
ProtInvTree: Deliberate Protein Inverse Folding
with Reward-guided Tree Search

Mengdi Liu1,2, Xiaoxue Cheng4, Zhangyang Gao3, Hong Chang1,2∗,
Cheng Tan3, Shiguang Shan1,2, Xilin Chen1,2

1 State Key Laboratory of AI Safety, Institute of Computing Technology, CAS, China
2 University of Chinese Academy of Sciences (CAS), China

3 AI Lab, Research Center for Industries of the Future, Westlake University
4 Gaoling School of Artificial Intelligence, Renmin University of China
{liumengdi23z, changhong, sgshan, xlchen}@ict.ac.cn,

chengxiaoxue@ruc.edu.cn, {gaozhangyang, tancheng}@westlake.edu.cn

Abstract

Designing protein sequences that fold into a target 3D structure—known as protein
inverse folding—is a fundamental challenge in protein engineering. While recent
deep learning methods have achieved impressive performance by recovering native
sequences, they often overlook the one-to-many nature of the problem: multiple
diverse sequences can fold into the same structure. This motivates the need for a
generative model capable of designing diverse sequences while preserving struc-
tural consistency. To address this trade-off, we introduce ProtInvTree, the first
reward-guided tree-search framework for protein inverse folding. ProtInvTree re-
formulates sequence generation as a deliberate, step-wise decision-making process,
enabling the exploration of multiple design paths and exploitation of promising
candidates through self-evaluation, lookahead, and backtracking. We propose a
two-stage focus-and-grounding action mechanism that decouples position selection
and residue generation. To efficiently evaluate intermediate states, we introduce a
jumpy denoising strategy that avoids full rollouts. Built upon pretrained protein
language models, ProtInvTree supports flexible test-time scaling by expanding the
search depth and breadth without retraining. Empirically, ProtInvTree outperforms
state-of-the-art baselines across multiple benchmarks, generating structurally con-
sistent yet diverse sequences, including those far from the native ground truth. The
code is available at https://github.com/A4Bio/ProteinInvBench/.

1 Introduction

Proteins are 3D folded linear chains of amino acids that perform essential biological functions, such as
metabolic control, transmitting signals, and regulating cellular processes [21, 5]. Designing sequences
of amino acids that fold into a desired protein structure, also known as protein “inverse folding”
(IF) [58], is a crucial task with great potential for protein engineering and synthetic biology [27, 62, 8].
Recent deep learning approaches typically recover the native sequence conditioned on a target
structure through the following three paradigms: autoregressive generation, which models sequence
dependencies step-by-step [22, 23, 44, 20, 10]; one-shot prediction, which directly maps structure to
sequence in a single forward operation [13, 32, 15]; and iterative refinement, which progressively
improves an initial design through multiple passes [61, 11, 12, 63]. Despite of achieving impressive
recovery performance, these methods often overlooked the inherently one-to-many nature of the
problem [38, 33, 16], where multiple distinct amino acid sequences are capable of folding into the

∗Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/A4Bio/ProteinInvBench/

...

1

...

(a) One-shot
generation

(b) Iterative
refinement

(c) Reward-guided
Search Tree

...

2 3

...

A

Selected
States

Candidate
Sequences

Initial State

One State

1

2

3 Sequence Space

Ground Truth
Sequence

B

1
23

1 2 3 Candidate
Sequences

Th
e

en
er

gy
 la

nd
sc

ap
e

in
 te

rm
s

of
st

ru
ct

ur
al

 c
on

si
st

en
cy

Figure 1: (A) Schematic illustration on various approaches of structure-based protein design. (a)
One-shot generation that directly predicts full sequences from structure in one step, (b) Iterative
refinement that first generates a full sequence and then improves it through multiple steps, and (c)
our method that applies tree search to perform deliberate design. Each node denotes an intermediate
sequence conditioned on the target structure, progressively expanding toward full generation. See
the complete framework and details in Figure 2. (B) Energy landscape E = e− scTMScore over the
sequence space with respect to the target structure, where the ground-truth sequence is marked and
candidate sequences cluster around several local optima.

same protein backbone structure. As a result, rather than predicting a single native sequence, it is
often desirable to generate a diverse set of sequences while preserving structural consistency.

This goal, however, reveals an inherent trade-off: while diversity prefers broad exploration of the
sequence space, structural consistency strictly requires a feasible subspace that has good local residue
compatibility and global foldability. To address this challenge, we advocate for a deliberate, step-wise
design process that progressively explores the solution space of feasible sequences. Inspired by
the dual process theory in cognitive science [25, 43, 40], where System 1 is characterized by fast,
automatic, and heuristic-driven responses, while System 2 involves slow, deliberate, and analytical
reasoning, we propose to model the protein design process as a deliberate and iterative decision-
making process that should (1) explore multiple alternatives at each design step rather than one single
candidate, (2) dynamically assess and revise each design step through lookahead and backtracking
to optimize the overall designed sequence, and (3) maintain a structured decision history to support
effective credit assignment and multi-step planning.

To this end, we propose ProtInvTree, a training-free framework for structure-based protein design
that formalizes the design process as a sequence of branching decisions and leverages Monte Carlo
Tree Search (MCTS) during generation. Specifically, we iteratively perform the design process,
sampling multiple decisions at each step and looking ahead to compute reward signals that evaluate
the quality of current choices, thereby guiding the overall sequence design. At each decision step, we
introduce a two-stage focus-and-grounding action mechanism that first selects the positions in the
sequence to modify (focus) and then generates new residues at these positions (grounding). Moreover,
we employ fast, jumpy denoising as an evaluation mechanism, efficiently estimating trajectory quality
without costly forward model rollouts. Through these designs, ProtInvTree is capable of making
globally optimal decisions rather than settling for locally optimal ones, which allows it to design
novel yet plausible sequences that may deviate significantly from the native sequence (as shown in
Fig. 1). Additionally, the explicit exploration of design paths may offer potential insights into the
interpretability of protein sequences. To our knowledge, this is the first work to apply a tree-search
framework to structure-based protein sequence design.

Empirically, we comprehensively evaluate ProtInvTree across fixed-backbone and de novo protein
design tasks. We demonstrate that ProtInvTree outperforms state-of-the-art baselines and excels in
the design of plausible proteins with high structural consistency. Besides, it achieves Pareto-optimal
trade-offs in both the scTMscore-diversity and scTMscore-novelty. Notably, we observe that existing
approaches aggressively optimizing for sequence recovery achieve limited novelty at the same sc-
TMscore level. Further analyses reveal that increasing planning depth and expansion width can
effectively improve structural consistency, demonstrating that the paradigm of test-time scaling can
effectively unlock the potential of pretrained protein language models (PLMs).

In summary, our contributions are as follows:

2

• We propose ProtInvTree, the first test-time reward-guided tree search framework for protein
inverse folding. It formulates protein design as a deliberate, step-wise decision process, enabling
exploration of multiple trajectories and exploitation of promising candidates.

• We introduce a two-stage focus-and-grounding mechanism decoupling position selection and
residue generation and a fast, jumpy denoising strategy for efficient reward evaluation.

• We demonstrate that ProtInvTree achieves state-of-the-art performance across multiple bench-
marks, with a test-time scaling capability that improves both structural consistency and sequence
diversity without retraining or fine-tuning.

2 Related Works

2.1 Protein Inverse Folding

Recently, AI algorithms have spurred a major revolution in modeling protein inverse folding, enabling
accurate sequence design conditioned on target structures. Existing approaches can be broadly
categorized into the following three paradigms based on their generation strategies.

Autoregressive models generate sequences residue-by-residue, conditioned on both the 3D structure
and previously generated tokens. Pioneering models like GraphTrans [22] and GVP [23] introduced
SE(3)-invariant graph encoders with attention or geometric modules. Later, models such as GCA [44],
ESM-IF [20], and ProteinMPNN [10] incorporated global context and fine-grained pairwise distance
modeling. These models offer accurate recovery but suffer from slow inference on long sequences.

One-shot models bypass iterative steps by directly predicting full sequences from structure. Pi-
Fold [13] introduced an efficient graph encoder with an MLP decoder, achieving significant speedups
and improved accuracy on long proteins. Uni-IF [15] generalizes this to multiple molecule types.
These models are highly efficient but face challenges in maintaining global structural consistency.

Iterative refinement methods address this by first generating a full sequence and then improving it
through multiple steps. AlphaDesign [12] and LMDesign [61] use confidence-aware predictors and
pretrained sequence models for guided refinement. KWDesign [11] combines sequence and structure
pretraining with an uncertainty-aware update mechanism. Recent works such as BridegIF [63]
and GraDe-IF [57] apply diffusion to enhance diversity and structural compatibility. Fast non-
autoregressive diffusion models like PMPnnDiff [54] accelerate inference while preserving accuracy.

Despite notable advances in protein inverse folding, most efforts focus on training-time improve-
ments, while the inference phase remains underexplored. As large protein foundation models emerge,
harnessing test-time computation to boost sequence quality and diversity becomes crucial for in-
centivizing their full potentials. To this end, we propose a novel paradigm based on tree-structured
generation, which departs fundamentally from the three existing categories of approaches.

2.2 Test-time Scaling and MCTS

Test-time scaling refers to increasing computational resources during inference to enhance model
output without modifying its parameters. This approach has gained significant attention in the field
of large language models (LLMs), where performance is improved by generating multiple samples
and using reward models for best-solution selection [41, 53, 4]. Various test-time search methods
have been proposed [26, 46], including random sampling [49], self-consistency, and tree-search
methods [56, 17, 59, 36]. Among them, MCTS, a heuristic search algorithm designed for decision-
making tasks [55, 50, 7, 9, 39], has emerged as a powerful technique for structured exploration in
the output space of large language models. It enables deliberate reasoning by simulating multiple
generation trajectories, selectively expanding promising paths, and integrating reward feedback to
guide inference toward high-quality outputs. Inspired by these advances, we are the first to extend the
paradigm of test-time scaling to PLMs. Our proposed framework, ProtInvTree, leverages reward-
guided tree search to perform deliberate, step-wise protein sequence generation, enabling test-time
scaling for improved structural consistency and diversity.

3

3 Preliminaries

Problem Definition. The protein inverse folding problem seeks to determine the amino acid
sequence x that folds into a given target structure c. Here, x = [x1, x2, . . . , xL] represents the
sequence of L residues, where xi ∈ {1, 2, . . . , 20} denotes the type of the i-th residue. The structure
c = [c1, c2, . . . , cn] ∈ Rn×4×3 specifies the Cartesian coordinates of the backbone atoms (N, C-α,
C, and optionally O) for each residue ci. The inverse folding problem can be formally expressed as:

fθ : c→ x, (1)

where θ is the learnable parameter. Given that homologous proteins invariably exhibit similar
structures, the solution for a given structure is not unique [16]. Hence, an ideal model should be
capable of learning the underlying mapping from protein backbone structures to their corresponding
sequence distributions pθ(x|c).

Iterative Denoising. Recently, diffusion models [19, 42, 37, 35, 30] have demonstrated remarkable
capabilities in the field of life science [1, 2, 47, 51, 48, 31] and have achieved notable success
in protein inverse folding [12, 61, 11, 63]. These methods, including iterative refinement models,
formulate the task as an iterative denoising process that refines the sequence step by step. Following
this paradigm, we adopt this strategy to progressively construct the sequence. Formally, starting from
an initially corrupted sequence x0, the model iteratively denoises the sequence into a complete design
xT through a series of conditional reverse transitions, where x0 and xT differ from the definition in
diffusion modeling:

pθ(xT | x0, c) =

T∏
t=1

pθ(xt+1 | xt, c), (2)

where xt represents the intermediate sequence at step t, with a subset of amino acids remaining
unfilled (e.g., represented by [MASK] tokens), and c denotes the target backbone structure. Each
reverse step pθ(xt+1 | xt, c) refines the current sequence while preserving the structural context.

4 ProtInvTree: Deliberate Protein Inverse Folding Framework

In this section, we propose a reward-guided tree-search framework for deliberate protein inverse
folding. We first formulate the iterative denoising as a tree-based Markov decision process (MDP),
enabling structured exploration over multiple trajectories (Section 4.1). Then we describe the MCTS
procedure employed to identify diverse and high-quality sequences that are consistent with the
target backbone structure (Section 4.2). Finally, we introduce two designs of the action and reward
components (Sections 4.3 and 4.4), which define how the sequence is updated at each step and how
intermediate states are evaluated during the search process. We present the detailed algorithm to
formalize the entire framework in the appendix.

4.1 Tree-based MDP Formulation

As described in Section 3, while the step-wise denoising process is effective, it lacks the ability to
incorporate intermediate feedback, track uncertainty, and revise previous decisions. To overcome
these limitations, we reformulate the iterative denoising process as a tree-based Markov decision
process for structured, feedback-aware generation. In this tree structure, each node represents a
state st, each branch corresponds to an action at, and each node is assigned a value that reflects the
reward rt at that state. Specifically, we define the concepts in the tree search framework as follows:

st ≜ (c,xt), at ≜ {(ik, xik)}
Kt

k=1, rt ≜ R(st,at), π(at | st) ≜ pθ(xt+1 | xt, c).
Here, the state st consists of the target backbone structure c and a partially generated sequence xt.
The action at corresponds to the selection of positions in the sequence and modification of new
residues, as detailed in Section 4.3. The reward rt is computed by a reward function R(st,at),
which evaluates the structural consistency of the modified sequence, as described in Section 4.4.
The policy model π(at | st) generates the next partial sequence xt+1 based on the current state st.
It is parameterized by a structurally modulated protein language model (PLM). A trajectory in the
multi-step Markov decision process is defined as a sequence of state-action-reward transitions:

τ = [(s0,a0, r0), (s1,a1, r1), . . . , (sT ,aT , rT)],

4

Focus
[M] [M] [M] [M] [M] [M]

[M] A

A [M] N Y

Q A V N Y L

[M]

[M] [M] [M] [M]

[M]

D
en

oi
si

ng

(1) Selection (2) Expansion

Fast Jumping

(4) Backpropagation

Focus and
Grounding

(3) Evaluation

Selected
node

Value Updating

Stepwise Denoising Protein Sequence

Fast Jumping

(a) Reward-guided Tree Search Framework (b) Step-wise Protein Design

[M]:mask

Grounding

state

action

get reward

Figure 2: The framework of ProtInvTree. (a) The four steps of reward-guided tree search—Selection,
Expansion, Evalution, and Backpropagation—are illustrated on a partial denoising tree. Each node
corresponds to a partially denoised subsequence. After a new node is expanded, “jumpy” denoising
is performed to quickly estimate its value, which is then backpropagated along the path in the tree.
(b) Illustration of how a sequence is generated step by step. Masked tokens in the sequence are
progressively infilling through a focus-and-grounding mechanism.

where each transition corresponds to an incremental update of the sequence. By reformulating the
sequence design process from a linear chain into a tree structure, our framework enables deliberate
planning over multiple generation trajectories, facilitates the incorporation of intermediate feedback
from structural evaluations, and supports systematic revision of prior design decisions.

4.2 Reward-guided Tree Search

In our approach, the reward-guided tree search process operates as an iterative procedure. As illus-
trated in Figure 2, it comprises four key steps: selection, expansion, evaluation, and backpropagation.
The details of each step are described as below.

Selection. The selection process begins at the root node s0 and identifies the leaf node with
the highest exploration potential, determined by the UCT (Upper Confidence Bounds applied to
Trees) [28] score. The UCT score is computed as follows:

UCT (st) = V (st) + w

√
lnN(p)

N(st)
, (3)

where w is a hyperparameter that balances exploitation (i.e., node value V (st)) and exploration (i.e.,
visit count N(st)), and p denotes the parent node of st.

Expansion. After selecting the node with the highest UCT score, it is expanded by generating
multiple child nodes. Conditioned on the current state st, which consists of the target structure c and
current sequence xt, the policy model samples K candidate sequences for the next step:

{x(k)
t+1}Kk=1 ∼ πθ(at | st) ≜ pθ(xt+1 | xt, c). (4)

Each candidate sequence x
(k)
t+1 constitutes a new child state s

(k)
t+1 = (c,x

(k)
t+1), which is added to the

search tree as an expansion of the selected node. The details of the candidate construction process by
policy model are described in Section 4.3.

Evaluation. Each expanded node is evaluated to determine its value V (st+1). As described in
Equation 12, we first perform rollouts that complete the state st+1 via sampling m fully generated
sequences, and then assess them with a reward model, assigning the average reward rt+1 as the node
value V (st+1). The details of the reward function and evaluation process are provided in Section 4.4.

Backpropagation. After evaluating the expanded nodes, their values are backpropagated along the
traversal path to update the visit counts and value scores of the ancestor nodes sj (0 ≤ j ≤ t). The
updates are performed using the following equations:

5

Nnew(sj) = Nold(sj) + 1, (5)

Vnew(sj) =
Vold(sj)Nold(sj) + rt+1

Nnew(sj)
, (6)

where Nold(sj) and Vold(sj) represent the previous visit count and value score of node sj , respectively,
and rt+1 is the reward obtained during the evaluation step.

The four stages described above are performed iteratively until the terminal state is reached. We define
two termination conditions for MCTS as follows: (1) The maximum number of MCTS iterations,
M , is reached. (2) A terminal node is encountered with a reward exceeding a predefined threshold,
indicating strong structural consistency and high-quality design. Once the tree search is complete,
the optimal path is selected greedily by prioritizing nodes with the highest scores.

4.3 Focus-and-Grounding Action

To generate candidate transitions from each intermediate state st, we propose a two-stage Focus-
and-Grounding action mechanism (see illustration in Fig. 2b). At each denoising step, the model
explicitly decomposes the sequence updating process into identifying where to modify (Focus) and
determining what token to generate at the selected position (Grounding).

Formally, the Focus operation F(·) defines a position selection distribution pϕ(i | st) over all
positions, from which the top-Kt positions with the highest probabilities are selected:

F(st) = argsorti∈{1,...,L} (pϕ(i | st),Kt) , (7)

where L denotes the sequence length and i indicates the targeted position for refinement. Conditioned
on the focused positions {i1, . . . , iN}, the Grounding operation defines a distribution over amino
acid types, specifying the generated token:

G(st, i) = pψ(xi | st, i), i ∈ F(st), (8)
where each pψ(xi | st, i) predicts the residue xi ∈ V for position i, and V denotes the amino acid
vocabulary. The overall policy is factorized as the product of the Focus and Grounding distributions:

πθ(at | st) =
∏

i∈F(st)

pϕ(i | st) · pψ(xi | st, i), (9)

In practice, the selected position set {i1, . . . , iN} is a random subset of sequence positions (more
selection strategies comparison is provided in appendix), and each token xi is generated by a
structurally modulated PLM conditioned on the backbone structure c and the partial sequence
context. This two-stage action design enables precise localization of modifications, ensuring structural
coherence and enhancing search efficiency throughout the generation process.

4.4 Jumpy Denoising for Fast Reward

In the MCTS procedure, evaluating a node far from a leaf node is challenging, as the intermediate
nodes are not fully expanded. This is typically addressed in one of two ways: employing forward
dynamics models to simulate complete trajectories, which is computationally expensive, or approx-
imating node values via bootstrapping methods, which are faster but less accurate. Effectively
integrating these evaluation strategies into ProtInvTree remains an open challenge.

To address this, we introduce a Jumpy Denoising strategy to accelerate the evaluation process, which
is a rapid, single-step DDIM-based [42] sampling process:

x̃T ∼ J (xt+1, c), (10)
where J (·) approximates the reverse denoising distribution p(xT | xt+1, c). Here, xt+1 is obtained
through action at at step t. We define the reward function R(st,at) as the structural consistency
feedback obtained by comparing the folding results from the sampled sequence x̃T and the input
structure c, formulated as:

R(st,at) = TMScore(f(x̃T), c), (11)
where f is the protein folding algorithm. TMScore(·, ·) is a widely used metric for measuring protein
structure similarity. This jumpy denoising strategy significantly reduces computational overhead
while maintaining a reliable approximation of the final reward.

6

Table 1: Structure consistency performance comparison between ProtInvTree and different baseline
approaches on the CATH 4.2 dataset. The split of "Short", "Single-chain" and "All" is the same as
previous works. The best and second-best results are labeled with bold and underline.

Models Trainable/Total scT-Mscore (↑) RMSD (↓)

Params. Short Single-chain All Short Single-chain All

StructGNN [22] 1.4M/1.4M 0.616 0.646 0.751 2.439 2.702 2.327
GraphTrans [22] 1.5M/1.5M 0.590 0.635 0.744 2.356 2.678 2.351
GCA [45] 2.1M/2.1M 0.606 0.646 0.755 2.430 2.596 2.226
GVP [24] 0.9M/0.9M 0.611 0.662 0.771 2.289 2.542 2.181
ProteinMPNN [10] 1.9M/1.9M 0.636 0.692 0.795 2.310 2.370 2.009
AlphaDesign [12] 3.6M/3.6M 0.646 0.693 0.814 2.271 2.422 1.969
PiFold [13] 5.8M/5.8M 0.655 0.700 0.842 2.203 2.355 1.723
UniIF [15] 5.4M/5.4M 0.660 0.709 0.845 2.168 2.298 1.680
LM-Design (ESM-1b) [61] 6.9M/650M 0.663 0.714 0.849 2.150 2.240 1.638
KW-Design (ESM-2) [11] 54.49M/650M 0.676 0.729 0.858 2.101 2.148 1.566

ESM-3 [18] 1.4B/1.4B 0.668 0.692 0.816 2.060 2.387 2.135
ProtInvTree (ESM-3) 0M/1.4B 0.768 0.800 0.881 1.902 2.136 1.513

Table 2: Structural consistency comparison be-
tween ProtInvTree and baseline approaches on
CATH 4.3 datasets. The best and second-best
results are labeled with bold and underline.

Model sc-TMscore (↑) RMSD (↓)
StructGNN [22] 0.693 2.563
GraphTrans [22] 0.690 2.614
GCA [45] 0.698 2.525
GVP [24] 0.713 2.509
ProteinMPNN [10] 0.743 2.238
AlphaDesign [12] 0.749 2.230
PiFold [13] 0.785 1.949
KW-Design (ESM-2) [11] 0.818 1.751

ESM-3 [18] 0.775 2.074
ProtInvTree (ESM-3) 0.835 1.702

Table 3: De novo protein design results on TS45
datasets. We compare structural consistency of
the following methods. The best and second-best
results are labeled with bold and underline.

Model sc-TMscore (↑) RMSD (↓)
StructGNN [22] 0.631 3.336
GraphTrans [22] 0.618 3.276
GCA [45] 0.660 3.226
GVP [24] 0.652 3.245
ProteinMPNN [10] 0.668 3.142
AlphaDesign [12] 0.660 3.167
PiFold [13] 0.699 2.875
KWDesign (ESM-2) [11] 0.711 2.643

ESM-3 [18] 0.690 2.958
ProteinInvTree (ESM-3) 0.724 2.513

5 Experiments

5.1 Experimental Setup

Datasets. We conduct experiments on both CATH v4.2 and CATH v4.3 [34], where proteins
are categorized based on the CATH hierarchical classification of protein structure, to ensure a
comprehensive analysis. Following the standard data splitting [22, 20], CATH v4.2 dataset consists
of 18,024 proteins for training, 608 proteins for validation, and 1,120 proteins for testing; CATH v4.3
dataset consists of 16,153 proteins for training, 1,457 proteins for validation, and 1,797 proteins for
testing. We also include a set of de novo proteins collected from the CASP15 competition to provide
a more realistic assessment. Following the previous work ProtInvBench [14], we download the public
TS-domains structures from CASP15 which consists of 45 structures, namely TS45.

Evaluation Metrics. For evaluation metrics, we use sc-TMscore [60] and RMSD [6] to evaluate
structural consistency. We define diversity as the average proportion of differing residues across all
pairs of generated sequences and define novelty as 1− recovery. Details of all metrics are provided
in the appendix. Following previous studies [22, 20], we report them on three settings, namely short
proteins (length ≤ 100), single-chain proteins (labeled with 1 chain in CATH), and all proteins.

Baselines. We compare ProtInvTree with several state-of-the-art baselines, categorized into three
groups: (1) autoregressive models, including StructGNN [22], GraphTrans [22], GCA [45], GVP [24],
and ProteinMPNN [10]; (2) the one-shot model, PiFold [13], UniIF [15]; (3) iterative models,
including AlphaDesign [12], LM-Design [61], KW-Design [11].

7

0.6 0.7 0.8 0.9
sc-TMScore

0.0

0.2

0.4

0.6

0.8

Di
ve

rs
ity

0.6 0.7 0.8 0.9
sc-TMScore

0.4

0.5

0.6

0.7

No
ve

lty

AlphaDesign
PiFold
KW-Design
ESM3
ProtInvTree

Figure 3: Pareto comparison of structural consistency (sc-TMScore) against diversity (left) and
novelty (right) across different protein sequence design methods. Each curve represents a specific
method evaluated under different sampling temperatures.

(a) Hign Diversity,
Low Novelty

(b) Low Diversity,
Hign Novelty

(c) Hign Diversity,
Hign Novelty

x x x

y y y

ground truth sequence

sampled
sequences

(d) Low Diversity,
Low Novelty

x

y

Diversity range

Diversity ↓
Novelty ↑

Diversity ↑
Novelty ↓

Diversity ↑
Novelty ↑

Diversity ↓
Novelty ↓

Figure 4: Conceptual illustration of the difference between diversity and novelty of the generated
sequences. Each blue dot represents a generated sequence, and the purple dot represents the ground
truth sequence. Assuming all generated sequences in this plane share similar structural consistency,
The gray circular boundary indicates the diversity range among the generated samples, while the gray
lines connecting each sample to the ground truth reflect their novelty.

Implementation Details. All experiments are conducted on NVIDIA-A100 GPUs with 80G
memory. We choose ESM-3 [18] as our policy model because it is the first protein foundation model
that directly supports inverse folding without task-specific fine-tuning. The Jumpy Denoising strategy
also leverages it, which is capable of filling in arbitrary mask ratios. Building on this capability,
we focus on unleashing the potential of PLMs through test-time scaling. To ensure fast structural
feedback for reward computation, we use ESMFold [29] to predict the 3D structures of candidate
sequences. For ProtInvTree, we set the maximum number of MCTS iterations M to 50. The selection
numbers Kt at each step follow a cosine schedule. In the UCT algorithm, the weight w balancing the
exploration and exploitation is set to 0.01.

5.2 Benchmarking Fixed Backbone Protein Design

Structural Consistency. We benchmark the fixed backbone protein design task in CATH4.2 and
CATH4.3 datasets, reporting the sc-TMscore and RMSD in Tables 1 and 2. ProtInvTree demonstrates
superior performance over previous methods. We highlight the following: (1) Although iterative
refinement models have significantly outperformed previous autoregressive and one-shot baselines, the
proposed tree-based generation framework (ProtInvTree) further achieves substantial improvements,
demonstrating the effectiveness of branching exploration over linear refinement. (2) ProtInvTree
enhances inference based on the frozen ESM-3 model, requiring no additional trainable parameters,
yet achieving the strongest performance. Compared to plain ESM-3 run for the same number of
denoising steps (no tree search), ProtInvTree improves the sc-TMscore by 18.3% (short), 17.6%
(single-chain), and 7.8% (all) in CATH 4.2. (3) We further evaluate RMSD as an independent
structural metric, which consistently supports the effectiveness of ProtInvTree.

Balance between Structural Consistency and Diversity & Novelty. Figure 3 illustrates the Pareto
frontier between structural consistency (measured by sc-TMScore) and two key sequence-level objec-
tives: diversity (left) and novelty (right). We highlight our primary findings as follows: (1) ProtInvTree
achieves Pareto-optimal performance in both the diversity–scTMscore and novelty–scTMscore

8

2 3 4 5 6
Expand Number

0.855

0.860

0.865

0.870

0.875

0.880

sc
TM

sc
or

e

scTMscore
Diversity

2 3 4 5 6 7
Depth

0.835

0.840

0.845

0.850

0.855

0.860

sc
TM

sc
or

e

scTMscore
Diversity

0.12

0.14

0.16

0.18

0.20

0.22

0.24

Di
ve

rs
ity

0.15

0.20

0.25

0.30

0.35

Di
ve

rs
ity

Figure 5: Test-time scaling laws analysis of our ProtInvTree under different expansion numbers (left)
and search depths (right).

spaces, outperforming all baselines across the trade-off frontier. (2) Compared to ESM-3, we
observe that ProtInvTree also achieves significantly higher diversity and novelty even at comparable
levels of structural consistency. (3) Notably, when at comparable sc-TMScore levels, the baselines of
AlphaDesign, PiFold, and KW-Design exhibit progressively higher diversity and lower novelty. This
highlights a fundamental distinction between the two metrics: diversity measures variation within
the set of generated sequences, whereas novelty reflects deviation from the native (ground-truth)
sequence. As shown in Fig. 4, baseline methods optimized with a recovery loss tend to converge
around local optima near the ground-truth sequence, as illustrated in case (a); by contrast, our method
can escape this regime and explore multiple diverse and structurally consistent solutions, including
those far from the ground-truth sequence, as shown in case (c).

5.3 De Novo Proteins Design

Evaluating models on the TS45 dataset allows us to gain a better understanding of the potential of AI
models in designing de novo proteins and reveals that different models exhibit non-trivial differences
in generalizability. We present the quantitative results in Table 3, which reveal the following: (1)
ProtInvTree outperforms all baseline methods in terms of both sc-TMscore and RMSD, highlighting
its superior ability to maintain structural consistency and achieve accurate geometric reconstruction.
(2) We additionally compare ProtInvTree with ESM-3 [18] to assess the effectiveness of our overall
framework beyond the pretrained language model itself. Despite sharing the same pretrained model,
ProtInvTree achieves substantially better results, suggesting that test-time reward-guided planning
plays a key role in unlocking the full potential of pretrained PLMs.

5.4 Analysis: Diving Deep into ProtInvTree

Test-time Scaling Analysis. To understand how test-time computation scales with performance,
we investigate the effect of two key planning hyperparameters in our framework: the number of
candidate expansions and planning depth, as shown in Fig. 5. We observe that, as the expansion
number and planning depth increase, sc-TMscore gradually improves, although the average time
cost also rises moderately. This indicates that scaling test-time computation can effectively enhance
sequence quality through more deliberate search. However, as the number of planning depths further
increases, the sc-TMscore tends to be saturated, as the search converges to high-confidence regions,
the diversity of refinable sequences becomes limited, and further refinements yield diminishing
structural gains. Moreover, the diversity in both settings decreases as the expansion number and
planning depth increase, revealing the trade-off between structural consistency and sequence diversity.

Computational Efficiency The analysis of test-time computational efficiency is critical, particularly
for methods that involve large pretrained models and structure prediction. We provide a detailed
analysis of the compute–performance trade-off. Specifically, for each given backbone, we generate
10 designs and compute the average generation time for each design. We fix the depth and scale
the expand number from 2 to 6, as shown in Table 4. We also scaled the number of sampling
iterations for ESM-3 to assess its performance-efficiency trade-off. The resulting sc-TMScore and
average inference time per design are summarized in Table 5. We observe that, although inference

9

time increases with a larger expand number or planning depth, the performance–efficiency trade-off
remains superior to simply scaling the base ESM-3 sampler.

Table 4: The performance-efficiency trade-off of ProtInvTree (Our method)

Expand Number 2 3 4 5 6
sc-TMcore 0.859 0.865 0.868 0.872 0.878
Inference Time / design (s) 6.72 11.43 21.20 32.29 43.92

Table 5: The performance-efficiency trade-off of ESM3 (base model)

Iteration Number 5 10 50 80 100
sc-TMScore 0.816 0.822 0.825 0.824 0.826
Inference Time / design (s) 0.438 0.706 3.397 5.481 6.897

Case Study. To facilitate understanding of the entire workflow of our proposed ProtInvTree, we
visualize a reward-guided search tree in Figure 6. Each node represents a partially generated sequence
with its predicted reward r, reflecting structural consistency. The tree showcases how ProtInvTree
performs branching exploration guided by reward scores. Two high-reward sequences, S1 and S2,
emerge from different trajectories, with high diversity and novelty, yet achieve high structural rewards
(r = 0.99, r = 0.98). We further compare their predicted 3D structures with the ground truth
structure in Figure 7. Its high sc-TMScore and low RMSD demonstrate ProtInvTree’s ability to
generate diverse sequence candidates while maintaining structural consistency. This case illustrates
how the reward-guided tree search enables efficient exploration of the solution space and selection of
structurally faithful, non-trivial designs beyond native recovery.

S2S1 r=0.99 r=0.98

r=0.67

r=0.98r=0.88

r=0.93

r=0.85r=0.89

r=0.98

r=0.99

r=0.78

S1:
S2:

AHV I NT F DGV ADY LQT YH K L P D
MAML NT VD EV ADY I VKNK K L P D

GT: AQV I N T V DGVADY L DT NKKL PD

Figure 6: Reward-guided
search tree visualization.

S1> sc-TMScore:0.99; RMSD:0.33
S2> sc-TMScore:0.98; RMSD:0.38

Figure 7: Structural align-
ment visualization.

6 Conclusion

We present ProtInvTree, a novel reward-guided tree-search framework for protein inverse folding
that explicitly addresses the trade-off between structural consistency and sequence diversity. By
reformulating sequence design as a step-wise, decision-making process, ProtInvTree enables the
exploration of diverse design trajectories through self-evaluation, lookahead, and backtracking.
ProtInvTree shows superior performance across multiple benchmarks, achieving state-of-the-art
structural consistency while generating diverse and novel sequences beyond the native ground truth.
Future work will focus on extending our framework to a broader range of protein-related tasks beyond
fixed-backbone inverse folding. One limitation of the proposed ProtInvTree is the computational
efficiency, particularly for methods that involve large pretrained models and structure prediction.
Another potential limitation is its current lack of experimental validation in real-world biological
settings. We will seek collaborations with experimental laboratories to test the viability and functional
relevance of the designed sequences.

Acknowledgments

This work is partially supported by the program of The Robotic AI-Scientist Platform of Chinese
Academy of Sciences.

10

References
[1] Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf

Ronneberger, Lindsay Willmore, Andrew J Ballard, Joshua Bambrick, et al. Accurate structure
prediction of biomolecular interactions with alphafold 3. Nature, pages 1–3, 2024.

[2] Sarah Alamdari, Nitya Thakkar, Rianne van den Berg, Alex Xijie Lu, Nicolo Fusi, Ava Pardis
Amini, and Kevin K Yang. Protein generation with evolutionary diffusion: sequence is all you
need. bioRxiv, pages 2023–09, 2023.

[3] Minkyung Baek, Frank DiMaio, Ivan Anishchenko, Justas Dauparas, Sergey Ovchinnikov,
Gyu Rie Lee, Jue Wang, Qian Cong, Lisa N Kinch, R Dustin Schaeffer, et al. Accurate
prediction of protein structures and interactions using a three-track neural network. Science,
373(6557):871–876, 2021.

[4] Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré,
and Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated
sampling. arXiv preprint arXiv:2407.21787, 2024.

[5] James W Bryson, Stephen F Betz, Helen S Lu, Daniel J Suich, Hongxing X Zhou, Karyn T
O’Neil, and William F DeGrado. Protein design: a hierarchic approach. Science, 270(5238):935–
941, 1995.

[6] Oliviero Carugo. How root-mean-square distance (rmsd) values depend on the resolution of
protein structures that are compared. Applied Crystallography, 36(1):125–128, 2003.

[7] Xiaoxue Cheng, Junyi Li, Wayne Xin Zhao, and Ji-Rong Wen. Think more, hallucinate
less: Mitigating hallucinations via dual process of fast and slow thinking. arXiv preprint
arXiv:2501.01306, 2025.

[8] Alexander E Chu, Tianyu Lu, and Po-Ssu Huang. Sparks of function by de novo protein design.
Nature Biotechnology, 42(2):203–215, 2024.

[9] Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In
International conference on computers and games, pages 72–83. Springer, 2006.

[10] Justas Dauparas, Ivan Anishchenko, Nathaniel Bennett, Hua Bai, Robert J Ragotte, Lukas F
Milles, Basile IM Wicky, Alexis Courbet, Rob J de Haas, Neville Bethel, et al. Robust deep
learning–based protein sequence design using proteinmpnn. Science, 378(6615):49–56, 2022.

[11] Zhangyang Gao, Cheng Tan, Xingran Chen, Yijie Zhang, Jun Xia, Siyuan Li, and Stan Z. Li.
KW-design: Pushing the limit of protein design via knowledge refinement. In The Twelfth
International Conference on Learning Representations, 2024.

[12] Zhangyang Gao, Cheng Tan, and Stan Z Li. Alphadesign: A graph protein design method and
benchmark on alphafolddb. arXiv preprint arXiv:2202.01079, 2022.

[13] Zhangyang Gao, Cheng Tan, and Stan Z. Li. Pifold: Toward effective and efficient protein
inverse folding. In The Eleventh International Conference on Learning Representations, 2023.

[14] Zhangyang Gao, Cheng Tan, Yijie Zhang, Xingran Chen, Lirong Wu, and Stan Z. Li. Pro-
teininvbench: Benchmarking protein inverse folding on diverse tasks, models, and metrics. In
Thirty-seventh Conference on Neural Information Processing Systems Datasets and Benchmarks
Track, 2023.

[15] Zhangyang Gao, Jue Wang, Cheng Tan, Lirong Wu, Yufei Huang, Siyuan Li, Zhirui Ye, and
Stan Z Li. Uniif: Unified molecule inverse folding. Advances in Neural Information Processing
Systems, 37:135843–135860, 2024.

[16] Tymor Hamamsy, James T Morton, Robert Blackwell, Daniel Berenberg, Nicholas Carriero,
Vladimir Gligorijevic, Charlie EM Strauss, Julia Koehler Leman, Kyunghyun Cho, and Richard
Bonneau. Protein remote homology detection and structural alignment using deep learning.
Nature biotechnology, pages 1–11, 2023.

11

[17] Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhit-
ing Hu. Reasoning with language model is planning with world model. arXiv preprint
arXiv:2305.14992, 2023.

[18] Thomas Hayes, Roshan Rao, Halil Akin, Nicholas J Sofroniew, Deniz Oktay, Zeming Lin,
Robert Verkuil, Vincent Q Tran, Jonathan Deaton, Marius Wiggert, et al. Simulating 500 million
years of evolution with a language model. Science, page eads0018, 2025.

[19] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840–6851, 2020.

[20] Chloe Hsu, Robert Verkuil, Jason Liu, Zeming Lin, Brian Hie, Tom Sercu, Adam Lerer, and
Alexander Rives. Learning inverse folding from millions of predicted structures. In International
conference on machine learning, pages 8946–8970. PMLR, 2022.

[21] Po-Ssu Huang, Scott E Boyken, and David Baker. The coming of age of de novo protein design.
Nature, 537(7620):320–327, 2016.

[22] John Ingraham, Vikas Garg, Regina Barzilay, and Tommi Jaakkola. Generative models for
graph-based protein design. Advances in neural information processing systems, 32, 2019.

[23] Bowen Jing, Stephan Eismann, Patricia Suriana, Raphael John Lamarre Townshend, and Ron
Dror. Learning from protein structure with geometric vector perceptrons. In International
Conference on Learning Representations.

[24] Bowen Jing, Stephan Eismann, Patricia Suriana, Raphael John Lamarre Townshend, and Ron
Dror. Learning from protein structure with geometric vector perceptrons. In International
Conference on Learning Representations, 2021.

[25] Daniel Kahneman, Shane Frederick, et al. Representativeness revisited: Attribute substitution in
intuitive judgment. Heuristics and biases: The psychology of intuitive judgment, 49(49-81):74,
2002.

[26] Jikun Kang, Xin Zhe Li, Xi Chen, Amirreza Kazemi, and Boxing Chen. Mindstar: Enhancing
math reasoning in pre-trained llms at inference time. arXiv preprint arXiv:2405.16265, 2024.

[27] Hamed Khakzad, Ilia Igashov, Arne Schneuing, Casper Goverde, Michael Bronstein, and
Bruno Correia. A new age in protein design empowered by deep learning. Cell Systems,
14(11):925–939, 2023.

[28] Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In Johannes
Fürnkranz, Tobias Scheffer, and Myra Spiliopoulou, editors, Machine Learning: ECML 2006,
17th European Conference on Machine Learning, Berlin, Germany, September 18-22, 2006,
Proceedings, volume 4212 of Lecture Notes in Computer Science, pages 282–293. Springer,
2006.

[29] Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos
Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, et al. Language models of
protein sequences at the scale of evolution enable accurate structure prediction. BioRxiv,
2022:500902, 2022.

[30] Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow
matching for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

[31] Mengdi Liu, Zhangyang Gao, Hong Chang, Stan Z Li, Shiguang Shan, and Xilin Chen.
G2pdiffusion: Cross-species genotype-to-phenotype prediction via evolutionary diffusion.
arXiv preprint arXiv:2502.04684, 2025.

[32] Weian Mao, Muzhi Zhu, Zheng Sun, Shuaike Shen, Lin Yuanbo Wu, Hao Chen, and Chunhua
Shen. De novo protein design using geometric vector field networks. In The Twelfth International
Conference on Learning Representations, 2024.

[33] Grant S Murphy, Jeffrey L Mills, Michael J Miley, Mischa Machius, Thomas Szyperski, and
Brian Kuhlman. Increasing sequence diversity with flexible backbone protein design: the
complete redesign of a protein hydrophobic core. Structure, 20(6):1086–1096, 2012.

12

[34] Christine A Orengo, Alex D Michie, Susan Jones, David T Jones, Mark B Swindells, and
Janet M Thornton. Cath–a hierarchic classification of protein domain structures. Structure,
5(8):1093–1109, 1997.

[35] Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
synthesis. arXiv preprint arXiv:2307.01952, 2023.

[36] Zhenting Qi, Mingyuan Ma, Jiahang Xu, Li Lyna Zhang, Fan Yang, and Mao Yang. Mutual
reasoning makes smaller llms stronger problem-solvers. arXiv preprint arXiv:2408.06195,
2024.

[37] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 10684–10695, 2022.

[38] LUCA Silva, Barthelemy Meynard-Piganeau, Carlo Lucibello, Christoph Feinauer, et al. Fast
uncovering of protein sequence diversity from structure. In The Thirteenth International
Conference on Learning Representations. (seleziona...), 2025.

[39] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mas-
tering the game of go with deep neural networks and tree search. nature, 529(7587):484–489,
2016.

[40] Steven A Sloman. The empirical case for two systems of reasoning. Psychological bulletin,
119(1):3, 1996.

[41] Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute opti-
mally can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314,
2024.

[42] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

[43] Keith E Stanovich. Who is rational?: Studies of individual differences in reasoning. Psychology
Press, 1999.

[44] Cheng Tan, Zhangyang Gao, Jun Xia, Bozhen Hu, and Stan Z Li. Generative de novo protein
design with global context. arXiv preprint arXiv:2204.10673, 2022.

[45] Cheng Tan, Zhangyang Gao, Jun Xia, Bozhen Hu, and Stan Z Li. Global-context aware
generative protein design. In ICASSP 2023-2023 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 1–5. IEEE, 2023.

[46] Chaojie Wang, Yanchen Deng, Zhiyi Lv, Shuicheng Yan, and An Bo. Q*: Improving multi-step
reasoning for llms with deliberative planning, 2024.

[47] Xinyou Wang, Zaixiang Zheng, Fei Ye, Dongyu Xue, Shujian Huang, and Quanquan Gu.
Diffusion language models are versatile protein learners. arXiv preprint arXiv:2402.18567,
2024.

[48] Xinyou Wang, Zaixiang Zheng, Fei Ye, Dongyu Xue, Shujian Huang, and Quanquan Gu.
Dplm-2: A multimodal diffusion protein language model. arXiv preprint arXiv:2410.13782,
2024.

[49] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2023.

[50] Yi Wang, Hui Tang, Lichao Huang, Lulu Pan, Lixiang Yang, Huanming Yang, Feng Mu, and
Meng Yang. Self-play reinforcement learning guides protein engineering. Nature Machine
Intelligence, 5(8):845–860, 2023.

13

[51] Kevin E Wu, Kevin K Yang, Rianne van den Berg, Sarah Alamdari, James Y Zou, Alex X Lu,
and Ava P Amini. Protein structure generation via folding diffusion. Nature communications,
15(1):1059, 2024.

[52] Ruidong Wu, Fan Ding, Rui Wang, Rui Shen, Xiwen Zhang, Shitong Luo, Chenpeng Su, Zuofan
Wu, Qi Xie, Bonnie Berger, et al. High-resolution de novo structure prediction from primary
sequence. BioRxiv, pages 2022–07, 2022.

[53] Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. An empirical analysis
of compute-optimal inference for problem-solving with language models. arXiv preprint
arXiv:2408.00724, 2024.

[54] John J Yang, Jason Yim, Regina Barzilay, and Tommi Jaakkola. Fast non-autoregressive inverse
folding with discrete diffusion. arXiv preprint arXiv:2312.02447, 2023.

[55] Huanjin Yao, Jiaxing Huang, Wenhao Wu, Jingyi Zhang, Yibo Wang, Shunyu Liu, Yingjie
Wang, Yuxin Song, Haocheng Feng, Li Shen, et al. Mulberry: Empowering mllm with o1-like
reasoning and reflection via collective monte carlo tree search. arXiv preprint arXiv:2412.18319,
2024.

[56] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in Neural Information Processing Systems, 36, 2024.

[57] Kai Yi, Bingxin Zhou, Yiqing Shen, Pietro Lio, and Yu Guang Wang. Graph denoising diffusion
for inverse protein folding. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023.

[58] Kaizhi Yue and Ken A Dill. Inverse protein folding problem: designing polymer sequences.
Proceedings of the National Academy of Sciences, 89(9):4163–4167, 1992.

[59] Di Zhang, Jiatong Li, Xiaoshui Huang, Dongzhan Zhou, Yuqiang Li, and Wanli Ouyang.
Accessing gpt-4 level mathematical olympiad solutions via monte carlo tree self-refine with
llama-3 8b. arXiv preprint arXiv:2406.07394, 2024.

[60] Yang Zhang and Jeffrey Skolnick. Tm-align: a protein structure alignment algorithm based on
the tm-score. Nucleic acids research, 33(7):2302–2309, 2005.

[61] Zaixiang Zheng, Yifan Deng, Dongyu Xue, Yi Zhou, Fei Ye, and Quanquan Gu. Structure-
informed language models are protein designers. In International Conference on Machine
Learning, pages 42317–42338. PMLR, 2023.

[62] Yiheng Zhu, Zitai Kong, Jialu Wu, Weize Liu, Yuqiang Han, Mingze Yin, Hongxia Xu, Chang-
Yu Hsieh, and Tingjun Hou. Generative ai for controllable protein sequence design: A survey.
arXiv preprint arXiv:2402.10516, 2024.

[63] Yiheng Zhu, Jialu Wu, Qiuyi Li, Jiahuan Yan, Mingze Yin, Wei Wu, Mingyang Li, Jieping Ye,
Zheng Wang, and Jian Wu. Bridge-if: Learning inverse protein folding with markov bridges. In
The Thirty-eighth Annual Conference on Neural Information Processing Systems.

14

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state the claims made, including the
contributions made in the paper and important assumptions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See conclusion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

15

Justification: Not applicable as the paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

16

Answer: [Yes]
Justification: The code is available at https://github.com/A4Bio/ProteinInvBench/
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: See section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

17

https://github.com/A4Bio/ProteinInvBench/
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See Appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

18

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All external assets used in this work—including pretrained models, datasets,
and software libraries—are properly credited in the main text or references.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

19

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

20

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were not used as part of the core methodology in this research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM

A Algorithms

The overall workflow of the ProtInvTree is provided in Algorithm 1.

Algorithm 1 ProtInvTree: Reward-Guided Tree Search for Protein Inverse Folding
Input: Backbone structure c, ground truth sequence xgt, initial sequence x0, folding model f(·),
PLM policy πθ, reward function R(·, ·), max iterations M , tree depth T , expansion number per node
K, reward threshold τ
Output: A set of generated sequences S = {x∗

i }Zi=1, where Z denotes the number of generated
sequences.

1: Initialize root node s0 = (c,x0), search tree T with s0, and result set S ← ∅
2: for m = 1 to M do
3: Selection: Traverse the tree from s0 using UCT to select a promising node st (Eq. 3)
4: for k = 1 to K do
5: Expansion:
6: Sample action a

(k)
t ∼ πθ(at | st) ▷ Focus-and-Grounding strategies (Sec. 4.3)

7: Apply a
(k)
t to obtain updated sequence x

(k)
t+1

8: Construct child state s
(k)
t+1 = (c,x

(k)
t+1)

9: Add s
(k)
t+1 to tree T as child of st

10: Evaluation:
11: Sample completed sequence: x̃(k)

T ∼ J (x(k)
t+1, c) ▷ Jumpy denoising (Sec. 4.4)

12: Compute reward: r(k)t+1 = TMScore(f(x̃(k)
T), f(xgt))

13: Set node value: V (s
(k)
t+1) = r

(k)
t+1

14: Backpropagation:
15: Update visit count N(sj) and value V (sj) (Eq. 5)
16: Backpropagate r

(k)
t+1 to update all ancestors of s(k)t+1 (Eq. 6)

17: if t+ 1 = T and r
(k)
t+1 ≥ τ then

18: Add x
(k)
t+1 to result set S

19: end if
20: end for
21: end for
22: Return: Sequence set S = {x∗

i }Zi=1 containing Z high-quality candidates

B Evaluation Metrics

In the main paper, we report evaluation results using four metrics: sc-TMscore, RMSD, novelty, and
diversity. The descriptions of these metrics are detailed as follows.

sc-TMScore. The structural similarity is the ultimate standard for measuring the quality of the
designed sequence. However, the structures of designed protein sequences needed to be predicted
by other algorithms, such as AlphaFold [1], RoseTTAFold [3], OmegaFold [52] and ESMFold [29].
The protein folding algorithm itself has a certain inductive bias and will cause some prediction
errors, which will affect the evaluation. To overcome the inductive bias, we adapt the self-consistent
TM-score (sc-TMscore) metric:

sc-TMScore = TMScore(f(x̃), f(x)), (12)

where f is the protein folding algorithm and TMScore(·, ·) is a widely used metric [60] for measuring
protein structure similarity. Since the structures of the designed sequence and reference sequence
are predicted by the same protein folding algorithm, the model’s inductive bias is expected to be
canceled out when calculating the TM-score. This approach results in a more robust metric, called
the sc-TMScore, that is less affected by the inductive bias of the protein folding algorithm.

RMSD. The standard dissimilarity measure for protein structures is the root mean square deviation
(RMSD) of representative atom positions such as α-carbons. RMSD is calculated as the square root

22

of the average squared distance between corresponding atoms in two 3D structures:

RMSD(v,w) =

√√√√ 1

n

n∑
i=1

∥vi − wi∥2, (13)

where v = f(x̃) and w = f(x) are the predicted 3D structures of the designed sequence x̃ and the
reference sequence x, respectively, obtained using a structure prediction algorithm f . Here, vi and
wi denote the 3D coordinates of the i-th atom in each structure, and n is the total number of atoms
considered (typically backbone or α-carbon atoms). RMSD provides a fine-grained comparison of
atomic positions after optimal rigid-body alignment of the two structures. However, it is sensitive to
local deviations, such as flexible loops or inaccurate predictions in side-chain packing, and may not
fully reflect the overall fold similarity. As a result, RMSD is typically used in conjunction with other
metrics such as TM-score to provide a more comprehensive assessment of structural quality.

Novelty. We define novelty as the complement of sequence recovery, reflecting the extent to which
the generated sequences deviate from the native ground truth:

Novelty = 1− Recovery

where recovery is the fraction of amino acids in the predicted sequence that exactly match the
ground-truth sequence at each position, defined as:

Recovery =
1

n

n∑
i=1

1(x̃i = xi)

Diversity. The average fraction of amino acids that differ between pairs of sequences:

Diversity({x̃1, . . . , x̃M}) = 2

NM(M − 1)

M∑
j=1

j−1∑
k=1

N∑
i=1

1[x̃j [i] ̸= x̃k[i]]

=
2

M(M − 1)

M∑
j=1

j−1∑
k=1

dH(x̃j , x̃k).

where dH is the Hamming distance. We note that sequence diversity alone is not a sufficient measure
of an IF method’s quality, as it can be increased arbitrarily at the expense of sample quality (e.g. as
measured by structural consistency).

C Analysis of the Planning Components

We investigate how explicit planning components—intermediate feedback, uncertainty tracking,
and backtracking—affect test-time protein design quality. We compare our MCTS-based planner
(ProtInvTree) against two commonly used test-time strategies: Best-of-N and Beam Search sampling.

• ESM-3: base model without any planning or feedback;
• Best-of-N: generates N independent candidates and returns the one with the highest reward;
• Beam Search: incrementally expands partial solutions while keeping only the top-B (beam

width) candidates, iterating step-by-step with intermediate feedback until a complete se-
quence/design is found;

• ProtInvTree (ours): Monte Carlo Tree Search with intermediate feedback, uncertainty
tracking, and backtracking.

Table 6 summarizes the results and the presence of each planning component. We find that (1)
Intermediate feedback (Beam Search) improves convergence over purely independent sampling
(Best-of-N), indicating that partial evaluations guide more promising local expansions. (2) Uncer-
tainty tracking further boosts reliability by prioritizing candidates with stable scores, reducing
variance in final structures. (3) Backtracking enables recovery from suboptimal branches and better
global exploration, yielding the best overall accuracy.

23

Table 6: Comparison of planning strategies under equal computational budgets. Checks (✓) indicate
the presence of the corresponding planning component.

Models sc-TMscore (↑) RMSD (↓) Intermediate Feedback Uncertainty Tracking Backtracking
ESM-3 0.816 2.135 × × ×
Best-of-N 0.839 1.974 × × ×
Beam Search 0.853 1.724 ✓ × ×
ProtInvTree 0.881 1.513 ✓ ✓ ✓

D Selection Strategies Comparison

To analyze the impact of different position selection strategies in the Focus-and-Grounding action
mechanism, we evaluate several variants for computing the position distribution pϕ(i | st), which
determines the set of positions {i1, . . . , iKt

} to be modified at each denoising step.

Specifically, we compare the following approaches:

• Random sampling: Positions are selected uniformly at random from the sequence.
• Autoregressive sampling: Positions are visited sequentially from left to right in an autore-

gressive manner.
• Entropy-based selection: Positions with the lowest predictive entropy, representing the

model’s most confident predictions, are prioritized for update.

We integrate each strategy into the Focus module F(st), keeping the Grounding step unchanged.
Table 7 summarizes the quantitative results, showing that all three strategies achieve competitive
performance, with random sampling performing surprisingly well despite of its simplicity. This
may be because exploring a broader space in the early stages helps avoid premature convergence and
encourages greater sequence diversity, which ultimately benefits overall generation quality.

Table 7: Comparison of different sampling strategies on structure consistency (scTM-score).

Sampling Strategy Random AR Entropy

sc-TMscore (↑) 0.881 0.877 0.870

E Structure Complexity Effects

We also provide additional breakdowns across fold classes and protein lengths, revealing meaningful
differences in performance and novelty trends. Table 8 summarizes the breakdown by fold class and
length-based results are given in Table 1.

Table 8: Performance trends across the Fold class.

Fold Class sc-TMscore (↑) RMSD (↓) Novelty (↑)
Mainly Alpha 0.855 1.548 0.616
Mainly Beta 0.830 1.710 0.503
Alpha-Beta 0.908 1.488 0.448
Few Secondary 0.764 1.349 0.553

F Broader Impacts

Inverse protein folding models, positioned at the intersection of bioinformatics and computational
biology, offer significant potential for advancing both basic research and real-world applications. By
enabling the design of protein sequences that reliably fold into desired three-dimensional structures,
these models can drive progress across diverse domains. Broader impacts include facilitating
structure-based drug discovery, enabling the rational design of enzymes with novel functionalities,
and advancing synthetic biology through the creation of custom proteins with tailored properties.

24

	Introduction
	Related Works
	Protein Inverse Folding
	Test-time Scaling and MCTS

	Preliminaries
	ProtInvTree: Deliberate Protein Inverse Folding Framework
	Tree-based MDP Formulation
	Reward-guided Tree Search
	Focus-and-Grounding Action
	Jumpy Denoising for Fast Reward

	Experiments
	Experimental Setup
	Benchmarking Fixed Backbone Protein Design
	De Novo Proteins Design
	Analysis: Diving Deep into ProtInvTree

	Conclusion
	Algorithms
	Evaluation Metrics
	Analysis of the Planning Components
	Selection Strategies Comparison
	Structure Complexity Effects
	Broader Impacts

