large-scale train set with 7,415
functions from 824 repositories. Training with the execution feedback pro-
vided by REPOST-TRAIN leads to a performance gain of 5.5% Pass@1 on
HumanEval and 3.5% Pass@1 on RepoEval. We also build an evaluation
dataset, REPOST-EVAL, to showcase the potential of REPOST for live bench-
mark construction.1

1 Introduction

LLM

Eval Script

def ..():
 # TBD

Repo-level Code-Gen

…

Solution

?

Passed / Failed

Training
Data

if Passed

(Training)

(Evaluation)

Pass@k

Figure 1: We can use the coding envi-
ronments built by REPOST for train-
ing and evaluation. We first apply
the code generation model to gener-
ate candidate solutions with the orig-
inal repository as context. Then we
evaluate the solutions by executing
the evaluation script built by REPOST.
For evaluation, we directly compute
Pass@k scores. For training, we add
all successful solutions to the train set
and further finetune the model.

Code generation is a special NLP task that can ben-
efit from execution-based feedback (Simon, 1963;
Feng et al., 2020; Chen et al., 2021). With online cod-
ing platforms as a natural resource to build large-
scale coding datasets with test cases, existing works
demonstrate the effectiveness of execution-based
signals in training data construction (Ni et al., 2024;
Zhang et al., 2024; Liu et al., 2023a) and live evalua-
tion (Jain et al., 2024a), which is updated over time
to prevent contamination. However, models solely
trained on algorithm problems cannot well gener-
alize to repository-level (repo-level) code genera-
tion (Zhang et al., 2023; Jimenez et al., 2024), which
aims to generate code for real, naturally occurring
repositories and is well aligned with real-world
software engineering practice.

It is non-trivial to build execution-based datasets
for repo-level code generation at a large scale. One
major challenge is to set up executable environ-
ments. Existing repo-level datasets typically con-
duct integration testing that executes test files inside
the repositories, which requires building the entire
repository (Jimenez et al., 2024; Jain et al., 2024b).
As shown in prior research, this setup process is ex-
tremely challenging (Bogin et al., 2024), which may
include installing external packages, determining execution context (e.g., relative import),

1Code and datasets available at https://repost-code-gen.github.io/.

1

https://repost-code-gen.github.io/

Published as a conference paper at COLM 2025

debugging installation errors or runtime errors, etc. Hence, existing methods for coding
environment construction either require huge manual effort (Zhang et al., 2023; Jimenez
et al., 2024; Pan et al., 2024) or, when automated, suffer from low success rate (Jain et al.,
2024b), limiting the scale of resulting datasets (see Table 1 for details).

In this work, instead of integration testing, we present REPOST, an automated framework
to construct Repo-level coding environments with Sandbox Testing. Specifically, given a
function in a GitHub repository, we sandbox the function and its local dependencies to a
separate script and generate tests with an LLM. To control the quality of the evaluation
script, we iteratively resolve environment or runtime errors and improve test coverage. We
also conduct execution-based, AST-based, and LLM-based quality checks and only keep
examples where the functionality of the sandboxed function does not alter and the tests
are valid, reasonable, and have high coverage. The resulting dataset allows us to obtain
execution feedback in training and evaluation. As shown in Figure 1, the models generate
the target function with the entire GitHub repository as context. We then use the evaluation
script to obtain execution feedback.

Compared to integration testing used by previous datasets, we highlight the benefits of
sandbox testing in constructing scalable coding environments: (1) In general, the external
dependencies of a function are typically much simpler than a repository. By isolating
the function and its local dependencies, we can execute the function by only installing the
necessary packages. (2) If any execution error occurs, we can debug the separate scripts
without modifying the original repository. This ensures that the datasets remain naturalistic:
code generation models can still access the original, real-world repository.

With the high scalability of our framework, we construct coding environment datasets for
both training and evaluation: REPOST-TRAIN and REPOST-EVAL. As shown in Table 1, to
our knowledge, REPOST-TRAIN is currently the largest repo-level code generation dataset
with execution support, with 7,415 functions sampled from 824 repositories. The large
scale enables training on REPOST-TRAIN and evaluating on other benchmarks such as
RepoEval (Zhang et al., 2023) or HumanEval (Chen et al., 2021). Due to its fully automated
nature, REPOST also enables constructing live benchmarks to avoid contamination issues.
We build REPOST-EVAL as an example, which contains 296 functions from 99 repositories.

Experiments show that by training on REPOST-TRAIN, we achieve performance gain on
both algorithm problems in HumanEval (Chen et al., 2021) and repo-level tasks in RepoE-
val (Zhang et al., 2023) and REPOST-EVAL. For instance, we improve Qwen2.5-Coder by
5.5% Pass@1 on HumanEval and 3.5% Pass@1 on RepoEval. We also benchmark 12 code
generation models on REPOST-EVAL. The best model (GPT-4o) only achieves 39.5 Pass@1,
suggesting REPOST can construct challenging code generation benchmarks.

Note that REPOST-TRAIN provides coding tasks based on real-world repositories that have
execution feedback, we would like to highlight that REPOST can also be applied to coding
agent (Yang et al., 2024; Wang et al., 2025) training and evaluation in future works.

2 The REPOST Framework

The framework of REPOST is illustrated in Figure 2. After sampling GitHub repositories
and extracting functions (§2.1), we sandbox each function and its local dependencies to a
separate script (§2.2), generate tests (§2.3), and conduct quality control on the executability
of the scripts, the functionality of the sandboxed function, and the test quality (§2.4). We
provide all the prompts in §A.1. When we use our environments to train (§4) and evaluate
(§5) code generation models, the models can still access the original GitHub repository, and
we provide execution feedback by executing the evaluation scripts. To create user-friendly
datasets, we keep a shared Docker environment for all the evaluation scripts.

2.1 Repository and Function Curation

We first randomly sample non-forked, MIT-licensed, Python GitHub Repositories with file
sizes smaller than 10M. With our sandbox testing method, we are able to set up environments

2

Published as a conference paper at COLM 2025

mh_attn.py

mask.py

utils.py

...
src/Attention.py

...
src/mask.pyGit Repo

docs
src

README.md

utils.py

get_data.py

…

forward

import torch..
class Attention(..):
class MultiHeadAttention(..
 ...
 def forward(self, ..):
 query, key, value = [..
 for l, x in ..

 def test_forward():
 m = MultiHeadAttention(..
 out = m.forward(...
 out2 = m.forward_new(...
 assert ...

Eval Script ?

Equivalence Check
Functionality

Correctness Check
Test

Execution

Task: Implement
the forward() Function
in src/mh_attn.py.py

…
?

Git Repo Eval Script

① Repo & Function Curation ② Sandboxing ③ Test Generation

④ Quality Control (with Improvement & Filtering)

Debug / Test Coverage↑
Outcome:

Coding Environments
(Can be used for

Train & Eval)

Figure 2: The REPOST coding environment construction framework. We sandbox the target
function and its dependencies to a separate evaluation script for execution, which avoids
building the entire repository. We design careful quality control strategies with iterative
quality improvement and post-filtering. The outcome of REPOST is a set of executable
repo-level coding environments, which can be used for training and evaluation.

for individual functions and do not need to build the entire repository. Hence, unlike
previous works (Jain et al., 2024b), we do not need to filter out repositories without setup
files (e.g., setup.py). The detailed repository statistics are provided in §3.

Then we extract functions from the repositories. To build the datasets in a docker with
no access to GPUs or external services, we follow R2E (Jain et al., 2024b) and filter out
functions associated with GPUs, cloud tasks, etc. by keywords. To balance the distribution
of examples, we keep at most 30 functions for each repository. After this step, for the train set,
we started from 1,000 repositories and obtained 17,448 functions from 851 repositories. For
the evaluation set, we started from 200 repositories and obtained 1,043 functions from 139
repositories. In theory, we can further scale up the dataset with more starting repositories.

2.2 Sandboxing: Key to Environment Setup

def API_call(prompt: str) -> str:
 return API_client.generate(
 model=API_MODEL, messages=[...]
)

class Mock_API(object):
 ...
 def generate(model, messages):
 return “mock_” + messages[0][‘content’]

API_MODEL = “model_name”
API_client = Mock_API(“api_key”)
def API_call(prompt: str) -> str:
 return API_client.generate(
 model=API_MODEL, messages=[...]
)
...

Orig Function

Eval Script

Figure 3: An example where the LLM suc-
cessfully creates a mock class, Mock API,
to replace real external API calls. In this
way, while the function body of the tar-
get function API call remains exactly the
same as in the original codebase, it can be
executed without making real API calls.

It is non-trivial to create coding environments
that provide correct execution feedback for the
implementation of GitHub functions. Existing
methods typically provide execution feedback
with integration testing, which creates test files
that import the target function from the code-
base. Executing such tests requires building
the entire repository, which generally requires a
complicated environment and is challenging for
both human and LLMs.

With the observation that the external depen-
dencies of a function are typically much simpler
than a repository, we tackle this challenge with
sandbox testing, where we create a separate
script containing the target function with the ex-
act same functionality as the original one and
the context that supports its executability. By
isolating the function and its local dependencies,
we can execute the function by only installing
the necessary packages.

Sandboxing based on Local Dependencies. The
major challenge of sandboxing is to ensure the
executability of the function. While a standalone
function can be directly copied to a separate
script and executed, a typical GitHub function may depend on other modules, classes,
or global variables in the same repository. Thus, we leverage the call graph to extract such

3

Published as a conference paper at COLM 2025

local dependencies that the target function directly or indirectly calls. Then we combine all
the code fragments into the context and prompt an LLM (e.g., GPT-4o) to aggregate all the
code fragments into a single script, with as little editing as possible.

Sandboxing External APIs and Files. Even if all the dependencies are presented, it is still
nontrivial to execute the sandboxed script if it requires external API, databases, files, etc.
We explicitly prompt the LLM to create mock connections for any external API and create
strings or write example files to a specific directory for file reading. Figure 3 presents a
successful case of sandboxing with mock APIs. We provide examples of the generated
sandboxed scripts in Figures 5 to 10.

Functionality Equivalence Control. In addition to executability, another challenge of
sandboxing is to ensure that the target function’s functionality does not alter. We first
conduct a list of sanity checks on the function name, length of scripts, etc. (see Table 11 for
details), and re-generate examples that do not satisfy the requirements. We also have a final
quality control step (in §2.4) that compares the functionality of the sandboxed and original
functions. The precision of quality control is further verified in our human study in §3.1.

2.3 Test Generation

Equivalence Testing. We generate synthetic tests in the sandboxed script to evaluate the
correctness of the generated code. Specifically, we prompt the LLM to (1) generate a set of
test inputs to the target function and (2) conduct equivalence testing that checks whether
the function generated in evaluation has the same behavior as the sandboxed function (i.e.,
the “ground-truth” implementation). Compared to traditional methods that specify the I/O
examples in the test cases (Chen et al., 2021), equivalence testing does not need to predict
the expected outputs and is more feasible for LLMs (Jain et al., 2024b).

Test Generation with Mock APIs and Files. We observe that the LLM is able to generate
tests with the mock classes created in the sandboxing step as context. As shown in Figures 8
to 10, we create mock class instances as the test inputs and still ensure that the function
body of the sandboxed function remains the same as the original function.

Test Quality Control. Similarly to the sandboxing step, for quality control purposes, we
conduct a series of sanity checks, such as requiring the test function to call the target function
and have at least 3 assertions (see Table 12 for the full list). We further check the coverage
and correctness of the tests in the final quality control step (§2.4),

2.4 Quality Control and Filtering

We conduct quality control for the executability of the evaluation script, the functionality of
the sandboxed function, and the test quality.

Iterative Execution and Debugging. In principle, if the model-generated function is exactly
the same as the ground truth, the evaluation scripts should be successfully executed, with
all the tests passed. Hence, we execute the examples sequentially in a docker. If there are
any execution errors or if the ground truth implementation cannot pass any test cases, we
provide the error message as the context and prompt an LLM to debug the evaluation script.
Examples that still have errors after k execution-debugging iterations are filtered out.

We also dynamically install external packages during execution. During execution, if there
are any ModuleNotFound errors, we extract the package names from the error message, run a
pip install command, and execute the script again. In case the package name differs from
the import name or the code requires a specific version of packages, we also allow the LLM
to output package installation commands during debugging. In this way, we are able to
install external packages for functions extracted from repositories without setup files.

Iterative Test Coverage Improvement. To ensure that the test functions cover the major
functionality of the target functions, we further compute the branch coverage rate of all the
evaluation scripts. If the branch coverage rate is lower than some threshold (we set 80% for

4

Published as a conference paper at COLM 2025

Dataset #Ex #Repo Repo? AutoTest?

HumanEval 164 – ✗ ✗
DS1000 1,000 – ✗ ✗
ClassEval 100 – ✗ ✗
RepoEval-Func 455 6 ✓ ✗
SWE-Bench 2,294 12 ✓ ✗
CoderEval 230 43 ✓ ✗
DevEval 1,874 117 ✓ ✗
EvoCodeBench 275 25 ✓ ✗
SWE-Gym 2,438 11 ✓ ✗
R2E-Eval1 246 137 ✓ ✓
R2E (Ours) 744 123 ✓ ✓

REPOST-TRAIN 7,415 824 ✓ ✓
REPOST-EVAL 296 99 ✓ ✓

Table 1: Statistics of REPOST-TRAIN and
REPOST-EVAL compared to existing execution-
based code generation datasets. R2E (Our Input)
applies the R2E method to the same set of in-
put repositories as REPOST-TRAIN, but results in
a smaller number of repositories and examples.
“Repo?” and “Auto Test?” refer to the repo-level
setting and automatically generated tests.

Check Func Test

Human → Yes No Yes No

GPT-4o: Yes 13 0 9 1
GPT-4o: No 1 6 4 6

Table 2: Agreement between human and
GPT-4o on checking (1) the functionality
equivalence between the sandboxed and
original function, and (2) the test correct-
ness. When GPT-4o predicts “Yes” for
both quality checks, it has a high agree-
ment with human.

% Solved % Use-Tool Easy / Med / Hard

81.5% 59.3% 29.6 / 51.9 / 18.5

Table 3: Human study results. We ask
the participants to complete the function
with the same context we use to evaluate
code generation models in §5.

the train set and 100% for the evaluation set), we provide the LLM with the missing lines
and prompt it to improve the test function by incorporating more tests.

Final-Step Quality Check & Filtering. As a final step, we conduct two quality checks: func-
tionality equivalence check and test correctness check, and filter out unqualified examples.

To ensure the validity of sandbox testing, we examine the functionality equivalence be-
tween the sandboxed and original function. We first compare the AST of the function bodies,
which is a sufficient condition of functionality equivalence. In our resulting dataset, 81.7% of
the examples have the same AST. The remaining ones are filtered out from the evaluation set.
To include more examples in the train set, since it is also possible that code with the same
functionality has different ASTs (e.g., HTML tags can be parsed with LexborHTMLParser and
BeautifulSoup), we prompt an LLM 2 to compare the functionality equivalence, which is
shown to have high agreement with human (see our human study in §3.1 for details). We
also include the examples that pass the LLM check for the train set.

In principle, a test that calls the target function without any assertion checks still has a 100%
coverage rate. We hence conduct test correctness check and apply an LLM to check whether
the tests are correct, reasonable, and are completing the verification of the functionality.
Human study in §3.1 demonstrates the high precision of the LLM test correctness checker.

3 Resulting Datasets: REPOST-TRAIN and REPOST-EVAL

Statistics. We build a train set, REPOST-TRAIN, and an evaluation set, REPOST-EVAL. To re-
duce contamination, we build REPOST-TRAIN from repositories created between 2023-01-31
and 2024-08-31, and build REPOST-EVAL from repositories created after 2024-09-01.

We compare the statistics of our datasets and existing execution-based datasets in Table 1. To
our knowledge, REPOST-TRAIN is currently the largest repo-level dataset with execution
feedback. Prior works such as RepoEval (Zhang et al., 2023) or SWE-Gym (Pan et al.,
2024) require huge human effort to set up the environments. Automated frameworks
such as R2E (Jain et al., 2024b) apply LLMs to the complicated task of building the entire
repositories and suffer from low success rates. In comparison, REPOST only requires

2The original code could be inexecutable due to package installation errors (e.g., BeautifulSoup in
this case), so we do not execute the original code.

5

Published as a conference paper at COLM 2025

necessary dependencies for each function, which is more feasible for LLMs and benefits
scalability.

Avg Stats. TRAIN EVAL

Target # Tokens (Lines) 112.4 (12.8) 102.7 (9.9)
Eval Script # Tokens (Lines) 842.5 (75.7) 1217.5 (122.3)
Test Cases 5.7 8.2
Test Branch Coverage 97.8% 100%
% Standalone Functions 28.1% 26.4%
External Libraries 894 106

Table 4: Detailed statistics of our datasets.

Table 4 shows detailed statistics of our
datasets. We achieve high test num-
bers and branch coverage rates with it-
erative test coverage improvement and
quality filtering. Results also show that
REPOST can create relatively complex
examples in terms of length and local
and external dependencies. The per-
centage of standalone functions (i.e.,
functions without local dependencies)
are 28.1% and 26.4% in our datasets. Both are very close to 27%, the percentage of standalone
functions among all GitHub code estimated by Li et al. (2024b).

3.1 Quality Verification with Human Study

Agreement between LLM Checker and Human. We conduct a human study to verify the
precision of our LLM-based quality check strategies introduced in §2.4. We ask 3 computer
science graduate students to conduct functionality equivalence and test correctness checks
for 20 examples sampled from REPOST-EVAL (before the final filtering), with the same
instruction we use to prompt the LLM checkers. The Kappa agreement scores among
human annotators are 0.9179 for the functionality check and 0.7750 for the test check.

Results in Table 3 show that all 13/20 examples that pass GPT-4o’s functionality check are
also predicted as “same functionality” by human. Among 10 examples that pass GPT-4o’s
test quality check, 9 of them are predicted as “high-quality tests” by human. It demonstrates
that after applying our filtering strategies for quality control, the remaining examples have
high quality. In principle, one can further enhance dataset quality by manually inspecting
and selecting the examples. We provide more details about the experiments in §A.2.

Solvability Check. We conduct another human study to check whether the examples are
reasonable and can be solved by human. We assigned 27 examples constructed by REPOST
to 9 computer science students, with no overlaps, and asked them to complete the function
and answer questions about the difficulties of the examples (see §A.2 for details).

Results show that 81.5% of the examples were solved by human, indicating that most
examples are reasonable and not too complicated. The remaining examples were not solved
for various reasons, such as the participant is not familiar with the task (e.g., reading html
data) or related libraries (e.g., BeautifulSoup4), the intent of the function cannot be fully
entailed from the context, etc. Towards the unclear intent issue, we designed an experiment
in §5, where we generated additional instructions to improve the clarity. We also observe
that the generated examples have varying complexity levels based on the usage of external
tools and the difficulty ratings. Furthermore, 33.3% of the examples are solved in the first
submission and 37.0% require more than 5 submissions to solve.

4 Code Generation Training Experiments

Training with REPOST-TRAIN. In standard supervised fine-tuning (SFT), we can train the
model with the code context c as the input and the ground truth target function f ∗ as the
output. The execution feedback provided by our REPOST evaluation scripts further allows
us to employ the rejection sampling fine-tuning (RFT) algorithm to generate additional
valid training targets. Specifically, we apply the model itself to our dataset, generating
n candidate solutions for each function based on its code context: (c, f1), . . . (c, fn). The
method is denoted as RFT (Self). We can also apply other stronger models to generate
candidates (denoted as RFT (Distill)). Only solutions that pass our test cases are retained.
We then finetune the model on the successful functions (c, f ′1), . . . (c, f ′m) and the ground
truth (c, f ∗) using the standard negative log-likelihood loss.

6

Published as a conference paper at COLM 2025

Model HumanEval RepoEval-Func REPOST-EVAL

Pass@1 ∆ Pass@1 ∆ Pass@1 ∆

StarCoder2-7B (Lozhkov et al., 2024) 34.76 – 32.98 – 26.35 –
+ SFT 37.20 ↑2.44 33.78 ↑0.80 27.70 ↑1.35
+ RFT (Self) 39.63 ↑4.87 34.58 ↑1.61 28.38 ↑2.03
+ RFT (Distill) 40.24 ↑5.49 35.12 ↑2.14 29.05 ↑2.70

Qwen2.5-Coder-7B (Hui et al., 2024) 79.27 – 38.06 – 29.39 –
+ SFT 80.48 ↑1.21 39.94 ↑1.88 30.74 ↑1.35
+ RFT (Self) 84.76 ↑5.49 40.75 ↑2.69 31.76 ↑2.36
+ RFT (Distill) 84.76 ↑5.49 41.55 ↑3.49 32.43 ↑3.04

Table 5: Code generation training results. We evaluate Pass@1 for all experiments. For
RepoEval, we use the “Oracle” repo-level context as used in their original paper.

To obtain more training pairs for both the “Self” and “Distill” settings, we further prompt
the model itself or a stronger model to debug the failed solutions, with the error message in
the context. We also train the model on successfully debugged solutions (c, f ′′1), . . . (c, f ′′k).

4.1 Experimental Setup

Datasets and Evaluation Metrics. We train two models: StarCoder2-7B (Lozhkov et al.,
2024) and Qwen2.5-Coder-7B (Hui et al., 2024) with REPOST-TRAIN and evaluate on two
public benchmarks: HumanEval (Chen et al., 2021), an algorithm problem dataset, and
RepoEval (Zhang et al., 2023), a repo-level code generation dataset. We also evaluate on
REPOST-EVAL. For RepoEval, we only evaluate on the “function” split, which supports
execution. We use the “Oracle” context to mitigate the bias of context retrieval methods. We
report the Pass@1 scores on all datasets. More evaluation details are provided in §A.3.

Training Details. We compare three training methods: SFT, RFT (Self), and RFT (Distill).
For the “Distill” method, we apply GPT-4o and Claude-3.5-Sonnet to generate and debug
candidate solutions, separately, and combine their successful candidates for training. We
provide the number of examples where we obtained at least one successful solution in
Table 9. Other details are shown in subsection A.3.

4.2 Experimental Results

Main Results. Table 5 demonstrates that models trained with REPOST-TRAIN can generalize
well to other public benchmarks. Specifically, we improve Qwen2.5-Coder by 5.5% Pass@1
on HumanEval, 3.5% on RepoEval-Func, and 3.0% on REPOST-EVAL. Furthermore, in all
experiments, training with RFT, even with self-training only, achieves better performance
than finetuning on the original GitHub function only. For instance, RFT (Distill) outperforms
SFT by 4.3% Pass@1 on HumanEval. This shows the benefit of training with environments
that can provide execution feedback. We can also observe that RFT with self-training in
general has lower performance than distilling from stronger models. As shown in Table 9,
we can only obtain 1573 additional training targets with StarCoder2, but we obtained 3606 by
combining GPT-4o and Claude-3.5. We hypothesize that one can obtain more examples and
hence achieve better performance by sampling with more candidate solutions, generating
from different types of context, etc., and we leave that to future work.

Scaling Law Analysis. In Figure 4a, we investigate how the scale of training data affects
model performance. Specifically, we randomly sample different numbers of examples
from REPOST-TRAIN to train the model. We can see that the performance of RFT (Distill)
increases as we scale up the training data, which suggests the advantage of training data
with high scalability. Furthermore, with different scales of data, RFT consistently achieves
better performance than SFT, which further demonstrates the effectiveness of training
environments with execution feedback.

7

Published as a conference paper at COLM 2025

Model Pass@1

CodeLlama-7B (Rozière et al., 2024) 25.68
StarCoder2-7B (Lozhkov et al., 2024) 26.35
Qwen2.5-Coder-7B (Hui et al., 2024) 29.39
MagiCoder-S-DS-6.7B (Wei et al., 2023) 33.78
CodeLlama-34B (Rozière et al., 2024) 32.43
Qwen2.5-Coder-32B (Hui et al., 2024) 33.11
DS-R1-Qwen-32B (DeepSeek-AI, 2025) 34.46
CodeLlama-70B (Rozière et al., 2024) 32.43
DS-R1-Llama-70B (DeepSeek-AI, 2025) 33.45

GPT-4o-mini (OpenAI, 2024) 35.81
Claude-3.5-Sonnet (Anthropic, 2024) 37.16
GPT-4o (OpenAI, 2023) 39.53

Table 6: Code generation results on
REPOST-EVAL. The model/open-source
model with the best performance is high-
lighted in bold/underlined.

Repair Iter 0 1 2 3

GPT-4o-mini 35.81 43.58 ↑7.77 46.62 ↑3.04 47.97 ↑1.35
GPT-4o 39.53 48.31 ↑8.78 52.36 ↑4.05 53.72 ↑1.35

Table 7: Performance on REPOST-EVAL with
self-repairing. We show the Pass@1 gain com-
pared to the previous repairing iteration.

Docstring (DocS) w/o DocS w/ Orig DocS Gen-DocS

GPT-4o-mini 37.28 38.98 55.93
GPT-4o 39.55 42.37 61.02

Table 8: Performance on the subset of REPOST-
EVAL examples. The performances of both
models are largely improved with model-
generated docstrings.

0 1k 2k 4k All (7k)
38

39

40

41

42

38.06

41.55

39.94
40.48

38.87

Scaling Law Analysis

Rej Sampling
SFT

(a) Scaling law analysis.

Data Sampling Method

38

39

40

41

42

38.33

39.14

39.94

Repo Diversity Analysis
By-Repo
By-Example
+ Rej Sampl.

(b) Repo diversity.

Figure 4: (a) Pass@1 scores on RepoEval with
different numbers of training examples. (b)
Pass@1 scores on RepoEval with different meth-
ods to sample 2,000 training examples. Sample-
by-Example has a broader repository coverage
and achieves better Pass@1. The performance is
further enhanced with RFT (Distill).

Repository Diversity Experiment. Fig-
ure 4b examines whether broader reposi-
tory coverage leads to better performance,
given a fixed budget of training exam-
ples. We fix the number of examples
to 2,000 and experiment with two exam-
ple sampling methods: (1) Sample-by-
Repo, where we keep sampling reposito-
ries and adding all the functions in the
repository to the training set, until the
data size reaches 2,000; (2) Sample-by-
Example, which is the same setting as
Figure 4a, where we randomly sample
functions from REPOST-TRAIN. We ob-
serve that Sample-by-Example, covering
678 repositories, outperforms Sample-by-
Repo, which only covers 221. The perfor-
mance is further improved by RFT. Recall
that our method only needs to set up in-
dividual functions, compared to existing
methods, such as R2E, that need to build the entire repository, it is much easier to build
datasets with broad repository coverage with our method, which benefits model training.

5 Benchmarking with REPOST-EVAL

Experimental Setup. We benchmark LLMs on REPOST-EVAL to evaluate their abilities to
generate code in real GitHub repositories. Specifically, we prompt the LLMs to generate
the target functions based on code context retrieved from the repository. To ensure that
we cover all the relevant dependencies in the context, we follow R2E (Jain et al., 2024b)
and build the context by extracting modules that the target function depends on. Then
we copy model solutions to the evaluation scripts for execution and compute the Pass@1
scores (Chen et al., 2021): the fraction of generated solutions that pass all test cases.

Main Results. Table 6 presents the code generation results of open-source and proprietary
models. The best model (GPT-4o) only achieves 39.53 Pass@1, which shows that our
benchmark is challenging and has a large room for improvement. There is still a gap of 5.07
Pass@1 between the best open-source (DS-R1-Qwen-32B) and proprietary model (GPT-4o),
which calls for future work to improve open-source models by training.

8

Published as a conference paper at COLM 2025

Self-Repairing Experiments. In addition to static code generation, we also study the effect
of self-repairing (Chen et al., 2024), which allows the models to iteratively repair solutions
based on the error message and stack trace and has been shown to be effective for code
generation. As shown in Table 7, both models consistently benefit from self-repairing, but
the performance gain becomes saturated after 3 debugging iterations. We can also see
that the performance gap between the two models becomes larger when we allow more
iterations, indicating that GPT-4o is stronger in both code generation and debugging.

Generation with Model-Generated Docstrings. In our human study (§3.1), we observe that
in some examples, the intent of the target function cannot be fully inferred from the context.
The same issue is reported in existing repo-level benchmarks such as R2E (Jain et al., 2024b).
In this experiment, we investigate whether model-generated docstrings can provide better
specifications. On the subset of REPOST-EVAL examples that have docstrings, we evaluate
code generation (1) with the docstring removed, (2) with the original docstring, and (3) with
GPT-4o-generated docstrings, with the function and its dependencies as the context.

We observe that both models achieve much higher performance when provided with gener-
ated docstrings. One possible explanation is that the quality of human-written docstrings
varies widely. Some docstrings may only contain limited information, while the gener-
ated docstrings generally contain more details. On average, the original docstrings have
36.82/3.95 tokens/lines, while the GPT-4o-generated docstrings have 130.84/9.92. Further-
more, with more detailed docstrings, the performance gap between the two models becomes
larger. When the specifications are not clear, it could be impossible to complete the function
as intended, causing both weak and strong models to fail.

6 Related Work

Code Generation Training. Existing works have shown the effectiveness of pretrain-
ing (Rozière et al., 2024; Lozhkov et al., 2024; Guo et al., 2024) or instruction tuning (Wei
et al., 2023; Luo et al., 2023; DeepSeek-AI, 2025) on real-world code. To further finetune
models for code generation, existing works have built large-scale training datasets with test
cases by leveraging large-scale online algorithm problems. The execution feedback from test
cases is used in constructing training targets (Ni et al., 2024; Zhang et al., 2024) or reward
signals (Liu et al., 2023a; Jiang et al., 2024). As repo-level code generation, existing works
such as SWE-Gym (Pan et al., 2024) build training environments by manually setting up
dependencies and configurations for the entire GitHub repositories. The repository setup
process is complicated and challenging to automate, resulting in limited dataset scales. In
comparison, we design a sandbox testing method that only requires setting up the necessary
dependencies for individual GitHub functions, which reduces the difficulty of environment
setup and leads to better scalability.

Code Generation Benchmarks. Execution-based benchmarks have been widely adopted
for code generation, which provide test cases to evaluate the generated code (Chen et al.,
2021; Hendrycks et al., 2021; Austin et al., 2021). Researchers have built benchmarks with
large test coverage (Liu et al., 2023b), multiple languages (Cassano et al., 2022), diverse
domains (Lai et al., 2023; Du et al., 2023), etc. LiveCodeBench (Jain et al., 2024a) periodically
extracts newly released algorithm problems, which enables contamination-free evaluation.

To assess the models’ ability on repo-level coding tasks, recent works leverage repositories
with test cases to build benchmarks on code patch generation (Zhang et al., 2023; Xie
et al., 2024), issue solving (Jimenez et al., 2024), test generation (Jain et al., 2025), test
execution (Bouzenia & Pradel, 2024), environment setup (Bogin et al., 2024), etc. Recent
works aim to provide live evaluation manually (Li et al., 2024a) or leverage an LLM to set
up the repository environment and generate test cases. However, both methods require
building the entire repository, which is challenging for both human and LLMs and limit the
scale of the resulting datasets. REPOST improves the scalability with sandbox testing and
enables the construction of live benchmarks from naturally occurring repositories.

9

Published as a conference paper at COLM 2025

7 Conclusion and Future Works

We present REPOST, a scalable method to construct environments for code generation in
real-world repositories that support sandbox testing. REPOST is fully automatic and enables
the construction of scalable execution-based training environments and live benchmarks.
Experiments demonstrate that training with the resulting train set, REPOST-TRAIN, leads to
performance gain on other public benchmarks. For instance, we improve Qwen2.5Coder by
5.49%/3.49% Pass@1 on HumanEval/RepoEval. We also build an evaluation set, REPOST-
EVAL, to showcase the potential of REPOST to construct live benchmarks.

Future works may include: (1) further scaling up the datasets with more input repositories,
(2) exploring the utility of different types of context in training and evaluation, (3) adapting
REPOST to other repo-level coding tasks such as issue-solving (Pan et al., 2024), code
translation (Xie et al., 2023), code refactoring (Gautam et al., 2025), environment setup (Bogin
et al., 2024), etc., and (4) using REPOST-TRAIN to train and evaluate coding agents (Yang
et al., 2024; Wang et al., 2025). This is possible because our datasets provide both access
to the original GitHub repositories and execution feedback. Specifically, one can set the
instruction as “generate the target function”, and the coding agent will need to explore and
interact with the entire repository by itself to obtain relevant information. We can then use
the evaluation scripts to select successful trajectories and use them for model training.

Reproducibility Statement

We provide the following ways to reproduce our results: (1) We release the code for the entire
REPOST pipeline, including repository and function curation, sandboxing, test generation,
execution, and final-stage quality verification. (2) We release the code for training data
construction, including both the SFT and RFT settings. (3) We release the REPOST-TRAIN
and REPOST-EVAL datasets, including the repository commit ids and the evaluation scripts
generated by REPOST. We also release the RFT (Distill) data constructed based on REPOST-
TRAIN. (4) We release the docker images of REPOST-TRAIN and REPOST-EVAL, which
already install all the external packages required for executing all the evaluation scripts.

All the above resources can be found at https://repost-code-gen.github.io/.

8 Acknowledgement

We thank Ofir Press, Saujas Vaduguru, Atharva Naik, Yuning Mao, and Xuhui Zhou for
their helpful feedback on this work. We thank all participants in our human study. This
work was supported in part by NSF grant DSES 2222762. Yiqing Xie is supported by the
Carnegie Mellon University Presidential Fellowship in the Language Technologies Institute.

References
Anthropic. Claude-3.5, 2024. URL https://www.anthropic.com/news/claude-3-5-sonnet.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program
synthesis with large language models, 2021.

Ben Bogin, Kejuan Yang, Shashank Gupta, Kyle Richardson, Erin Bransom, Peter Clark,
Ashish Sabharwal, and Tushar Khot. SUPER: Evaluating agents on setting up and
executing tasks from research repositories. In Yaser Al-Onaizan, Mohit Bansal, and
Yun-Nung Chen (eds.), Proceedings of the 2024 Conference on Empirical Methods in Natural
Language Processing, pp. 12622–12645, Miami, Florida, USA, November 2024. Association
for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.702. URL https:
//aclanthology.org/2024.emnlp-main.702/.

Islem Bouzenia and Michael Pradel. You name it, i run it: An llm agent to execute tests of
arbitrary projects, 2024. URL https://arxiv.org/abs/2412.10133.

10

https://repost-code-gen.github.io/
https://www.anthropic.com/news/ claude-3-5-sonnet
https://aclanthology.org/2024.emnlp-main.702/
https://aclanthology.org/2024.emnlp-main.702/
https://arxiv.org/abs/2412.10133

Published as a conference paper at COLM 2025

Federico Cassano, John Gouwar, Daniel Nguyen, Sydney Nguyen, Luna Phipps-Costin,
Donald Pinckney, Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson, Molly Q Feld-
man, Arjun Guha, Michael Greenberg, and Abhinav Jangda. Multipl-e: A scalable and
extensible approach to benchmarking neural code generation, 2022.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto,
Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray,
Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin,
Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mo-
hammad Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings,
Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji,
Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh
Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage,
Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish,
Ilya Sutskever, and Wojciech Zaremba. Evaluating large language models trained on code,
2021.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language
models to self-debug. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=KuPixIqPiq.

DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement
learning, 2025. URL https://arxiv.org/abs/2501.12948.

Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang, Junwei Liu, Yixuan Chen, Jiayi Feng,
Chaofeng Sha, Xin Peng, and Yiling Lou. Classeval: A manually-crafted benchmark for
evaluating llms on class-level code generation, 2023.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun
Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. CodeBERT: A pre-trained model
for programming and natural languages. In Findings of the Association for Computational
Linguistics: EMNLP 2020. Association for Computational Linguistics, 2020. URL https:
//aclanthology.org/2020.findings-emnlp.139.

Dhruv Gautam, Spandan Garg, Jinu Jang, Neel Sundaresan, and Roshanak Zilouchian
Moghaddam. Refactorbench: Evaluating stateful reasoning in language agents through
code. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=NiNIthntx7.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen,
Xiao Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder:
When the large language model meets programming – the rise of code intelligence, 2024.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo,
Collin Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring
coding challenge competence with apps, 2021.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun
Zhang, Bowen Yu, Keming Lu, Kai Dang, Yang Fan, Yichang Zhang, An Yang, Rui Men,
Fei Huang, Bo Zheng, Yibo Miao, Shanghaoran Quan, Yunlong Feng, Xingzhang Ren,
Xuancheng Ren, Jingren Zhou, and Junyang Lin. Qwen2.5-coder technical report, 2024.
URL https://arxiv.org/abs/2409.12186.

Kush Jain, Gabriel Synnaeve, and Baptiste Roziere. Testgeneval: A real world unit test
generation and test completion benchmark. In The Thirteenth International Conference on
Learning Representations, 2025. URL https://openreview.net/forum?id=7o6SG5gVev.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang,
Armando Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and
contamination free evaluation of large language models for code, 2024a. URL https:
//arxiv.org/abs/2403.07974.

11

https://openreview.net/forum?id=KuPixIqPiq
https://arxiv.org/abs/2501.12948
https://aclanthology.org/2020.findings-emnlp.139
https://aclanthology.org/2020.findings-emnlp.139
https://openreview.net/forum?id=NiNIthntx7
https://arxiv.org/abs/2409.12186
https://openreview.net/forum?id=7o6SG5gVev
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974

Published as a conference paper at COLM 2025

Naman Jain, Manish Shetty, Tianjun Zhang, King Han, Koushik Sen, and Ion Stoica. R2E:
Turning any github repository into a programming agent environment. In Ruslan
Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan
Scarlett, and Felix Berkenkamp (eds.), Proceedings of the 41st International Conference on
Machine Learning, volume 235 of Proceedings of Machine Learning Research, pp. 21196–21224.
PMLR, 21–27 Jul 2024b. URL https://proceedings.mlr.press/v235/jain24c.html.

Nan Jiang, Xiaopeng Li, Shiqi Wang, Qiang Zhou, Soneya Binta Hossain, Baishakhi Ray,
Varun Kumar, Xiaofei Ma, and Anoop Deoras. Ledex: Training LLMs to better self-debug
and explain code. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024. URL https://openreview.net/forum?id=d1XrZ4EINV.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and
Karthik R Narasimhan. SWE-bench: Can language models resolve real-world github
issues? In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=VTF8yNQM66.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Wen-
tau Yih, Daniel Fried, Sida Wang, and Tao Yu. Ds-1000: a natural and reliable benchmark
for data science code generation. In Proceedings of the 40th International Conference on
Machine Learning, ICML’23. JMLR.org, 2023.

Jia Li, Ge Li, Xuanming Zhang, Yunfei Zhao, Yihong Dong, Zhi Jin, Binhua Li, Fei Huang,
and Yongbin Li. Evocodebench: An evolving code generation benchmark with domain-
specific evaluations. In The Thirty-eight Conference on Neural Information Processing Sys-
tems Datasets and Benchmarks Track, 2024a. URL https://openreview.net/forum?id=
kvjbFVHpny.

Jia Li, Ge Li, Yunfei Zhao, Yongmin Li, Zhi Jin, Hao Zhu, Huanyu Liu, Kaibo Liu, Lecheng
Wang, Zheng Fang, Lanshen Wang, Jiazheng Ding, Xuanming Zhang, Yihong Dong,
Yuqi Zhu, Bin Gu, and Mengfei Yang. Deveval: Evaluating code generation in practical
software projects, 2024b.

Jiate Liu, Yiqin Zhu, Kaiwen Xiao, QIANG FU, Xiao Han, Yang Wei, and Deheng Ye. RLTF:
Reinforcement learning from unit test feedback. Transactions on Machine Learning Research,
2023a. ISSN 2835-8856. URL https://openreview.net/forum?id=hjYmsV6nXZ.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code gener-
ated by chatgpt really correct? rigorous evaluation of large language models for code
generation, 2023b.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier,
Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max
Tian, Denis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry
Abulkhanov, Indraneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu,
Terry Yue Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß,
Naman Jain, Yixuan Su, Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas
Muennighoff, Xiangru Tang, Muhtasham Oblokulov, Christopher Akiki, Marc Marone,
Chenghao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier
Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten Scholak, Sebastien
Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapados, Mostofa Patwary,
Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis, Lingming Zhang, Sean Hughes,
Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries. Starcoder 2 and the
stack v2: The next generation, 2024. URL https://arxiv.org/abs/2402.19173.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao,
Jing Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language
models with evol-instruct, 2023. URL https://arxiv.org/abs/2306.08568.

Ansong Ni, Miltiadis Allamanis, Arman Cohan, Yinlin Deng, Kensen Shi, Charles Sutton,
and Pengcheng Yin. Next: teaching large language models to reason about code execution.
In Proceedings of the 41st International Conference on Machine Learning, ICML’24. JMLR.org,
2024.

12

https://proceedings.mlr.press/v235/jain24c.html
https://openreview.net/forum?id=d1XrZ4EINV
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=kvjbFVHpny
https://openreview.net/forum?id=kvjbFVHpny
https://openreview.net/forum?id=hjYmsV6nXZ
https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/2306.08568

Published as a conference paper at COLM 2025

OpenAI. Gpt-4 technical report, 2023.

OpenAI. Gpt4o-mini, 2024. URL https://openai.com/index/
gpt-4o-mini-advancing-cost-efficient-intelligence/.

Jiayi Pan, Xingyao Wang, Graham Neubig, Navdeep Jaitly, Heng Ji, Alane Suhr, and Yizhe
Zhang. Training software engineering agents and verifiers with swe-gym, 2024. URL
https://arxiv.org/abs/2412.21139.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan,
Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov,
Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori,
Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis
Martin, Nicolas Usunier, Thomas Scialom, and Gabriel Synnaeve. Code llama: Open
foundation models for code, 2024.

Herbert A. Simon. Experiments with a heuristic compiler. J. ACM, 1963. URL https:
//doi.org/10.1145/321186.321192.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge,
Jiayi Pan, Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma,
Mingzhang Zheng, Bill Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan
Hui, Junyang Lin, Robert Brennan, Hao Peng, Heng Ji, and Graham Neubig. Openhands:
An open platform for AI software developers as generalist agents. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.net/
forum?id=OJd3ayDDoF.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Source
code is all you need. arXiv preprint arXiv:2312.02120, 2023.

Yiqing Xie, Atharva Naik, Daniel Fried, and Carolyn Rose. Data augmentation for code
translation with comparable corpora and multiple references. In Houda Bouamor,
Juan Pino, and Kalika Bali (eds.), Findings of the Association for Computational Lin-
guistics: EMNLP 2023, pp. 13725–13739, Singapore, December 2023. Association for
Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.917. URL https:
//aclanthology.org/2023.findings-emnlp.917/.

Yiqing Xie, Alex Xie, Divyanshu Sheth, Pengfei Liu, Daniel Fried, and Carolyn Rose.
Codebenchgen: Creating scalable execution-based code generation benchmarks, 2024.

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik
Narasimhan, and Ofir Press. Swe-agent: Agent-computer interfaces enable automated
software engineering, 2024. URL https://arxiv.org/abs/2405.15793.

Dylan Zhang, Shizhe Diao, Xueyan Zou, and Hao Peng. PLUM: Improving code lms with
execution-guided on-policy preference learning driven by synthetic test cases, 2024. URL
https://arxiv.org/abs/2406.06887.

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin Liu, Daoguang Zan, Yi Mao, Jian-
Guang Lou, and Weizhu Chen. RepoCoder: Repository-level code completion through
iterative retrieval and generation. In Proceedings of the 2023 Conference on Empirical Methods
in Natural Language Processing. Association for Computational Linguistics, 2023. URL
https://aclanthology.org/2023.emnlp-main.151.

13

https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://arxiv.org/abs/2412.21139
https://doi.org/10.1145/321186.321192
https://doi.org/10.1145/321186.321192
https://openreview.net/forum?id=OJd3ayDDoF
https://openreview.net/forum?id=OJd3ayDDoF
https://aclanthology.org/2023.findings-emnlp.917/
https://aclanthology.org/2023.findings-emnlp.917/
https://arxiv.org/abs/2405.15793
https://arxiv.org/abs/2406.06887
https://aclanthology.org/2023.emnlp-main.151

Published as a conference paper at COLM 2025

A Appendix

A.1 Data Construction Details

Sandboxing and Test Generation Details. Table 14 shows the prompt we use to sandbox
the target function and its local dependencies to a separate evaluation script. Table 15 shows
the prompt template we use to generate tests in the evaluation scripts.

Quality Control Details. Table 16 shows the prompt we use to debug the evaluation scripts
if there are any errors when we copy the ground truth solution as the new implementation
and execute the scripts. Table 17 shows the prompt we use to improve the coverage of
the test function if there are any missing branches. Table 18 shows the prompt we use in
the quality check stage, where we check whether the sandboxed and original functions
have exactly the same functionality. Table 19 shows the prompt we use in the quality check
stage, where we check whether the generated test function is correct, reasonable, and are
completing the verification of the functionalities of the ground truth function and the new
implementation.

A.2 Human Study Details

Quality Check Agreement Check. For functionality equivalence check, we randomly
sample 20 examples from REPOST-EVAL. The instruction we present to the participants
is exactly the same as the prompt for the LLM functionality checker, as shown in Table 18.
Specifically, we show them the original and sandboxed functions and ask them whether
their functionalities are the same. We allow minor differences including additional sanity
checks or different print information.

As for the test correctness check, we randomly select 10 examples where the LLM predicts
as “Yes” and 10 examples where the LLM predicts as “No”. The instruction is the same
as the prompt for the LLM test correctness check, as shown in Table 19. We additionally
prevent checking the values of printed or logged information because it is typically difficult
to match the exact same information in code generation.

Solvability Check. Similar to the setting we use to benchmark coding models in §6, we
show the participants the direct or indirect dependencies of the target function and ask
them to complete it. After submitting an answer, the participants will see the execution
results of our evaluation scripts and can choose to revise their answers accordingly or to
give up. Finally, we asked them whether they used external tools (e.g., search engines) in
completing the function and asked them to rate the difficulty of each example. Note that we
do not directly show the evaluation script to the participants and explicitly ask them not to
use any AI models.

A.3 Code Generation Training Details

Evaluation Details. The performance of repo-level code generation also depends on the
quality of the retrieved context. To mitigate the bias of retrieval models, we evaluate the
models with the “Oracle” context for the two repo-level datasets. For RepoEval-Func, we
follow the setting in their original paper that retrieves in-repo code fragments with the
target function as the query. For REPOST-EVAL, to ensure that we cover all the relevant
dependencies in the context, we follow R2E (Jain et al., 2024b) and use dependency-only
context, which includes modules that the target function depends on with the call graph.

Training Details. We train the models with a learning rate of 2e − 6, a batch size of 32, and
a warm-up ratio of 0.1 for 1 epoch. For QwenCoder, we add a linebreak after the prompt to
prevent the first token of the target output from being linebreak.

Model Behavior Analysis. Table 10 shows that the model learns to generate more comments
after RFT compared to the base model or SFT. An explanation is that when generating
candidate implementations, GPT-4o and Claude-3.5 generate more comments than the

14

Published as a conference paper at COLM 2025

Docstring (DocS) Initial Generation w/ Debugging

StarCoder2-7B 1327 / 7415 1573 / 7415
Qwen2.5-Coder-7B 1428 / 7415 1708 / 7415
GPT-4o 2438 / 7415 2861 / 7415
Claude-3.5 2503 / 7415 3092 / 7415
GPT-4o & Claude-3.5 3110 / 7415 3606 / 7415

Table 9: The number of examples where we obtained at least one successful solution in RFT
(Self) and RFT (Distill). We report the number (1) after the initial round of generation, and
(2) after debugging.

Method Avg # of Comments

Train Data Output on RepoEval

Qwen2.5-Coder-7B – 0.48
+ SFT 0.69 0.56
+ RFT (Distill) 1.06 0.61

Table 10: Number of comments in (1) the training targets and (2) generations on the REPOST-
EVAL dataset.

Sanity Checks for Sandboxing

1. The target function should exist in the evaluation
script.
2. The number of tokens in the sandboxed function
should NOT be more than 20 fewer than that in the
original function.
3. The number of tokens in the entire evaluation
script should NOT be more than 50 fewer than the
number of tokens in the combination of all local de-
pendencies.

Table 11: The sanity checks we conduct for the sandboxing step.

human-written function. This indicates that training with RFT enables the model to output
more interpretable and well-documented code.

A.4 Error Analysis on RepoEval

As shown in Table 13, we randomly sampled 10 failure examples from RepoEval and
manually checked the causes of error.

Among the 10 failure cases, 6/10 have unclear instructions or unclear package versions,
which means they cannot even be solved by human. This is a known issue with the RepoEval
dataset, where the intention of the functions cannot be fully entailed from the context.

Since performance is calculated over the total set of examples, including many that are
inherently unsolvable or ambiguous, we believe adjusting for this by considering only
clearly solvable cases would highlight a more substantial gain from our method.

We observe similar issues with our RepoST-Eval datasets and present a potential solution:
using model-generated docstrings to improve clarity (see section 5 for details).

15

Published as a conference paper at COLM 2025

Sanity Checks for Test Generation

1. The target function should exist in the evaluation
script.
2. The number of tokens in the sandboxed function
should NOT be more than 20 fewer than that in the
original function.
3. The number of tokens in the entire evaluation
script should NOT be fewer than the number of to-
kens in the evaluation script obtained from the sand-
boxing step.
4. A test function named test {func name}() should
exist.
5. The test function should call the target function.
6. The test function should call the new implementa-
tion (new implementation {func name}()).
7. There should be at least 3 assertions in the test
function.
8. There should be a main function.
9. The main function should call the test function.
10. If the main function calls the test function, the
function call should not be in a try-except block.

Table 12: The sanity checks we conduct for the test generation step.

Issue Frequency

Instruction not clear 2/10
Package version mismatch (e.g., transformers) 1/10
Problem with boundary cases 4/10
Correct functionality but wrong implementation 1/10
Wrong functionality 1/10
Format error (e.g., does not generate a function) 1/10

Table 13: Summary of common error types on RepoEval. The examples are randomly
sampled.

16

Published as a conference paper at COLM 2025

Sandboxing Prompt

Instructions:
- You’re given a piece of PYTHON CODE containing a function called {func name}. We also provide you the CONTEXT of the
PYTHON CODE. Your goal is to aggregate the PYTHON CODE and the CONTEXT into one script, so that we can directly call the
{func name} function WITHOUT ANY MODIFICATIONS.
- You should edit the original PYTHON CODE as little as possible and you can add code only if necessary.
- DO NOT call any external API, database, etc. Instead, create a mock interface.
- Make sure that your code can be directly executed without any modification. For example, statements like ‘token =
”your auth token here” # You need to replace this with a real token‘ is NOT allowed.
- If you need to write files to the disk, use ‘{docker CACHE DIR}‘ as the directory.

- Provide your reasoning and the revised PYTHON CODE below SOLUTION.

PYTHON CODE:
“‘python
{code}
“‘

CONTEXT:
{context}

Your answer should follow the format below:

Reasoning: ...
“‘python
Your Code.
“‘

Do NOT include other formatting. Output every token of the content with no omission or abbreviation. For example, abbreviation
like ‘... # the code keeps unchanged‘ is NOT allowed.

SOLUTION:

Table 14: The prompt we use to sandbox the target function and its local dependencies to a
separate evaluation script.

Test Generation Prompt

Instructions:
- You’re given a piece of PYTHON CODE containing a function called {func name}. Assume we will later have another implentation
of the {func name} function called {func name} new implementation.
- Your goal is to add (1) a test function called {test func name} to check whether {func name} new implementation has the same
functionality as the {func name} function, and (2) a main function that calls the test function.
- If the PYTHON CODE already contains a main function, remove it and write a new main function.
- The test function {test func name} should contain at least 3 assert statements. If {func name} new implementation has different
functionality as {func name}, an Assertion Error should be triggered.
- The test function {test func name} should cover all the major branches of the {func name} function
- DO NOT test on error handling and DO NOT test on the print information in the function.
- The main function should NOT contain a try-except structure. If the implementation is incorrect, the program should have a
non-zero exit code.
- You should edit the original PYTHON CODE as little as possible.
- If you need to write files to the disk, use ‘{docker CACHE DIR}‘ as the directory.

- Provide your reasoning and the new PYTHON CODE containing your test function {test func name} and the main function
below SOLUTION.

PYTHON CODE:
“‘python
{code}
“‘

Your answer should follow the format below:

Reasoning: ...
“‘python
The new PYTHON CODE containing your test function {test func name} and the main function.
“‘

Do NOT include other formatting. Output every token of your edited PYTHON CODE with no omission or abbreviation.

SOLUTION:

Table 15: The prompt we use to generate tests in the evaluation scripts.

17

Published as a conference paper at COLM 2025

Debugging Prompt (for data construction)

Instructions:
- You’re given a piece of PYTHON CODE containing a function called {func name} and its test function called {test func name}.
Assume we will later add another function called {func name} new implementation, the test function aims to check whether
{func name} new implementation has the same functionality as {func name}.
- In our experiments, we implemented {func name} new implementation exactly the same as {func name}, but the PYTHON
CODE cannot be successfully executed.
- Your task is to debug PYTHON CODE based on the ERROR MESSAGE.
- You should modify the code as little as possible, especially the test {func name} function and the {func name} function.
- Make sure that after debugging, the test function test {func name} still have at least three assert statements and cover all the major
branches of the {func name} function.
- DO NOT test the logging information of error handling and DO NOT test on the print information in the function.
- If you need to write files to the disk, use ‘{docker CACHE DIR}‘ as the directory.

- Provide your reasoning and the debugged PYTHON CODE below SOLUTION. If necessary, output the bash scripts for Linux in
another code block in the format of “‘bash ... “‘.

PYTHON CODE:
“‘python
{code}
“‘

ERROR MESSAGE:
“‘
{err msg}
“‘

Your answer should follow the format below:

Reasoning: ...
“‘python
The debugged PYTHON CODE in one piece.
“‘
“‘bash
the bash script, if necessary
“‘

Do NOT include other formatting. Output every token of your debugged PYTHON CODE with no omission or abbreviation.

SOLUTION:

Table 16: The prompt we use to debug the evaluation scripts if there are any errors when we
copy the ground truth solution as the new implementation and execute the scripts.

Test Coverage Improvement Prompt

Instructions:
- You’re given a piece of PYTHON CODE containing a function called {func name} and its test function called {test func name}.
Assume we will later add another function called {func name} new implementation, the test function aims to check whether
{func name} new implementation has the same functionality as {func name}.
- You’re also given the MISSING LINES of the {func name} new implementation function that are NOT covered by
{test func name}.
- Your task is to improve the branch coverage rate of the {test func name} function.
- You should only modify the {test func name} function. DO NOT modify other parts of the code.
- DO NOT test the logging information of error handling and DO NOT test on the print information in the function.
- If you need to write files to the disk, use ‘{docker CACHE DIR}‘ as the directory.

- Provide your reasoning and your revised {test func name} function below SOLUTION.

PYTHON CODE:
“‘python
{code}
“‘

MISSING LINES:
{missing code}

Your answer should follow the format below:

Reasoning: ...
“‘python
Your revised {test func name} function
“‘

Do NOT include other formatting. Output every token of the {test func name} function with no omission or abbreviation.

SOLUTION:

Table 17: The prompt we use to improve the coverage of the test function if there are any
missing branches.

18

Published as a conference paper at COLM 2025

Functionality Equivalence Check Prompt

Instructions:
- We revised a python function called {func name} so it can be directly executed in an isolated environment.
- You are given the ORIGINAL FUNCTION and the CODE containing the REVISED FUNCTION.
- Your task is to check whether the functionality of the REVISED FUNCTION is the same as the ORIGINAL FUNCTION.
- If the REVISED FUNCTION is exactly the same as the ORINIGAL FUNCTION, output ”same” as your answer.
- Otherwise, if the functionality of the REVISED FUNCTION is the same as the ORIGINAL FUNCTION, output ”yes” as your
answer.
- if the functionality of the REVISED FUNCTION is different, output ”no”.

- Provide your reasoning and the answer under ”SOLUTION”.

ORIGINAL FUNCTION:
{orig func}

CODE containing the REVISED FUNCTION:
{new code}

Your answer should follow the format below:
“‘
REASONING: Your reasoning,
ANSWER: ”same”, ”yes” or ”no”.
“‘

Do NOT include other formatting.

SOLUTION:

Table 18: The prompt we use in the quality check stage, where we check whether the
sandboxed and original functions have exactly the same functionality.

Test Correctness Check Prompt

Instructions:
- You are given a piece of PYTHON CODE containing a function called {func name}, its new implementation
{func name} new implementation (now hidden) and its test function called {test func name}.
- Your task is to judge whether the test function satisfies all the CONDITIONS:
** CONDITION 1 ** The {func name} function should either have return values or modifies global variables or input arguments
(such as a list, a dictionary, a class, etc.).
** CONDITION 2 ** The test cases should only check the return values or variable states. It should NOT check printed or logged
contents.
** CONDITION 3 ** {func name} new implementation can pass all the test cases IF AND ONLY IF it has the EXACTLY same
functionality as {func name}.
** CONDITION 4 ** The test cases and assert statements are reasonable. For example, if {func name} does not have return values,
you should NOT use ‘assert {func name}() == {func name} new implementation()‘ to test the implementation.
** CONDITION 5 ** The test cases are non-trivial.

- If the test function satisfies all the CONDITIONS, answer ”yes”. Otherwise, answer ”no”.
- Provide your reasoning and the answer under ”SOLUTION”.

PYTHON CODE:
{code}

Your answer should follow the format below:
“‘
REASONING: Your reasoning,
ANSWER: ”yes” or ”no”.
“‘

Do NOT include other formatting.

SOLUTION:

Table 19: The prompt we use in the quality check stage, where we check whether the
generated test function is correct, reasonable, and actually comparing the functionalities of
the ground truth function and the new implementation.

19

Published as a conference paper at COLM 2025

```python
## chan_questions.py
import json
import prompts

from helpers import get_openai_answer, chunker, clean_and_hash, clean_html, query_to_search_url

def score_explicit_question(string: str) -> list:
    """
    Uses LLMs to score a question based on whether it is considered explicit or implicit.
    Uses OpenAI.
    """
    prompt = prompts.IS_EXPLICIT
    answer = get_openai_answer(prompt.replace("[input]", string))

    results = json.loads(answer)["results"]
    return results
```

```python
## helpers.py
import openai
import config

def get_openai_answer(prompt: str, response_format="json_object", model=None):
    # initiate
    client = openai.OpenAI(api_key=config.OPENAI_KEY)

    if not model:
        model = config.MODEL

    # Get response
    response = client.chat.completions.create(
        model=model,
        temperature=config.TEMPERATURE,
        max_tokens=config.MAX_OUTPUT_TOKENS,
        response_format={"type": response_format},
        messages=[{
            "role": "user",
            "content": prompt
        }]
    )

    return response.choices[0].message.content
```

[Case 1, Origifinal Function & GitHub Context] score_explicit_question()

Figure 5: Case study 1. The original score explicit question function and its context
extracted from the original GitHub repository. The function calls the text completion
function from the OpenAI API.

20

Published as a conference paper at COLM 2025

import json

Mock configuration
class config:
 OPENAI_KEY = "mock_openai_key"
 MODEL = "mock_model"
 TEMPERATURE = 0.5
 MAX_OUTPUT_TOKENS = 100

Mock prompts
class prompts:
 IS_EXPLICIT = "Is the following question explicit or implicit? [input]"

Mock OpenAI API response
def get_openai_answer(prompt: str, response_format="json_object", model=None):
 # Mock response simulating the OpenAI API
 mock_response = {
 "results": [
 {"question": prompt, "score": "explicit" if "explicit" in prompt else "implicit"}
]
 }
 return json.dumps(mock_response)

The original function from chan_questions.py
def score_explicit_question(string: str) -> list:
 """
 Uses LLMs to score a question based on whether it is considered explicit or implicit.
 Uses OpenAI.
 """
 prompt = prompts.IS_EXPLICIT
 answer = get_openai_answer(prompt.replace("[input]", string))

 results = json.loads(answer)["results"]
 return results

[Case 1, Evaluation Script - Sandboxing] score_explicit_question()

Figure 6: Case study 1. The sandboxed score explicit question function in the evaluation
script. The LLM generates a mock function called get openai answer to replace the real API
call. With the mock class, the score explicit question has the exactly same functionality
as the original function, but does not make real OpenAI API calls.

21

Published as a conference paper at COLM 2025

def test_score_explicit_question():
 # Test case 1: Explicit question
 input_str1 = "Is this an explicit question?"
 assert score_explicit_question(input_str1) == score_explicit_question_new_implementation(input_str1)

 # Test case 2: Implicit question
 input_str2 = "What is the meaning of life?"
 assert score_explicit_question(input_str2) == score_explicit_question_new_implementation(input_str2)

 # Test case 3: Neutral question (contains neither explicit nor implicit)
 input_str3 = "How are you?"
 assert score_explicit_question(input_str3) == score_explicit_question_new_implementation(input_str3)

 # Test case 4: Very short question
 input_str4 = "?"
 assert score_explicit_question(input_str4) == score_explicit_question_new_implementation(input_str4)

 # Test case 5: Very long question
 input_str5 = "Is this an explicit question?" * 100
 assert score_explicit_question(input_str5) == score_explicit_question_new_implementation(input_str5)

 # Test case 6: Case sensitivity
 input_str6 = "is this an explicit question?"
 assert score_explicit_question(input_str6) == score_explicit_question_new_implementation(input_str6)

 # Test case 7: Different punctuation
 input_str7 = "Is this an explicit question!"
 assert score_explicit_question(input_str7) == score_explicit_question_new_implementation(input_str7)

 # Test case 8: Special characters
 input_str8 = "Is this an explicit question? #$%"
 assert score_explicit_question(input_str8) == score_explicit_question_new_implementation(input_str8)

 # Test case 9: Numbers in question
 input_str9 = "Is 42 an explicit number?"
 assert score_explicit_question(input_str9) == score_explicit_question_new_implementation(input_str9)

 # Test case 10: Empty string
 input_str10 = ""
 assert score_explicit_question(input_str10) == score_explicit_question_new_implementation(input_str10)

 # Test case 11: Leading and trailing whitespace
 input_str11 = " Is this an explicit question? "
 assert score_explicit_question(input_str11) == score_explicit_question_new_implementation(input_str11)

 # Test case 12: Excessive internal whitespace
 input_str12 = "Is this an explicit question?"
 assert score_explicit_question(input_str12) == score_explicit_question_new_implementation(input_str12)

Main function
if __name__ == "__main__":
 test_score_explicit_question()

[Case 1, Evaluation Script - Tests] score_explicit_question()

Figure 7: Case study 1. The tests in the evaluation scripts.

22

Published as a conference paper at COLM 2025

```python
## Complete Python Bootcamp/Day 017 Quiz Game/quiz_brain.py
class QuizBrain:
    def __init__(self, questions):
        self.question_number = 0
        self.question_list = questions
        self.score = 0

    def still_has_question(self):
        return self.question_number < len(self.question_list)

    def next_question(self):
        user_answer = ""
        current_question = self.question_list[self.question_number]
        while user_answer.lower() not in ("true", "false"):
            user_answer = ""
            user_answer = input(f"Q{self.question_number + 1}: {current_question.question} (True/False)")
            
        self.question_number += 1
        self.check_answer(user_answer, current_question.answer)

    def check_answer(self, user_answer, correct_answer):
        if user_answer.lower() == correct_answer.lower():
            print("Correct!")
            self.score += 1
        else:
            print("Incorrect")
        print(f"The correct answer is: {correct_answer}\nYour current score is {self.score}/{self.question_number}")

```

[Case 2, Origifinal Function & GitHub Context] QuizBrain.next_question()

Figure 8: Case study 2. The original next question function. The function reads from
system inputs, which are not available when testing in a docker.

23

Published as a conference paper at COLM 2025

class MockInput:
 def __init__(self, responses):
 self.responses = responses
 self.index = 0

 def __call__(self, prompt):
 if self.index < len(self.responses):
 response = self.responses[self.index]
 self.index += 1
 print(prompt + response) # Simulate user seeing the prompt and typing the response
 return response
 raise Exception("No more mock inputs available.")

class Question:
 def __init__(self, question, answer):
 self.question = question
 self.answer = answer

class QuizBrain:
 def __init__(self, questions):
 self.question_number = 0
 self.question_list = questions
 self.score = 0

 def still_has_question(self):
 return self.question_number < len(self.question_list)

 def next_question(self):
 user_answer = ""
 current_question = self.question_list[self.question_number]
 while user_answer.lower() not in ("true", "false"):
 user_answer = ""
 user_answer = input(f"Q{self.question_number + 1}: {current_question.question} (True/False)")

 self.question_number += 1
 self.check_answer(user_answer, current_question.answer)

 def check_answer(self, user_answer, correct_answer):
 if user_answer.lower() == correct_answer.lower():
 print("Correct!")
 self.score += 1
 else:
 print("Incorrect")
 print(f"The correct answer is: {correct_answer}\nYour current score is {self.score}/{self.question_number}")

[Case 2, Evaluation Script - Sandboxing] QuizBrain.next_question()

Figure 9: Case study 2. The sandboxed next question function in the evaluation script. The
LLM generates a mock class called MockInput to replace the real system input. With the
mock class, the next question has the exactly same functionality as the original function,
but does not read system inputs.

24

Published as a conference paper at COLM 2025

def test_next_question():
 questions = [
 Question("Is the sky blue?", "True"),
 Question("Is the grass red?", "False"),
]
 quiz_original = QuizBrain(questions)
 quiz_new = QuizBrain(questions)

 mock_responses = ["True", "False"]
 mock_input = MockInput(mock_responses)

 # Replace the built-in input function with mock_input for testing
 global input
 original_input = input
 input = mock_input

 # Run original implementation
 while quiz_original.still_has_question():
 quiz_original.next_question()

 # Reset input for the new implementation
 mock_input = MockInput(mock_responses)
 input = mock_input

 # Run new implementation
 while quiz_new.still_has_question():
 quiz_new.next_question_new_implementation()

 assert quiz_original.score == quiz_new.score, "Scores differ between implementations"
 assert quiz_original.question_number == quiz_new.question_number, "Question numbers differ between
implementations"
 assert quiz_original.still_has_question() == quiz_new.still_has_question(), "Question completion state differs
between implementations"

if __name__ == "__main__":
 test_next_question()

[Case 2, Evaluation Script - Tests] QuizBrain.next_question()

Figure 10: Case study 2. The tests in the evaluation scripts, which call the MockInput class to
mock the system input.

25

	Introduction
	The RepoST Framework
	Repository and Function Curation
	Sandboxing: Key to Environment Setup
	Test Generation
	Quality Control and Filtering

	Resulting Datasets: RepoST-Train and RepoST-Eval
	Quality Verification with Human Study

	Code Generation Training Experiments
	Experimental Setup
	Experimental Results

	Benchmarking with RepoST-Eval
	Related Work
	Conclusion and Future Works
	Acknowledgement
	Appendix
	Data Construction Details
	Human Study Details
	Code Generation Training Details
	Error Analysis on RepoEval

