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Abstract

Continual pre-training (CPT) for domain adaptation must balance target-domain
gains with stability on the base domain. Existing CPT scaling laws typically as-
sume a fixed pre-training budget, which limits their ability to forecast adaptation
outcomes for models trained at different tokens-per-parameter (PTPP). We present
PTPP-aware adaptation scaling laws that make the pre-training budget an explicit
variable, enabling accurate prediction of adaptation loss at unseen PTPP. On a
multilingual setup (English/Arabic → French), PTPP-aware formulations trained
on early stages (PTPP={15,31}) predict target loss at PTPP=279 and outperform
a PTPP-agnostic D-CPT transfer baseline on metrics (Huber-on-log, MAErel, cal-
ibration slope); full diagnostics (RMSE, MAPE) are in the appendix. Beyond
forecasting, we show a practical use case: planning replay ratios and adaptation
token budgets that satisfy target and forgetting constraints under compute limits.

1 Introduction

Capabilities of LLMs (large language models) continue to scale with model size, data size, and thus
the total compute used for pre-training. Language models trained on a mixture of domains, dominated
by web-scale corpora, yield general LLMs [Biderman et al., 2023, Dey et al., 2023, Team et al.,
2025, OLMo et al., 2025, Yang et al., 2025]. These generalist models may not perform well in tasks
requiring specialized knowledge (e.g., in fields such as medicine, law, finance) or those requiring
language capabilities beyond the dominant pre-training language. We must therefore adapt these
models to new, domain-specific, or target-language-specific data. This adaptation process presents a
fundamental challenge: achieving strong performance in the target domain while preserving general
capabilities (avoiding catastrophic forgetting [Kirkpatrick et al., 2017]). Various strategies have been
proposed to minimize forgetting [Chen et al., 2025, Ostapenko et al., 2022, Biderman et al., 2024,
Ibrahim et al., 2024, Gupta et al., 2023].

Pre-training scaling laws are well established—e.g., relations between model/data size and perfor-
mance in Kaplan et al. [2020], Hoffmann et al. [2022]—whereas CPT-specific laws are comparatively
underexplored. D-CPT extends Chinchilla with replay to study compute-optimal CPT at a fixed



pre-training stage [Que et al., 2024], and forgetting laws quantify degradation on the pre-training
domain at that stage [Bethune et al., 2025].

However, most CPT scaling laws—D-CPT and forgetting laws included—assume a fixed pre-training
budget (a single PTPP stage), which limits forecasting across budgets. Prior work indicates that PTPP
modulates learning dynamics and downstream adaptation [Springer et al., 2025, Ash and Adams,
2020, Lyle et al., 2023, Kumar et al., 2024]. We therefore condition explicitly on PTPP, yielding
PTPP-aware adaptation laws that predict target-domain loss at unseen PTPP and clarify replay–stage
interactions. Our central question: can a law fit at early stages (PTPP={15,31}) forecast target
validation loss at PTPP=279?

Although our experiments focus on language adaptation, treating PTPP as an explicit driver of
adaptation dynamics is broadly applicable. Prior multilingual adaptation work underscores the need
to mitigate and estimate forgetting while acquiring target competence [de Vries and Nissim, 2021,
Fujii et al., 2024, Huang et al., 2024, Gosal et al., 2024, Zhao et al., 2024]. Our contributions include:

1. PTPP-aware adaptation laws. We extend CPT scaling laws by integrating the pre-training
budget (PTPP) as an explicit variable in the functional form.

2. Forecasting at unseen PTPP. Fits at PTPP=15,31 predict French loss at PTPP=279
and outperform a PTPP-agnostic D-CPT baseline on all metrics; a handful of 241M-scale
“anchor” points at PTPP=279 (20 calibration measurements at the evaluation stage) further
improve accuracy at low-cost.

3. Planning under constraints. Using the fitted law, we find an optimal replay ratio and
adaptation token budget that satisfy target and forgetting constraints under compute limits.

2 Methodology and Experiments

Setup. We study loss L̂ as a function of model size N , adaptation tokens D, replay ratio r∈ (0, 1]
(s.t. 1 − r is the target domain fraction), and pre-training PTPP. We use GPT-2–style decoder-
only models pre-trained on a mixed English–Arabic corpus; the adaptation domain is French. Fits
use PTPP={15,31} and are evaluated on PTPP=279 (unseen), across r ∈ {0.10, 0.25, 0.50} and
N ∈ {241M, 517M, 1.4B, 8.1B}.

PTPP-Aware candidate formulations (1–3). All laws share an N -term and an r-barrier; they
differ in how PTPP affects the data-efficiency term. Let ε=10−5.

(1) Additive PTPP prior (floor).

L̂ = E +
A

Nα
+

B rν

Dβ
+

C

(r + εr)γ
+

F

PTPPη
.

PTPP lowers the floor of L̂ via an additive term.

(2) PTPP-gated data exponent (no floor).

L̂ = E +
A

Nα
+

B rν

D βeff
+

C

(r + εr)γ
, βeff = β

(
1− λ

PTPPζ

1 + PTPPζ

)
, βeff ≥ 10−6.

PTPP controls the shape of the data law via a bounded gate λ PTPPζ

1+PTPPζ
∈ [0, λ), so βeff = β (1 −

g(PTPP)), representing the impact of pre-training budget on adaptation efficiency.

(3) PTPP-gated data exponent + floor.

L̂ = E +
A

Nα
+

B rν

D βeff
+

C

(r + εr)γ
+

F

PTPPη
, βeff = β

(
1− λ

PTPPζ

1 + PTPPζ

)
.

PTPP acts twice: (i) a bounded gate reshapes the D-response (as in Form 2), and (ii) an additive
prior F/PTPPη lowers the loss floor. This captures both shape and offset effects of pre-training.
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Anchors. We also report a few-shot variant that augments the fit with 20 small-scale (241M)
anchors collected at the evaluation stage (PTPP=279) across the (r,D) grid; all other PTPP=279
points remain held out (unlike the oracle, which fits on the full PTPP=279 set). These anchors tighten
calibration (slope → 1) and error metrics at low-cost.

Data & models. GPT-2–style decoders are pre-trained on English/Arabic (source) and adapted to
French (target). We consider PTPP∈ {15, 31, 279}; replay r ∈ {0.10, 0.25, 0.50}; and model sizes
{241M, 517M, 1.4B, 8.1B}. We focus on the French target; source-domain (English/Arabic) results
are deferred to the appendix.

Fitting constraints. We minimize Huber loss on log residuals (δ=0.02) with L–BFGS–B under
positivity constraint for all parameters except ζ ∈ R. We clip r∈ [10−9, 1− 10−9].

Metrics. We assess predictions at PTPP=279 with three metrics. Huber-on-log is the Huber loss to
residuals r = log ŷ − log y with δ = 0.02. MAErel is the mean absolute relative error 1

n

∑
i
|ŷi−yi|

yi
,

i.e., the typical percentage miss (lower is better). Calibration (intercept/slope): parameters (a, b)
from an Ordinary Least Squares (OLS) fit log y = a+ b log ŷ; ideal is a ≈ 0, b ≈ 1.

3 Results: Forecasting at Unseen PTPP

Formulation Huberlog ↓ MAErel ↓ Calib. slope ≈ 1

Form 1 (Additive Prior) 2.34×10−4 2.08×10−2 0.991
Form 2 (Gated Exponent) 1.99×10−4 1.83×10−2 0.970
Form 3 (Gated+Floor) 4.43×10−5 6.70×10−3 0.991

D-CPT (no PTPP, transfer) 4.74×10−4 3.43×10−2 0.961

Table 1: French prediction at unseen PTPP=279 (no anchors; trained on PTPP={15,31}). Full metrics
(including calibration intercepts and RMSE) appear in Appendix 5.
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Figure 1: PTPP=279 predictions of the gated+floor model (dashed) vs. observations (markers) of
validation loss for r ∈ {0.10, 0.25, 0.50} and {241M, 517M, 1.4B, 8.1B}.
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Formulation Huberlog ↓ MAErel ↓ Calib. slope ≈ 1

Form 1 (Additive Prior) 5.22×10−5 8.56×10−3 0.956
Form 2 (Gated Exponent) 4.23×10−5 8.17×10−3 0.992
Form 3 (Gated+Floor) 3.54×10−5 7.39×10−3 0.992

Table 2: French prediction at unseen PTPP=279 with 20 anchors at 241M-scale.

Figure 2: Replay (0–100%) determines the trade-off between forgetting and domain performance.
Left: Forgetting / Dataset size landscape. Right: resulting French loss. The star highlights the solution
(8.9 ATPP, 34% replay), minimizing FLOPs s.t. forgetting is ≤+2% and French loss ≤ 1.8.

Takeaways. Across French at unseen PTPP=279, the gated+floor variant (Form 3) is consistently
best, with low errors and near-ideal calibration (slope ≈0.99) both without anchors and with 20
small-scale anchors; the gated-only variant (Form 2) is reliably second and ahead of D-CPT transfer.
Anchors uniformly tighten Huber/RMSE and calibration without changing the methods’ rankings.

On the English/Arabic source domain (Appendix 5), the picture depends on supervision at the
evaluation stage: without anchors, floor-only (Form 1) suffices—suggesting PTPP mainly shifts
the baseline—whereas with anchors the gated-only form (Form 2) becomes best, revealing a data-
efficiency (shape) effect once lightly calibrated at PTPP=279. Overall, results support that a) the
preferred functional form can be domain and/or supervision-dependent and b) a direct link exists
between pre-training compute and adaptation efficiency that manifests as both a floor shift and a
learning-curve shape change; few-shot anchors prove to be a low-cost way to calibrate the latter.

4 Use Case: Joint Compute and Replay Optimization

In domain adaptation, one must balance forgetting of the source domain with improvements in
the target domain, under strict compute budgets. A key feature of our method is that ptpp-aware
scaling-law fits allow prediction of both losses at an unseen PTPP (279), making it possible to solve
this trade-off analytically rather than through brute-force sweeps. We consider a target model scale
of N = 8.1B, pretrained at PTPP = 279, and seek the smallest adaptation tokens-per-parameter
(ATPP) that meets the forgetting and target-performance constraints, under the Form 1 hypothesis for
English/Arabic loss and Form 3 for French. Let the adaptation budget ATPP = D/N . We solve:

min
ATPP≥0, r∈[0,1]

ATPP s.t. ∆Lsrc

(
N, D, r, 279

)
≤ δ, Ltgt

(
N, D, r, 279

)
≤ τ.

where ∆Lsrc = Lsrc(N,D, r,PTPP) − Lsrc(N, 0, 1,PTPP), N is model size, and r ∈ [0, 1] the
replay ratio. Constraints are given by tolerated forgetting δ (e.g. +2%) and target French loss threshold
τ=1.8. The optimal solution, displayed on Fig. 2, is ATPP = 8.9 and replay 34%.
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5 Conclusion

We proposed PTPP-aware adaptation scaling laws that condition on the pre-training budget and
predict target performance at unseen PTPP. On French at PTPP=279, laws fit at early stages
(PTPP ∈ {15, 31}) generalize well and outperform a PTPP-agnostic D-CPT transfer baseline; a small
set of 241M-scale anchors further improves accuracy. Empirically, pre-training progress modulates
both the loss floor and the adaptation efficiency, and a few low-cost anchors further enhance the
prediction performances; on the source domain, floor shifts explain most gains without anchors, while
the light anchoring reveals a data-dependent effect at PTPP=279. These fits enable the optimization
of replay and adaptation tokens under compute constraints. Promising directions include investigating
how language transfer shapes the PTPP effect, extending to additional PTPP stages and domains,
assessing task-level metrics, and adding uncertainty quantification with cost-aware anchor selection.
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Appendix A: Full metric tables

Metrics. Let (yi, ŷi) be observed and predicted validation losses at the held-out stage (PTPP=279).
We evaluate errors primarily in log space to capture multiplicative miss and stabilize heteroscedasticity.
Define the log–residuals ri = log ŷi − log yi.

Huberlog ( ↓ ) is the mean Huber loss applied to ri with threshold δ=0.02:

Huberδ(r) =

{
1
2r

2, |r| ≤ δ,

δ
(
|r| − 1

2δ
)
, |r| > δ,

Huberlog =
1

n

∑
i

Huberδ(ri).

It is quadratic near zero (like MSE) but linear for outliers, making it robust.

RMSElog ( ↓ ) is the root-mean-square of the log–residuals,

RMSElog =

√
1
n

∑
i

r2i ,
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which measures typical multiplicative error (e.g., RMSElog=0.01 corresponds to ≈1% relative miss
under small-error linearization).

MAErel ( ↓ ) is the mean absolute relative error in the original scale,

MAErel =
1

n

∑
i

|ŷi − yi|
yi

,

i.e., the average percentage miss.

MAPEclip ( ↓ ) is a clipped MAPE that avoids division by tiny yi:

MAPEclip =
1

n

∑
i

|ŷi − yi|
max(yi, yclip)

,

with a small yclip > 0; when all yi≫yclip, MAPEclip equals MAErel.

Intercept/Slope report calibration from the OLS fit

log yi = a + b log ŷi + εi.

Perfect calibration gives a≈0 (no systematic bias) and b≈1 (correct sensitivity). We therefore seek
small |a| and b close to 1.

French — Unseen PTPP=279, no anchors.

Formulation Huberlog ↓ RMSElog ↓ MAErel ↓ MAPEclip ↓ Interc. Slope

Form 1 (Additive) 2.34×10−4 2.27×10−2 2.08×10−2 2.08×10−2 −0.01 0.991
Form 2 (Gated) 1.99×10−4 2.12×10−2 1.83×10−2 1.83×10−2 0.05 0.970
Form 3 (G+F) 4.43×10−5 9.53×10−3 6.70×10−3 6.70×10−3 0.01 0.991

D-CPT (transfer) 4.74×10−4 3.47×10−2 3.43×10−2 3.43×10−2 −0.00 0.961

French — Unseen PTPP=279, with 241M anchors.

Formulation Huberlog ↓ RMSElog ↓ MAErel ↓ MAPEclip ↓ Interc. Slope

Form 1 (Additive) 5.22×10−5 1.02×10−2 8.56×10−3 8.56×10−3 0.03 0.956
Form 2 (Gated) 4.23×10−5 9.20×10−3 8.17×10−3 8.17×10−3 0.00 0.992
Form 3 (G+F) 3.54×10−5 8.42×10−3 7.39×10−3 7.39×10−3 0.00 0.992

English/Arabic source — Unseen PTPP=279, no anchors.

Formulation Huberlog ↓ RMSElog ↓ MAErel ↓ MAPEclip ↓ Interc. Slope

Form 1 (Additive) 9.89×10−5 1.44×10−2 1.18×10−2 1.18×10−2 −0.05 1.034
Form 2 (Gated) 2.79×10−4 2.75×10−2 2.27×10−2 2.27×10−2 −0.03 1.045
Form 3 (G+F) 7.55×10−4 5.06×10−2 4.65×10−2 4.65×10−2 0.01 1.030

D-CPT (transfer) 5.73×10−4 4.08×10−2 3.91×10−2 3.91×10−2 0.04 0.932

English/Arabic source — Unseen PTPP=279, with 241M anchors.

Formulation Huberlog ↓ RMSElog ↓ MAErel ↓ MAPEclip ↓ Interc. Slope

Form 1 (Additive) 9.21×10−5 1.39×10−2 1.14×10−2 1.14×10−2 0.01 0.981
Form 2 (Gated) 5.94×10−5 1.10×10−2 9.01×10−3 9.01×10−3 0.04 0.960
Form 3 (G+F) 8.77×10−5 1.36×10−2 1.14×10−2 1.14×10−2 0.00 0.989

D-CPT (transfer) 5.73×10−4 4.08×10−2 3.91×10−2 3.91×10−2 0.04 0.932

Appendix B: Oracle baseline

For reference, a PTPP-wise oracle that fits D-CPT directly on PTPP=279 and evaluates on the same:
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Formulation Huberlog RMSElog MAErel MAPEclip Interc. Slope

D-CPT (French) 2.05×10−6 2.03×10−3 1.63×10−3 1.63×10−3 0.00 1.000
D-CPT (English/Arabic) 1.67×10−5 5.77×10−3 4.44×10−3 4.44×10−3 −0.00 1.001

The Oracle uses full PTPP=279 supervision and serves only as an upper bound.

Appendix C: In-sample grid (Form 3)
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Figure 3: In-sample fits for Form 3 (gated+floor). Rows: r ∈ {0.10, 0.25, 0.50}; columns: {241M,
517M, 1.4B, 8.1B}. Dashed: fitted curves; markers: observations. Used only as an auxiliary fit-
quality check.
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