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ABSTRACT

Interpretable physics equations are widely recognized as valuable inductive biases
for constructing robust spatiotemporal models. To harness these valuable pieces of
knowledge, existing approaches often presuppose access to the exact underlying
equations. However, such an assumption usually doesn’t hold, especially in the con-
text of real-world observations. Conversely, causality systematically captures the
fundamental causal relations across space and time that are intrinsically present in
physics dynamics. Nevertheless, causality is often ignored as a means of integrating
prior physics knowledge. In this work, we propose a novel approach that effectively
captures and leverages causality to integrate physics equations into spatiotemporal
models, without assuming access to precise physics principles. Specifically, we in-
troduce a physics-aware spatiotemporal causal graph network (P-STCGN). Causal
relationships are analytically derived from prior physics knowledge and serve as
physics-aware causality labels. A causal module is introduced to learn causal
weights from spatially close and temporally past observations to current observa-
tions via semi-supervised learning. Given the learned causal structure, a forecasting
module is introduced to perform predictions guided by the cause-effect relations.
Extensive experiments on time series data show that our semi-supervised causal
learning approach is robust with noisy and limited data. Furthermore, our evalua-
tions on real-world graph signals demonstrate superior forecasting performance,
achieved by utilizing prior physics knowledge from a causal perspective.

1 INTRODUCTION

Spatiotemporal modeling has drawn significant interest recently due to its wide application in
climate (Faghmous & Kumar, 2014), traffic systems (Ermagun & Levinson, 2018), electricity net-
works (Masi et al., 2009), and many other fields. Employing deep neural networks has demonstrated
superior performance, particularly in data-rich settings. The spatiotemporal observations in the
physical world, such as the climate and weather measurements (Kashinath et al., 2021), inherently
follow physical principles. Hence, physics equations are usually recognized as valuable information
for robust spatiotemporal modeling. Integrating domain knowledge with data-driven models has
emerged as one of the most promising directions forward, clearing a path for the construction of more
robust and interpretable pipelines.

Many excellent studies have been conducted on physics-informed machine learning (Wang et al.,
2020a; Greydanus et al., 2019; Raissi et al., 2019). One successful approach to building physics-
informed models is to assume access to precise physics principles. Consequently, these models
incorporate the identified equations into deep models in a hard way (e.g., through architectural modi-
fications (Wang et al., 2020b)). However, the assumption of the correctness of physics knowledge can
be problematic, as these physics principles can be fragile or imperfect in real-world applications (Finzi
et al., 2021; Wang et al., 2022). In spatiotemporal modeling, addressing such concerns becomes more
important, as we frequently have access to simple equations that partially describe the dynamics we
intend to model. However, the exact form of these equations and their associated physics parameters
remains elusive. Hence, there arises a need for soft integration to bridge the gap between our known
prior knowledge and the unknown principles governing real-world observations.

Causality is important for systematically harnessing the structured knowledge embedded in physics
equations. This is grounded in the fundamental principle that an effect can not occur before its cause.
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Figure 1: Heat dissipation over 2D space and time.
Nodes in the graph structure correspond to sensors
and the observations at each sensor are time vary-
ing. Given the heat equation (u̇ = D�u), we can
provide spatial (blue) and temporal (green) causal
relations from previous nodes to a current target
node (white).

Observations from the same dynamic sys-
tem, even when driven by different underly-
ing physics equations, share common causal
relations across space and time that intrinsi-
cally present in the dynamics. This insights
motivates us to employ causal relations as a
soft encoding of the underlying dynamics. Ex-
isting soft integration methods often rely on
heuristic approaches, primarily fusing informa-
tion at an intractable feature level (Finzi et al.,
2021; Takeishi & Kalousis, 2021; Seo et al.,
2021). The inference of causal relations from
prior physical knowledge is rarely explored as
a means of soft integration.

In particular, given an equation that’s moderately
beneficial for understanding the target dynamics,
we can decompose it into causes and effects analytically. For example, when the heat equation
(@u@t = D�u where D is a diffusivity constant) is considered, we know that temporally first order
and spatially second order derivatives are involved. We then specify causes and effects on a discrete
domain (time interval �t) as:

ui(t+ 1) = ui(t) +�t ·D�u,= ui(t) +�t ·D
X

j2Ni

(ui(t)� uj(t)), (1)

where � is the Laplace operator and Ni is a set of adjacent nodes of i-th node. Eq. 1 shows the
discrete Laplace operator. For the target value ui(t + 1), the variables in the right-hand side are
regarded as known causes from the heat equation. To softly incorporate this physics equation without
assuming its preciseness, we utilize it as a basis for extracting causal labels. These labels are employed
for a semi-supervised causal structure learning, i.e., assigning explicit causal labels between the
subset of nodes associated with the equation (Fig. 1). They are used for regularization such that the
model can capture the causal structures that align with the physics-aware causality. Notably, unlike
most causal discovery from data approaches, we employ physics-aware causality for semi-supervised
causal structure learning. More detailed discussions on related works regarding physics-informed
spatiotemporal modeling and causal discovery in time series can be found in the Appx. A.

In summary, we introduce a novel physics-aware causal graph network (P-STCGN) for the soft
integration of physics laws. Specifically, in our modeling process, we decouple causal structure
learning from dynamic forecasting. Physics-aware causality is derived from prior physics knowledge.
A causal module is introduced to learn causal relations partially from analytically derived physics-
aware labels. Given the learned causal structure from the causal module, a forecasting module
then integrates the learned representations with corresponding causes to predict effects. Our main
contributions are summarized below:

• Soft integration of physics equations via causality: We propose a novel framework for
the soft integration of physics laws. Causal relations are utilized as a soft encoding of the
prior physics knowledge, without assuming access to precise underlying principles.

• Physics-aware causal detection and retrieval: We propose a semi-supervised causal
structure learning using physics-aware causality. A causal module learns causal relations
given additional explicit labels extracted from physics knowledge.

• Superior empirical performance: Through extensive evaluations, we show that our physics-
aware causal model is robust in detecting similar patterns (i.e. inter-causality classification)
and retrieving unlabeled causality (i.e. intra-causality retrieval) even with noisy and limited
data. Our model P-STCGN improves the forecasting performance over real-word graph
signals. Moreover, it excels in terms of data efficiency and generalization.

2 PROBLEM FORMULATION

We assume that a (static) graph structure Gs = (Vs, Es) shared across different timestamps is given
(or can be constructed by features of each node), along with observational data X1, · · · ,XT , where
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Figure 2: An overview of the proposed physics-aware spatiotemporal causal graph network (P-
STCGN). A sequence of graph signals is firstly fed into a spatiotemporal graph network (STG). This
is followed by two subsequent modules: (1) spatiotemporal graph networks for causality (STGC),
and (2) spatiotemporal graph networks for forecasting (STGF). Prior PDEs from physical principles
provide physics-aware causality. The red arrows denote how the supervised objectives are defined.

Xt 2 RN are defined on the nodes in the graph. As there are N different nodes, the observations
(X 2 RT⇥N ) can be regarded as multivariate time series.

Additionally, we assume the existence of prior knowledge that could be moderately beneficial for
modeling the observations. This is a mild assumption since real-world observations are usually
governed by physical principles, such as meteorological measurements obtained from weather
sensors in an Automatic weather station (AWS). One particularly important prior equation for
turbulent dynamics is the Navier-Stokes equation (Wang et al., 2020a). These equations can be
commonly represented as a function of spatial and time derivatives F (u̇, ü, · · · ,ru,r2u, · · · ) = 0,
where u̇ and ü denote the first and second-order time derivatives, respectively, and r represents the
operator for spatial derivative. As the continuous operators can be numerically decomposed in a
discrete domain (e.g. onto graph structures), we can explicitly define causes for a target observation
at time t and extract causal relations accordingly. Note that causal relations derived from a particular
equation are only partially complete due to the uncertainty surrounding the true governing equation.
The available prior knowledge need only be partially relevant to the underlying dynamics in order to
be beneficial. The prior knowledge is primarily about structural dependencies, without assuming any
access to associated parameters.

Given the physics-aware causal relations, we can assign explicit labels between NK variables, where
K is a maximum time lag for causality. In the length K observations Xt�K+1, · · · ,Xt, there are
NK total mutually correlated observations, and we define Nc causal relations among the NK⇥NK
possible relations. In Fig. 1, we have N = 5 nodes in Gs, and the total number of variables in the
length K = 2 sequence is 10. Thus, there are 100 possible relations between the 10 variables, and
the Heat equation (Eq. 1) elucidates Nc = 13 (5 temporal and 8 spatial) causal relations. We denote
the causal graph Gc = (Vc, Ec) where |Vc| = NK and |Ec| = Nc.

Once the spatiotemporal data (X) and the (partially available) causal relations (Gc) are computed,
our task is to find a model:

X̂t+1 = F (Xt�K+1, · · · ,Xt;Gs,Gc,⇥), (2)
where ⇥ is a set of learnable parameters in a model F (·).

3 PROPOSED MODEL

In this section, we describe the details of our proposed model, namely Physics-aware Spatiotemporal
Causal Graph Networks (P-STCGN). The P-STCGN employs a two-stage learning approach to
explicitly decouple causal structure learning from dynamic forecasting. Such an idea has been
explored in (Löwe et al., 2022) for causal discovery. Fig. 2 shows a high-level view of P-STCGN
consisting of two key modules: (1) spatiotemporal graph networks for causality (STGC), and (2)
spatiotemporal graph networks for forecasting (STGF). STGC performs causal structure learning with
causal labels derived from physics equations. Through STGC, we softly inject the inductive bias into
our model. STGF then performs forecasting tasks using the learned causal structures. Both networks
are designed to learn node representations from spatially and temporally correlated observations.
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3.1 ARCHITECTURE

We first learn node-wise latent representations by two modules: spatial encoder (SE) and temporal
encoder (TE). Spatial encoders are designed to learn spatial dependencies at each timestamp via
the static graph structure Gs. Graph convolutional networks such as GCN (Kipf & Welling, 2017)
or GraphSAGE (Hamilton et al., 2017) are used to aggregate spatially neighboring information in
a permutation invariant manner. The spatial encoder generates K different snapshots which are
grouped and fed into the temporal encoder as follows:

{St0 = SE(Xt0 ;Gs) | t0 = t�K + 1, · · · , t}, (3)
{Zt0 = TE({St0�P , · · ·St0}) | t0 = t�K + 1, · · · , t}, (4)

where Zt0 2 RN⇥Dc is a set of node representations (dimension Dc) at time t0. P is an aggrega-
tion order and TE merges a current embedding St0 and past P embeddings St0�1, · · · ,St0�P for
spatiotemporal node embeddings at t0. This temporal encoder does not consider the graph structure.

Spatiotemporal graph networks for causality (STGC): Once node embeddings are obtained, two
Dc dimensional vectors are fed into a causal module (CM), which computes a probability of causal
association between the two corresponding nodes:

p
tjti
ji = CM(Ztj ,j ,Zti,i), (5)

where CM is a fully connected network to compute causality and Ztj ,j is the j-th node’s repre-
sentation at time tj . Since there are N different nodes at each time t (with a total of K different
timestamps), there are N2K2 different settings for p. Eq. 5 is similar to the Key and Query matching
mechanism in the transformer (Vaswani et al., 2017). If observations are stationary and the causal
relations are independent on the absolute timestamps (tj , ti), but dependent on the relative time
interval ⌧ = ti � tj , Eq. 5 can be reduced to p⌧ji = CM(Ztj ,j ,Zti,i).

Spatiotemporal graph networks for forecasting (STGF): This module is used to learn node
representations from spatiotemporal observations. It takes the learned causal structure from STGC
and is used for the prediction of future signals. We introduce the forecasting module (FM) to
transform the spatiotemporal representations (Z) to task-specific representations. As CM learns
causality-associated representations, FM is adapted to learn prediction-associated representations.

{Ht0 = FM(Zt0) | t0 = t�K + 1, · · · , t}, (6)

where Ht0 2 RN⇥Dv . Since the causal relations from the NK past variables to N variables are
inferred from STGC, the causal probabilities p

tjti
ji (Eq. 5) are combined with H to predict next

variables. Specifically, the output (H) from FM in STGF and p from CM in STGC are used to
predict the next value at a node i and time t+ 1:

X̂t+1,i =
t�1X

t0=t�K+1

X

j2Ni

pt
0t
j,iHt0,j . (7)

It’s worth noting that we use causal probabilities between t0 2 [t �K + 1, t � 1] and t instead of
t0 2 [t �K + 1, t] and t + 1. There are two reasons for this: (1) since Xt+1 is not available, it is
impossible to compute pt

0,t+1 (a function of Xt+1) in advance, and (2) we assume that the causality
is stationary and thus from t0 and t is invariant if ⌧ = t� t0 is unchanged. The second assumption
is particularly valid for spatiotemporal observations in physical systems as most of physics-based
phenomena are not dependent on the absolute time but relative time intervals.

3.2 TRAINING

Additional causality labels from physics principles. In Section 2, we assume that the causal
relations are given as explicit labels based on the prior equation (Eq. 2). These causal relations are
utilized for semi-supervised causal structure learning. This presents a few challenges when directly
using these labels to update the causal module and the backbone, namely working around the selection
bias of those labels provided by the physical priors.

The PDE solely provides information regarding which past and neighboring variables can be consid-
ered as possible causes for a current variable. It does not, however, provide information about which
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causal relations should be excluded. Since the partially available labels are highly imbalanced, it is
possible the CM will overfit on the positive-only labels. We address this challenge by introducing
non-causal labels based on the principle that an effect can not occur before its cause. The non-causal
labels are described as follows:

{ntjti
ji = 0 | ti � tj < 0}, (8)

Eq. 8 captures the set of relations where a timestamp (tj) of a candidate cause (Xtj ,j) is later than
that of a candidate effect (Xti,i). Despite the availability of the non-causal labels, the imbalance
issue still exists as the cardinality of {ntjti

ji } is much larger than that of {ptjtiji }. We mitigate this by
subsampling the non-causal labels as many times as the available causal labels.

4 EXPERIMENTAL RESULTS

We evaluate the proposed method in terms of both causal structure learning performance and dynamic
forecasting performance. For causal structure learning, we evaluate the causal module (STGC)
using synthetic and benchmark time series data. For dynamic forecasting performance, we evaluate
P-STCGN through a graph signal prediction task with real-world observations.

4.1 CAUSAL STRUCTURE LEARNING EVALUATION

Task formulation. Given N different stationary series (or nodes), we train a model to predict if
there exists significant temporal causal relationships between two time series: Xt0,j and Xt,i. Since
the auto-regressive order is P , there are potentially NP ⇥ N causal relations from N variables
Xt0 where t0 2 [t � P, t � 1] to N variables at time t. The true temporal causal relations are
explicitly given as labels during training and a model is evaluated in two different aspects: (1)
inter-causality classification and (2) intra-causality retrieval. For the inter-causality classification, we
split a simulated multivariate time series into two parts across time axis: {Xt|t = 1, · · · , Ttrain}
and {Xt|t = Ttrain, · · · , T}. A model is trained from the first series (a training set) and evaluated in
the second series (a testing set). For the intra-causality retrieval, we only use a subset of the known
labels to train a model and evaluate the model if it can retrieve the unseen labels correctly.

Baselines. The task can be considered as learning directional edge representations from a variable
at t0 2 [t� P, t� 1] to another variable at t, inspiring the three baselines as follows. First, we feed
two node values into an MLP to predict the strength of causality. The other two baselines utilize a
spatial and a temporal module to aggregate neighboring spatial/temporal values accordingly, after
which the aggregated two node features are fed into an MLP to return the causal probability. For the
spatial encoder (SE), we use GCN (Kipf & Welling, 2017), Chebyshev graph convolution networks
(CHEB) (Defferrard et al., 2016), and GRAPHSAGE (Hamilton et al., 2017). The temporal encoder
(TE) then concatenates node variables in the auto-regressive order. The STGC combines the two
encoders spatiotemporally and the resultant node representations are fed into an MLP. Furthermore,
we compare to causal discovery baselines: PARC (PCMCI (Runge et al., 2019b) based on partial
correlations), Gaussian process regression and a distance correlation (GPDC), DYNOTEARS (Pamfil
et al., 2020), and the SOTA Amortized Causal Discovery (ACD) (Löwe et al., 2022).

4.1.1 SYNTHETIC STUDY

Synthetic time series generation. We first generate multivariate time series X 2 RT⇥N from known
temporal causal relations. Consider N different stationary time series where each series influences
the others in a time-lagged manner. At time t, a variable in the i-th time series Xt,i 2 R is defined as
a function of variables at t0 < t such that:

xi,t =
t�1X

t0=t�P

NX

j=1

f t0,t
j,i (Xt0,j) + ✏, (9)

as described in 1 (Runge et al., 2019b), where P is the auto-regressive order across time and ✏ is
a noise term that is independent w.r.t. any other variable. Note that f t0,t

j,i (·) is regarded as a causal

1https://github.com/jakobrunge/tigramite
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function from a previous variable at (j, t0) to a current variable (i, t). Since the time series are
stationary, the function f t0,t

j,i (·) in Eq. 10 can be relaxed as f t�t0

j,i (·). We defined the temporal causal
function in two different ways: (1) linear, and (2) non-linear conditional independence. For both
settings, we generate length T = 1000 time series across N = 7 (linear) and N = 13 (non-linear)
nodes. More detailed information can be found in the Appx. B.

LINEAR CAUSALITY (AUC) NON-LINEAR CAUSALITY (AUC)
MODEL N (0, 12) N (0, 52) N (0, 12) N (0, 52)

MLP 0.611±0.029 0.506±0.010 0.517±0.013 0.499±0.004
GCN+MLP 0.507±0.004 0.500±0.001 0.502±0.002 0.500±0.004
CHEB+MLP 0.627±0.010 0.513±0.008 0.526±0.009 0.500±0.004
SAGE+MLP 0.621±0.021 0.516±0.006 0.527±0.007 0.502±0.003
TE+MLP 0.827±0.021 0.697±0.012 0.562±0.033 0.511±0.009
ACD 0.476±0.031 0.489±0.020 0.495±0.013 0.504±0.010

STGC(OURS) 0.849±0.020 0.712±0.013 0.640±0.012 0.582±0.007

Table 1: Inter-causality classification with additional noise

Inter-causality classification. For the inter-causality classification task, we evaluate the proposed
model on two different settings: (1) linear, and (2) non-linear temporal causality. The results on clean
data (provided in Appx. C) demonstrate that the proposed model successfully outperforms other
baselines on both settings. To evaluate the robustness of the proposed model, we intentionally add
i.i.d. noises to the generated time series. Since the time series are “contaminated” by the random
noise after being causally generated, it becomes much more difficult to discover underlying temporal
causality. Table 1 shows AUC of the models on the linear and non-linear settings. While AUCs are
commonly decreased, STGC can still learn meaningful representations from the spatiotemporal series
unlike other methods. Note that when the scale of noise is increased (N (0, 52)), MLP and spatial
encoders followed by MLP are almost impossible to distinguish between causal and non-causal
relations (AUC is closed to 0.5), occurring also to TE+MLP for the non-linear series.

Furthermore, in Table 1, the performance of ACD is poor which is likely due to the limited training
data. ACD requires a large amount of training data to produce accurate causal classification (its
default training size is 10,000). Besides, the additive noise is a significant bottleneck to the existing
methods for temporal causal discovery in multivariate time series. Without the additional noise types,
these methods are able to perfectly discover the causal directions. However, they significantly lose
the capability to do so once the noise is included. The STGC, instead, can learn robust representations
for effective causal discovery. Supportive results are discussed in the Appx. C where we compare
STGC against PARC, GPDC, DYNOTEARS. Through comparisons, STGC is shown to be robust in
causal classification with noisy and limited data by utilizing the physics-aware causality.

Intra-causality retrieval. For the intra-causality retrieval task, we used the time series generated
from non-linear causality with added noises. Note that there are 21 causal relations in the series that
are split into two parts for training and testing. By adjusting the number of causal relations shown
in training series, we can evaluate how the proposed model is robust even if the majority of causal
relations are not given during the training process. Table 2 shows the average behaviors trained on a
subset of causal relations in time series. While TE+MLP detects some unseen causal relations when

# OF TRAIN/TEST 16 / 5 11 / 10 6 / 15 1 / 20
CAUSALIY LABELS

TE+MLP 0.550±0.031 0.546±0.023 0.539±0.028 0.501±0.011
ACD 0.486±0.030 0.506±0.014 0.499±0.012 0.500±0.016

STGC (OURS) 0.636±0.024 0.620±0.010 0.596±0.014 0.585±0.018

Table 2: Intra-causality retrieval (AUC) from non-linear causal time series with N (0, 12)

the number of labels shown for training is large (16), its performance quickly degrades as the number

6



Under review as a conference paper at ICLR 2024

of available labels is decreased. STGC outperforms TE+MLP by a large margin, supporting the
claim that STGC can extract more informative spatiotemporal representations. Interestingly, even if
only a single causal relation is given as a known label (1/20), STGC still manages to retrieve unseen
causal relations. Due to the lack of sufficient training samples, the ACD fails to perform effective
causal discovery. Compared to ACD, STGC, by leveraging the physics-aware causality, is able to
retrieve unseen causal relations.

4.1.2 EVALUATION ON BENCHMARK DATASETS

Three Benchmark Datasets considered in the literature (e.g. (Löwe et al., 2022)) are employed:
Particles, Kuramoto (Kuramoto, 1975), and Netsim (Smith et al., 2011). Particles and Kuramoto
are two fully-observed physics simulations. Particularly, the Particles dataset simulates five moving
particles in 2D. Some particles can influence others by pulling a spring. The Kuramoto dataset
simulates five 1D time-series of phase-coupled oscillators. For both Particles and Kuramoto, we
follow the same settings as the synthetic study and generate T=1000 time series for training. The
Netsim dataset contains simulated fMRI data. The connectivity is defined between 15 brain regions.
We follow the same settings as reported in (Löwe et al., 2022) and infer the connectivity across 50
samples.

METHODS PARTICLES KURAMOTO NETSIM

ACD 0.493 0.562 0.688

STGC (OURS) 0.520 0.968 0.925

Table 3: Comparison to ACD on Benchmark Datasets.

Table 3 shows the results comparing STGC to ACD on the three benchmark datasets. From the results,
we see that STGC significantly outperforms ACD. For example, on Kuramoto, P-STCGN achieves
40.6% accuracy improvement compared to ACD. On Particles, the performance of ACD is poor
which is likely due to the reduced data size. Though ACD achieves 0.999 AUC on the Particle dataset
with sufficient data (10,000) as reported in (Löwe et al., 2022), its performance drops significantly
with limited data (1,000). In contrast, we show that P-STCGN is able to learn robust representations
for the causal discovery under limited data by utilizing the physics-aware causality.

4.2 DYNAMIC FORECASTING EVALUATION

To evaluate the dynamic forecasting performance of the proposed model, we consider a graph signal
prediction task from real-world observations. The task is a prediction of future signals Xt+1 given
length P = 10 past spatiotemporal series Xt�9 · · · ,Xt under the graph structure.

Dataset: We consider the climatology network2 (Defferrard et al., 2020). Each sensor has 4 different
daily measurements: TMAX: Maximum temperature (tenths of degrees C), TMIN: Minimum
temperature (tenths of degrees C), SNOW: Snowfall (mm), and PRCP: Precipitation (tenths of
mm). Each measurement is provided over 5 years from 2010 to 2014 (the length of series 1826), and
we use them for our experiments. It is worth noting that the number of working sensors for each
measurement is highly variable. While daily temperature observations are spatially densely available,
the snowfall observations are comparatively sparse. We split the series into training (60%), validation
(10%), and testing (30%) sets. Additional details are in Appx. B.

Baselines: We compare P-STCGN against two well-established data-driven baselines which have
been introduced for similar tasks: DCRNN (Li et al., 2018) (Diffusion convolution recurrent neural
network) and GCRN (Seo et al., 2018) (Graph convolutional recurrent network). For physics-based
baseline, we consider the PA-DGN (Seo et al., 2019) (physics-aware difference graph network) and
FNO (Li et al., 2020) (Fourier Neural Operator). FNO is not initially designed for forecasting given a
history of data. We train FNO given observational data using its default settings and test it for a future

2Global Historical Climatology Network (GHCN) provided by National Oceanic and Atmospheric Adminis-
tration (NOAA).

7



Under review as a conference paper at ICLR 2024

time step prediction. In addition to the external baselines, we evaluate against STGF, the version
of the proposed model without the physics-aware causality. We exclude the comparison to existing
data-driven large-scale simulations, such as Graph Network Simulator (GNS) (Sanchez-Gonzalez
et al., 2020) and MeshGraphNets (Pfaff et al., 2020) since our primary focus is to incorporate physics
for spatiotemporal modeling. Future work includes explore the proposed physics-aware pipeline for
improving the data-driven large-scale simulation approaches.

Causality labels from PDEs: There is no ground truth PDEs for this dataset. We thus consider the
PDEs among the family of the continuity equation, e.g. diffusion, convection, and Navier-Stokes
equations. These equations commonly describe how target observations are spatiotemporally varying
with respect to its second-order spatial derivatives and first-order time derivative. In the underlying
graph structure, spatially 1-hop neighboring nodes (j 2 Ni) are considered as adjacent causes to the
observation at the i�th node, and observations at t� 1 are potential causes to the observations at t
autoregressively. The existing causal labels can be described as {ptjtiji = 1 | ti � tj = 1 and j 2 Ni}.

4.2.1 PREDICTION ACCURACY

We use mean squared error (MSE) as a metric to compare P-STCGN against the external baselines3.
Table 4 shows that P-STCGN mostly outperforms other baselines across different regions and
measurements. Both DCRNN and GCRN replace fully connected layers in the RNN variants (GRU
and LSTM) with diffusion convolution and Chebyshev convolution layers. Thus, they similarly
aggregate spatiotemporal correlation, exemplified by the close prediction error. Compared to the data-
driven DCRNN and GCRN, our approach achieves better accuracy, particularly for TMAX and PRCP.
For example, P-STCGN improves DCRNN by 16% for TMAX (western) prediction. Compared
to two physics-based baselines PA-DGN and FNO, we also observe performance improvements.
Particularly, P-STCGN improves PA-DGN significantly for TMAX and TMIN, demonstrating that
our way of incorporating prior physics knowledge is much more effective.

MEASUREMENT TMAX TMIN
MODEL WESTERN EASTERN WESTERN EASTERN

DCRNN 0.1324±0.0024 0.1585±0.0033 0.0707±0.0017 0.1317±0.0028
GCRN 0.1336±0.0082 0.1588±0.0027 0.0701±0.0004 0.1302±0.0009
FNO 0.1234±0.0005 0.1963±0.0003 0.0906±0.0004 0.1676± 0.0001
PA-DGN 0.2620±0.0033 0.2921±0.0014 0.1720±0.0098 0.2346± 0.0009

P-STCGN 0.1111±0.0014 0.1355±0.0034 0.0731±0.0009 0.1262±0.0036

MEASUREMENT SNOW PRCP
MODEL WESTERN EASTERN WESTERN EASTERN

DCRNN 0.6757±0.0011 0.0406±0.0002 0.4703±0.0020 0.7588±0.0013
GCRN 0.6683±0.0012 0.0406±0.0001 0.4703±0.0009 0.7595±0.0001
FNO – – – –
PA-DGN 0.6626±0.0051 0.0402±0.0027 0.4979±0.0016 0.6819±0.0008

P-STCGN 0.6613±0.0035 0.0386±0.0007 0.4589±0.0033 0.6658±0.0025

Table 4: Summary of results of prediction error (MSE) with standard deviations.

4.2.2 ABLATION STUDY

To further study the effectiveness of P-STCGN, we perform ablation study on data efficiency and
generalization ability. We compare to the baseline model STGF. Furthermore, we visualize the
learned causality for interpretation.

Data Efficiency. We consider different training sets with reduced number of training samples:
{5%, 10%, 20%}. In comparison, we also consider the full training set (60%). All the testing are
performed on the same testing split. Results are shown in Table 5. Compared to STGF, we can

3For SNOW and PRCP, FNO can’t converge during training, likely due to the spatially sparse sensors with
discrete measures.
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clearly see how the additional physics-aware causality is beneficial for modeling spatiotemporal
data, particularly on limited data (5%). Specifically, P-STCGN improves STGF by 28% on TMAX
(western), implying that the PDE-based causal labels are significantly informative to compensate
for the lack of training samples. As the training set size increases, the MSE difference between
P-STCGN and STGF gets smaller. Nevertheless, P-STCGN continues to outperform STGF by a
decent margin. With larger training set, the performance of both P-STCGN and STGF improves.
Notably, for SNOW (eastern) and PRCP (western), there is a performance decrease as the training
size increases from 20% to 40%. This decline is likely due to the noise in the training samples.

MODEL 5% 10% 20% 60%

TMAX(W) STGF 0.1926±0.0937 0.1228±0.0014 0.1177±0.0029 0.1134±0.0003
P-STCGN 0.1382±0.0034 0.1204±0.0005 0.1186±0.0007 0.1111±0.0014

TMAX(E) STGF 0.1611±0.0047 0.1519±0.0039 0.1410±0.0039 0.1393±0.0011
P-STCGN 0.1584±0.0043 0.1493±0.0022 0.1404±0.0013 0.1355±0.0034

TMIN(W) STGF 0.1229±0.0120 0.0963±0.0063 0.0887±0.0040 0.0759±0.0024
P-STCGN 0.1059±0.0080 0.0976±0.0012 0.0874±0.0014 0.0731±0.0009

TMIN(E) STGF 0.1571±0.0020 0.1352±0.0112 0.1263±0.0116 0.1304±0.0038
P-STCGN 0.1427±0.0047 0.1283±0.0026 0.1232±0.0035 0.1262±0.0036

SNOW(W) STGF 1.3300±0.0685 0.9987±0.0100 0.8150±0.0208 0.6720±0.0070
P-STCGN 1.2223±0.0051 0.9783±0.0076 0.7977±0.0051 0.6613±0.0035

SNOW(E) STGF 0.0460±0.0014 0.0410±0.0003 0.0362±0.0003 0.0391±0.0008
P-STCGN 0.0439±0.0005 0.0412±0.0083 0.0356±0.0001 0.0386±0.0007

PRCP(W) STGF 0.5103±0.0042 0.4628±0.0020 0.4407±0.0024 0.4619±0.0047
P-STCGN 0.5084±0.0012 0.4627±0.0014 0.4437±0.0022 0.4589±0.0033

PRCP(E) STGF 0.8028±0.0029 0.8041±0.0060 0.7980±0.0151 0.6770±0.0042
P-STCGN 0.7982±0.0029 0.7981±0.0029 0.7884±0.0012 0.6658±0.0025

Table 5: Data efficiency evaluation. 60% represents the full training set. “W”: Western. “E”: Eastern.

Generalization Ability. We also consider the generalization ability whereby we train P-STCGN and
STGF on one region and test on another region using the full training set. We observe that P-STCGN
consistently outperforms STGF in most scenarios. The detailed results are reported in Appx. C.

Interpretation of Learned Causality. Once the causal module is trained based on a prior PDE,
we can use it to examine how the potential causes are varying over space and time. We visualize
how the causal probability is changed in Appx. C. From the visualizations, we can observe that
variables spatially close to current observations have higher causal association for PRCP and TMAX.
Additionally, we can infer the strength of causal relations between neighboring sensors and a specified
target sensor (as shown in Appx. C). We find that the physics-aware causality is not only informative
for spatiotemporal modeling but also enables the discovery of unspecified causal relations.

5 CONCLUSION

In this paper, we introduced a physics-aware spatiotemporal causal graph network (P-STCGN). Within
our modeling process, we decoupled causal structure learning from dynamic forecasting. Causal
relations were analytically derived from prior physics knowledge and used for semi-supervised causal
learning. Subsequently, dynamic forecasting was performed based on the learned causal structure. We
evaluated the proposed framework on time series data from two perspectives: causality classification
and retrieval. Our evaluations demonstrated the effectiveness of the proposed physics-aware causal
learning approach, especially in scenarios involving noisy and limited data. We further evaluated the
forecasting performance on real-world observations from climate systems. Through evaluations, we
demonstrated superior accuracy achieved through the utilization of physics-aware causality, without
assuming the preciseness of the knowledge. In future work, we aim to explore the integration of
alternative physics knowledge into P-STCGN and extend interpretability analyses to a broader range
of real-world datasets.
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