
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

YOUR MODELS HAVE THOUGHT ENOUGH: TRAINING
LARGE REASONING MODELS TO STOP OVERTHINKING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Reasoning Models (LRMs) have achieved impressive performance on chal-
lenging tasks, yet their deep reasoning often incurs substantial computational costs.
To achieve efficient reasoning, existing reinforcement learning methods still strug-
gle to construct short reasoning path during the rollout stage, limiting effective
learning. Inspired by Evidence Accumulation Models, we find that LRMs have
accumulated sufficient information early in reasoning, making further reasoning
steps redundant. Based on this insight, we propose Just-Enough Thinking (JET),
which trains models to proactively terminate unnecessary reasoning. JET performs
trajectory truncation during rollout to expose the model to short, distributionally
consistent reasoning paths. Besides, it uses a quality-controlled length reward to
better encourage concise reasoning while maintaining correctness. Extensive exper-
iments demonstrate that JET significantly improves reasoning efficiency without
sacrificing accuracy. Especially, DeepSeek-Distill-Qwen-1.5B achieves a 4.6%
accuracy gain while reducing output length by 46.3% on the Olympiad benchmark.
Our code is available in the GitHub 1.

1 INTRODUCTION

Large Reasoning Models (LRMs) have achieved substantial performance gains on highly structured
and complex reasoning tasks, such as mathematical problem solving (Shao et al., 2024) and competi-
tive programming (Jiang et al., 2024). Their reasoning process involves elaborate intermediate steps,
reflective self-verification, and exploring alternative solution strategies (Min et al., 2024). These
developments are widely regarded as an approximation of human System-2 cognitive processes (Qu
et al., 2025a; Li et al., 2025). Models including OpenAI o1 (OpenAI, 2025) and DeepSeek-R1 (Guo
et al., 2025) empirically demonstrate this capability in practice.

Despite these advances, the System-2 style reasoning of LRMs incurs substantial computational
costs. LRMs frequently perform more reasoning steps than necessary and consuming excessive
computational resources to reach correct answers, a phenomenon we refer to as “overthinking”
(Chen et al., 2024; Luo et al., 2025b). This contrasts sharply with the efficiency and adaptability
of human cognition. Therefore, developing methods that maintain high accuracy while improving
computational efficiency has become a central challenge for LRMs.

To address the challenge of reasoning efficiency, Reinforcement Learning (RL) has emerged as a
promising paradigm (Hu et al., 2025b; Liu et al., 2025a). The core idea is to use additional reward
signals to guide model generation toward answers that are both correct and concise. Existing
approaches fall into two main categories. (i) adaptive thinking mode selection methods equip models
with multiple reasoning modes (think/no-think) via Supervised Fine-Tuning (SFT), and then use RL
with thinking rewards to select the most suitable mode for each problem (Zhang et al., 2025; Wu
et al., 2025a; Huang et al., 2025a). (ii) length-based optimization approaches introduce explicit length
rewards to encourage more concise reasoning (Team et al., 2025; Gao et al., 2025).

Effective reward-based methods depend on exposing the model to diverse samples, yet LRMs
naturally favor verbose outputs, rarely generating short reasoning trajectories. This inherent verbosity
biases the training data (as shown in the left of Figure 1), leading to a flawed reward signal that
fails to encourage concise reasoning (Wu et al., 2025b). A straightforward solution is to compress

1https://anonymous.4open.science/r/Just-Enough-Think/

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

0 1000 2000 3000 4000 5000 6000 7000
0.00

0.03

0.06

0.09

0.12

0.15

0.18 Average Token Length

Fr
eq

ue
nc

y

Token Length

100%
92%

74%

46%

2919

2386

1945

1163
100% 75% 50% 25%

0

20

40

60

80

100

A
RR

 /
 A

cc
ur

ac
y

(%
)

Truncation Ratio

ARR Average Token Length Accuracy

1200

1600

2000

2400

2800

A
ve

ra
ge

 T
ok

en
 L

en
gt

h

-18.3%

-33.4%

-60.2%

Figure 1: Left: The token length distribution of 500 answers generated by DeepSeek-Distill-Qwen-
7B on a math problem. Answers shorter than 1,000 tokens are extremely rare, showing that LRMS
hard to produce short answers on their own. Right: The effect of truncation ratios on the Accuracy
Retention Ratio (ARR) and token compression for the DeepSeek-Distil-Qwen-7B model on the
MATH500 dataset.

long answers or provide external short answers. Yet, such interventions introduce a significant
distribution mismatch between the model’s natural generation distribution and the artificially
shortened samples, which destabilizes gradient updates and impairs learning within the model’s own
generative process (Huang et al., 2025b).

To overcome these limitations, it’s necessary to identify short, distributionally consistent reasoning
trajectories from the model’s own long reasoning chains. Inspired by Evidence Accumulation Models
(Lee & Cummins, 2004) in cognitive science, which describe that human decision-making is a
dynamic process where information is integrated until a threshold is reached, after which further
evidence serves only to support the decision. We hypothesize that LRM reasoning operates similarly.
The early part of a reasoning trajectory already contains enough information to determine the final
answer, and continues to generate results in redundant reasoning. Our pilot experiments also support
this hypothesis.

Building on this core insight, we propose Just-Enough Thinking (JET), a method that trains models to
proactively terminate unnecessary thinking. Specifically, JET operates through two key components.
First, we additionally perform trajectory truncation during RL rollout, exposing the model to reasoning
paths of varying lengths while keeping them aligned with the model’s natural generation. Second,
we introduce a quality-controlled length reward to better guide the model toward efficiency. This
reward identifies the shortest correct trajectory in each reasoning group as a baseline and assigns
length penalties to longer correct trajectories.

Our main contributions are as follows:

• Inspired by the Evidence Accumulation Models, we propose the Just-Enough Thinking (JET),
which leverages trajectory truncation to expose the model to reasoning paths of varying lengths
during rollout, and length-aware rewards to guide more efficient reasoning.

• We empirically demonstrate that LRMs accumulate sufficient information early in reasoning. By
truncating trajectories during rollout, we can construct short reasoning paths that remain aligned with
the model’s natural generation distribution. This provides a natural basis for training JET.

• Extensive experiments demonstrate that JET achieves superior efficient reasoning on complex and
challenging tasks. For example, on the Olympiad benchmark, DeepSeek-Distill-Qwen-1.5B achieves
a 4.6% improvement in accuracy while reducing output length by 46.3%. Furthermore, the model’s
ability to proactively terminate reasoning generalizes across other reasoning tasks.

2 PILOT EXPERIMENTS

LRMs often produce long multi-step reasoning sequences, but it remains unclear whether the full
sequence is necessary to arrive at the correct answer. In this section, we investigate whether the
model accumulates sufficient information during the initial reasoning steps to produce correct
answers. Therefore, we conduct pilot experiments on the MATH500 dataset with DeepSeek-Distill-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Qwen-7B. We mainly evaluate how limiting the model to only the early portion of its reasoning
sequence affects answer correctness.

2.1 TASK DEFINITION

Let M be a large reasoning model. For a given problem q ∈ Q, M generates a sequence of
intermediate reasoning states S = [s1, s2, . . . , sL] and produces a final answer oq, where L denotes
the total length of reasoning steps. Following the standard autoregressive generation paradigm, this
process is formulated as:

P
(
Sq, oq | q

)
=

L∏
i=1

P
(
si | q, s<i

)
· P

(
oq | q, Sq

)
. (1)

We define a truncated reasoning sequence S
(T)
q as the first ⌊T · L⌋ intermediate reasoning process

of the full sequence, where S
(T)
q = [s1, s2, . . . , s⌊T ·L⌋], T ∈ [0, 1). At the truncation point, a forced

stop-thinking signal zstop is inserted, instructing the model to stop thinking and produce a final
answer Â(T) based on the available intermediate reasoning steps.

ô(T)
q ∼ P (oq | q, S(T)

q , zstop), (2)

To quantify the model’s performance under truncation, we use two complementary metrics that
capture correctness and efficiency:
Accuracy Retention Ratio. ARR measures the proportion of originally correct problems that remain
correct after truncation. Let Qcorrect = { q ∈ Q | oq = o∗q } be the set of problems correctly solved
with the full reasoning sequence, where o∗q is the ground-truth answer. Then

ARR(T) =
1

|Qcorrect|
∑

q∈Qcorrect

I
(
ô(T)
q = o∗q)

)
. (3)

Token Compression Ratio. It quantifies the reduction in reasoning tokens achieved by relying solely
on the truncated prefix to produce the final answer.

TCR(T) = 1− |S(T)
q |
|Sq|

(4)

2.2 PILOT EXPERIMENTS AND ANALYSIS

We first establish a baseline by allowing the model to generate complete reasoning traces and its final
answers. We then truncate the reasoning process, retaining only the first 75%, 50%, and 25% of the
original reasoning chain, and insert a stop-thinking cue, like “Wait, I have enough information to
get the final answer. Therefore, the final answer is...” (as shown in the left of Figure 2), to prompt
the model to produce the final answer from the partial reasoning. We evaluate its performance under
these conditions.

LRMs retain most of their accuracy even when large portions of the reasoning chain are removed. As
shown in the right of Figure 1, restricting the model to the first 75% of its reasoning preserves over
90% of the originally correct solutions, and using only the first half still yields correct answers on
roughly three-quarters of those problems. Even with just a quarter of the reasoning, nearly half of the
originally correct solutions survive. This indicates that the essential problem-solving information is
accumulated early and later steps contribute little to correctness.

Truncation also yields substantial reductions in token consumption. Full reasoning averages about
2,900 tokens per problem. Using only the first three-quarters reduces cost by about 18% with minimal
accuracy loss, and using only half cuts almost 1,000 tokens while retaining most performance. Even
at 25% of the reasoning chain, token usage drops to less than 40% of the original. Although accuracy
declines at this point, the model still achieves non-trivial performance at a fraction of the inference
cost, underscoring the efficiency potential of front-loaded reasoning.

Highlights

LRMs accumulate most of the crucial problem-solving information early in their reasoning
process, allowing them to maintain high accuracy while significantly reducing the number of
reasoning tokens.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

How many positive whole-number divisors does 196 have?
(2) Truncated trajectory (1) Full reasoning

I'll start by finding its prime
factorization.
First, divide 196 by 2...
Next, divide 49 by 7...

(Omit reasoning steps)
The final answer is 9.
ToTal Tokens: 2480

.....

First, divide 196 by 2...
Next, divide
/*stop-thinking*/
Wait, I have enough information to
get the final answer.
Therefore, the final answer is 9.
ToTal Tokens: 1326

q

q

q

Full reasoning path

Truncated trajectory

+ stop-thinking

q

+ stop-thinking

+

+

+

Stage2

Stage1

+ stop-thinking

Figure 2: Left: An example of a truncated reasoning trajectory; Right: The process of Two-stage
Rollout Construction.

3 METHODS

Motivated by our observation that LRMs accumulate most problem-solving information in the early
stages of reasoning, we introduce JET, a reinforcement learning approach based on DAPO (Yu et al.,
2025a). JET trains LRMs to stop reasoning once sufficient information has been gathered, enabling
them to produce accurate answers and concise reasoning steps.

3.1 TWO-STAGE ROLLOUT CONSTRUCTION

To expose the model to diverse reasoning behaviors and enable efficient policy learning, we employ a
two-stage rollout construction strategy during reinforcement learning, which is shown in Figure 2.

Stage1: Full Reasoning In the first stage, corresponding to the standard rollout phase in RL,the
model produces full reasoning trajectories under its natural autoregressive generation process. This
step exposes the model to its unconstrained reasoning behavior, capturing complete chains that
include both intermediate reasoning steps and the final answer. These full trajectories provide a rich
reference set for later truncation and allow us to sample diverse reasoning paths in Stage 2.

Stage2: Trajectory Truncation This stage constructs shorter reasoning paths by truncating full
trajectories. Starting with the full reasoning trajectories obtained in Stage 1, we generate multiple
shortened versions by cutting each trajectory at various intermediate steps. At each truncation
point, we add explicit “stop-thinking” sentence that encourages the model to immediately provide
a conclusion, rather than continuing its reasoning process. These truncated trajectories maintain
consistency with the model’s generation distribution while increasing the diversity of reasoning paths
during reinforcement learning rollouts.

Identify the Truncation Position. Determining the optimal truncation point is challenging. Cutting
too early may produce incorrect answers, while cutting too late adds redundant reasoning. Exhaus-
tively searching for this point is computationally expensive and reduces RL training efficiency, we
propose Progressive Early-Stopping (PES) strategy.

For each full reasoning trajectory, PES generates a sequence of truncated variants at positions

tk = t0 + k∆t, k = 0, 1, . . . ,K, (5)

where t0 is the initial cutoff, ∆t is the predefined step size or quantile interval, and K controls
the number of truncations. At each cutoff tk, an explicit stop-thinking cue prompts the model to
immediately produce its final answer.

This progressive sampling (i) preserves consistency with the model’s own generation distribution,
(ii) increases the chance of including the optimal or near-optimal cutoff t∗, and (iii) provides diverse
early-stopped trajectories. These trajectories help the model learn when to halt reasoning while
maintaining answer correctness, improving both efficiency and policy stability.

Together, the two stages generate diverse reasoning trajectories that guide the RL policy to reason
efficiently without sacrificing accuracy. Full trajectories provide comprehensive coverage, while
truncated trajectories encourage concise reasoning, enabling the model to balance correctness and
brevity.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.2 REWARD AND OBJECTIVE DESIGN

Another critical component in RL training is the design of reward system, which guides the model
toward desired behaviors. Our reward mechanism consists of two main components: a base reward
that encourages correct and well-formatted answers, and a length reward that encourages concise
reasoning.

Base Reward. Following standard RL practices, the base reward combines two components: the
format reward rf and the correctness reward racc. The format reward rf ∈ {0, 1} ensures proper
answer presentation by requiring final answers to be enclosed in \boxed{} tags. The correctness
reward racc ∈ {0, 1} evaluates answer accuracy through exact string matching with the ground-truth
solution.

Length Reward. To encourage concise reasoning without compromising correctness, we design an
accuracy-conditioned length reward based on the following principles:

Correctness first: Only correct responses are eligible for length rewards, ensuring that accuracy
remains the primary objective.
Conciseness preference: Among correct responses, shorter reasoning paths receive higher rewards,
promoting brevity in reasoning.
Per-question normalization: Rewards are measured relative to the shortest and longest correct
responses for each question, preventing biases caused by differing length distributions across
questions.

Formally, let C = {i | racc(i) = 1} denote the set of correct responses for a question. Within this set,
we define ℓmin = minj∈C ℓj and ℓmax = maxj∈C ℓj as the shortest and longest correct responses,
respectively. The length reward for a response i is then:

rℓ(i) =

{(
ℓmax−ℓi

ℓmax−ℓmin+ε

)
· α · (1− δ) + δ, if i ∈ C

0, if i /∈ C
(6)

Here, α controls the rate at which reward decays with length, δ ∈ (0, 1) sets a minimum reward for
all correct responses, and ε > 0 avoids division by zero when all correct responses have equal length.

Total Reward. The total reward combines the contributions of correctness, formatting, and concise-
ness to guide the model toward accurate, well-formatted, and concise reasoning. Formally, for a
sample i, the total reward is defined as:

R(i) = wf · rf (i) + wacc · racc(i) + wℓ · rℓ(i) (7)
where rf (i), racc(i), and rℓ(i) are the format, correctness, and length rewards, respectively, and
wf , wacc, and wℓ are non-negative coefficients that balance their contributions. By combining these
components, the reward function ensures that the model not only produces correct answers but also
maintains proper formatting and favors concise reasoning paths.

Training Objective. The original DAPO algorithm optimizes the policy by sampling a set of outputs
{oi}Gi=1 for each input query q and corresponding answer A, with the objective formulated as:

JDAPO(θ) = E(q,a)∼D,{oi}G
i=1∼πθold (·|q)[

1∑G
i=1 |oi|

G∑
i=1

|oi|∑
t=1

min
(
ri,t(θ)Âi,t, clip

(
ri,t(θ), 1− εlow, 1 + εhigh

)
Âi,t

)] (8)

Here, the importance sampling ratio is ri,t(θ) =
πθ(oi,t|q,oi,<t)
πθold (oi,t|q,oi,<t)

, and the advantage estimate is

Âi,t =
Ri−mean({Ri}G

i=1)

std({Ri}G
i=1)

.

Unlike standard DAPO, which computes the loss only on full reasoning trajectories, JET incorporates
both full trajectories and those obtained by truncating a reasoning chain and then completing it.
By including these truncated-and-completed trajectories in the objective, the policy learns to stop
reasoning once sufficient information has been gathered, producing answers that are both correct and
concise. The complete algorithm is shown in Appendix 1.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Performance of different baselines across various math tasks. Values in parentheses under
ACC indicate the accuracy change ∆acc relative to the Base, and values under Length denote the
token compression ratio (%) with respect to Base.

Methods GSM8K MATH500 AIME24 AMC Olympiad AVG
ACC Length ACC Length ACC Length ACC Length ACC Length ACC Length

DeepSeek-Distill-Qwen-1.5B
Base 76.0 468 79.6 3617 28.7 11046 63.3 7644 47.0 7679 58.9 4765
SFT 81.4 (+5.4) 559 (+19.4) 78.8 (-0.8) 2591 (-28.4) 27.7 (-1.0) 9139 (-17.3) 57.2 (-6.1) 5394 (-29.4) 42.5 (-4.5) 5532 (-28.0) 57.5 (-1.4) 3583 (-16.7)

DPO 80.2 (+4.2) 530 (+13.2) 78.6 (-1.0) 2652 (-26.7) 24.0 (-4.7) 9966 (-9.8) 59.0 (-4.3) 5482 (-28.3) 44.0 (-3.0) 5929 (-22.8) 57.2 (-1.7) 3744 (-14.9)

DAPO 80.0 (+4.0) 826 (+76.5) 85.8 (+6.2) 3106 (-14.1) 26.7 (-2.0) 8583 (-22.3) 66.3 (+3.0) 5666 (-25.9) 46.6 (-0.4) 5822 (-24.2) 61.1 (+2.1) 3822 (-2.0)

AdaThink 82.0 (+6.0) 772 (+65.0) 79.6 (+0.0) 1905 (-47.3) 23.7 (-5.0) 7434 (-32.7) 58.7 (-4.6) 3983 (-47.9) 49.8 (+2.8) 4706 (-38.7) 58.8 (-0.2) 2948 (-20.3)

Laser-D 84.9 (+8.9) 1073 (+129.3) 85.2 (+5.6) 2424 (-33.0) 30.0 (+1.3) 7271 (-34.2) 65.8 (+2.5) 4355 (-43.0) 53.2 (+6.2) 4813 (-37.3) 63.8(+4.9) 3221 (-3.6)

Laser-DE 84.1 (+8.1) 1179 (+151.9) 84.2 (+4.6) 2798 (-22.6) 29.7 (+1.0) 7960 (-27.9) 65.2 (+1.9) 5018 (-34.4) 50.5 (+3.5) 5265 (-31.4) 62.7 (+3.8) 3604 (+7.1)

LCR1 75.0 (-1.0) 443 (-5.3) 77.6 (-2.0) 1851 (-48.8) 19.0 (-9.7) 7155 (-35.2) 56.4 (-6.9) 3897 (-49.0) 44.0 (-3.0) 4193 (-45.4) 54.4 (-4.5) 2682(-36.8)

JET 83.8 (+7.8) 605 (+29.3) 83.0 (+3.4) 2072 (-42.7) 32.0 (+3.3) 6641 (-39.9) 66.1 (+2.8) 3872 (-49.3) 51.6 (+4.6) 4121 (-46.3) 63.3 (+4.4) 2710 (-29.8)

DeepSeek-Distill-Qwen-7B
Base 87.0 469 92.0 2918 51.3 9812 78.9 6013 63.1 6782 74.5 4026
SFT 87.3 (+0.3) 438 (-6.6) 91.4 (-0.6) 2568 (-12.0) 48.7 (-2.6) 9814 (+0.0) 78.6 (-0.3) 5836 (-2.9) 62.7 (-0.4) 6441 (-5.0) 73.7 (-0.7) 3862 (-5.3)

DPO 86.1 (-0.9) 438 (-6.6) 90.0 (-2.0) 2590 (-11.2) 53.0 (+1.7) 9552 (-2.6) 77.2 (-1.7) 5797 (-3.6) 60.4 (-2.7) 6465 (-4.7) 73.4 (-1.1) 3839 (-5.8)

DAPO 90.1 (+3.1) 583 (+24.3) 91.6 (-0.4) 2720 (-6.8) 53.3 (+2.0) 8414 (-14.2) 81.7 (+2.8) 4903 (-18.5) 63.4 (+0.3) 5361 (-21.0) 76.0 (+1.5) 3405 (-7.2)

AdaThink 88.9 (+1.9) 304 (-35.2) 87.8 (-4.2) 1325 (-54.6) 50.7 (-0.6) 8131 (-17.1) 77.2 (-1.7) 3871 (-35.6) 61.3 (-1.8) 4656 (-31.3) 73.2 (-1.3) 2720 (-34.8)

Laser-D 91.6 (+4.6) 965 (+105.8) 92.0 (+0.0) 1950 (-33.2) 52.7 (+1.4) 6361 (-35.2) 82.8 (+3.9) 3505 (-41.7) 64.7 (+1.6) 3755 (-44.6) 76.8 (+2.3) 2649 (-9.8)

Laser-DE 91.5 (+4.5) 948 (+102.1) 92.4 (+0.4) 1942 (-33.4) 53.0 (+1.7) 5809 (-40.8) 82.9 (+4.0) 3357 (-44.2) 64.6 (+1.5) 3713 (-45.3) 76.9 (+2.4) 2554 (-12.3)

LCR1 86.0 (-1.0) 386 (-17.7) 87.6 (-4.4) 1313 (-55.0) 50.0 (-1.3) 6329 (-35.5) 76.5 (-2.4) 3173 (-47.2) 59.1 (-4.0) 3575 (-47.3) 71.8 (-2.6) 2238 (-40.5)

JET 86.1 (-0.9) 324 (-30.9) 91.2 (-0.8) 2091 (-28.3) 54.0 (+2.7) 7981 (-18.7) 81.0 (+2.1) 4301 (-28.5) 63.9 (+0.8) 5083 (-25.1) 75.2 (+0.8) 2999 (-26.3)

4 EXPERIMENTS

4.1 EXPERIMENT SETUPS

Models. To assess the effectiveness of our method across of different sizes, we adopt two represen-
tative and widely used LRMs, Deepseek-Distill-Qwen7B and 1.5B (DeepSeek-AI et al., 2025), as
backbone models.

Datasets. Training data. We construct a mixed-difficulty training dataset by combining MATH and
DAPO-MATH 2. We then remove all Chinese-language problems, resulting in 14,564 examples.

Test data. We evaluate our model across a diverse suite of benchmarks to assess its performance in both
in-domain and out-of-domain scenarios. For in-domain mathematical reasoning, we use datasets of
varying difficulty, including AIME 20243, MATH500 (Lightman et al., 2023), GSM8K (Cobbe et al.,
2021), AMC4, and Olympiad (He et al., 2024) problems. To measure out-of-domain generalization,
we teste the model on GPQA-Diamond, CommonsenseQA, and a subset of MMLU created by
sampling 2,000 problems per subject. Finally, to ensure statistical robustness, all experiments on
AIME 2024 and AMC are independently repeated 10 times.

Metrics. We evaluate model performance using the following four metrics: Accuracy (Acc) for
correctness, Output Length (Length) for conciseness, Accuracr change ∆acc to track performance
shifts, and the token compression ratio (Eq. 4) to measure efficiency.

Baselines. In addition to backbone models, we compare JET with several efficient reasoning
methods. Specifically, (1) Supervised Fine-tuning (SFT): Following OVERTHINK (Chen et al.,
2024), we construct training datasets from the shortest correct answers generated during our method’s
rollout stage to fine-tune the backbones; (2) Direct Preferene Optimization (DPO): We also create
a preference dataset, by labeling the shortest correct answer as “chosen” and the longest as “reject”;
(3) DAPO: A widely used RL algorithm for enhancing reasoning capabilities, analogous to R1; (4)
AdaptThink (AdaThink): An RL algorithm that teaches reasoning models when to think or not
think to solve a given query; (5) IC-R1: A GRPO-based method that improves reasoning efficiency
by pruning invalid steps; (6) Laser: It’s also an RL-based method that promotes reasoning efficiency
by using a step-function reward based on target sequence length. Detailed experimental settings and
hyperparameters for these baselines are provided in the Appendix A.

2https://huggingface.co/datasets/BytedTsinghua-SIA/DAPO-Math-17k
3https://huggingface.co/datasets/math-ai/aime24
4https://huggingface.co/datasets/AI-MO/aimo-validation-amc

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Generalization ability of different methods on other reasoning tasks. Values in parentheses
under ACC indicate the accuracy change ∆acc relative to the Base, and values under Length denote
the token compression ratio (%) with respect to Base.

Methods CSQA GPQA-Diamond MMLU AVG
ACC Length ACC Length ACC Length ACC Length

D
S-

Q
w

en
-1

.5
B

Base 44.2 787 32.3 5619 43.8 1306 40.1 1370
SFT 47.0 (+2.8) 740 (-6.0) 34.9 (+2.6) 5288 (-5.9) 44.7 (+0.1) 1122 (-14.1) 42.2 (+2.1) 1227 (-8.7)

DPO 44.6 (+0.4) 690 (-12.3) 30.3 (-2.0) 5283 (-6.0) 44.5 (+0.7) 1143 (-12.5) 39.8 (-0.3) 1221 (-10.3)

DAPO 45.6 (+1.4) 479 (-39.1) 37.9 (+5.6) 4591 (-18.3) 46.5 (+1.8) 856 (-34.4) 43.3 (+3.2) 938 (-30.6)

AdaptThink 48.0 (+3.8) 887 (+12.7) 32.3 (+0.0) 4601 (-18.1) 44.5 (-2.0) 1224 (-6.3) 41.6 (+1.5) 1299 (-3.9)

Laser-D 47.1 (+2.9) 685 (-13.0) 34.3 (+2.0) 5352 (-4.8) 47.2 (+3.4) 1143 (-12.5) 42.9 (+2.8) 1223 (-10.1)

Laser-DE 47.8 (+3.6) 685 (-13.0) 33.8 (+1.5) 5575 (-0.8) 46.2 (+2.4) 1217 (-6.8) 42.6 (+2.5) 1279 (-6.9)

LCR1 44.3 (+0.1) 431 (-45.2) 33.8 (+1.5) 3678 (-34.5) 42.7 (-1.1) 744 (-43.0) 40.3 (+0.2) 802 (-40.9)

JET 45.6 (+1.4) 407 (-48.3) 43.4 (+11.1) 4182 (-25.6) 44.6 (+0.8) 715 (-45.3) 44.5 (+4.4) 806 (-39.7)

D
S-

Q
w

en
-7

B

Base 63.7 631 47.5 6359 60.1 1022 57.1 1191
SFT 65.4 (+1.7) 593 (-6.0) 45.5 (-2.1) 5418 (-14.8) 60.2 (+0.1) 1044 (+2.2) 57.0 (-0.1) 1136 (-6.2)

DPO 65.9 (+2.2) 586 (-7.1) 49.0 (+1.5) 5519 (-13.2) 60.1 (+0.0) 947 (-7.3) 58.3 (+1.2) 1083 (-9.2)

DAPO 65.7 (+2.0) 519 (-17.7) 51.0 (+3.5) 5485 (-13.7) 58.9 (-1.3) 907 (-11.3) 58.5 (+1.4) 1034 (-14.3)

AdaptThink 65.9 (+2.2) 536 (-15.1) 44.4 (-3.1) 4820 (-24.2) 57.3 (-2.8) 840 (-17.8) 55.9 (-2.6) 962 (-19.0)

Laser-D 65.8 (+2.1) 600 (-4.9) 51.0 (+3.5) 4417 (-30.5) 62.3 (+2.2) 1059 (+3.6) 59.7(+2.6) 1090 (-10.6)

Laser-DE 64.8 (+1.1) 553 (-12.4) 46.5 (-1.0) 3884 (-38.9) 63.4 (+3.3) 1027 (+0.5) 58.2 (+1.1) 1023 (-16.9)

LCR1 65.0 (+1.3) 404 (-36.0) 50.0 (+2.5) 3429 (-46.1) 56.5 (-3.6) 611 (-40.2) 57.2 (+0.1) 700 (-40.8)

JET 66.4 (+2.7) 531 (-15.8) 52.5 (+5.0) 5530 (-13.0) 63.9 (+3.8) 860 (-15.9) 60.9 (+3.8) 1013 (-14.9)

4.2 MAIN RESULTS

JET achieves substantial output length reduction without compromising accuracy, demonstrat-
ing superior efficiency. Some methods such as LCR1 attain higher compression but at the cost of
accuracy. For example, on MATH500 with the 7B model, LCR1 reduces length by over 50% but
drops accuracy by 4.4pp, undermining the goal of efficient reasoning. In contrast, JET consistently
attains large reductions, averaging 39.7% on the 1.5B model, while maintaining or even improving
accuracy across tasks, reflecting a more favorable efficiency and accuracy trade-off.

JET shows outstanding performance on challenging mathematical reasoning tasks. On high-
level competition datasets such as AIME24 and AMC, JET provides notable gains. With the 7B
model, it achieves 54.0 accuracy on AIME24 (+2.7 over Base) and 81.0 on AMC (+2.1 over Base).
These improvements indicate that JET efficiently captures critical reasoning steps, reduces redundant
computation, and produces higher-quality solutions. Its output is also shorter than other methods,
showing a more efficient reasoning process.

JET also demonstrates a distinct advantage on simpler tasks. While other methods, such as Laser
and AdaThink, tend to generate unnecessarily lengthy reasoning even on easy problems (GSM8K).
However, JET is not passively compressing, it possesses task-awareness and aims to allocate fewer
tokens in low-complexity scenarios. In contrast, for more challenging tasks, JET ensures adequate
space for deeper reasoning. This intelligent resource allocation mechanism highlights its stable
performance across tasks of varying difficulty levels.

JET maintains stable performance across model scales. It performs well across LRM models of
different parameter scales. This consistent improvement across scales indicates that JET ’s reasoning
strategy is inherently effective and can be reliably applied to models of varying sizes.

4.3 GENERALIZATION ANALYSIS OF JET

JET exhibits robust generalization across domains and difficulty levels in commonsense rea-
soning tasks, indicating that its effectiveness stems from an optimized, domain-agnostic reasoning
framework rather than incidental factors. Although initially developed for mathematical reasoning,
JET achieves consistently strong results on CSQA (commonsense judgment), GPQA (professional
reasoning), and MMLU (multidisciplinary evaluation), underscoring its versatility.

The largest gains emerge on the challenging GPQA-Diamond benchmark, highlighting JET ’s
capacity to handle complex semantic structures, a central element of its generalization. On

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

w / o F i x P E S

4 0 0

6 0 0

8 0 0
G S M 8 K

7 5

8 0

8 5

w / o F i x P E S
3 5 0 0

4 0 0 0

4 5 0 0 O l y m p i a d

4 5

4 8

5 1

w / o F i x P E S

3 6 0 0

3 9 0 0

4 2 0 0 A M C

Av
er

ag
e T

ok
en

 Le
ng

th
 A v e r a g e T o k e n L e n g t h
 A c c u r a c y

6 0

6 4

6 8

w / o F i x P E S

2 6 0 0

2 8 0 0

3 0 0 0 A V G

5 7

6 0

6 3

Ac
cu

rac
y (

%)

Figure 3: Performance of different rollout strategies during the RL training.

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0
0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

1 2 0 0

Ge
n T

im
e (

s)

S t e p s

w / o P E S
 P E S

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0
0

3 0 0

6 0 0

9 0 0

1 2 0 0

1 5 0 0

1 8 0 0

Tr
ain

ing
 Ti

me
 (s

)

S t e p s

 w / o P E S
 P E S

Figure 4: Comparison of rollout generation time and RL
training time with and without PES. PES speeds the RL
training by producing shorter reasoning trajectories.

O l y m p i a d

A M C

G S M 8 K

A I M E 2 4
M A T H 5 0 0

 L i n e a r
 E x p
 O u r s

C S Q A

G P Q A

M M L U

A V G
2 8 0 0

2 4 0 0

1 0 0 0 9 0 0

5 5 0 0
6 5 0 0

2 8 0 0

3 2 0 0

1 0 0 0 0

9 0 0

6 0 0 0

7 0 0 06 0 0

5 0 0 6 0 0 0

8 0 0

5 0 0 0

9 0 0 0

Figure 5: Average output token length
of JET across three length-reward
strategies on nine benchmarks.

this dataset, JET delivers +5.0 improvement with the 7B model, substantially outperforming other
methods, and an even larger +11.1 gain with the 1.5B model. This “the harder, the stronger” pattern
indicates that JET enhances the model’s ability to capture deep reasoning structures, rather than
relying on superficial pattern matching, and maintains high performance even in unfamiliar domains.

4.4 IMPACT OF PES-INDUCED ANSWER DIVERSITY ON TRAINING

To investigate how the diverse answers generated through PES strategy impact model performance,
we compare PES with fixed-position truncation (Fix) and full reasoning generation without early
stopping (w/o PES), analyzing the impact of diverse samples during rollout on training outcomes.
Results are shown in Figure 3, more additional analysis are in Appendix C.5. The backbone used is
Deepseek-Distill-Qwen-1.5B.

PES leverages answer diversity to enhance reasoning accuracy and efficiency. By generating reasoning
paths of varying lengths, PES exposes the model to different problem-solving strategies, allowing
it to learn when additional reasoning improves outcomes and when early stopping prevents error
accumulation. In contrast, w/o PES experiences error accumulation in longer sequences, and Fix
cannot adapt to problem complexity. Case studies in Appendix C.6 further illustrate how PES enables
proactive stop-thinking behavior during inference.

4.5 EFFICIENCY ANALYSIS OF PES

PES achieves significant computational efficiency. Instead of performing a costly search for the
optimal truncation points, PES employs a simple and effective progressive approach to approximate
the optimal reasoning length. By truncating full reasoning trajectories, PES reduces computational
overhead during rollout. The shortened trajectories require fewer forward passes and enable faster
gradient computation, further accelerating RL training. Compared to the baseline strategy that
generates full reasoning chains, PES achieves up to a five-fold speedup in rollout generation and
policy optimization, as shown in Figure 4.

4.6 LENGTH REWARD DESIGN ANALYSIS

We compare three length reward design in JET, including linear reward (Linear), weighted linear
reward (ours), and exponential decay reward (Exp). The linear reward assigns scores proportionally
based on the shortest and longest reasoning lengths. Our weighted linear reward adds a scaling factor
and an offset to encourage concise reasoning while maintaining a minimum reward. Exponential

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

decay penalizes longer outputs more sharply. The detailed formulations are in Appendix C.4. The
results are shown in Figure 5.

Across eight datasets, the weighted linear reward effectively reduces reasoning token length. By
amplifying incentives for shorter outputs while preserving a minimum reward, it retains essential
reasoning steps and eliminates redundant content, achieving a superior balance between accuracy and
efficiency. The results of accuracy are in the Table 3. Linear rewards offer weak control, allowing
verbose outputs, whereas exponential decay can truncate reasoning prematurely, leading to unstable
accuracy. Further analysis is shown in Appendix C.4.

5 RELATED WORK

Enhancing Deep Thinking Capability in LLMs. Unlike the rapid, heuristic-driven behavior of
LLMs, slow-thinking reasoning systems enhance their capabilities by introducing deliberate and
analytical reasoning (Snell et al., 2024). These approaches employ test-time scaling, enabling models
to allocate more computation and time to reasoning before responding to challenging questions
(Muennighoff et al., 2025b). Reinforcement Learning (RL) has become the main technique for
building strong reasoning abilities in LLMs during post-training stage. OpenAI’s o1 model (Jaech
et al., 2024) was the first large-scale use of RL for deep reasoning, showing excellent performance
on complex tasks. Soon after, DeepSeek-R1 (DeepSeek-AI et al., 2025) became the first open-
source model to match o1’s performance, making these techniques available to more researchers.
This progress has led to many powerful long reasoning models, including Gemini 2.5 (Comanici
et al., 2025), QwQ (Team, 2025), and Phi-4 (Abdin et al., 2024). Recent work has shown that
Reinforcement Learning with Verifiable Rewards (RLVR) (Chu et al., 2025; Betley et al., 2025) can
greatly improve model’s performance on challenge reasoning task, especially in mathematics and
programming (Shao et al., 2024; Hu et al., 2025a). At the same time, more better RL algorithms like
GRPO (Shao et al., 2024), DAPO (Yu et al., 2025b), and Dr.GRPO (Liu et al., 2025b) are proposed
to make the post-training process faster, more stable and effective.

Efficient Reasoning. While detailed reasoning often leads to more correct answers, the redundant
thought process of LRMs greatly increases the inference time and computational cost, a problem
known as “overthinking” (Sui et al., 2025; Feng et al., 2025). Many work have proposed methods to
improve reasoning efficiency from different perspectives.
One group of methods sets a fixed token budget for reasoning. They directly control the length of
reasoning by setting explicit token limits (Muennighoff et al., 2025a; Sun et al., 2025; Aggarwal &
Welleck, 2025; Anthropic, 2025). Examples include CoT-Valve (Ma et al., 2025) and L1 (Aggarwal
& Welleck, 2025). However, it is hard to choose the right budget for problems of different difficulty
levels. Another line of work teaches the model to adapt its reasoning length to the difficulty of the
question. For example, Adar1 (Luo et al., 2025a) and DAST (Shen et al., 2025) build preference
datasets to train the model to decide by itself whether to use a “think” or “no-think” mode for each
query (Lou et al., 2025; Zhang et al., 2025; Bai et al., 2023). Another growing body of work explores
reinforcement learning to achieve efficient reasoning. Methods such as O1-Pruner (Luo et al., 2025b;
Qu et al., 2025b; Dai et al., 2025), ThinkPrune (Hou et al., 2025), and Kimi (Team et al., 2025) add
length-based penalties to the reward function to encourage concise but accurate reasoning.

6 CONCLUSION

In this paper, we propose Just-Enough Thinking (JET), a method that trains LRMs to proactively
terminate unnecessary reasoning and achieve efficient reasoning. JET tackles the difficulty that
LRMs seldom produce short reasoning paths during reinforcement learning, leading to biased training
samples. Artificially constructed short answers often diverge from the model’s natural probability
distribution, which hinders effective learning. Inspired by Evidence Accumulation Models, we design
a two-stage rollout strategy, where one stage applies trajectory truncation to construct short reasoning
paths consistent with the model’s natural distribution. This enables the model to observe multiple
reasoning paths for the same question that differ in both length and correctness. We also introduce a
quality-controlled length reward to guide the model toward more efficient reasoning. Experiments on
two representative LRMs demonstrate that JET significantly reduces output length without sacrificing
accuracy, and this efficiency generalizes effectively to other reasoning tasks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal experimen-
tation was involved. All datasets used were sourced in compliance with relevant usage guidelines,
ensuring no violation of privacy. We have taken care to avoid any biases or discriminatory out-
comes in our research process. No personally identifiable information was used, and no experiments
were conducted that could raise privacy or security concerns. We are committed to maintaining
transparency and integrity throughout the research process.

8 REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. All code
and datasets have been made publicly available in an anonymous repository to facilitate replication
and verification. The experimental setup, including training steps, model configurations, and hardware
details, is described in detail in the paper.

Additionally, All datasets are publicly available, ensuring consistent and reproducible evaluation
results.

We believe these measures will enable other researchers to reproduce our work and further advance
the field.

REFERENCES

Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, et al. Phi-4 technical
report, 2024. URL https://arxiv.org/abs/2412.08905.

Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with
reinforcement learning. arXiv preprint arXiv:2503.04697, 2025.

Anthropic. Building with extended thinking, 2025. URL https://docs.anthropic.com/en/docs/
build-with-claude/extended-thinking.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Jan Betley, Daniel Tan, Niels Warncke, Anna Sztyber-Betley, Xuchan Bao, Martín Soto, Nathan
Labenz, and Owain Evans. Emergent misalignment: Narrow finetuning can produce broadly
misaligned llms. arXiv preprint arXiv:2502.17424, 2025.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
Mengfei Zhou, Zhuosheng Zhang, et al. Do not think that much for 2+ 3=? on the overthinking of
o1-like llms. arXiv preprint arXiv:2412.21187, 2024.

Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, et al. Sft
memorizes, rl generalizes: A comparative study of foundation model post-training, 2025. URL
https://arxiv.org/abs/2501.17161.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier
with advanced reasoning, multimodality, long context, and next generation agentic capabilities.
arXiv preprint arXiv:2507.06261, 2025.

Muzhi Dai, Chenxu Yang, and Qingyi Si. S-grpo: Early exit via reinforcement learning in reasoning
models. arXiv preprint arXiv:2505.07686, 2025.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, et al. Deepseek-r1:
Incentivizing reasoning capability in llms via reinforcement learning, 2025. URL https:
//arxiv.org/abs/2501.12948.

10

https://arxiv.org/abs/2412.08905
https://docs.anthropic.com/en/docs/build-with-claude/extended-thinking
https://docs.anthropic.com/en/docs/build-with-claude/extended-thinking
https://arxiv.org/abs/2501.17161
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Sicheng Feng, Gongfan Fang, Xinyin Ma, and Xinchao Wang. Efficient reasoning models: A survey.
arXiv preprint arXiv:2504.10903, 2025.

Jiaxuan Gao, Shu Yan, Qixin Tan, Lu Yang, Shusheng Xu, Wei Fu, Zhiyu Mei, Kaifeng Lyu, and
Yi Wu. How far are we from optimal reasoning efficiency? arXiv preprint arXiv:2506.07104,
2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
promoting agi with olympiad-level bilingual multimodal scientific problems. arXiv preprint
arXiv:2402.14008, 2024.

Bairu Hou, Yang Zhang, Jiabao Ji, Yujian Liu, Kaizhi Qian, Jacob Andreas, and Shiyu Chang.
Thinkprune: Pruning long chain-of-thought of llms via reinforcement learning, 2025. URL
https://arxiv.org/abs/2504.01296.

Jian Hu, Jason Klein Liu, Haotian Xu, and Wei Shen. Reinforce++: An efficient rlhf algorithm
with robustness to both prompt and reward models, 2025a. URL https://arxiv.org/abs/2501.
03262.

Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.
Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base
model. arXiv preprint arXiv:2503.24290, 2025b.

Shijue Huang, Hongru Wang, Wanjun Zhong, Zhaochen Su, Jiazhan Feng, Bowen Cao, and Yi R
Fung. Adactrl: Towards adaptive and controllable reasoning via difficulty-aware budgeting. arXiv
preprint arXiv:2505.18822, 2025a.

Zeyu Huang, Tianhao Cheng, Zihan Qiu, Zili Wang, Yinghui Xu, Edoardo M Ponti, and Ivan
Titov. Blending supervised and reinforcement fine-tuning with prefix sampling. arXiv preprint
arXiv:2507.01679, 2025b.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large language
models for code generation. arXiv preprint arXiv:2406.00515, 2024.

Michael D Lee and Tarrant DR Cummins. Evidence accumulation in decision making: Unifying the
“take the best” and the “rational” models. Psychonomic bulletin & review, 11(2):343–352, 2004.

Zhong-Zhi Li, Duzhen Zhang, Ming-Liang Zhang, Jiaxin Zhang, Zengyan Liu, Yuxuan Yao, Haotian
Xu, Junhao Zheng, Pei-Jie Wang, Xiuyi Chen, et al. From system 1 to system 2: A survey of
reasoning large language models. arXiv preprint arXiv:2502.17419, 2025.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
Lin. Understanding r1-zero-like training: A critical perspective. arXiv preprint arXiv:2503.20783,
2025a.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and
Min Lin. Understanding r1-zero-like training: A critical perspective, 2025b. URL https:
//arxiv.org/abs/2503.20783.

11

https://arxiv.org/abs/2504.01296
https://arxiv.org/abs/2501.03262
https://arxiv.org/abs/2501.03262
https://arxiv.org/abs/2503.20783
https://arxiv.org/abs/2503.20783

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Chenwei Lou, Zewei Sun, Xinnian Liang, Meng Qu, Wei Shen, Wenqi Wang, Yuntao Li, Qingping
Yang, and Shuangzhi Wu. Adacot: Pareto-optimal adaptive chain-of-thought triggering via
reinforcement learning. arXiv preprint arXiv:2505.11896, 2025.

Haotian Luo, Haiying He, Yibo Wang, Jinluan Yang, Rui Liu, Naiqiang Tan, Xiaochun Cao, Dacheng
Tao, and Li Shen. Ada-r1: Hybrid-cot via bi-level adaptive reasoning optimization, 2025a. URL
https://arxiv.org/abs/2504.21659.

Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shiwei Liu, Wei Li, Naiqiang Tan, Xiaochun Cao,
and Dacheng Tao. O1-pruner: Length-harmonizing fine-tuning for o1-like reasoning pruning.
arXiv preprint arXiv:2501.12570, 2025b.

Xinyin Ma, Guangnian Wan, Runpeng Yu, Gongfan Fang, and Xinchao Wang. Cot-valve: Length-
compressible chain-of-thought tuning, 2025. URL https://arxiv.org/abs/2502.09601.

Yingqian Min, Zhipeng Chen, Jinhao Jiang, Jie Chen, Jia Deng, Yiwen Hu, Yiru Tang, Jiapeng Wang,
Xiaoxue Cheng, Huatong Song, et al. Imitate, explore, and self-improve: A reproduction report on
slow-thinking reasoning systems. arXiv preprint arXiv:2412.09413, 2024.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025a.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling, 2025b. URL https://arxiv.org/abs/2501.19393.

OpenAI. Learning to reason with llms, 2025. URL https://openai.com/index/
learning-to-reason-with-llms/.

Xiaoye Qu, Yafu Li, Zhaochen Su, Weigao Sun, Jianhao Yan, Dongrui Liu, Ganqu Cui, Daizong
Liu, Shuxian Liang, Junxian He, et al. A survey of efficient reasoning for large reasoning models:
Language, multimodality, and beyond. arXiv preprint arXiv:2503.21614, 2025a.

Yuxiao Qu, Matthew YR Yang, Amrith Setlur, Lewis Tunstall, Edward Emanuel Beeching, Ruslan
Salakhutdinov, and Aviral Kumar. Optimizing test-time compute via meta reinforcement fine-
tuning. arXiv preprint arXiv:2503.07572, 2025b.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
matical reasoning in open language models, 2024. URL https://arxiv.org/abs/2402.03300.

Yi Shen, Jian Zhang, Jieyun Huang, Shuming Shi, Wenjing Zhang, Jiangze Yan, Ning Wang, Kai
Wang, Zhaoxiang Liu, and Shiguo Lian. Dast: Difficulty-adaptive slow-thinking for large reasoning
models, 2025. URL https://arxiv.org/abs/2503.04472.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In Proceedings
of the Twentieth European Conference on Computer Systems, pp. 1279–1297, 2025.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters, 2024. URL https://arxiv.org/abs/2408.
03314.

Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu,
Andrew Wen, Shaochen Zhong, Hanjie Chen, et al. Stop overthinking: A survey on efficient
reasoning for large language models. arXiv preprint arXiv:2503.16419, 2025.

Yi Sun, Han Wang, Jiaqiang Li, Jiacheng Liu, Xiangyu Li, Hao Wen, Yizhen Yuan, Huiwen Zheng,
Yan Liang, Yuanchun Li, et al. An empirical study of llm reasoning ability under strict output
length constraint. arXiv preprint arXiv:2504.14350, 2025.

Kimi Team, Angang Du, Bohong Yin, Bowei Xing, Bowen Qu, Bowen Wang, Cheng Chen, Chenlin
Zhang, et al. Kimi-vl technical report, 2025. URL https://arxiv.org/abs/2504.07491.

12

https://arxiv.org/abs/2504.21659
https://arxiv.org/abs/2502.09601
https://arxiv.org/abs/2501.19393
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2503.04472
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2504.07491

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025. URL
https://qwenlm.github.io/blog/qwq-32b/.

Siye Wu, Jian Xie, Yikai Zhang, Aili Chen, Kai Zhang, Yu Su, and Yanghua Xiao. Arm: Adaptive
reasoning model. arXiv preprint arXiv:2505.20258, 2025a.

Zongqian Wu, Baoduo Xu, Tianyu Li, Zhu Sun, Xiaofeng Zhu, and Lei Feng. Mitigating strategy-
selection bias in reasoning for more effective test-time scaling. arXiv preprint arXiv:2509.17905,
2025b.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system at
scale. arXiv preprint arXiv:2503.14476, 2025a.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, et al. Dapo: An open-source llm reinforcement
learning system at scale, 2025b. URL https://arxiv.org/abs/2503.14476.

Jiajie Zhang, Nianyi Lin, Lei Hou, Ling Feng, and Juanzi Li. Adaptthink: Reasoning models can
learn when to think. arXiv preprint arXiv:2505.13417, 2025.

13

https://qwenlm.github.io/blog/qwq-32b/
https://arxiv.org/abs/2503.14476

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

APPENDIX

A EXPERIMENTS DETAILS

Hardware and Software Platform. All experiments are conducted on workstations equipped
with four NVIDIA A800 PCIe GPUs with 80GB memory each, running Ubuntu 20.04.6 LTS. Our
implementation is based on the Verl (Sheng et al., 2025) framework.

Training Configuration. We generate rollouts using temperature sampling (τ = 1.0) with enforced
end-of-sequence tokens, and employ vLLM for efficient batched decoding with 128 rollout slots and
paged attention. During RL training, the maximum prompt length is set to 2,048 tokens, and the
maximum response length is 10,000 tokens. Training is conducted for 100 steps with a batch size of
64, and the actor model is optimized using the Adam optimizer with a learning rate of 1× 10−6.

During the rollout stage, we employ a grouped sampling strategy with a group size of G = 12
per problem. Specifically, we first generate three complete answers. To obtain partial reasoning
trajectories, the initial truncation point is set to t0 = 25% of the original length, the increment ∆t is
25%, and we perform k = 3 truncations. At each truncation point, the model is required to produce a
final prediction. This process yields nine short answers and three full answers, resulting in a total of
12 responses per query.

For RL optimization, the clipping parameters are set to a low of 0.2 and a high of 0.28. Reward
weights are assigned as wacc = 0.9, wf = 0.1, and wℓ = 1 to balance accuracy, formatting, and
output length during training.

Inference Configuration. During inference, we set the temperature to 0.6, the maximum model
length to 30,000 tokens, the maximum tokens to 16,000 tokens, and top-p to 0.95.

Length Reward Design. In Section 4.6, we introduce two additional length reward strategies: the
linear reward and the exponential decay reward. The linear reward is defined as:

rℓ(i) =

{
ℓmax−ℓi

ℓmax−ℓmin+ε , if i ∈ C,
0, otherwise.

(9)

The exponential decay reward replaces the linear term with an exponential function, and is defined as

rℓ(i) =

{(
ℓmax−ℓi

ℓmax−ℓmin+ε

)α

· (1− δ) + δ, if i ∈ C,
0, otherwise.

(10)

For all experiments, the hyperparameters are fixed as α = 1.2, δ = 0.05, and ε = 1× 10−8.

Baseline Implementation. We provide a detailed description of the baseline implementation.

• For AdaptThink, LCR1, and Laser, we initially attempted to reproduce the results using
the official GitHub repositories provided in their papers. However, our reproduced results
did not fully match the reported performance. To ensure fairness and avoid weakening the
original results, we instead directly download the trained models from Hugging Face and
evaluate them with the prompt configurations specified in the papers, while adopting the
inference parameters listed in Appendix A.

• For both the SFT and DPO baselines, we sample 12 answers per problem from JET under the
Two-Stage Rollout. The shortest correct answer serves as the SFT training target and as the
preferred response for DPO, while the longest answer is designated as the rejected response
for DPO. This process yields training sets of 5.8K samples for DeepSeek-Distill-Qwen-7B
and 5.6K samples for the 1.5B model. Both models are fine-tuned with LoRA for one epoch
using using a cutoff length of 4,096 tokens, a learning rate of 1.0e-5, and a maximum of
100,000 training samples.

• For DAPO, we employ the same training data and parameter settings as JET. The only
modification lies in the rollout and reward configurations, where the length reward is
removed and only the accuracy and formatting rewards are retained.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 3: Comparison of accuracy for three reward strategies on eight benchmark datasets.

Strategy GSM8K MATH500 AIME24 AMC Olympiad CSQA GPQA MMLU AVG
Ours 83.8 83.2 32 66.1 51.6 45.6 43.4 44.6 56.3
Linear 82.6 82.6 31.7 64.2 50.2 45.6 38.9 45.2 55.1
Exp 85.3 84.6 33 63.6 52.3 46.0 43.4 45.9 56.8

20 30 40 50 60 70 80 90 100 110 120
400

500

600

700

800

44

46

48

50CSQA
 Token Length
 Accuracy

step

A
cc

ur
ac

y

 Token Length
 Accuracy

20 30 40 50 60 70 80 90 100 110 120
4000

5000

6000

7000

33

36

39

42

GPQA

step
20 30 40 50 60 70 80 90 100 110 120

1500

2000

2500

3000

3500

4000

80

82

84

MATH 500

step
20 30 40 50 60 70 80 90 100 110 120

400

600

800

75

78

81

84

A
ve

ra
ge

 T
ok

en
 L

en
gt

h

GSM8K

step

20 30 40 50 60 70 80 90 100 110 120
6000

8000

10000

12000

27

30

33

36

AIME 2024

step

A
cc

ur
ac

y

20 30 40 50 60 70 80 90 100 110 120

4000

6000

8000

60

63

66

69AMC

step
20 30 40 50 60 70 80 90 100 110 120

4000

6000

8000

46

48

50

52

Olympiad

step
20 30 40 50 60 70 80 90 100 110 120

2000

3000

4000

5000

57

60

63

A
ve

ra
ge

 T
ok

en
 L

en
gt

h

In-Domain Average Metrics

step

Figure 6: Evolution of accuracy and output length of the DeepSeek-Distill-Qwen-1.5B model across
benchmarks during JET training.

B ALGORITHM

Based on the description in Section 3.1, we present the pseudocode of the JET algorithm in Algo-
rithm 1, which outlines its key steps and facilitates the reproducibility of our method.

C FURTHER ANALYSIS

C.1 PERFORMANCE EVOLUTION DURING RL TRAINING

We track how model performance evolves throughout JET training across multiple downstream tasks
for both DeepSeek-Distill-Qwen-1.5B and 7B. Figures 6 and 7 illustrate the main trends.

The average token length decreases significantly over training steps, while accuracy remains stable or
improves, indicating that our method successfully encourages concise yet accurate responses. In early
stages (steps 20–40), both models exhibit relatively long outputs with moderate accuracy, reflecting
an exploration stage where the policy is still learning to balance quality and brevity. As training
proceeds (steps 50–80), output length drops sharply—especially on structured reasoning tasks such
as MATH500, GSM8K, and AMC, where the average token count decreases by more than 50%.
Crucially, this compression coincides with sustained or improved accuracy, indicating that shorter
outputs are semantically meaningful rather than merely truncated.

The 7B model converges faster and exhibits smoother trends than the 1.5B variant. It achieves higher
final accuracy and more consistent length reduction, likely due to its stronger generalization capacity
and richer representations. Nonetheless, the smaller model also shows substantial improvement,
confirming that the method scales effectively across model sizes.

Overall, the in-domain metrics trace a clear progression from long, low-efficiency outputs to shorter,
more precise responses with stable performance. This trajectory highlights the success of our RL
design in aligning model behavior with the dual goals of correctness and conciseness.

C.2 ANALYSIS OF PROACTIVE STOP-THINKING IN JET

To validate the adaptive reasoning capability of the JET method, we evaluate its performance on
mathematical problems of varying difficulty from the MATH500 dataset, and compare it with the
manual truncation method (75% cutoff). The results are shown Figure 10.

The JET method can proactively stop reasoning based on task difficulty, significantly reducing token
consumption while maintaining high accuracy. This advantage stems from the fact that JET is

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

20 30 40 50 60 70 80 90 100 110
450

500

550

600

62

64

66

68

70

A
cc

ur
ac

y

CSQA

step

20 30 40 50 60 70 80 90 100 110
5000

5500

6000

45

48

51

54

A
cc

ur
ac

y

GPQA

step

20 30 40 50 60 70 80 90 100 110

1800

2100

2400

86

88

90

92

94

MATH 500

step

A
ve

ra
ge

 T
ok

en
 L

en
gt

h

20 30 40 50 60 70 80 90 100 110

7000

8000

9000

35

40

45

50

55

60AIME 2024

step

20 30 40 50 60 70 80 90 100 110

4000

5000

6000

76

78

80

82

84AMC

step
20 30 40 50 60 70 80 90 100 110

5000

6000

7000

58

60

62

64

Olympiad
 Token Length
 Accuracy

step

A
ve

ra
ge

 T
ok

en
 L

en
gt

h

 Token Length
 Accuracy

20 30 40 50 60 70 80 90 100 110
2500

3000

3500

4000

70

72

74

76

In-Domain Average Metrics

step

20 30 40 50 60 70 80 90 100 110

300

400

500

600

84

86

88

90

92

GSM8K

step

Figure 7: Evolution of accuracy and output length of the DeepSeek-Distill-Qwen-7B model across
benchmarks during JET training.

Algorithm 1 Just-Enough Thinking (JET) Algorithm
Require: Initial policy πθ , training setQ, rollout size G, policy updates µ
Ensure: Trained policy πθ

1: for step = 1 to M do
2: Sample mini-batchQb ⊂ Q
3: Save current policy: πθold ← πθ

4: for each q ∈ Qb do
5: Stage 1: Full trajectory rollout
6: Generate Gfull complete reasoning trajectories. {ofull

i }
Gfull
i=1 ∼ πθold(· | q)

7: Stage 2: Truncated trajectory rollout
8: for each ofull

i and truncation ratio T ∈ T do
9: Truncate ofull

i at T , append stop-thinking cue, and complete: ôi,T ∼ πθold(· | q, o
(T)
i , zstop)

10: end for
11: Collect all trajectories Oq and compute rewards racc, rf , rℓ (Eq. 6)
12: Compute token-level advantages Âi,t for all trajectories
13: end for
14: for iteration = 1 to µ do
15: Update policy πθ by maximizing JDAPO (Eq. 8)
16: end for
17: end for
18: return πθ

trained with different reasoning lengths via reinforcement learning, allowing the model to learn the
optimal reasoning depth for different tasks. In contrast to manual truncation, which uses a fixed 75%
cutoff, the fixed truncation may lead to insufficient reasoning for simpler tasks and overly shallow
reasoning for more complex tasks. The ability of JET to dynamically adjust reasoning depth prevents
over-reasoning and ineffective reasoning during inference, enabling adaptive adjustments based on
task complexity.

C.3 IMPACT OF CURRICULUM LEARNING ON JET TRAINING

We evaluate the effect of curriculum learning on JET training using the DeepSeek-Distill-Qwen-7B
backbone. Figure 8 summarizes the results.

Training without curriculum learning demonstrates substantially higher efficiency. Each training
step converges in approximately 600–800 seconds, compared to roughly 1,400 seconds per step with
curriculum learning, representing nearly a 50% reduction in computational overhead.

In terms of model outputs, the non-curriculum strategy produces more concise responses without
compromising correctness. Both methods achieve comparable accuracy on the MATH500 dataset,
whereas curriculum learning tends to generate longer answers relatively.

These observations can be explained as follows. Curriculum learning is designed to gradually expose
the model to increasingly difficult samples, which can help in scenarios with high variability in
sample difficulty or when the model is prone to local optima. However, in our JET setting, the
training data and rollout strategy already provide diverse and informative samples across difficulty

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0
6 0 0

9 0 0

1 2 0 0

1 5 0 0

1 8 0 0

2 1 0 0

Tr
ain

ing
 Ti

me
 (s

)

S t e p

 w / o c u r
 w / c u r

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0

1 4 0 0

2 1 0 0

2 8 0 0

3 5 0 0

4 2 0 0

4 9 0 0

Re
spo

nse
 Le

ng
th

S t e p

 w / o c u r
 w / c u r

2 0 3 0 4 0 5 0 6 0 7 0 8 0
1 6 0 0

1 8 0 0

2 0 0 0

2 2 0 0

2 4 0 0

2 6 0 0

2 8 0 0

Av
era

ge
 To

ke
n L

en
gth

S t e p

 w / o c u r _ t o k e n w / c u r _ t o k e n
 w / o c u r _ a c c w / c u r _ a c c

8 0

8 4

8 8

9 2

9 6

Ac
cu

rac
y (

%)

Figure 8: Impact of curriculum learning on JET training. From left to right: RL training time per
step, rollout generation time, token output length, and accuracy on MATH500, all measured using the
DeepSeek-Distill-Qwen-7B model.

 A v e r a g e T o k e n L e n g t h
 A v e r a g e T o k e n L e n g t h

w / o F i x P E S

1 6 0 0

2 0 0 0

2 4 0 0 M A T H 5 0 0

7 0

7 7

8 4

Ac
cu

rac
y (

%)

w / o F i x P E S
6 0 0 0

6 5 0 0

7 0 0 0 A I M E 2 4

Av
er

ag
e T

ok
en

 Le
ng

th

2 1

2 8

3 5

Figure 9: Impact of PES on AIME24 and MATH500.

2 0 %
2 6 %

2 3 %
1 7 % 1 6 %1 6 %

3 5 % 3 4 % 3 4 %

2 3 %
2 0

3 0

4 0

To
ke

n C
om

pre
ssi

on
 Ra

tio

1 2 3 4 58 5

9 0

9 5

1 0 0

 T C R _ M a n u a l A R R _ M a n u a l
 T C R _ J E T A R R _ J E T

L e v e l

AR
R

Figure 10: Performance of JET
at different difficulty levels.

levels. As a result, random sampling without curriculum learning sufficiently exposes the model
to the necessary learning signals, allowing it to achieve similar or better performance with reduced
training cost. Moreover, the direct exposure to diverse samples enables the model to learn to produce
concise yet correct answers more effectively.

C.4 DETAILS OF THREE REWARD STRATEGIES

In the main text, we focus on the impact of the three length reward mechanisms on output length.
Here, we also evaluate their effects on accuracy, with the results reported in Table 3.

The exponential weighting reward achieves the highest average accuracy, particularly on challenging
math tasks. Our weighted linear reward performs slightly lower on these tasks but remains competitive
on knowledge benchmarks such as GPQA and MMLU, demonstrating stability and generalization.
The standard linear reward performs worst on most tasks, indicating insufficient incentive for complex
problems.

In terms of length control, the linear reward is weak, leaving models prone to noise from verbose
reasoning. The exponential decay reward imposes stronger penalties but can cause premature
truncation, leading to incomplete reasoning and unstable accuracy on difficult tasks.

C.5 FURTHER ANALYSIS OF PES

In Section 4.4, we analyze the impact of exposing the model to diverse reasoning paths during training.
Here, we also include results on AIME24 and MATH500, shown in Figure 9, and further analyze the
effect of PES.

Longer reasoning sequences do not always lead to better performance; they can introduce
error propagation and noise that degrade final accuracy. Comparing PES with the no-PES
baseline reveals a counterintuitive finding: while generating complete reasoning chains might seem
advantageous, it actually underperforms PES. Across datasets of varying difficulty, PES consistently
surpasses all baseline strategies.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

C.6 CASE STUDIES

We present two types of cases: (i) comparisons of JET with the Base and AdaptThink models in
answering questions (Cases 1), and (ii) examples where the trained JET method actively terminates
its reasoning process when sufficient information has been accumulated (Cases 2 and 3).

Case 1: Comparison with Base and AdaptThink models. In this case, the Base 7B model produces a
correct answer but generates an overly long response, consuming 4,087 tokens. AdaptThink produces
a much shorter answer, using only 636 tokens, but the response is incorrect. In contrast, JET produces
a concise and correct answer with just 1,537 tokens. This demonstrates that JET effectively balances
accuracy and brevity, generating answers that are both correct and substantially shorter than the
baseline outputs.

Case 2: Active early stopping based on confidence. During reasoning, JET detects that sufficient
information has been accumulated and that its answer is likely correct. The model then terminates
the reasoning process early and outputs the final answer. This highlights JET ’s ability to adaptively
determine when to stop reasoning, reducing unnecessary computation while maintaining correctness.

Case 3: Early termination upon reaching the correct answer. In this case, JET identifies during
reasoning that it has already obtained the correct solution. The model then terminates the reasoning
process immediately and outputs the final answer. This demonstrates JET ’s ability to recognize
when further reasoning is unnecessary, effectively reducing redundant computation while ensuring
correctness.

Overall, these cases show that JET can simultaneously achieve concise, correct, and well-formatted
outputs, and that its adaptive reasoning strategy allows the model to terminate reasoning when
sufficient information is obtained. Compared to baseline methods, JET improves efficiency, output
quality, and alignment with task-specific requirements.

Case Study 1: JET VS Base / AdaptThink

/* Question */
What integer n satisfies 0 ≤ n < 18 and n ≡ −11213141 (mod 18)?

/* Base Response (Total Tokens: 4087)*/
<think>
Okay, so I have this problem where I need to find an integer n such that 0 ≤ n < 18 and
n ≡ −11213141 (mod 18).
Hmm, okay, so I need to find the equivalent positive residue of −11213141 modulo 18. That
means I need to figure out what −11213141 is congruent to modulo 18, and then express it
as a number between 0 and 17 inclusive.
First, I remember that modulo operation with a negative number can sometimes be tricky, so
maybe I should start by finding the positive equivalent of −11213141 modulo 18.
Alternatively, I can find the remainder when −11213141 is divided by 18. But since negative
numbers can complicate things, perhaps it’s easier to find the modulo of the absolute value
and then adjust the sign accordingly.

(... more reasoning tokens omitted for brevity)

Therefore, 11213141 ≡ 5 (mod 18), so −11213141 ≡ −5 (mod 18), which is 13

(mod 18).
So, yes, n = 13.
I think that’s solid. So, the integer n is 13.

</think>

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

To find the integer n such that 0 ≤ n < 18 and n ≡ −11213141 (mod 18), we need to
determine the equivalent positive residue of −11213141 modulo 18.
First, we compute 11213141 mod 18. We use the property that 10k ≡ 10 (mod 18) for
k ≥ 1 and 100 ≡ 1 (mod 18).
Breaking down 11213141 digit by digit and computing each term modulo 18:
- Position 0: 1 × 1 = 1 - Position 1: 4 × 10 = 40 - Position 2: 1 × 10 = 10 - Position 3:
3× 10 = 30 - Position 4: 1× 10 = 10 - Position 5: 2× 10 = 20 - Position 6: 1× 10 = 10 -
Position 7: 1× 10 = 10

Summing these results: 1 + 40 + 10 + 30 + 10 + 20 + 10 + 10 = 131

Next, we find 131 mod 18: 131÷ 18 = 7 remainder 5
Thus, 131 ≡ 5 (mod 18).
Therefore, 11213141 ≡ 5 (mod 18). Hence, −11213141 ≡ −5 (mod 18).
To convert −5 to a positive residue modulo 18: −5 + 18 = 13

Thus, the integer n that satisfies the given condition is 13 . ✓

/* AdaptThink Response (Total Tokens: 636)*/
<think></think>
To find the integer n such that 0 ≤ n < 18 and n ≡ −11213141 (mod 18), we need to
determine the remainder when −11213141 is divided by 18.
First, we can simplify the problem by finding the remainder when 11213141 is divided by
18, and then take the negative of that remainder, adjusting it to be within the range 0 to 17 if
necessary.
1. Find the remainder of 11213141 divided by 18:
- We can use the property that the remainder of a number modulo 18 is the same as the sum
of its digits modulo 18. This is because 18 is a multiple of 9, and the sum of the digits of a
number is congruent to the number modulo 9. However, for modulo 18, we need to consider
the alternating sum of digits in groups of two from the right.
2. Calculate the alternating sum of digits in groups of two:
- Let’s break down 11213141 into groups of two from the right: 11, 21, 31, 41. - Now,
compute the alternating sum: 11− 21 + 31− 41.
- Calculate step-by-step: - 11− 21 = −10 - −10 + 31 = 21 - 21− 41 = −20

3. Find the remainder of −20 modulo 18:
- −20 ÷ 18 = −2 with a remainder. To find the positive remainder, add 18 to −20: -
−20 + 18 = −2 (still negative, so add another 18)
- −2 + 18 = 16

- Therefore, the remainder is 16.
4. Determine the final result:
- Since we initially had −11213141, the remainder when divided by 18 is the negative of the
above remainder, adjusted to be within 0 to 17.
- −16 mod 18 = 2 because −16 + 18 = 2.
Thus, the integer n that satisfies 0 ≤ n < 18 and n ≡ −11213141 (mod 18) is:
2 ✗

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

/* JET Response (Total Tokens: 1537)*/
<think> To find the integer n such that 0 ≤ n < 18 and n ≡ −11213141 (mod 18), I’ll
start by simplifying the problem.
First, I recognize that finding n modulo 18 is equivalent to finding the remainder when
−11213141 is divided by 18.
Instead of dealing with the negative number directly, I can find the remainder of 11213141
when divided by 18 and then subtract that from 18 to get the equivalent positive remainder.
To find the remainder of 11213141 divided by 18, I’ll use the property that a number is
congruent to the sum of its digits modulo 9. Since 18 is a multiple of 9, this method is
applicable.
Calculating the sum of the digits of 11213141:
1 + 1 + 2 + 1 + 3 + 1 + 4 + 1 = 14.
Now, 14 modulo 9 is 5, which means 11213141 ≡ 5 (mod 9).
Since 18 is twice 9, I need to find a number that is 5 modulo 9 but also adjusts for the fact
that we’re dealing with modulo 18.
Considering −11213141 ≡ −5 (mod 9), which simplifies to 4 (mod 9) because −5+ 9 =

4.
To find the corresponding modulo 18, I can use the fact that 4 and 18 share the same remainder
when divided by 9. Thus, −11213141 ≡ 4 (mod 18).
Therefore, the integer n that satisfies the given condition is 4. </think> To find the integer
n satisfying 0 ≤ n < 18 and n ≡ −11213141 (mod 18), we can compute −11213141

modulo 18.
First, note that −11213141 modulo 18 is equivalent to finding the remainder when
−11213141 is divided by 18. Since negative remainders can be converted to positive by
adding 18, we can calculate:

−11213141 mod 18 = (18− (11213141 mod 18)) mod 18

Calculating 11213141 mod 18, we find that 11213141 leaves a remainder of 5 when divided
by 9 (since the sum of its digits is 14, and 14 mod 9 = 5).
(... more reasoning tokens omitted for brevity)

Therefore, the correct final answer is 13 . ✓

Case Study 2: Active Stop-Thinking of JET

/* Question */
Convert the point (0, 3) in rectangular coordinates to polar coordinates. Enter your answer in
the form (r, θ), where r > 0 and 0 ≤ θ < 2π.

/* JET Response */
<think>
Okay, so I need to convert the rectangular coordinate (0, 3) to polar coordinates. Hmm, I

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

remember that polar coordinates are represented as (r, θ), where r is the radius and θ is the
angle.
First, let me recall the formulas for conversion. I think r is calculated using the distance
formula, which is the square root of (x2 + y2). So,
r =

√
x2 + y2.

In this case, x = 0 and y = 3. Plugging those in,
r =

√
02 + 32 =

√
0 + 9 =

√
9 = 3.

So, r = 3. That part was straightforward.
Now, I need to find θ, the angle. I remember that θ can be found using the arctangent function
since
tan θ = y

x .

But wait, in this case, x = 0. Hmm, dividing by zero might be an issue here. Let me think
about it. When x = 0, the point lies on the y-axis. Since y = 3 > 0, the point is on the
positive y-axis, which should correspond to an angle of π

2 radians.
But just to make sure, let me visualize the point (0, 3). On the rectangular coordinate system,
that’s located straight up along the y-axis. So, from the positive x-axis, the angle to reach
there is 90◦, which is π

2 radians.
So, θ = π

2 .
Putting it all together, the polar coordinates are

(
3, π

2

)
. Let me just double-check if r is

positive and θ is within the required range. r = 3 > 0, and π
2 ∈ [0, 2π), so that’s correct.

I think that’s it. I don’t see any mistakes here. Yeah, I’m confident with this answer.

</think>

The polar coordinates are (3,
π

2
) .

Case Study 3: Active Stop-Thinking of JET

/* Question */
What is the smallest positive perfect cube that can be written as the sum of three consecutive
integers?

/* JET Response */
<think>

Okay, so I need to find the smallest positive perfect cube that can be written as the sum of
three consecutive integers. Hmm, let’s see. I remember that consecutive integers are numbers
that come one after the other without any gaps. For example, 1, 2, 3 or 5, 6, 7. So, the question
is asking for a perfect cube (like 1, 8, 27, etc.) that can be expressed as the sum of such a
triplet.
Let me start by defining the three consecutive integers. Let’s call the first integer n. Then the
next two integers would be n+ 1 and n+ 2. So, the sum of these three numbers would be
n+ (n+ 1) + (n+ 2).

Let me compute that:

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

n+ n+ 1 + n+ 2 = 3n+ 3.

So, the sum simplifies to 3n+ 3. I can factor that as 3(n+ 1). So, the sum is three times one
more than the first integer in the triplet.
Now, the sum needs to be a perfect cube. Let me denote the perfect cube as k3, where k is a
positive integer. Therefore, I have the equation:
3(n+ 1) = k3.

From this equation, I can express n+ 1 as k3

3 . Since n+ 1 has to be an integer (as n is an
integer), k3 must be divisible by 3. That means k itself must be a multiple of 3, because if a
prime number divides a cube, it must divide the base. So, let me let k = 3m, where m is a
positive integer.
Substituting back, k = 3m, so k3 = (3m)3 = 27m3. Plugging this into the equation:
3(n+ 1) = 27m3.

Dividing both sides by 3:
n+ 1 = 9m3.

Therefore, n = 9m3−1. Since n is the first integer in the triplet, it just needs to be an integer,
which it will be as long as m is an integer.
Now, the sum 3(n+1) = 27m3 must be a positive perfect cube. The smallest positive perfect
cube is 1, but let’s see if that works. If k3 = 1, then 3(n + 1) = 1, which would imply
n+ 1 = 1

3 , so n = −2
3 . But n has to be an integer, so that doesn’t work.

Next, try k3 = 8, which is 23. Then, 3(n+ 1) = 8 implies n+ 1 = 8
3 , so n = 5

3 . Again, not
an integer.
Moving on to the next cube, k3 = 27. Then, 3(n + 1) = 27 gives n + 1 = 9, so n = 8.
That’s an integer! Perfect. So, let’s check if the sum works. The triplet would be 8, 9, 10.
Adding them up: 8 + 9 + 10 = 27, which is indeed 33.
Wait a second, let me confirm if there’s a smaller cube than 27 that satisfies the condition.
The cubes are 1, 8, 27, 64, etc. We saw that 1 and 8 don’t work because they don’t result
in integer starting points for the triplet. So, 27 is the next one, and it works. So, 27 is the
smallest such cube.
Therefore, the final answer is 27. I can just write that in a box.

</think>

The smallest positive perfect cube that can be written as the sum of three consecutive integers
is 27 .

D LLM USAGE

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing,
grammar checking, and enhancing the overall flow of the text.
It is important to note that the LLM was not involved in the ideation, research methodology, or
experimental design. All research concepts, ideas, and analyses were developed and conducted by
the authors. The contributions of the LLM were solely focused on improving the linguistic quality of
the paper, with no involvement in the scientific content or data analysis.
The authors take full responsibility for the content of the manuscript, including any text generated or
polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines and
does not contribute to plagiarism or scientific misconduct.

22

	Introduction
	Pilot Experiments
	Task Definition
	Pilot Experiments and Analysis

	Methods
	Two-Stage Rollout Construction
	Reward and Objective Design

	Experiments
	Experiment Setups
	Main Results
	Generalization Analysis of JET
	Impact of PES-Induced Answer Diversity on Training
	Efficiency Analysis of PES
	Length Reward Design Analysis

	Related work
	Conclusion
	Ethics Statement
	Reproducibility Statement
	Experiments Details
	Algorithm
	Further Analysis
	Performance Evolution During RL Training
	Analysis of Proactive Stop-Thinking in JET
	Impact of Curriculum Learning on JET Training
	Details of Three Reward Strategies
	Further Analysis of PES
	Case Studies

	LLM Usage

