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Abstract

Diffusion models have achieved state-of-the-art performance in generating many1

different kinds of data, including images, text, and videos. Despite their success,2

there has been limited research on how the underlying diffusion process and the3

final convergent prior can affect generative performance; this research has also4

been limited to continuous data types and a score-based diffusion framework. To5

fill this gap, we explore how different discrete diffusion kernels (which converge to6

different prior distributions) affect the performance of diffusion models for graphs.7

To this end, we developed a novel formulation of a family of discrete diffusion8

kernels which are easily adjustable to converge to different Bernoulli priors, and we9

study the effect of these different kernels on generative performance. We show that10

the quality of generated graphs is sensitive to the prior used, and that the optimal11

choice cannot be explained by obvious statistics or metrics, which challenges the12

intuitions which previous works have suggested.13
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1 Introduction14

In recent years, diffusion models have been applied successfully to many different problems and data15

types, achieving state-of-the-art generation quality Sohl-Dickstein et al. (2015); Ho et al. (2020);16

Song et al. (2021); Dhariwal & Nichol (2021); Rombach et al. (2021). Despite how central the17

underlying diffusion process is to a diffusion model, however, there has been very limited research18

that explores how different diffusion processes affect generative performance. A few works have19

found that performance can be affected by the diffusion process, but these findings have largely been20

limited to diffusion on continuous objects, and where diffusion time is also continuous (i.e. using a21

stochastic-differential-equation framework) Song et al. (2021); Dockhorn et al. (2021); Karras et al.22

(2022). In contrast, discrete diffusion models Austin et al. (2021) have recently emerged as a more23

effective way to model intrinsically discrete objects, such as graphs Vignac et al. (2022); Tseng et al.24

(2023), but the impact of different design choices in this setting has received little to no attention.25

In this work, we explicitly explore how the underlying diffusion process may affect generative26

performance in a discrete-time and discrete-object setting. In particular, we will focus on generating27

undirected graphs, as they are simply represented, yet arguably one of the most versatile and28

expressive discrete data types (i.e. many problems can be phrased as graph problems).29

The space of possible discrete diffusion kernels is large. To simplify our analysis, we formulate a30

family of diffusion kernels based on the Bernoulli distribution, where only the noise schedule is a31

free parameter. We will show that adjusting the noise schedule induces a convergent prior distribution32

which—on graphs—is an Erdös–Renyi graph with any arbitrary edge probability p.33

A few recent works have suggested intuitions for selecting the best convergent prior in a diffusion34

model. On continuous data types, Lee et al. (2021) achieved better performance on generating audio35

tracks with a diffusion prior which is a Gaussian with covariance equal to that of the original data36

distribution. For discrete diffusion on graphs, Vignac et al. (2022) proposed that the optimal prior37

should have the probability of each edge state (e.g. present or absent) match the empirical distribution38

in the original data. Together, these works have strongly suggested that different generation tasks39

merit the use of different diffusion priors, and they have intimated that the optimal prior is one whose40

core statistic (e.g. Gaussian covariance, multinomial probabilities, etc.) matches that of the original41

distribution Lee et al. (2021); Vignac et al. (2022). We call this the empirical prior. Importantly,42

although these works propose that the empirical prior is optimal, their results merely suggest that the43

empirical prior outperforms a uniform prior (e.g. isotropic Gaussian or uniform probabilities).44

To our knowledge, this is the first work which systematically explores how modifying the convergent45

prior directly affects generative performance in discrete diffusion. Our results will challenge previous46

intuitions of what the optimal prior is. In particular, we highlight the following contributions:47

• We derive a novel family of discrete diffusion kernels based on asymmetric Bernoulli48

processes, that is easily adjustable so it converges to an arbitrary Erdös–Renyi prior.49

• We demonstrate that different graph-generation tasks achieve optimal generative perfor-50

mance on diffusion kernels which converge to different priors.51

• We show that the optimal prior for a given task is not simply given by the empirical prior52

(i.e. based on statistics of the original data distribution) as previous works have suggested.53

2 An Adjustable, Aasymmetric Bernoulli Kernel54

Consider a bit xt. At each time t, the diffusion process will flip the bit with probability according to55

some noise schedule. Tseng et al. (2023) proposed three such diffusion kernels, in which the final56

prior was a Bernoulli distribution of π(x = 1) = 0, π(x = 1) = 1, or π(x = 1) = 0.5. We extend57

from Tseng et al. (2023) by defining two (potentially asymmetric) noise schedules: {β0
t , β

1
t } for58

t ∈ {1, · · · , T}. At time t, the bit xt−1 is flipped to a 0 with probability β0
t (if xt−1 = 1), and is59

flipped to a 1 with probability β1
t (if xt = 0). By defining these two distinct noise schedules, the final60

prior probability can be anything between 0 and 1. We will generally assume that βb
t ∈ [0, 1

2 ].61

We can derive the following forward-diffusion probability:62

q(xt = 1|x0) =
1 + (−1)t−1

2
+

t∑
i=1

[
(−1)i

2
ϵ
1+(−1)i

2
i

t∏
j=i+1

ϵ̄j
2

]
+ x0

t∏
j=1

ϵ̄j
2

(1)

2



where ϵbt = 2(1− βb
t ) and ϵ̄t = ϵ0t + ϵ1t − 2 = 2(1− β0

t − β1
t ).63

If lim
t→T

β0
t = p0 and lim

t→T
β1
t = p1 asymptotically, then the prior distribution is q(xT = 1) = π(x =64

1) = p0

p0+p1
. Thus, simply modifying the asymmetric noise schedules causes the diffusion process to65

converge to a Bernoulli distribution of any probability in the range [0, 1] (Supplementary Figure S1).66

A full derivation of the kernel family is in Appendix B.67

In our work, we diffuse on graphs by treating the edges as binary states—either an edge exists or it68

does not. That is, for a graph of n nodes, we diffuse over
(
n
2

)
binary variables. We consider unlabeled69

nodes. Our adjustable Bernoulli kernel induces an Erdös–Renyi prior with probability p = p0

p0+p1
.70

3 Generative Performance Depends on the Prior71

We consider two well-known benchmark graph datasets: community (small) and stochastic block72

models. For each dataset, we trained discrete diffusion models using the adjustable Bernoulli73

kernel introduced in Section 2, exploring an extended range of prior probabilities corresponding to74

Erdös–Renyi graphs with p in {0, 0.05, 0.10, ..., 0.95, 1}.75

Figure 1: a) MMD of several graph distributions for our datasets, as a function of the prior probability
in the diffusion kernel (the prior probability ranges from 0 to 1). A lower MMD is better. Three
different random initializations are plotted in gray, and the average is in blue. The vertical red line
marks the empirical probability of an edge in the original dataset. b) MMD between randomly
sampled graphs from the prior distribution and the true data distribution, as a function of the prior
probability.

For each model, we quantified the generative performance by computing the maximum mean76

discrepancy (MMD) for several graph distributions, following previous works in the space of graph77

generation You et al. (2018); Liao et al. (2019); Cao & Kipf (2018); Martinkus et al. (2022); Vignac78

et al. (2022). This performance metric compares several distributions of various statistics over the79

generated and true graphs (i.e. distribution of node degrees, clustering coefficients, spectrum of the80

normalized Laplacian, and node orbit counts). Averaging over several random initializations, the81

MMD values show a clear preference for which diffusion kernels—which vary in the convergent prior82

probability—yield the best performance overall (Figure 1a). This preference is consistent regardless83

of which graph statistic MMD is computed on. Furthermore, the best kernel is different between our84

datasets, and critically, the optimal kernel does not converge to the prior probability which matches85

the empirical probability in the original dataset. That is, the empirical prior is not necessarily optimal86

in our experiments. We also found that the generative performance of the optimal kernel yields87

better performance than previous graph-generative methods, including other discrete diffusion models88

(Supplementary Table S1).89
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It may seem intuitive to believe that the optimal prior should have a final edge probability that matches90

the empirical probability in the dataset (e.g. if the original dataset has a probability p of having an91

edge, it may seem that the optimal diffusion kernel should also converge to a probability of p). In92

this regard, Lee et al. (2021) showed that a prior which matches the empirical data in covariance93

(in continuous Gaussian diffusion) could be learned by a simpler neural network (thus leading to a94

more efficient training). These same intuitions were in Vignac et al. (2022), which showed some95

limited results for graphs suggesting that a diffusion kernel which converges to the empirical edge96

probability might have some moderate benefits over a uniform prior. Our experiments further extend97

these intuitions, and show that although the empirical prior may outperform the uniform prior, the98

optimal prior (at least for discrete graph diffusion) is not always the empirical prior.99

3.1 The Optimal Kernel is not Explained by Empirical MMD100

As the optimal diffusion kernel is not explained by the empirical distribution’s edge probability, one101

may ask whether the kernel which yields the optimal MMD of generated graphs is the one whose102

prior distribution also has the optimal MMD (i.e. the one whose prior distribution matches the103

data distribution closest using MMD). In order to explore this, we sampled graphs from the prior104

distribution of each kernel, and computed the MMD between these randomly sampled graphs with105

the true data distribution.106

Although we found that there was a trend in the convergent prior probability and the MMD between107

the prior distribution and the original data distribution (Figure 1b), this optimum was not the same108

as the optimal prior which maximizes generative performance (i.e. minimizes the MMD between109

the generated graphs and the original data distribution). This optimum, however, does match the110

empirical edge probability in the original data distribution.111

4 Searching for the Optimal Kernel in Practice112

Our results show that for discrete graph diffusion, the choice of diffusion prior can have large effects113

on the final generative performance. Additionally, the optimal prior is not simply the one which114

statistically matches the empirical data, or which maximizes similarity with the original data when115

measured by the MMD performance metric. Thus, we propose treating the diffusion kernel as a116

hyperparameter. In order to identify the optimal diffusion kernel, one may fix a family of diffusion117

kernels (e.g. Gaussian, or asymmetric Bernoulli as presented in Section 2, etc.) and search over it.118

In order to aid in the efficient search for the optimal kernel, we found that by training only for a119

short time, the average training loss in the first few epochs is already somewhat predictive of the120

optimal kernel. That is, early training loss is correlated with final generative performance across121

different diffusion kernels in a family (Supplementary Figure S2). Furthermore, at least within the122

asymmetric-Bernoulli kernel family, we showed that the performance varies smoothly with the prior’s123

probability of an edge (Figure 1). This property is expected in other families of diffusion kernels (e.g.124

Gaussian kernels in continuous diffusion) and enables search through efficient hyper-optimization125

techniques, such as Bayesian optimization.126

5 Discussion127

In this work, we developed a family of diffusion kernels based on the Bernoulli distribution which is128

easily modified to tune the final prior probability of an edge. We demonstrated that the generative129

performance of a graph-generation task depends on the specific diffusion prior, and that the optimal130

kernel is different for different tasks. Critically, we showed how the optimal kernel is not defined by131

a prior whose underlying probability distribution is the same as the empirical probability distribution132

of the original data, as prior works have intuited. Instead, we suggested that the optimal kernel may133

be treated as a hyperparameter and tuned for, which can be done relatively efficiently.134

Although the optimal kernel/prior was not obviously informed by the empirical data, our exploration135

paves the way for more research toward designing optimal priors for discrete diffusion models. Future136

work may explore potentially more inscrutable relationships which may explain the optimal kernel,137

as this remains an open problem in both discrete and continuous diffusion.138
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A Supplementary Figures and Tables187

Figure S1: Visualization of the diffusion process of the adjustable Bernoulli kernel, for several
different noise schedules. There are two lines of each color, showing the probability of a bit being
1 at each time t, if the original bit started at 0 or 1. Each color is a different asymmetric noise
schedule, and the final probability converges to a prior defined by the asymptotic behavior of the
noise schedules.

Table S1: MMD ratio

Model Community (small) Stochastic block models

Deg. ↓ Clus. ↓ Orbit ↓ Deg. ↓ Clus. ↓ Orbit ↓

GraphRNN 2.00 1.31 2.00 2.62 1.33 1.75
GRAN 1.73 1.25 1.00 3.76 1.29 1.46
MolGAN 1.73 1.36 1.00 5.42 1.87 1.67
SPECTRE 1.00 1.73 1.00 3.14 1.26 0.54
DiGress 1.00 0.95 1.00 1.26 1.22 1.30

Optimal prior 0.99 0.57 0.79 0.56 1.18 0.83

Comparison of generative performance of optimal prior to other works

Figure S2: Average value of the loss for the first 10 epochs of training, for each diffusion kernel on
each task.

B Derivation of asymmetric Bernoulli kernel188

B.1 Forward diffusion distribution189

Here, we derive the forward distribution qt(xt|xt−1, x0). Note that every x is a single bit.190

Let us define a noising process {β0
t , β

1
t } for t ∈ {1, · · · , T}. In particular, we have q(xt = 1|xt−1 =191

0) = β0
t and q(xt = 0|xt−1 = 1) = β1

t .192

We will generally assume that βb
t ∈ [0, 1

2 ].193

In our derivation, we will use the following changes of variables to assist in simplification:194

βb
t = 1− 1

2ϵ
b
t (or equivalently, ϵbt = 2(1− βb

t ))195
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ϵ̄t = ϵ0t + ϵ1t − 2 = 2(1− β0
t − β1

t )196

Below are the forward-distribution probabilities for the first four time steps:197

P (x1 = 1|x0) =
1
2 (2− ϵ01 + x0ϵ̄1)198

P (x2 = 1|x0) =
1
4 (2ϵ

1
2 − ϵ01ϵ̄2 + x0ϵ̄1ϵ̄2)199

P (x3 = 1|x0) =
1
8 (8− 4ϵ03 + 2ϵ12ϵ̄3 − ϵ01ϵ̄2ϵ̄3 + x0ϵ̄1ϵ̄2ϵ̄3)200

P (x4 = 1|x0) =
1
16 (8ϵ

1
4 − 4ϵ03ϵ̄4 + 2ϵ12ϵ̄3ϵ̄4 − ϵ01ϵ̄2ϵ̄3ϵ̄4 + x0ϵ̄1ϵ̄2ϵ̄3ϵ̄4)201

Or in general:202

P (xt = 1|x0) =
1
2t (2

t( 1+(−1)t−1

2 ) +
t∑

i=1

[(−1)i2i−1ϵ
1+(−1)i

2
i

t∏
j=i+1

ϵ̄j ] + x0

t∏
j=1

ϵ̄j)203

In a more numerically stable form:204

P (xt = 1|x0) =
1+(−1)t−1

2 +
t∑

i=1

[ (−1)i

2 ϵ
1+(−1)i

2
i

t∏
j=i+1

ϵ̄j
2 ] + x0

t∏
j=1

ϵ̄j
2205

B.2 Prior distribution206

By changing the value that β0
t , β

1
t converge to, the prior can be made to be any probability between 0207

and 1.208

Now let us try and derive the prior probability more formally.209

First, let us make the assumption that T is even.210

From above, we have that P (xT = 1|x0) = x0ϵ̄1 · · · ϵ̄T − 1
2T

ϵ01ϵ̄2 · · · ϵ̄T + 1
2T−1 ϵ

1
2ϵ̄3 · · · ϵ̄T −211

1
2T−2 ϵ

0
3ϵ̄4 · · · ϵ̄T + · · ·+ 1

2ϵ
1
T .212

Early terms in this sequence consist of many ϵ̄i being multiplied together. For large T , these terms213

contribute an infinitesimal amount to the total sum. Thus, we can consider only the end behavior of ϵbt .214

We make the simplifying assumption that β0
t , β

1
t both approach some maximum value asymptotically,215

so the end behaviors of β0
t , β

1
t are constant. This allows us to make the following substitutions for all216

times t (as early times will contribute nothing to the final probability):217

β0
t := p0, β

1
t := p1, ϵ

0
t := q0 = 2(1− p0), ϵ

1
t := q1 = 2(1− p1), ϵ̄t := s = 2(1− p0 − p1) for all t218

Then our expression becomes:219

P (xT = 1|x0) = −q0
1
2T

sT−2+1 + q1
1

2T−1 s
T−3+1 − q0

1
2T−2 s

T−4+1 + · · ·+ q1
1
2220

We rearrange the terms by those with q0 and those with q1, and factor out q0 and q1 to obtain:221

P (xT = 1|x0) = −q0
s
22 (1 +

s2

22 + s4

24 + · · ·+ sT−2

2T−2 ) + q1
1
2 (1 +

s2

22 + s4

24 + · · ·+ sT−2

2T−2 )222

Now the series in the parentheses are geometric series. Recall,
n∑

i=0

ri = 1−rn−1

1−r . Thus, we get:223

P (xT = 1|x0) = −q0
s
22

T
2 −1∑
i=0

(( s2 )
2)i + q1

1
2

T
2 −1∑
i=0

(( s2 )
2)i = −q0

s
22

1−( s
2 )

T

1−( s
2 )

2 + q1
1
2

1−( s
2 )

T

1−( s
2 )

2224

Now note that ( s2 )
T → 0, so we get:225

P (xT = 1|x0) = −q0
s
22

1
1−( s

2 )
2 + q1

1
2

1
1−( s

2 )
2226

Substituting back our original assumptions, we get:227

P (xT = 1|x0) =
p0

p0+p1
228

Now let us consider the case where T is odd.229

From above, we have that P (xT = 1|x0) = x0ϵ̄1 · · · ϵ̄T − 1
2T

ϵ01ϵ̄2 · · · ϵ̄T + 1
2T−1 ϵ

1
2ϵ̄3 · · · ϵ̄T −230

1
2T−2 ϵ

0
3ϵ̄4 · · · ϵ̄T + · · · − 1

2ϵ
0
T + 1231
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We use the same assumptions as above for even T , and we obtain the following:232

P (xT = 1|x0) = −q0
1
2 (1 +

s2

22 + s4

24 + · · ·+ sT−1

2T−1 ) + q1
1
s (

s2

22 + s4

24 + · · ·+ sT−1

2T−1 ) + 1233

Using the summation of a geometric series again, we get that 1+ s2

22 + s4

24 + · · ·+ sT−1

2T−1 =
1−( s

2 )
T+1

1−( s
2 )

2 .234

Again, we can assume that ( s2 )
T+1 → 0.235

Then P (xT = 1|x0) = −q0
1
2 (

1
1−( s

2 )
2 ) + q1

1
s (

1
1−( s

2 )
2 − 1) + 1236

Substituting back our original assumptions, we get:237

P (xT = 1|x0) =
p0

p0+p1
(the same as when T is even)238

B.3 Posterior distribution239

We use Bayes’ Rule: P (xt−1 = 1|xt, x0) =
P (xt|xt−1=1,x0)P (xt−1=1|x0)

P (xt|x0)
.240

We analyze each piece separately:241

P (xt|xt−1 = 1, x0) = xt(1− β1
t ) + (1− xt)β

1
t (if xt = 1, this is the event we don’t flip from 1 to242

0; if xt = 0, this is the event we do flip from 1 to 0).243

P (xt−1 = 1|x0) comes directly from Equation 1.244

P (xt|x0) = xtP (xt = 1|x0) + (1− xt)(1− P (xt = 1|x0)), also from Equation 1.245

This gives our posterior, qt(xt−1|xt, x0).246
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