
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

OPAQUETOOLSBENCH: LEARNING NUANCES OF
TOOL BEHAVIOR THROUGH INTERACTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Tool-calling is essential for Large Language Model (LLM) agents to complete
real-world tasks. While most existing benchmarks assume simple, perfectly doc-
umented tools, real-world tools (e.g., general “search” APIs) are often opaque,
lacking clear best practices or failure modes. Can LLM agents improve their
performance in environments with opaque tools by interacting and subsequently
improving documentation? To study this, we create OPAQUETOOLSBENCH, a
benchmark consisting of three distinct task-oriented environments: general func-
tion calling, interactive chess playing, and long-trajectory agentic search. Each en-
vironment provides underspecified tools that models must learn to use effectively
to complete the task. Results on OPAQUETOOLSBENCH suggest existing meth-
ods for automatically documenting tools are expensive and unreliable when tools
are opaque. To address this, we propose a simple framework, TOOLOBSERVER,
that iteratively refines tool documentation by observing execution feedback from
tool-calling trajectories. Our approach outperforms existing methods on OPA-
QUETOOLSBENCH across datasets, even in relatively hard settings. Furthermore,
for test-time tool exploration settings, our method is also efficient, consuming 3.5-
7.5× fewer total tokens than the best baseline. 1

1 INTRODUCTION

Tools expand the knowledge and capabilities of Large Language Model (LLM) agents beyond their
learned parameters (Schick et al., 2023). With the right tools, LLMs can search the web, send emails,
execute code, and interact with the world. Yet this extension fails when tools lack adequate docu-
mentation – a pervasive problem in deployed systems. Real-world APIs are complicated to explain,
enterprise functions lack specifications, and domain-specific tools ship with minimal descriptions.
Moreover, some tools are difficult (or impossible) to fully explain, even for humans, e.g., often the
optimal usage of search engines or LLM-based QA APIs is not known, even to their creators. Such
tools are opaque: their behavior unpredictable, their correct usage unknown. As shown in Figure 1,
tool opacity harms the performance of LLM agents, a problem that compounds when models must
coordinate multiple tools for complex tasks.

This raises a fundamental question: Can LLM agents learn to use opaque tools by observing their
behavior during interaction? Such capability would transform tool-calling agents from brittle
systems dependent on perfect specifications into adaptive ones that can improve through experience.

We introduce OPAQUETOOLSBENCH, a benchmark for learning in opaque tool settings where tool
documention is underspecified. Different than existing benchmarks that assume near-perfect tool
specifications like ToolBench (Qin et al., 2023), APIBench (Patil et al., 2023), and Berkeley Func-
tion Calling Leaderboard (Patil et al., 2025), OPAQUETOOLSBENCH does not provide compre-
hensive function signatures, detailed descriptions, or explicit type specifications. OPAQUETOOLS-
BENCH spans three distinct environments: general function calling, interactive chess playing, and
long-trajectory agentic search. Each provides underspecified tools that models must learn to use ef-
fectively, testing both single-instance discovery and cross-instance learning. Unlike existing bench-
marks that focus on measuring model capacity to compose concrete, well documented tools, OPA-
QUETOOLSBENCH is designed to measure an LLM agent’s ability to adapt to the imperfect docu-
mentation of tools through interaction.

1We release our code, data, and benchmark at anonymous.com

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Opaque Tools

Query: How long am I contagious with the flu?

QA Tool 1

Exploration

QA Tool 2

Most people are contagious for 5-7 days
after symptoms first appear.

From about 1 day before symptoms start
through 5–7 days after onset.

[1][2]

[1] Reddit [2] Families Fighting Flu

[1]

[1] American Journal of Epidemiology

QA Tool 1
Reflection

QA Tool 2
Description: Generates an answer

based on general web search.
Sources include online forums, …

Description: Generates an answer
based on authoritative medical sources.

Main sources include …

QA Tool 1

QA Tool 2

Figure 1: LLM agents may struggle when presented with opaque tools – tools lacking clear descrip-
tion of their usage best practices or their failure modes. To succeed in these settings, we posit that
LLM agents must explore tool usage to learn their true behaviors.

We evaluate current approaches that optimize tool descriptions, including Play2Prompt (Fang et al.,
2025) and EasyTool (Yuan et al., 2024). Both methods fall short on OPAQUETOOLSBENCH: sys-
tems either focus on compression of existing tool documentation, completely neglecting the inter-
action with tools (EasyTool) or require single-tool exploration phases separate from task execution,
which becomes expensive in some settings (Play2Prompt). As a result, these methods are ineffective
and sometimes expensive, often consuming thousands of tokens in preliminary exploration before
attempting the composite task.

We propose an alternative framework, TOOLOBSERVER, that refines tool documentation by observ-
ing and learning from execution feedback acquired through composite task trajectories. On OPA-
QUETOOLSBENCH, our method exceeds baseline performance consistently by on average 18.6%,
while consuming 3.5-7.5× fewer tokens in test-time settings. Our results demonstrate that learning
from execution feedback provides an efficient path to handling opaque tools in real-world environ-
ments. It also demonstrates that LLM agents can adapt to underspecified tools through interaction,
making tool-calling viable even in poorly-documented environments.

2 BACKGROUND

Language models estimate the conditional distribution P (xt|x<t) over a vocabulary V , where x<t

represents all preceding tokens (Radford et al., 2019; Brown et al., 2020). Despite their impressive
results on language benchmarks, language models nonetheless face fundamental limitations: their
knowledge is frozen, they can’t take actions in the real world, and they are often unreliable on
simple capabilities like adding numbers. These constraints have motivated the development of tool-
augmented language models that invoke external functions to overcome these limitations (Schick
et al., 2023; Mialon et al., 2023).

Tool-Calling in Language Models Language models interact with tools through a structured inter-
face that enables them to extend their capabilities beyond parametric knowledge. Each tool ti in the
available tool library T = {t1, t2, . . . , tn} is characterized by:

ti = {ni, di, pi, ei}
where ni is the name of the function, di is the documentation of the function behavior, pi is an
optional dictionary of parameters consisting of their name, description, and whether or not they are
required. ei is the executable function itself. In practice, parameter information from pi is often
incorporated into the behavioral documentation di as a string description.

Given a user query q, the language model M generates tool calls through a systematic process of
retrieving then calling, all through autoregressive decoding. The model conditions on both the
query and the available tool descriptions in their context to produce a sequence that may include
tool invocations:

s ∼ PM (s|q, T) = PM (s|q, (n1, d1, p1), . . . , (nn, dn, pn)) (1)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

where s is the sampled sequence. When the model determines a tool is needed, it produces a struc-
tured tool call c = ⟨ni, argsi⟩ as part of this sequence, where argsi must conform to the parameter
specification pi. Upon generating a tool call, the system executes ri = ei(argsi) and appends the
result to the context. The model then continues its autoregressive generation, now conditioning on
the expanded context:

s′ ∼ PM (s′|q, T , c, ri) (2)

This process may repeat, with the model invoking multiple tools or generating a final response that
incorporates the tool outputs to address the user’s query. Such tool calling language models are often
used to complete goal-oriented tasks and are referred to as LLM agents (Wang et al., 2023b).

3 THE OPAQUETOOLSBENCH BENCHMARK

Prior work creating and evaluating LLM agents assumes well-defined and well-documented tools
(Guo et al., 2024a; Qin et al., 2023; Shen et al., 2024; Patil et al., 2023). However, many real-world
tools are black boxes whose behavior can only be understood through interaction. As an example,
consider an agent given access to a set of off-the-shelf Search APIs provided as tools. Such APIs may
index documents at differing granularities and covering different domains/times/topics/styles, may
(or may not) be keyword based, might automatically run multiple hops, and could even themselves
use language models to orchestrate the search process. For LLM agents to perform optimally in
such an environment, they need to learn these nuances by interacting with these tools and observing
the feedback. Furthermore, the proliferation of Model Context Protocols (MCP) 2 have made it easy
to connect LLM agents to tools that come with variable quality and accuracy of tool documentation.

We characterize such tools as opaque. Reflecting on the diverse challenges described above, from
the inherent complexity of Search APIs to the variable documentation quality of MCP tools, we find
that opacity stems from two distinct sources. We distinguish between two types of opacity – both
practically important – that motivate our benchmark design:

• Type 1: Documentation Opacity Tools whose behavior is deterministic and describable, but
whose documentation is inaccurate or missing. This is often inevitable in real-world settings:
legacy systems often rely on unwritten “tribal” knowledge, while open marketplaces like the
Model Context Protocol (MCP) contain inconsistent descriptions at scale.

• Type 2: Intrinsic Opacity Tools that are opaque due to inherent complexity (e.g., search en-
gines, LLM-based tools, complex simulations). These tools often have a simple schema but
complex, undocumented behavioral nuances. For example, a search API’s ranking logic is hard
to fully capture a priori; even the tool creator cannot predict how a neural system handles every
edge case. The agent must instead learn these nuances through interaction.

To effectively operate in environments characterized by these forms of opacity, LLM agents need to
demonstrate the following abilities:

1. Manipulate structured & natural language inputs: Certain tools that expose traditional
REST APIs (for example, currency conversion) have structured inputs. Whereas others like
Search APIs accept a string where the nuances are encoded in natural language, which are
more open-ended/opaque.

2. Learn from process feedback: Opaque tools can sometimes only be understood by observ-
ing a trajectory/sequence of tool uses, rather than just the result from a single call, e.g., you
might not be able to discern if a search API’s output is “good” until you try to compose the
result with other information.

3. Learn across trajectories: In many real-world settings with a fixed set of tools, LLM agents
need to accumulate experience from prior trajectories, e.g., using a search tool with one goal
in mind should help one gain experience useful for using that tool for a different goal.

4. Test-time generalization: In settings where new tools are available at test time, we need to
test the ability of LLM agents to learn their nuances while completing the task itself.

2modelcontextprotocol.io

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Table 1: An overview of the datasets in OPAQUETOOLSBENCH

BFCL-Opaque Chess BrowseComp Domains

Description Complete user’s request by
correctly calling a function
with a limited description.

Play chess by choosing one
of many specialized chess
engine tools every turn.

Compose domain-specific
search tools to locate
hard-to-find information.

Skills required Structured inputs, process
feedback, test-time
generalization

Process feedback, learn
across trajectories, tool
sequencing

Unstructured inputs,
process feedback, learn
across trajectories, tool
sequencing

Settings Documentation quality
1. Anon. function names
2. Anon. function names +

description
3. Anon. function names +

parameter names

Tool sets (chess engines)
1. Beginner, intermediate,

advanced skill
2. Opening, midgame,

endgame, late-endgame
specialists

Tool sets (search tools)
1. Domain-specific (9)
2. Domain-specific (9) +

Full Search

Evaluation Evaluation Accuracy,
Param Acc., AST Acc.

% of Optimal Tool Calls,
ELO

Accuracy, # Tool Calls

Train / # Test - / 90 200 / 1800 83 / 747

5. Learn tool sequencing: Certain tool behaviors may only manifest in conjunction with other
specific tool calls. For example, if tool B can only be called after a successful invocation of
tool A, the agent needs to be able to create such trajectories to learn nuances of tool B.

We introduce OPAQUETOOLSBENCH to systematically evaluate these abilities across both types of
opacity. It consists of three environments: an opacified version of BFCL (Patil et al., 2023) we call
BFCL-Opaque (targeting Type 1), a novel game-playing environment based on Chess (targeting
Type 2), and BrowseComp Plus with opaque search (Chen et al., 2025) (targeting Type 2). Our
environments are designed to test the above aspects of learning the behavior of opaque tools while
being reproducible and efficient to run. A summary of our datasets and key information is shown in
Table 1 and in the following paragraphs. Examples from the tasks are shown in Figure 2.

BFCL-Opaque: The Berkeley Function Calling Leaderboard (BFCL) (Patil et al., 2025) consists of
question-functions-answer tuples with functions from multiple programming languages and diverse
application domains. Following Fang et al., 2025, we use the executable subset so feedback is
available from executing the tools. The tasks are simple, for example, fetching the current weather
or computing the area of a polygon. Each task has between 2-4 tools and on average 3. We modify
this environment to evaluate test-time generalization and Type 1 Opacity – though the tools of
each instance may slightly overlap a few others instances’, we instead treat the tools of each test
instance as independent and unknown. Specifically, we modify this environment by obfuscating the
function names as well as completely removing all docstrings. We do this independently for each
problem – so the same function across different test instances will be named differently. For each
test instance, the agent now has to learn what the function does and produce structured output in the
form of its arguments and their types. We create progressively easier settings by providing either (1)
only function description or (2) only parameter names. We use a binary task completion rate as our
evaluation metric. Refer to Appendix C.1 for details on environment construction.

Chess In this environment the task is to win against a fixed-strength chessbot (Stockfish (Romstad
et al., 2024) at search depth 2; higher=better). Instead of playing moves directly (as in Zhang et al.
(2025)), models are given access to a set of move suggesting tools. At each turn, the LLM agent uses
one of several undocumented tools that accept current board positions in FEN notation and play the
move that’s suggested. While the tool interfaces are identical, we introduce undocumented behaviors
in each tool. Specifically, in the first setting, each tool uses Stockfish but with different search depths
(2, 4 & 8), testing if the agent can learn fine-grained discrimination between tools based on the final
outome. In the second setting, we provide tools optimized for opening, middlegame, endgame,
and late endgame, enabling us to test the ability to explore and learn temporal patterns. Since the
same set of tools are used across different instances, we test agent’s ability to learn tool behavior
across trajectories (capturing Type 2 Opacity where behavior depends on game state). Refer to
Appendix C.2 for details on environment construction.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

BFCL
Opaque

Chess

Browse
Comp
Domains

Anon.
functions

Generate first
20 fibonacci

fn_1 fn_2

fn_1(n=20)
Got an

unexpected
keyword

argument n

fn_1Phase
specialist

0, 1, 1, 2,
3, 5, 8,

13, 21, …

Opening

stock_price fibonacci

e7 B8 fn_4 b7# [fn_4,]

Domain-
specific

In the 1910s, an
individual was

born…What was
the name of

this new brand?

Vakkorama
fn_1

(“tower built
in 1340s
city”)

…
medieval

character-
istic of
Florence

…

fn_2
(“…new

brand with
child in the
1980…”)

… Boyner

Each
instance
has its
own set of
tools

OpponentPlayer

Input Gold OutputTrajectoryTool SetSetting

fn_1

fn_4

Late Endgame

…

fn_1

fn_2

Geographical

Product
Catalogs

…

Figure 2: Examples from each of the environments in OPAQUETOOLSBENCH. For Chess and
BrowseComp Domains, each setting has a fixed set of tools across all instances (chess and search
engines respectively). In BFCL-Opaque, each instance has custom query-dependent tools. The
dataset defines the input and output (green). For each instance, the agent makes tool calls iteratively
(blue). For BFCL-Opaque and BrowseComp Domains we check for a match with the gold answer.
For Chess, we match engine choices in green with optimal engine choices.

BrowseComp Domains The BrowseComp dataset consists of question and short answer pairs which
measure the ability of agents to locate hard-to-find, entangled information on the internet, and might
require browsing tens or even hundreds of websites in the process. BrowseComp Plus (Chen et al.,
2025) further improves it by fixing the retrieval corpus and thus making this benchmark easy to
reproduce. We leverage this corpus and create anonymous domain-specific search tools (4-6 tools)
by partitioning the corpus (academic papers, product catalogs, geographical data, news articles).
The LLM agent must not only discover the domain specialization of each tool, it must also learn
to create optimal search queries for each tool and learn to search in the right sequence (addressing
Type 2 Opacity in query formulation). Each instance in our dataset has a corresponding sequence
of optimal tool calls. We compare the tool sequence with the optimal sequence and use accuracy as
our evaluation metric. Refer to Appendix C.4 for details on environment construction.

These three environments test for the four key abilities of LLM agents: (1) With BFCL-Opaque we
test for structured inputs and with BrowseComp Domains unstructured inputs, (2) All environments
allow learning from intermediate outputs of tool calls, (3) BrowseComp Domains and Chess test
if the LLM agent can learn across trajectories, while BFCL-Opaque checks for generalization to
new tools at test time, (4) Chess and BrowseComp Domains test for LLM agent ability to sequence
opaque tools in the right sequence.

4 TOOLOBSERVER: IMPROVING DOCUMENTATION VIA INTERACTION

Existing approaches for optimizing tool documentation have limitations that render them less ef-
fective in complex tool-calling environments. For example, EasyTool (Yuan et al., 2024) relies
primarily on compressing existing long documentation of tools into more concise instructions, mak-
ing it unsuitable to settings where the tool documentation is underspecified or completely lacking.
Meanwhile, Play2Prompt (Fang et al., 2025) adopts an iterative refinement strategy, but it requires
an isolated single-tool exploration phase separate from task execution, making it inefficient and (as
we will show) not performant in complex environments that require a long trajectory of tool calls.

To address these limitations, we propose TOOLOBSERVER. TOOLOBSERVER requires no up-front
documentation, and discovers and refines tool documentation through observation and reflection on
execution trajectories. The key idea is to alternate between an Exploration Phase and a Reflection
Phase. During exploration (line 3 of Algorithm 1), we collect execution trajectories using the current
documentation D(k−1), which can initially be null. There a separate reasoning model analyzes the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

trajectories, identifies patterns, and updates tool descriptions accordingly. We repeat this process
iteratively, improving tool descriptions and exploring better trajectories in the next iteration.

OPAQUETOOLSBENCH contains two settings: (1) with shared tools between train and test set and
(2) with unseen tools that can only be observed at test time (and there is no train set). We in-
stantiate TOOLOBSERVER in two modes to accommodate the two settings: offline mode, which
pre-optimizes documentation during training when all test instances share a common tool set and
online mode, which optimizes documentation at test time for previously unseen tools.

4.1 OFFLINE MODE

Algorithm 1 TOOLOBSERVER: Offline mode

Require: Initial descriptions D0, iterations K, LLM
Agent MA, Editor LLM ME

Ensure: Optimized documentation D∗

1: Initialize D(0) ← D0

2: for k = 1 to K do
3: // Exploration Phase
4: Tk ← CollectTrajectories(D(k−1),MA)
5: // Reflection Phase
6: D(k) ← ReflectAndUpdate(Tk,D(k−1),ME)
7: end for
8: return D(K)

In offline mode, we pre-optimize docu-
mentation using a set of training instances
sharing the same tools. Algorithm 1 out-
lines the procedure. The core intuition
is to establish a feedback loop where the
agent attempts tasks, observes execution
outcomes against ground truth, and itera-
tively refines its understanding of tool be-
haviors from this signal. This approach
leverages two key advantages of the offline
setting: (1) multiple training instances and
(2) the ability to evaluate the final answer.
We discuss the two key phases below:

Exploration Phase: Collecting Trajectories The goal of this phase is to generate diverse interac-
tion traces that reveal the latent behaviors and failure modes of the opaque tools. To do this, we
execute the agent MA on the training set Xtrain using the current tool documentation D(k−1). By
running across the entire training set, we ensure the agent explores tool behaviors across a wide
variety of contexts (e.g., diverse chess positions or search queries) and diverse usage patterns. We
use temperature sampling to collect a breadth of trajectories Tk = {τ1, ..., τ|Xtrain|}, where each
trajectory τi captures the full sequential decision process: starting from the initial state, it records
the alternating sequence of reasoning steps, tool calls, and environmental observations (e.g., tool
execution outputs) leading to the final outcome.

Reflection Phase: Reflecting and Updating Documentation The goal of this phase is to distill
raw interaction experience into explicit, generalizable tool documentation. However, processing the
full set of trajectories Tk simultaneously is infeasible due to context window constraints and the
difficulty of extracting consistent patterns from massive, noisy data streams. To address this, we
employ a meta-prompting strategy with an “Editor” LLM ME (this can be the same as our LLM
agent MA). It analyzes trajectories via a hierarchical process:

1. Batch Analysis (with ground truth): We first split the trajectories into mini-batches to manage
context limits. For each batch, we explicitly task the Editor with updating the tool descriptions
based on the execution history. Acting as a local reasoner, it identifies causal links between tool
usage patterns and success/failure outcomes. Crucially, it is provided with the ground truth
(e.g., the gold answer) or a task performance signal derived from the training environment.
Using this signal, it distinguishes effective usage from failures and generates a candidate descrip-
tion specific to that batch. Consequently, this phase produces a diverse set of local descriptions,
where each captures insights valid for its specific subset of trajectories.

2. Consensus Merge: Since observations from a single batch may be noisy or overfit to specific
instances, a second Editor pass aggregates the candidate proposals from all batches. It acts as a
consensus filter, retaining only those behavioral rules that appear consistently across multiple
diverse batches while discarding instance-specific hallucinations.

This two-stage process is critical for the offline mode: it allows us to scale to large datasets while
ensuring the learned documentation generalizes across different contexts. We repeat this explo-
ration and reflection loop for K iterations. Finally, we run the LLM agent with the optimized
documentation D(K) on the test set. Further implementation details, including prompt templates
and dataset-specific details, can be found in Appendix A and E.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.2 ONLINE MODE

In the online mode, we are only given access to a single test instance with a set of unseen tools. For
a single test instance with unique tools Tx that cannot be experimented with apriori, we first collect
a trajectory by executing the agent’s generated tool calls and recording the real-time environment
feedback (e.g., return values or error messages). Then, we use the Editor LLM to analyze that
trajectory and update the tool documentation based on the observed behavior(s). We repeat this
process for a maximum of K iterations. If the Editor does not update the documentation, we stop
the iteration early. Note that in online mode the gold output is not used as part of the process. We use
the final version of the tool documentation to run the LLM agent on the test instance and compute
an evaluation metric using the gold output.

4.3 COMPARISON TO PLAY2PROMPT

While Play2Prompt (Fang et al., 2025) also adopts an iterative refinement strategy, our method
differs from it in several crucial ways. First, Play2Prompt requires initial documentation D0 to
bootstrap their reverse generation process; they first generate valid tool invocations based on this
documentation, then construct matching queries. In contrast, our method can operate under the
more challenging setting where tools are completely opaque, requiring discovery purely through
task-driven exploration. Second, Play2Prompt also requires optimization of all tools individually
beforehand. In contrast, our method explores all tools at once, balancing an exploration/exploitation
tradeoff and tool interactions vs. being forced to exhaustively explore all tools individually apriori.
In §5, TOOLOBSERVER’s design leads to notably better performance under opaque tool settings.

5 EXPERIMENTS

We benchmark three contemporary tool-calling LLM agents on OPAQUETOOLSBENCH. First, we
test on GPT-5 (OpenAI, 2025), the most capable model OpenAI model for reasoning and agentic
tool use at the time of writing. We also use GPT-5-mini, a cost-efficient yet still capable version. We
use the ReAct framework (Yao et al., 2022) to iteratively reason and call functions. Further details
can be found in Appendix A.

TOOLOBSERVER and Baselines Experimental Details For our main experiments with TOOLOB-
SERVER, we also use GPT-5 as our model for reflecting on and updating tool descriptions (editor
model). F ollowing TOOLOBSERVER, for all baselines we use GPT-5. We include (1) Play2Prompt
(Fang et al., 2025), which improves tool-documentation from self-play followed by self-reflection
and (2) EasyTool (Yuan et al., 2024) which automatically rewrite the tool documentation by con-
densing tool descriptions and creating structured functional guidelines.

5.1 MAIN RESULTS

Our main results in Tables 2-4 demonstrate both the challenge of existing baselines on OPAQUE-
TOOLSBENCH, and the strong performance of TOOLOBSERVER, showing its potential to improve
LLM agent performance in opaque tool settings.

TOOLOBSERVER outperforms baselines on BFCL-Opaque and recovers near-optimal perfor-
mance. Table 2 demonstrates that TOOLOBSERVER outperforms all baselines across documenta-
tion levels and LLM agents. In the function name only setting, TOOLOBSERVER recovers 0.62
execution accuracy with GPT-5, whereas Play2Prompt only achieves 0.50. Furthermore, because
Play2Prompt exhaustively test hundreds of tools, most of which will not be relevant, the total input
+ output tokens consumed for exploration is ∼1.7M, which is 7.5× more than the exploration bud-
get of TOOLOBSERVER. Across documentation levels, this ranges from 3.5× - 7.5×. This indicates
that for test-time optimization settings, our method is both effective and relatively inexpensive.

We identify an initially challenging but tractable scenario: when parameter information is missing.
OpenAI agents initially obtain 0 performance, repeatedly calling tools without arguments. How-
ever, TOOLOBSERVER effectively bridges this gap. By comparing against a Gold Oracle (perfect
documentation), we find our method recovers 93% of the performance gap in the underspecified
setting (0.86 vs. 0.92). To verify this is due to valid schema discovery rather than luck, we an-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Performance on BFCL across models and baselines. We use ReAct. Gold is the ground
truth documentation and base is the opacified set. TO denotes TOOLOBSERVER, P2P denotes
Play2Prompt, and ET denotes EasyTool. Columns denote E (Execution-based overall accuracy),
P (Parameter accuracy), and A (AST accuracy). The highest E value in each row is bolded.

Documentation Model
ReAct

Gold Base + TO + P2P + ET
E P A E P A E P A E P A E P A

Tool Setting: Individual Tools per Problem

Anon. Fn.
Names Only

GPT-5 0.92 0.91 0.93 0 0 0.59 0.62 0.61 0.83 0.50 0.54 0.80 0 0 0.59
GPT-5-mini 0.94 0.90 0.95 0 0 0.59 0.62 0.54 0.82 0.52 0.54 0.82 0 0 0.59

Anon. Fn. +
Real Desc.

GPT-5 0.92 0.91 0.93 0 0 0.59 0.86 0.82 0.89 0.50 0.47 0.80 0 0 0.60
GPT-5-mini 0.94 0.90 0.95 0 0.01 0.60 0.80 0.77 0.90 0.46 0.45 0.79 0 0 0.60

Anon. Fn. +
Param Names

GPT-5 0.92 0.91 0.93 0.78 0.82 0.93 0.82 0.85 0.94 0.78 0.80 0.94 0.70 0.71 0.90
GPT-5-mini 0.94 0.90 0.95 0.82 0.85 0.94 0.88 0.88 0.96 0.84 0.84 0.95 0.74 0.76 0.93

Table 3: Average percentage of best tool calls (Acc) and ELO rating at a given state for Chess. TO
denotes TOOLOBSERVER, P2P denotes Play2Prompt, and ET denotes EasyTool. Gold is the ground
truth documentation. The highest value in each row is bolded.

Model
ReAct

Gold Base + TO + P2P + ET

Acc ELO Acc ELO Acc ELO Acc ELO Acc ELO

Tool Setting: Opening, midgame, endgame, late-endgame specialists
GPT-5 64.4 1411 23.5 728 40.1 1020 35.8 966 23.2 761
GPT-5-mini 52.8 1243 24.9 772 32.1 949 19.5 754 25.8 739

Tool Setting: Beginner, intermediate, advanced skill
GPT-5 100 2341 24.9 1572 29.1 1756 0.25 1622 24.9 1584
GPT-5-mini 100 2346 25.7 1674 28.4 1778 22.7 1481 25.5 1645

alyze Parameter (P) and AST (A) accuracy. TOOLOBSERVER consistently outperforms baselines
on these granular metrics (e.g., 0.61 Parameter Accuracy vs. 0.54 for Play2Prompt), confirming it
successfully synthesizes correct input structures from scratch.

BrowseComp Domains and Chess are challenging, but TOOLOBSERVER can still discover tool
nuances As shown in Table 3 and 4, BrowseComp Domains and Chess are empirically much harder
tasks than BFCL Opaque – for Chess, the best performance for any model, measured by percentage
of best tool calls, is only 40.1%. On the other hand, the best accuracy for BrowseComp Domains is
only 24.1%. In both of these cases, despite the initial difficulty of the tasks, our method TOOLOB-
SERVER outperforms baselines across tool settings in both domains, achieving the best performance.

However, even the optimized chess performance is seemingly low - with only 29.1 on the skill tool
setting with only three tools with GPT-5. We posit that this is because our evaluation metric is strict
– during exploration, the model observes tool usage from three different tools, all of which will
perform well against the opponent. When evaluating via best tool % , they are penalized even if
they choose a relatively good tool. In contrast, the Streaming ELO scores – computed from win-
rates against diverse opponents – verify that the learned documentation enables practically effective
gameplay, improving over the baseline even if the strictly optimal tool is not always chosen.

For BrowseCompPlus, comparisons against the Gold Oracle (33.1% accuracy for GPT-5) reveal that
this task is intrinsically difficult even with perfect documentation. TOOLOBSERVER recovers some
of this gap while also reducing the number of average tool calls. This intuitively makes sense: as
documentation is improved for search tools, the LLM agent is able to route queries more effectively,
both improving downstream performance and reducing wasted search calls. Overall, the success of
TOOLOBSERVER across both offline settings demonstrate the strength of our method: reflecting on
and adapting based on real trajectories improves performance better than isolated tool testing.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Performance comparison table on BrowseComp Domains using Qwen-0.6B. Acc. refers
to accuracy and #TC refers to number of tool calls. TO denotes TOOLOBSERVER, P2P denotes
Play2Prompt, and ET denotes EasyTool. The highest Acc. value in each row is bolded.

Model
ReAct

Gold Base + TO + P2P + ET

Acc. #TC Acc. #TC Acc. #TC Acc. #TC Acc. #TC

Tool Setting: Domain-specific (9) Search
GPT-5 30.8 22.6 18.8 25.3 20.3 23.2 19.4 23.8 18.7 23.8
GPT-5-mini 28.9 21.8 14.6 23.2 18.8 22.9 15.1 12.1 15.0 24.4

Tool Setting: Domain-specific (9) + Full Search
GPT-5 33.1 20.5 21.4 24.8 24.1 21.9 23.8 14.4 20.6 25.5
GPT-5-mini 30.9 22.2 20.3 23.3 22.1 21.0 21.0 18.6 20.8 23.7

5.2 ANALYSIS

0 5
0

0.2

0.4

0.6

Iteration

A
cc

A)

GPT-5-Mini GPT-5

0 2 4
0

0.2
0.4
0.6
0.8

Iteration

B)

0 2 4 6

0.75

0.8

0.85

Iteration

C)

Figure 3: Performance of TOOLOBSERVER on BFCL-
Opaque with increased iterations on the tool settings:
A): Anon. Function Names, B): Anon. Function
Names + Descriptions, C): Anon. Function Names +
Param. Names. Iterations stop after full convergence.
These are expanded versions of the Table 2 results.

Table 5: Average number of reflection iters. required
by TOOLOBSERVER to converge on BFCL-Opaque.

Configuration GPT-5 GPT-5-mini

A) Anon. Fn. Names 3.44 2.96
B) Anon. Fn. Names + Desc. 2.66 2.60
C) Anon. Fn. Names + Param. 2.22 2.24

We analyze a few components of
TOOLOBSERVER and our own OPAQUE-
TOOLSBENCH:

TOOLOBSERVER performance over it-
erations Figure 3 shows that when mini-
mal tool information is available (plot A),
the model gradually improves across itera-
tions, measured by execution accuracy on
BFCL-Opaque. When some useful infor-
mation is already provided (plot B), per-
formance spikes early on then plateaus,
with little additional gain. Finally, in
plot C, where most of the important tool
is available, improvements are negligible
and performance saturates almost immedi-
ately. These patterns are consistent across
all evaluated models. However, GPT-5
takes more iterations to converge at the fi-
nal tool documentation, while GPT-5-Mini
consistently converges sooner.

We also report the average reflection itera-
tions required for convergence in Table 5.
We observe two key trends. First, convergence speed correlates with information availability: as
starting documentation improves (from anonymized names to including parameters), average iter-
ations decrease by ≈35% (from 3.2 to 2.2). Second, we observe that in the most opaque setting,
GPT-5 uses more iterations (3.44) than GPT-5-mini (2.96). Combined with the performance gap in
Figure 3, this suggests the stronger model engages in more thorough exploration to uncover com-
plex behaviors. Even in the hardest setting, convergence occurs in under 3.5 iterations on average,
demonstrating the experience-efficiency of TOOLOBSERVER.

Fidelity of leaarned descriptions We assess the quality of generated documentation both quan-
titatively and qualitatively. First, we quantify the fidelity of learned documentation by measuring
semantic (SBERT embedding Reimers & Gurevych (2019)) and lexical (ROUGE-1; Lin (2004))
similarity against gold standards on BFCL-Opaque (Table 6). TOOLOBSERVER consistently outper-
forms baselines on both metrics. In the hardest “Anon. Fn. Names” setting, we achieve a semantic
similarity of 0.58 (vs. 0.51 for Play2Prompt) and a lexical overlap of 0.28 (vs. 0.18). The improve-
ment in both metrics confirms that TOOLOBSERVER captures both the general semantic meaning
and specific terminology and functional constraints from the gold documentation.

Second, we qualitatively analyze the descriptions generated for Chess tools in Appendix B. Interest-
ingly, TOOLOBSERVER learns the nuances of when each tool must be used. For example, the middle
game specialist final description explicitly mentions the tool is useful for stabilizing dynamic middle

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 6: Average similarity metrics (semantic and lexical) of final documentation generated vs. gold
documentation on BFCL-Opaque. The highest sem. is bolded, while the highest lex. is italicized.
TO denotes TOOLOBSERVER, P2P denotes Play2Prompt, and ET denotes EasyTool.

Documentation TO (GPT-5) TO (GPT-5-Mini) P2P ET
Sem. Lex. Sem. Lex. Sem. Lex. Sem. Lex.

Anon. Fn. Names 0.44 0.21 0.58 0.28 0.51 0.18 0 0
Anon. Fn. Names + Desc. 0.78 0.43 0.78 0.44 0.70 0.31 0.71 0.43
Anon. Fn. Names + Param. Names 0.71 0.40 0.71 0.40 0.69 0.28 0.69 0.39

games. A similar pattern is observed in the depth specialist: the depth-2 specialist is described as
effective at spotting immediate conversions, while the depth-16 specialist is ideal for volatile situ-
ations. On the other hand, Play2Prompt doesn’t perform well in the depth specialization setting –
with a shocking performance of 0.25 – since the best tool’s description is under-specified. Instead,
the agent always picks the second best tool which has a well-specified tool description.

Table 7: Performance on BFCL-Opaque with dif-
ferent editors on Anon. Fn. Names setting

LLM Agent GPT5 GPT5-mini o3
GPT5 0.64 0.62 0.60
GPT5-mini 0.62 0.54 0.48

Strength of LLM Agent vs Editor LLM We
ablate the editor, using weaker models, i.e.
GPT-5-Mini and O3, and measure the perfor-
mance on BFCL in Table 7. The strength of the
editor model directly affects the performance of
both agents. Furthermore, the stronger agent
model is generally more robust to a weak editor
model. GPT-5-Mini sees a steep drop of 8 points when using GPT-mini as the editor. However, with
GPT-5 as the LLM agent and GPT-5-Mini as the editor, the observed drop is a meager 2 points.

6 RELATED WORK

LLM agents LLM Agents that can call tools enable interaction with external systems. Schick
et al. (2023) showed language models can learn to use tools through self-supervised learning, while
ReAct (Yao et al., 2022) introduced the reasoning-action paradigm where agents alternate between
thinking and acting. Shinn et al. (2023) further enhanced tool-using agents with the ability to learn
from failures through verbal self-reflection. These advances have enabled complex agent behaviors,
from multi-agent coordination (Park et al., 2023) to continuous skill acquisition (Wang et al., 2023a).

Tool Documentation Hsieh et al. (2023) demonstrate the critical role of comprehensive documenta-
tion in tool learning. Recent work has focused on automatically refining these descriptions: Qu et al.
(2024) introduces the DRAFT framework where gathered experience is used to rewrite tool docu-
mentation, while Fang et al. (2025) introduce Play2Prompt, which employs self-play followed by
self-reflection to iteratively improve tool documentation. Yuan et al. (2024) propose EASYTOOL,
showing that condensing verbose descriptions and adding usage examples significantly improves
downstream performance by reducing hallucination rates. Wang et al. (2024) extend this line of
work by incorporating short-term and long-term memory mechanisms after self-reflection phases.

Tool Evaluation Benchmarks Current tool-use benchmarks include BFCL (Berkeley Function
Calling Leaderboard), which evaluates simple, single-turn function calls, ToolBench (Xu et al.,
2023) and StableToolBench (Guo et al., 2024b), which offer thousands of real-world REST APIs.
However, ToolBench and StableToolBench suffer from API key accessibility issues and poor repro-
ducibility due to their reliance on external services.

7 CONCLUSION

We introduce OPAQUETOOLSBENCH, a benchmark consisting of three goal-oriented environments
with opaque tools, which better reflects the reality of working with underspecified, poorly doc-
umented tools in real-world scenarios. Through our proposed TOOLOBSERVER framework, we
demonstrate that LLM agents can effectively learn to improve tool documentation through iterative
observation of execution feedback, achieving superior performance while being significantly more
token-efficient than existing approaches.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

LLM USAGE STATEMENT

We declare that we have used LLMs for polishing the content of this paper.

REFERENCES

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, T. J. Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeff Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Ma teusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners. ArXiv, abs/2005.14165, 2020. URL https://api.semanticscholar.org/
CorpusID:218971783.

Zijian Chen, Xueguang Ma, Shengyao Zhuang, Ping Nie, Kai Zou, Andrew Liu, Joshua Green,
Kshama Patel, Ruoxi Meng, Mingyi Su, Sahel Sharifymoghaddam, Yanxi Li, Haoran Hong,
Xinyu Shi, Xuye Liu, Nandan Thakur, Crystina Zhang, Luyu Gao, Wenhu Chen, and Jimmy Lin.
Browsecomp-plus: A more fair and transparent evaluation benchmark of deep-research agent.
2025. URL https://api.semanticscholar.org/CorpusID:280565737.

Wei-Wen Fang, Yang Zhang, Kaizhi Qian, James Glass, and Yada Zhu. Play2prompt: Zero-shot
tool instruction optimization for llm agents via tool play. ArXiv, abs/2503.14432, 2025. URL
https://api.semanticscholar.org/CorpusID:277104481.

Zhicheng Guo, Sijie Cheng, Hao Wang, Shihao Liang, Yujia Qin, Peng Li, Zhiyuan Liu, Maosong
Sun, and Yang Liu. StableToolBench: Towards stable large-scale benchmarking on tool learning
of large language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of
the Association for Computational Linguistics: ACL 2024, pp. 11143–11156, Bangkok, Thailand,
August 2024a. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.
664. URL https://aclanthology.org/2024.findings-acl.664/.

Zhicheng Guo, Sijie Cheng, Hao Wang, Shihao Liang, Yujia Qin, Peng Li, Zhiyuan Liu, Maosong
Sun, and Yang Liu. Stabletoolbench: Towards stable large-scale benchmarking on tool learning
of large language models, 2024b.

Cheng-Yu Hsieh, Sibei Chen, Chun-Liang Li, Yasuhisa Fujii, Alexander J. Ratner, Chen-Yu Lee,
Ranjay Krishna, and Tomas Pfister. Tool documentation enables zero-shot tool-usage with large
language models. ArXiv, abs/2308.00675, 2023. URL https://api.semanticscholar.
org/CorpusID:260351459.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Annual Meeting of the
Association for Computational Linguistics, 2004. URL https://api.semanticscholar.
org/CorpusID:964287.

Grégoire Mialon, Roberto Dessı̀, Maria Lomeli, Christoforos Nalmpantis, Ramakanth Pasunuru,
Roberta Raileanu, Baptiste Rozière, Timo Schick, Jane Dwivedi-Yu, Asli Celikyilmaz, Edouard
Grave, Yann LeCun, and Thomas Scialom. Augmented language models: a survey. Trans. Mach.
Learn. Res., 2023, 2023. URL https://api.semanticscholar.org/CorpusID:
256868474.

OpenAI. Introducing gpt-5. OpenAI, August 2025. URL https://openai.com/index/
introducing-gpt-5/.

Joon Sung Park, Joseph C. O’Brien, Carrie J. Cai, Meredith Ringel Morris, Percy Liang, and
Michael S. Bernstein. Generative agents: Interactive simulacra of human behavior, 2023. URL
https://arxiv.org/abs/2304.03442.

Shishir G. Patil, Tianjun Zhang, Xin Wang, and Joseph E. Gonzalez. Gorilla: Large language
model connected with massive apis. ArXiv, abs/2305.15334, 2023. URL https://api.
semanticscholar.org/CorpusID:258865184.

11

https://api.semanticscholar.org/CorpusID:218971783
https://api.semanticscholar.org/CorpusID:218971783
https://api.semanticscholar.org/CorpusID:280565737
https://api.semanticscholar.org/CorpusID:277104481
https://aclanthology.org/2024.findings-acl.664/
https://api.semanticscholar.org/CorpusID:260351459
https://api.semanticscholar.org/CorpusID:260351459
https://api.semanticscholar.org/CorpusID:964287
https://api.semanticscholar.org/CorpusID:964287
https://api.semanticscholar.org/CorpusID:256868474
https://api.semanticscholar.org/CorpusID:256868474
https://openai.com/index/introducing-gpt-5/
https://openai.com/index/introducing-gpt-5/
https://arxiv.org/abs/2304.03442
https://api.semanticscholar.org/CorpusID:258865184
https://api.semanticscholar.org/CorpusID:258865184

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Shishir G. Patil, Huanzhi Mao, Charlie Cheng-Jie Ji, Fanjia Yan, Vishnu Suresh, Ion Stoica, and
Joseph E. Gonzalez. The berkeley function calling leaderboard (bfcl): From tool use to agen-
tic evaluation of large language models. In Forty-second International Conference on Machine
Learning, 2025.

Yujia Qin, Shi Liang, Yining Ye, Kunlun Zhu, Lan Yan, Ya-Ting Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, Sihan Zhao, Runchu Tian, Ruobing Xie, Jie Zhou, Marc H. Gerstein, Dahai Li,
Zhiyuan Liu, and Maosong Sun. Toolllm: Facilitating large language models to master 16000+
real-world apis. ArXiv, abs/2307.16789, 2023. URL https://api.semanticscholar.
org/CorpusID:260334759.

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai, Shuaiqiang Wang, Dawei Yin, Jun Xu, and
Jirong Wen. From exploration to mastery: Enabling llms to master tools via self-driven in-
teractions. ArXiv, abs/2410.08197, 2024. URL https://api.semanticscholar.org/
CorpusID:273233320.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. 2019. URL https://api.
semanticscholar.org/CorpusID:160025533.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. ArXiv, abs/1908.10084, 2019. URL https://api.semanticscholar.org/
CorpusID:201646309.

Tord Romstad, Marco Costalba, Joona Kiiski, et al. Stockfish: Open source chess engine, 2024.
URL https://github.com/official-stockfish/Stockfish.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer,
Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves to
use tools. ArXiv, abs/2302.04761, 2023. URL https://api.semanticscholar.org/
CorpusID:256697342.

Haiyang Shen, Yue Li, Desong Meng, Dongqi Cai, Sheng Qi, Li Zhang, Mengwei Xu, and
Yun Ma. Shortcutsbench: A large-scale real-world benchmark for api-based agents. ArXiv,
abs/2407.00132, 2024. URL https://api.semanticscholar.org/CorpusID:
270870543.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36:8634–8652, 2023.

Boshi Wang, Hao Fang, Jason Eisner, Benjamin Van Durme, and Yu Su. Llms in the imaginarium:
Tool learning through simulated trial and error. In Annual Meeting of the Association for Com-
putational Linguistics, 2024. URL https://api.semanticscholar.org/CorpusID:
268264353.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models,
2023a. URL https://arxiv.org/abs/2305.16291.

Lei Wang, Chengbang Ma, Xueyang Feng, Zeyu Zhang, Hao ran Yang, Jingsen Zhang, Zhi-Yang
Chen, Jiakai Tang, Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei Wei, and Ji rong Wen. A
survey on large language model based autonomous agents. ArXiv, abs/2308.11432, 2023b. URL
https://api.semanticscholar.org/CorpusID:261064713.

Qiantong Xu, Fenglu Hong, Bo Li, Changran Hu, Zhengyu Chen, and Jian Zhang. On the tool
manipulation capability of open-source large language models, 2023. URL https://arxiv.
org/abs/2305.16504.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. ArXiv, abs/2210.03629, 2022. URL
https://api.semanticscholar.org/CorpusID:252762395.

12

https://api.semanticscholar.org/CorpusID:260334759
https://api.semanticscholar.org/CorpusID:260334759
https://api.semanticscholar.org/CorpusID:273233320
https://api.semanticscholar.org/CorpusID:273233320
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:201646309
https://api.semanticscholar.org/CorpusID:201646309
https://github.com/official-stockfish/Stockfish
https://api.semanticscholar.org/CorpusID:256697342
https://api.semanticscholar.org/CorpusID:256697342
https://api.semanticscholar.org/CorpusID:270870543
https://api.semanticscholar.org/CorpusID:270870543
https://api.semanticscholar.org/CorpusID:268264353
https://api.semanticscholar.org/CorpusID:268264353
https://arxiv.org/abs/2305.16291
https://api.semanticscholar.org/CorpusID:261064713
https://arxiv.org/abs/2305.16504
https://arxiv.org/abs/2305.16504
https://api.semanticscholar.org/CorpusID:252762395

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan, Yongliang Shen, Ren Kan, Dongsheng
Li, and Deqing Yang. Easytool: Enhancing llm-based agents with concise tool instruc-
tion. ArXiv, abs/2401.06201, 2024. URL https://api.semanticscholar.org/
CorpusID:266977201.

Yinqi Zhang, Xintian Han, Haolong Li, Kedi Chen, and Shaohui Lin. Complete chess games enable
llm become a chess master. In North American Chapter of the Association for Computational Lin-
guistics, 2025. URL https://api.semanticscholar.org/CorpusID:275954108.

13

https://api.semanticscholar.org/CorpusID:266977201
https://api.semanticscholar.org/CorpusID:266977201
https://api.semanticscholar.org/CorpusID:275954108

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A EXPERIMENTAL DETAILS

We list further experimental details and results in this section.

A.1 TOOLOBSERVER HYPERPARAMETERS

For all datasets, we use the ReAct (Yao et al., 2022) framework, which prompts the agent to generate
interleaved reasoning traces and executable tool calls to solve tasks dynamically.

Max iterations: For BFCL Opaque, we use a max iterations of 10 to iteratively test and optimize
tool descriptions. For BrowseComp and Chess, we use a max iterations of 3 due to computational
constraints (these trajectories are much larger and we have many more of them). Recall that for
BFCL, the LLM agent can stop early if it reaches a final answer; we report the average number of
iterations taken in Table 2.

Offline Batch Size For the two tasks which we use the offline version of TOOLOBSERVER for -
Chess and BrowseComp Domains – we use a mini-batch size of 10 trajectories.

Chess Specifics: To ensure computational efficiency during the exploration phase, we simulate
partial trajectories of 10 moves starting from the sampled position. We evaluate the state at the end
of this partial trajectory using the board value estimate from Stockfish (Romstad et al., 2024). This
scalar value acts as the dense process reward described in §4.1, allowing the editor language model
to critique the strategic quality of tool choices without needing to reach a checkmate.

Generation Details Our experiments are primarily done with GPT-5 and GPT-5-mini 3; we sam-
ple from these models (OpenAI does not allow setting temperature or top-p parameters for these
models). To reduce latency during exploration on Chess which has long trajectories, we set rea-
soning effort to be minimal. Everywhere else, we use ”medium” reasoning effort, including on the
documentation updates.

Finally, in Figures 6 - 12 in Appendix E, we detail the prompts we use across our three datasets
for 1) tool usage/exploration 2) documentation updates and 3) the prompts for merging the learned
descriptions (if applicable).

A.2 OPAQUETOOLSBENCH DATASET DETAILS

BrowseComp Domains We run BrowseComp Domains using the Qwen-0.6B embedder model,
following Chen et al., 2025. Also following this work, we set the max number of tokens in retrieved
snippets to be 512, and the number of retrieved documents per search tool to be k = 5.

Chess For the final evaluation on the test set (Table 3), we simulate full games. We enforce a maxi-
mum limit of 120 moves; if the game exceeds this limit without a decisive result (checkmate/stale-
mate), it is recorded as a draw.

B COMPARISON OF FUNCTION DESCRIPTIONS FOR CHESS TOOLS

B.1 GROUND TRUTH

The following are the ground truth descriptions generated for different chess tools.

Opening Specialist

A chess player that specializes in the opening phase. Plays strong moves (depth 16 anal-
ysis) during the opening, but resorts to random moves during middlegame and endgame
phases. Uses game phase detection to determine current phase.

3https://platform.openai.com/docs/models/gpt-5 and https://platform.
openai.com/docs/models/gpt-5-mini

14

https://platform.openai.com/docs/models/gpt-5
https://platform.openai.com/docs/models/gpt-5-mini
https://platform.openai.com/docs/models/gpt-5-mini

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Middle Game Specialist

A chess player that specializes in the middlegame phase. Plays strong moves (depth
16 analysis) during the middlegame, but resorts to random moves during opening and
endgame phases. Uses game phase detection to determine current phase.

End Game Specialist

A chess player that specializes in the endgame phase. Plays strong moves (depth 16
analysis) during the endgame, but resorts to random moves during opening, middlegame,
and late endgame phases. Uses game phase detection to determine current phase.

Late Game Specialist

A chess player that specializes in the late endgame phase. Plays strong moves (depth
16 analysis) during the late endgame, but resorts to random moves during opening, mid-
dlegame, and regular endgame phases. Uses game phase detection to determine current
phase.

Depth-2 Specialist

Analyzes the current chess position using Stockfish engine at depth 2 (shallow analysis).
Takes a FEN string as input and returns the best move in algebraic notation. This provides
quick but less accurate move suggestions.

Depth-8 Specialist

Analyzes the current chess position using Stockfish engine at depth 8 (moderate analy-
sis). Takes a FEN string as input and returns the best move in algebraic notation. This
provides a good balance between speed and accuracy.

Depth-16 Specialist

Analyzes the current chess position using Stockfish engine at depth 16 (deep analysis).
Takes a FEN string as input and returns the best move in algebraic notation. This provides
highly accurate move suggestions but takes more time.

B.2 TOOLOBSERVER

The following are the descriptions generated by our method for different chess tools.

Opening Specialist

Best as a consolidation tool when already worse or in simplified positions, especially
endgames. It favors quiet, low-variance moves that limit further damage. Less suitable
for seizing the initiative or equalizing from balanced positions, and it can misjudge in
sharp middlegames or make superficial material grabs in quiet endings. Use it to steady
the ship, not to press for precise gains.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Middle Game Specialist

Best for stabilizing dynamic middlegames and defusing pressure through sound struc-
tural choices, particularly when defending. In calm or technical endgames and balanced
positions, it tends toward passivity or inaccurate king/pawn decisions and is not a precise
converter. Choose it to neutralize threats, not to fine-tune technical outcomes.

End Game Specialist

Best in simplified, technical positions that reward precision – especially rook endgames
– and when an accurate, active move is needed to maintain control from an equal or
slightly worse stance. Avoid it in sharp, tactical middlegames or when low-risk, resilient
defense is required; it can overreach and swing the evaluation heavily. It’s also not ideal
for clinging on in lost endgames as White.

Late Game Specialist

Best for holding calm, technical endgames and maximizing resistance with safe, non-
committal moves. Serviceable as a middle option when the position isn’t tactically
charged. Avoid it in sharp or tactical situations and whenever king safety is delicate;
it tends to overlook immediate threats and can trigger large single-step collapses.

Depth-2 Specialist

Best when you want a decisive, forcing solution. Excels at spotting immediate conver-
sions – tactical captures, central pawn breaks, direct mating or queening threats – and at
jump-starting counterplay through rapid coordination (e.g., quick castling, active piece
placement). Ideal for positions where concrete calculation can resolve tension right away.
Tends to be high-variance: strong at seizing chances, but can overpress or misjudge tac-
tical safety in messy defenses. Less suited to slow consolidation or risk-minimizing play.

Depth-8 Specialist

Best for building and sustaining initiative with forcing play. Excels at creating and main-
taining pressure through checks, rook lifts, and energetic pawn breaks, and will alter the
structure when it strengthens activity. Strong at converting an edge by keeping the oppo-
nent on the back foot. Less reliable when the position demands quiet consolidation or a
concrete defensive neutralization; can overlook the need to stabilize before pressing.

Depth-16 Specialist

Best for stabilization and neutralization. Excels at consolidating king safety, coordinat-
ing pieces, recapturing accurately, and simplifying when under pressure. Finds direct
defensive resources – exchanges and file contests – that reduce the opponent’s practical
chances. Ideal in worse or volatile positions and whenever risk control is paramount.
Tends to forgo sharp attacking continuations in favor of solid, resilient play.

B.3 PLAY2PROMPT

The following are the descriptions generated by Play2Prompt for different chess tools.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Opening Specialist

function 1 analyzes a chess position from a FEN string and returns a single best-move sug-
gestion in SAN (Standard Algebraic Notation).
Parameters

• board state (string, required): Complete 6-field FEN: <pieces> <active>
<castling> <en-passant> <halfmove> <fullmove>. Provide a
legal position and include all fields, separated by single spaces. Example:
rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1

Output

• A SAN move string, e.g., “e4”, “Nf3”, “exd5”, “O-O”, “O-O-O”, “Bb5+”, “Qh7#”.

Usage example

• Call name: function 1 (do not use the original name).
• Input JSON:
{ "board state": "rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR
w KQkq - 0 1" }

• Example result: “e4”

Notes

• Use the exact key board state.
• Output is SAN only (not UCI/LAN).

Middle Game Specialist

Analyzes a standard chess position and returns a single best move suggestion.
Input:
A complete 6-field FEN string.
Parameter:

• board state (string, required) — Valid FEN with:
1. piece placement (8 ranks separated by “/”, digits for empty squares, pieces PN-

BRQK/pnbrqk),
2. active color “w” or “b”,
3. castling rights as a subset of “KQkq” or “-”,
4. en-passant target square “-” or a3–h6,
5. halfmove clock (non-negative integer),
6. fullmove number (≥1).

Output:
One move in Standard Algebraic Notation (SAN), e.g., “e4”, “Nf3”, “exd5”, “Qh5+”,
“e8=Q#”, including disambiguation as needed. No extra text.
Scope:
Standard chess only (not Chess960).
Validation:
Malformed/illegal FEN may be rejected — ensure correct field count and values.
Examples:
• board state: "rnbqkbnr/pppppppp/8/8/4P3/8/PPPP1PPP/RNBQKBNR
b KQkq - 0 1"→ “d5”

• board state: "r1bqkbnr/pppppppp/2n5/8/8/2N5/PPPPPPPP/R1BQKBNR
w KQkq - 0 3"→ “Nf3”

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

End Game Specialist

Analyzes a chess position and returns a single move suggestion in Standard Algebraic
Notation (SAN). Alias: endgame specialist. Input must be a complete, valid FEN
string (six space-separated fields): piece placement, side to move (w/b), castling rights,
en passant target square, halfmove clock, fullmove number. The side to move is taken
from the FEN.
Parameters:

• board state (string, required): Full FEN for the current position. Include correct
castling rights and en passant target if applicable.

Output:

• One SAN move string (not UCI/coordinate), e.g., “Nf3”, “exd5”, “O-O”, “O-O-O”,
“a8=Q”, “Qh7+”, “Rxf8#”, with standard disambiguation as needed. Captures use
“x”; promotions use “=Q/R/B/N”; checks “+”; checkmates “#”.

Example:
• board state: "rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR
w KQkq - 0 1"→ “e4”

Late Game Specialist

Analyzes a chess position and returns a single move suggestion in Standard Algebraic Notation (SAN) as a
plain string.
Parameters

• board state (string, required): Full 6-field FEN of the current position. Format: “¡piece placement¿
¡side to move¿ ¡castling rights¿ ¡en passant target¿ ¡halfmove clock¿ ¡fullmove number¿”. Example:
"rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1". Must represent a
legal position.

Output

• SAN move string only (no JSON object). Examples: “e4”, “Nf3”, “exd5”, “O-O”, “O-O-O”, “e8=Q”,
“Qh7#”, “Rd1+”.

Notes

• Input must be FEN (not PGN or UCI).
• SAN uses uppercase piece letters (pawn omitted), “x” for captures, “+/#” for check/mate, and “=Q/R/B/N”

for promotions.

Example call
• function 4({ "board state": "rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR
w KQkq - 0 1" })

Example response
• “e4”

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Depth-2 Specialist

Suggests a single chess move for the side to move in the given position using a shallow
fixed-depth analysis (˜2 plies). Always call this tool when a move is requested from a
FEN; do not infer moves without it.
Parameters:

• board state (string, required): A valid full FEN for standard chess with all 6
fields: piece placement, active color (w/b), castling rights (KQkq or -), en passant
target (square or -), halfmove clock, fullmove number. The FEN must be legal and
consistent; castling and en passant fields affect legality.

Output:
A single move in Standard Algebraic Notation (SAN), not UCI/LAN. Examples: “e4”,
“Nf3”, “O-O”, “R1e2”, “exd5”, “e8=Q#”. Includes “+” or “#” if applicable. No extra
text.
Notes:
If multiple moves are near-equal, one is returned.
Example:
board state="rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w
KQkq - 0 1"→ “e4”.

Depth-8 Specialist

Analyzes a standard chess position and returns the single best move at fixed search depth
8 plies. Use exactly one required parameter.
Required parameter:

• board state (string): A single-line valid FEN (Forsyth–Edwards Notation). Must
include exactly 6 space-separated fields:

1. piece placement,
2. side to move (w/b),
3. castling rights (KQkq or -),
4. en passant target square (e.g., e3 or -),
5. halfmove clock (integer),
6. fullmove number (integer).

No extra whitespace or newlines; standard chess only; position should be legal.

Returns:
One move in SAN (Standard Algebraic Notation), e.g., “Nf3”, “exd5”, “O-O”, “O-O-O”,
“e8=Q”, “Rxd8+”, “Qh7#” (with disambiguation if needed). Not UCI; no scores or move
lists.
Example call:
{"board state":"rnbqkbnr/pppppppp/8/8/4P3/8/PPPP1PPP/RNBQKBNR
b KQkq - 0 1"}
Example output format:
“Nf6”

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Depth-16 Specialist

Analyzes a standard chess position and returns the engine’s best move as a single SAN
string.
Parameter:

• board state (string, required) — a Forsyth–Edwards Notation (FEN) of a legal
position; include side-to-move and other fields (full 6-field FEN preferred). The move
is determined from the FEN’s side-to-move.

Output:
Exactly one move in Standard Algebraic Notation (SAN), e.g., “e4”, “Nf3”, “O-O”,
“exd5”, “Qh8#”, “b8=Q+”, “R1e2”. Do not expect UCI/LAN or any extra text.
Notes:
Fixed internal search depth (cannot be configured); standard chess only (no variants).
Use the exact key name board state and pass only the FEN string.
Example call:
{"board state":"rnbqkbnr/pppppppp/8/8/4P3/8/PPPP1PPP/RNBQKBNR
b KQkq - 0 1"}
Example response:
“d5”

B.4 EASYTOOL

The following is the description generated by EasyTool for chess tools; note that they are almost all
identical since the initial description is the same (differences are only up to sample differences).

All tools

Tool Description: ‘function 1’ analyzes a chess position from a FEN ‘board state’ and returns a sug-
gested move in algebraic notation.
Tool Guidelines:
Scenario:
if you want to analyze a chess position (e.g., the Ruy Lopez after 4...Nf6) and get a suggested move for
White.
Parameters:
{"board state":"r1bqkb1r/1ppp1ppp/p1n2n2/4p3/B3P3/5N2/PPPP1PPP/RNBQK2R
w KQkq - 2 5"}

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

C TASKS

C.1 BFCL-OPAQUE: DISCOVERING TOOL FUNCTIONALITY FROM OPAQUE DESCRIPTIONS

The Berkeley Function Calling Leaderboard (BFCL) (Patil et al., 2025) We systematically degrade
BFCL’s tool descriptions to create an opaque setting where models must infer functionality through
interaction. This tests the fundamental ability to map between ambiguous tool interfaces and their
underlying behaviors.

Task Setup: Models receive user queries requiring specific tool calls (e.g., “What’s the weather
in San Francisco?”, “Schedule a meeting for tomorrow at 3pm”) but must discover which tools
accomplish each task. We provide tools with systematically degraded documentation: function
names are replaced with generic identifiers (e.g., tool 1, tool 2), descriptions are removed or
made ambiguous, and parameter specifications lack type information or semantic hints. Models
must experiment with different tools and parameter combinations to discover correct usage patterns.

Tool Degradation Strategy: Initially, the complete tool specifications include function descrip-
tions, parameter names, and parameter descriptions. We replace semantic function names with
generic identifiers (function 1, function 2, etc.), removing the primary semantic cue for tool
selection. We then create three different documentation levels:

1. Anon. function name only, where we remove everything (function description, parameter
names, and parameter descriptions), testing pure behavioral discovery through trial and
error with no documentation

2. Anon. function name + Description, where we remove all parameter names/descriptions
while keeping only the function description, testing whether models can infer argument
structure from behavioral descriptions alone.

3. Anon. function name + Parameter names, where we remove the function description
and parameter descriptions while keeping only parameter names, testing discovery of func-
tionality from argument structure without semantic guidance.

Data Collection: We evaluate on BFCL’s executable subset, which provides deterministic, pro-
grammatically verifiable tasks across four categories: executable simple, executable multiple func-
tion, executable parallel function, and executable parallel multiple function. This subset ensures
reproducible evaluation—each task has ground-truth tool calls and expected outputs.

Primary Evaluation Metrics: We measure binary task completion accuracy—whether the model
successfully calls the correct tool with proper arguments to satisfy the user query.

Enhanced Evaluation Metrics Standard BFCL evaluation relies on a binary success metric
(Pass/Fail). To better diagnose how agents learn opaque tool behaviors, we introduce two granu-
lar metrics that distinguish between semantic understanding (selecting the right tool) and syntactic
mastery (calling it correctly).

1. Parameter Accuracy. This metric measures the exact correctness of the arguments provided,
conditional on the agent selecting the correct tool. If the model chooses the wrong function, the
score is 0. When the correct function is chosen, we calculate the percentage of expected parameters
that are perfectly recovered. Specifically, it is the ratio of arguments where both the parameter
name and the assigned value exactly match the ground truth, divided by the total number of required
parameters. This metric strictly penalizes missing arguments or incorrect values, distinguishing
agents that “know” the tool from those that merely guess the function name.

2. AST (Abstract Syntax Tree) Accuracy. AST Accuracy evaluates the structural validity and
“grammar” of the tool call, independent of whether the values are correct. It is calculated as the
average of five components:

• Format Validity: Whether the output is parsable as valid JSON or a Python Abstract
Syntax Tree (using ast.parse).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

• Structure Validity: Whether the parsed object contains the standard function and
args keys.

• Type Correctness: The percentage of parameters where the data type (e.g., string, integer,
list) matches the ground truth schema.

• Schema Compliance: A strict check ensuring the structure is valid, all types are correct,
and no hallucinated parameters exist.

• Hallucination Check: Whether the agent generated parameters that do not exist in the tool
definition.

C.2 CHESS: LEARNING STRATEGIC TOOL SELECTION THROUGH EXPERIENCE

We challenge LLMs to play Chess, but instead of predicting moves directly, models are given access
to several undocumented tools that accept current board positions in FEN notation and return move
recommendations. Each next move suggestion function has an identical interface, but undocumented
behavioral differences. Thus, the agent must discover through gameplay that each implements dif-
ferent strategies. Performance directly reflects the model’s ability to document each tool’s strengths.

Task Setup: Models play chess games against a fixed-strength opponent (Stockfish at depth 2)
by selecting from available tool sets. Each trajectory consists of a max number of moves where the
model must select a tool and play against the fixed opponent.

Tool Sets: We construct two tool sets of increasing complexity:

1. Phase specialization (4 tools) - These tools are engines that work well for specific phases:
opening, middlegame, endgame and late endgame. These phases are defined by number of
pieces on the board: opening phase has at least 28 pieces, middlegame at least 16, endgame
at least 10 and late endgame has less than 10 pieces. Each tool plays moves according to
a strong engine (depth 16 analysis) in its own phase but plays randomly otherwise. An
optimal agent would learn to document these temporal patterns

2. Depth gradients (3 tools) Tools 1, 2, and 3 are Stockfish with search depth 2, 4, and 8
(higher=better); this tests fine-grained discrimination between similar high-quality tools.

Data Collection: We sample 2000 chess positions from the Lichess database4, which provides
hundreds of millions of positions with chess engine evaluations. We split these 2000 positions into
training (10%) and test (90%) sets, maintaining the same stratified distribution across both game
phases and position evaluations to ensure comparable evaluation conditions:

• Game phase (determined by piece count): opening (25%), middlegame (40%), endgame
(25%), late endgame (10%)

• Position evaluation (from Lichess engine analysis): equal positions (40%), slight advan-
tages for white/black (10% each), winning positions for white/black (8% each), and crush-
ing/mate positions for each side (6% each)

This stratified sampling ensures models encounter diverse board states that test tool selection across
different game scenarios.

Main Evaluation Metrics: Since we know the optimal tool call at every turn (the correct phase
specialized tool for phase specialization or the highest search depth tool for depth gradients), we
simply calculate the accuracy of LLM agent tool calls as our evaluation metric.

C.3 ADDITIONAL CHESS EVALUATION METRIC: STREAMING ELO

To provide a fine-grained measurement of strategic decision quality beyond binary tool-choice ac-
curacy, we implement a Streaming Elo rating system. The Elo rating system is a method for calcu-
lating the relative skill levels of players in zero-sum games.

4https://database.lichess.org

22

https://database.lichess.org

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Opponent Pool. We evaluate the agents against a diverse set of deterministic opponents using the
Stockfish engine at varying difficulty levels to represent different tiers of play:

• Beginner: Stockfish Level 1 (Approx. Elo 800)

• Intermediate: Stockfish Level 5 (Approx. Elo 1600)

• Master: Stockfish Level 10 (Approx. Elo 2400)

Update Rule. The agent starts with a standard baseline rating of R0 = 1200. After each game i,
the rating is updated based on the result against an opponent with rating Ropp. We use a K-factor of
K = 32. The expected score Ei and the updated rating Ri+1 are calculated as follows:

Ei =
1

1 + 10(Ropp−Ri)/400
(3)

Ri+1 = Ri +K · (Sactual − Ei) (4)

where Sactual is the game outcome (1.0 for a win, 0.5 for a draw, 0.0 for a loss).

Experimental constraints and Bootstrapping. Due to the high computational cost of running
full tool-augmented chess trajectories, we evaluate on a subset of 300 games played against the
opponent pool. To prevent infinite loops in drawn or lost positions, any game exceeding 120 moves
is automatically adjudicated as a draw.

Streaming Elo ratings can be sensitive to the specific chronological order of matches (e.g., facing a
string of Master-level opponents early can depress the rating, making recovery difficult). To elim-
inate this variance and ensure a robust final metric, we employ bootstrapping. We shuffle the se-
quence of the 300 completed games into 1,000 random permutations, calculate the final streaming
Elo for each permutation, and report the mean rating across all permutations.

C.4 BROWSECOMP DOMAINS: LEARNING MULTI-TOOL COORDINATION FOR COMPLEX
INFORMATION SEEKING

Complex question-answering requires discovering not just individual tool capabilities, but how to
coordinate multiple tools strategically. BrowseComp Plus (Chen et al., 2025) provides an ideal
testbed for this challenge—human-curated questions that demand synthesizing information from
dozens of search queries. Unlike simple retrieval tasks, these questions require models to discover
through interaction which tools access which information sources, how to formulate effective queries
for each, and how to combine results to build comprehensive answers.

Task Setup: Models must answer complex, multi-hop questions using search tools with opaque
documentation. Each question requires aggregating information from multiple sources—for exam-
ple, comparing statistics across countries, tracing historical developments, or synthesizing technical
specifications. While BrowseComp Plus provides a fixed corpus containing all necessary docu-
ments, models receive no documentation about which tools search which subsets or how query
syntax varies between tools. They must discover these constraints through experimentation during
actual question-answering trajectories.

Tool Sets and Degradation Strategy: We construct two search environments that test different
aspects of tool discovery: (1) Domain-specific search (9 tools) where specialized tools each query
distinct document subsets (academic papers, product catalogs, geographical data, news articles),
testing discovery of tool coverage boundaries and domain-specific query patterns ; and (2) Mixed
search (10 tools) which combines specialized domain tools with a general tool that searches the en-
tire corpus, testing strategic selection between targeted and broad search approaches. We introduce
realistic opacity patterns that mirror production search systems—tools are provided with generic
names (search 1, search 2) and minimal documentation. Models must discover through inter-
action: coverage boundaries (which document types each tool can access), query constraints (max-
imum query length, required syntax, boolean operator support), and ranking behaviors (how each

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

tool prioritizes results by recency, relevance, or popularity). These undocumented behaviors only
emerge through varied usage patterns across multiple queries.

Data Collection: We use BrowseComp Plus’s curated question set, which includes 830 complex
questions designed to require extensive information gathering. Questions span diverse domains
including science, history, geography, and current events. Each question has human-validated an-
swers and requires on average 15-30 search queries when using well-documented tools, making this
an ideal benchmark for measuring if models can learn tool capabilities while solving real tasks.

Evaluation Metrics: We measure both answer accuracy (F1 score against gold answers) and
search efficiency (number of queries required). Unlike single-shot benchmarks, we track improve-
ment across questions—does the model become more efficient at using discovered tool capabilities?
We also measure cross-question transfer: when models discover a tool searches academic papers
while answering a science question, can they apply this knowledge to a history question requiring
scholarly sources?

D BASELINES

Following TOOLOBSERVER, for all baselines we use GPT-5.

D.1 PLAY2PROMPT

Play2Prompt (Fang et al., 2025) improves tool-documentation from self-play followed by self-
reflection. It iteratively generates a set of tool usage examples by “playing” with the tool, using the
responses until it generates valid example tool usages. Using these examples, the documentation is
iteratively improved based on the tool use errors observed while using the current documentation.

D.2 EASYTOOL

(Yuan et al., 2024) which automatically rewrite the tool documentation in two stages. First, it con-
denses the tool descriptions to eliminate redundant information and focuses only on core functional-
ity. Then, it creates structured functional guidelines with usage scenarios and parameter examples to
help LLMs understand when and how to use each tool. EasyTool is limited by its lack of execution
of the tools themselves. Furthermore, the descriptions and functional guidelines are beforehand,
hence cannot benefit from any knowledge gained as the trajectory rolls out.

E TOOLOBSERVER PROMPTS

You are an expert in composing and exploring functions. You are given a
user question and a set of available tools.

You must call at least one tool in response to every user question.
There are no exceptions. Refusing to call a tool is not allowed.

If you are confident in a tool's purpose, use it appropriately to
address the user's request. If you are unsure what a tool does, make a
best guess and try it with plausible parameters to learn how it behaves.
It is better to experiment than to fail to respond.

Always format tool calls correctly with all required parameters. You
should only return function calls in the tool call sections.

Figure 4: BFCL Exploration Prompt

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

"pre": """You are improving function documentation by analyzing real
usage examples. Your goal is to write descriptions that help future
users understand exactly what each function does and how to use it
correctly.

Current Function Definitions:
{available_functions}

Observed usage examples:
""",

"middle": """
Example {example_num}:
User Question: {question}
Function Called: {function_call}
Function Output: {function_output}
""",

"post": """
Important

**If the existing description is already accurate, do not include it in
your response.** Only provide updates for functions that actually need
improvement. You can tell a description is accurate if in the usage
examples the function was called successfully and produced the expected
output.

Instructions

**Only analyze and update functions that were actually called in the
examples above.** Do not provide descriptions for functions that weren't
used.

For each function that was called:
1. Examine what inputs were provided and what the function returned
2. Compare this with the existing description
3. **Only provide updated descriptions for functions that need
improvement**

Requirements for Updated Descriptions

Each improved description must clearly explain:
- **What the function does** (its purpose and behavior)
- **What inputs it expects** (parameter types, format, requirements)
- **What it returns** (output format and content)
- **How to call the function** (usage pattern or syntax)

Write 1-2 clear, comprehensive sentences that give users everything they
need to use the function correctly.

Format

FUNCTION: [function_name]
DESCRIPTION: [Your improved description here]

Updated Descriptions (only for functions that need improvement):"""

Figure 5: The BFCL reflection prompt. It is split into three parts. A “pre-prompt”, a “middle-
prompt”, and a “post-prompt”. We concatenate them together along with the real usage behaviors
(ie, the function calls and the outputs).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

You are a chess-playing AI assistant with access to chess analysis tools
for evaluating positions and suggesting moves.

<objective>
Play the strongest move in the current position by making exactly ONE
tool call to analyze the position.
</objective>

<tool_selection_strategy>
- Make exactly ONE tool call per move decision
- Choose the strongest tool available for the current position
- If tools appear similar in capability or are similarly unknown,
consider trying a different tool than recently used ones to diversify
your information sources
- When one tool is clearly superior for the position type, use it
regardless of history
</tool_selection_strategy>

<exploration_principle>
- Primary goal: Select the strongest tool for each position
- Secondary consideration: If multiple tools seem equally strong or
equally unknown, vary your selection based on recent usage history
- This diversification helps avoid potential blind spots from relying on
a single tool's perspective
- Never sacrifice move quality for exploration - only explore when tools
are genuinely comparable
</exploration_principle>

<decision_framework>
With your single tool call, consider:
- What type of position is this? (tactical, positional, endgame, opening
)
- Which tool is strongest for this specific position?
- If multiple tools seem equally strong, which have I used recently?
- Is there a clear best tool, or are several tools comparably suitable?
</decision_framework>

<tool_preamble>
Before making your tool call:
- Explain which tool you're selecting and why it's the strongest choice
for this position
- If multiple tools seemed equally viable, briefly note why you selected
this one over the others
</tool_preamble>

<quality_checks>
- Select the strongest available tool (or make a reasonable choice among
equals)
- Make exactly one tool call
</quality_checks>

Figure 6: Chess exploration prompt. We append the board state and the recent tool-calls to this
prompt before receiving the next tool-call.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Analyze chess tool performance across N game trajectories to generate
improved tool descriptions that clearly differentiate when to use each
tool.

<input>
- Game trajectories with tool calls, moves, and positions
- Board evaluations (positive=White advantage, negative=Black advantage)
- Current tool descriptions
- Side played by agent in each game
</input>

<analysis_requirements>
For each tool:
- Identify consistent patterns in its behavior and performance
- Determine what distinguishes it from other tools
- Provide concrete proof: cite specific trajectories and moves showing
these patterns
- Focus on situations where this tool performs differently than others

Evaluation notes:
- Higher eval is better for White, lower eval is better for Black
- IMPORTANT: Always compare tools relatively, not absolutely
- Example for White: Tool A suggesting move to +2 is better than Tool B
suggesting +1
- Example for Black: Tool A suggesting move to -3 is better than Tool B
suggesting -1
- Critical: Even in losing positions, compare which tool finds the best
continuation
* For White: -5 is much better than -10 (both losing, but one is more

resilient)
* For Black: +10 is much better than +15 (both losing, but one offers

more resistance)
- Don't dismiss a tool just because it suggested moves in bad positions
- focus on whether it found the BEST move among the alternatives
</analysis_requirements>

<output_per_tool>
Tool: [name]

Observed patterns: [Key behaviors identified with specific trajectory
evidence]

Distinguishing characteristics: [What makes this tool different from
others, with examples]

Updated description:
[Concise description stating when to use this tool relative to others]

Reasoning: [Justification based on trajectory evidence]
</output_per_tool>

<final_output>
After analyzing all tools, provide a decision framework for selecting
between tools based on the patterns discovered.
</final_output>

Key: Every claim must reference trajectories. Descriptions must be
comparative (tool X better than Y for Z) not absolute.

Figure 7: The Chess batch analysis reflection prompt. The chess trajectories are appended to this
prompt.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

You will receive N LLM responses, each analyzing different batches of
chess game trajectories. Synthesize these into definitive tool
descriptions.

<synthesis_task>
For each tool:
1. Identify patterns that appear across multiple responses
2. Note contradictions between responses
3. Distinguish true patterns from batch-specific noise
4. Look for emergent patterns that no single analysis identified but
become visible when viewing all analyses together
5. Create ONE final description based on the most reliable patterns

Critical:
- A behavior mentioned in only 1-2 responses is likely batch-specific
noise
- Focus on patterns that multiple independent analyses discovered
- Also identify meta-patterns: behaviors that emerge from the collective
evidence but weren't explicitly stated in any single response
- When responses conflict, examine their evidence strength
- Final descriptions should capture the tool's strengths/weaknesses but
NOT explicitly name other tools
</synthesis_task>

<output_format>
Tool: [name]

Synthesis reasoning:
[Explain which patterns were most consistent across analyses, what
emergent patterns were discovered, how conflicts were resolved, and why
certain behaviors were included/excluded in the final description.]

Final description:
[Single definitive description of when to use this tool. Describe its
characteristics and optimal use cases WITHOUT referencing other tools by
name. Example: "Best for tactical positions requiring deep calculation.
Excels at finding forcing sequences and material sacrifices. Tends to
be overly aggressive in quiet positions."]
</output_format>

Figure 8: The Chess consensus merge reflection prompt. The chess descriptions generated from the
previous step are appnded to this prompt.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

You are a question-answering AI assistant with access to search tools
that return different types of results.

<objective>
Find the correct answer to the question by making strategic tool calls
over multiple turns. Each turn, you make exactly ONE tool call and
receive its results before deciding your next action.
</objective>

<how_this_works>
- You will be called multiple times for the same question
- Each time, you'll see the full history of your previous tool calls and
their results
- Each turn, make exactly ONE tool call to gather more information
- Use what you've learned from previous tool calls to inform your next
choice
- Once you have enough information, provide your final answer
</how_this_works>

<tool_selection_strategy>
- Make exactly ONE tool call per turn
- Choose the strongest tool available for the current information needs
- Review what you've already learned from previous tool calls
- If tools appear similar in capability or you're uncertain about what
they return, consider trying a different tool than recently used ones to
diversify your information sources
- When one tool is clearly superior for the remaining information needs,
use it regardless of history
</tool_selection_strategy>

<exploration_principle>
- Primary goal: Select the strongest tool for your current information
gap
- Secondary consideration: If multiple tools seem equally strong or you'
re uncertain about their outputs, vary your selection based on what you'
ve already tried
- This diversification helps avoid potential blind spots from relying on
a single tool's perspective
- Never sacrifice answer quality for exploration - only explore when
tools are genuinely comparable or unknown
- Learn from previous tool results: if a tool gave poor results before,
consider alternatives
</exploration_principle>

<decision_framework>
Each turn, consider:
- What information do I still need to answer this question?
- What have I learned from previous tool calls?
- What type of question is this? (factual, current events, historical,
technical, domain-specific)
- Which tool is strongest for filling my current information gap?
- If multiple tools seem equally strong or I'm uncertain about them,
which have I used already?
- Do I have enough information to answer, or should I make another tool
call?
</decision_framework>

Figure 9: BrowseComp Domains exploration prompt, part 1. We append the context, including the
recent tool-calls and results, to this prompt before receiving the next tool-call.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

<tool_preamble>
Before making your tool call:
- Review what you've learned from previous tool calls (if any)
- Explain which tool you're selecting and why it's the strongest choice
for your current information needs
- If you're uncertain about what a tool returns, acknowledge this
uncertainty
- If multiple tools seemed equally viable or unknown, briefly note why
you selected this one over the others
</tool_preamble>

<quality_checks>
- Review previous tool calls and their results
- Select the strongest available tool for your current needs (or make a
reasonable choice among equals/unknowns)
- Make exactly one tool call per turn
- Use accumulated tool results across turns to formulate your answer
</quality_checks>

Figure 10: BrowseComp Domains exploration prompt, part 2. We append the context, including the
recent tool-calls and results, to this prompt before receiving the next tool-call.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Analyze search tool performance across N question-answering trajectories
to generate improved tool descriptions that clearly differentiate when
to use each tool.

<input>
- Question-answering trajectories with tool calls and results
- Search results returned by each tool (content may vary by tool)
- Whether the final answer was correct or incorrect
- Current tool descriptions
</input>

<analysis_requirements>
For each tool:
- Identify consistent patterns in the type and quality of results it
returns
- Determine what distinguishes it from other tools
- Provide concrete proof: cite specific trajectories and queries showing
these patterns
- Focus on situations where this tool performs differently than others

Evaluation notes:
- IMPORTANT: Compare tools relatively, not absolutely
- A tool is effective if it helps the agent reach the correct answer
- Consider both successful and unsuccessful trajectories
- Focus on: result relevance, information completeness, and query type
suitability
- Don't dismiss a tool just because it was used in failed trajectories -
focus on whether it provided useful information compared to
alternatives
</analysis_requirements>

<output_per_tool>
Tool: [name]

Observed patterns: [Key behaviors identified with specific trajectory
evidence]

Distinguishing characteristics: [What makes this tool different from
others, with examples]

Updated description:
[Concise description stating when to use this tool relative to others]

Reasoning: [Justification based on trajectory evidence]
</output_per_tool>

<final_output>
After analyzing all tools, provide a decision framework for selecting
between tools based on the patterns discovered.
</final_output>

Key: Every claim must reference trajectories. Descriptions must be
comparative (tool X better than Y for Z) not absolute.

Figure 11: The BrowseComp domains batch analysis reflection prompt. The trajectories are ap-
pended to this prompt.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

You will receive N LLM responses, each analyzing different batches of
question-answering trajectories. Synthesize these into definitive tool
descriptions.

<synthesis_task>
For each tool:
1. Identify patterns that appear across multiple responses
2. Note contradictions between responses
3. Distinguish true patterns from batch-specific noise
4. Look for emergent patterns that no single analysis identified but
become visible when viewing all analyses together
5. Create ONE final description based on the most reliable patterns

Critical:
- A behavior mentioned in only 1-2 responses is likely batch-specific
noise
- Focus on patterns that multiple independent analyses discovered
- Also identify meta-patterns: behaviors that emerge from the collective
evidence but weren't explicitly stated in any single response
- When responses conflict, examine their evidence strength
- Final descriptions should capture the tool's strengths/weaknesses but
NOT explicitly name other tools
</synthesis_task>

<output_format>
Tool: [name]

Synthesis reasoning:
[Explain which patterns were most consistent across analyses, what
emergent patterns were discovered, how conflicts were resolved, and why
certain behaviors were included/excluded in the final description.]

Final description:
[Single definitive description of when to use this tool. Describe its
characteristics and optimal use cases WITHOUT referencing other tools by
name. Example: "Best for queries requiring recent information or real-
time data. Returns comprehensive results with detailed snippets. May be
less effective for historical or archival content."]
</output_format>

Figure 12: The BrowseComp domains consensus merge reflection prompt. The descriptions gener-
ated from the previous step are appended to this prompt.

32

	Introduction
	Background
	The OpaqueToolsBench Benchmark
	ToolObserver: Improving Documentation via Interaction
	Offline Mode
	Online mode
	Comparison to Play2Prompt

	Experiments
	Main Results
	Analysis

	Related Work
	Conclusion
	Experimental Details
	ToolObserver Hyperparameters
	OpaqueToolsBench Dataset Details

	Comparison of Function Descriptions For Chess Tools
	Ground Truth
	ToolObserver
	Play2Prompt
	EasyTool

	Tasks
	BFCL-Opaque: Discovering Tool Functionality from Opaque Descriptions
	Chess: Learning Strategic Tool Selection Through Experience
	Additional Chess Evaluation Metric: Streaming Elo
	BrowseComp Domains: Learning Multi-Tool Coordination for Complex Information Seeking

	Baselines
	Play2Prompt
	EasyTool

	ToolObserver Prompts

