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Abstract

LLMs rely on safety alignment to produce socially acceptable responses.
This is typically achieved through instruction tuning and reinforcement
learning from human feedback. However, this alignment is known to be
brittle: further fine-tuning, even on benign or lightly contaminated data,
can degrade safety and reintroduce harmful behaviors. A growing body
of work suggests that alignment may correspond to identifiable geometric
directions in weight space, forming subspaces that could, in principle, be
isolated or preserved to defend against misalignment. In this work, we
conduct a comprehensive empirical study of this geometric perspective.
We examine whether safety-relevant behavior is concentrated in specific
subspaces, whether it can be separated from general-purpose learning,
and whether harmfulness arises from distinguishable patterns in internal
representations. Across both parameter and activation space, our findings
are consistent: subspaces that amplify safe behaviors also amplify unsafe
ones, and prompts with different safety implications activate overlapping
representations. We find no evidence of a subspace that selectively governs
safety. These results challenge the assumption that alignment is geometri-
cally localized. Rather than residing in distinct directions, safety appears to
emerge from entangled, high-impact components of the model’s broader
learning dynamics. This suggests that subspace-based defenses may face
fundamental limitations and underscores the need for alternative strategies
to preserve alignment. We corroborate these findings through multiple
experiments on five open-source LLMs. Our code is publicly available at:

1 Introduction

Large Language Models (LLMs) have shown strong performance across a wide range of
general-purpose tasks, including complex reasoning and problem solving (1; 43; 49-51; 58).
To ensure these models behave responsibly and align with human values, they undergo an
additional process of security alignment. Despite known jailbreak methods that can bypass
safeguards, aligned models are generally considered significantly safer than their base
versions (37; 44; 55). This alignment is typically achieved through supervised fine-tuning
(SFT) and reinforcement learning from human feedback (RLHF), enabling models only
improve response quality, and also refuse harmful or inappropriate prompts. A growing
line of research focuses on the weight difference between the base and aligned models,
commonly referred to as the alignment matrix, which captures the transition from unaligned
to aligned behavior. This difference has been used to interpret alignment mechanisms and
develop defenses against adversarial attacks (3; 10; 18; 25; 28; 30; 57).

However, this alignment is fragile. Since safety is encoded in the model’s weights, any
modification, such as further fine-tuning (FT), can compromise it. While FT adapts models
to new tasks by learning update directions, it offers no guarantee that safety is preserved.
This exposes a deeper attack surface beyond prompt engineering: an adversary could insert
a small number of malicious samples into a training set to subvert alignment (4; 59; 60; 64).
Recent work shows that even benign FT, low-rank adaptation, or pruning can degrade a
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model’s safety profile (15; 16; 29; 42; 54). Preserving alignment under continued training
is therefore both a practical concern and a theoretically challenging problem. Given this
vulnerability, a natural question arises: Does there exist any subspace, whether in weight
space or activation space, that uniquely encodes safety alignment? If safety is a distinct
and structured property of the model, then updates or representations affecting it might
consistently concentrate in identifiable geometric regions. This motivates a broader question:
can we isolate or characterize safety-relevant subspaces that amplify aligned behavior or
suppress harmful outputs?

To explore this question, we conduct four experiments probing the geometry of safety-
related behavior across model weights and internal representations. We begin by analyzing
FT updates from purely useful and harmful datasets, projecting them into subspaces derived
from the alignment matrix to test whether safety correlates with energy or behavioral impact.
Next, we examine contaminated FT, where a small fraction of harmful samples is mixed
into a benign dataset. By projecting updates into the orthogonal complement of alignment-
derived subspaces, we test whether harmful components can be selectively removed (see
Figure 1). In the third experiment, we directly compare the dominant subspaces of useful,
harmful, and alignment updates to assess whether safety-altering updates share consistent
structure. Finally, we inspect the representation space, comparing internal activations from
useful and harmful prompts to ask whether safety-related inputs occupy distinct subspaces,
even when weight updates do not.

Across all experiments, we observe a consistent and surprising result: no subspace, whether
defined by alignment directions, update energies, or input representations, captures safety-specific
behavior in isolation. While certain subspaces, such as the top alignment directions, are
behaviorally impactful, they amplify both helpful and harmful behaviors equally, reflecting
general update sensitivity rather than alignment. Similarly, activations from harmful and
helpful prompts occupy overlapping regions of representation space, offering no evidence
for distinct "safety activation" geometry. These findings point to a fundamental limitation
of subspace-based alignment strategies. If safe and unsafe behaviors cannot be cleanly
separated geometrically, then projection- or filtering-based defenses are unlikely to suppress
harmfulness without incurring equivalent losses in utility. Our key contributions are:

¢ We show that subspaces derived from alignment updates are not safety-specific; they
amplify both helpful and harmful behaviors equally, reflecting general update sensitivity
rather than alignment.

* We find that orthogonal projection intended to filter harmful updates leads to proportional
losses in utility, suggesting no selective geometric separation between safe and unsafe
behavior.

¢ We demonstrate that harmful and aligned updates do not share a consistent subspace,
and that harmful prompts do not activate distinct regions of representation space.

¢ Through consistent results across five open-source LLMs evaluated in multiple experi-
ments, we challenge the view that safety alignment is geometrically localized and reveal
fundamental limitations of subspace-based defenses.

2 Preliminaries

Notation. Let W denote the parameters of the base model, and let W, represent the
parameters of the aligned instruction-tuned model. We further fine-tune the aligned model
on a task-specific dataset Dj, where j € {Useful, Harmful, Contaminated}, resulting in
parameters Wt ;. We decompose the total parameter update as the sum of two components:

Ap :=Wp — W (alignment update), @)
A]'T = Wpr,; — Wa (task-specific update). 2)

Importance of Alignment Directions (A). Alignment training typically emphasizes
behavioral properties such as harmlessness, helpfulness, and honesty. Empirical studies
(10; 18; 37) suggest that the alignment update As encodes directions in parameter space



that are strongly correlated with these safety attributes. Our goal is to systematically control

the extent to which the subsequent task-specific update Al interacts with these alignment
directions.
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Figure 1: The base model W, is instruction-tuned to produce the aligned model W4. Step 1:
The difference Ay = W4 — W, defines a safety direction, from which projection matrices Py
(top-K subspace) and PkL (orthogonal subspace) are derived. W is then fine-tuned on three
datasets: helpful, harmful, and contaminated, to yield Wysetul, Wharmful, and Weontaminated-
with updates A;. Step 2: Project A¢; using P and P, and add back to W to obtain projected
models for evaluation. In addition, SVD is performed on the task-specific updates and MSO
is computed between the top-K singular vectors.

Constructing the Alignment Subspace. To formalize this notion, we begin by constructing
the alignment subspace. Each tensor in the alignment update A, is first reshaped into a
matrix (flattened if needed) V5 € RM*N. We perform a thin singular value decomposition
(SVD) of the form V4 = ULV ", which reveals the principal directions of parameter change
(12; 36), ranked by their contribution to the Frobenius norm. The top k (Top-K) right singular
vectors in V are then selected to define the alignment subspace:

S :=span(Uy), U € RM*K k < rank(Vy). )

Intuitively, S captures the k most significant directions of parameter shifts resulting from
alignment training. The alignment subspace naturally induces projection operators:

P := WU, PL:=1-F, (4)

where P, projects a matrix onto the alignment subspace, and P onto its orthogonal comple-
ment.

Projection Schemes. Given a fractional rank hyperparameter ¢ € (0,1], we determine
k = |o-min(M, N)| and apply one of two projection-based update schemes to the task-
specific update:

Parallel : Azf =D kAjTr wparallel = Wu + A!F’ ®)

Orthogonal : A]T = kLA]T, Worthogonal = Wa + A]T. (6)

Equation 5 retains the update components that align with the alignment directions, while
Equation 6 removes this aligned component, retaining only the update orthogonal to the
alignment subspace.

Control Experiments. To further assess the specificity and effectiveness of the alignment
subspace, we introduce two control experiments:

¢ Random-K: Instead of using the top-k singular vectors from the SVD of V,, we randomly
sample k singular vectors from the full set to construct a randomized alignment subspace.

* Random: We replace V5 with a random matrix of the same dimensions, perform its SVD,
and use the top-k singular vectors to define a synthetic alignment subspace.

Energy-Kept Ratio. We introduce the fractional energy metric to quantify the extent of
overlap between the task update and the alignment subspace:
o Py | |
E(8p) == ——=TF, & (M) =1 &(ah). )
187117



Mode Subspace Overlap (MSO). Let V € R and W € R¥*"W be two matrices with a
shared ambient dimension d but possibly different column counts. We extract their principal
directions using thin SVD:

V=UyZyVy, W=UwZywVy. (8)

For a chosen energy-retention fraction 7 € (0, 1], we select the smallest ky and ky such
that the top ky (resp. k) left singular vectors capture at least an 77-fraction of ||Zy ||% (resp.

|Zw]|2). This yields orthonormal bases Qy € R?***v and Qyy € R¥*kw_ The overlap matrix
is then defined as:

S = QuQw € Rv>w. ©)
To quantify the similarity between these #-energy subspaces, we use MSO metric:
ISIE
) = —/——F————— < <1
MSO(V, W; 1) min(ky, k)’ 0<MSO<1 (10)

Intuitively, MSO(V, W; 1) measures the overlap between the top-7 energy components of
V and W: it equals 0 for orthogonal subspaces and 1 for identical spans. As a baseline,
the expected overlap between random subspaces of dimensions ky and kyy in R? is given
analytically by:

max (ky, ky)

Eloverlap] = y

(11)

Models Used. Throughout our work, we evaluate both base and instruction-aligned
versions of several open-source LLMs. For example, we consider Qwen-2.5 3B (base)
alongside its aligned variant, Qwen-2.5 3B Instruct. We report results for base and aligned
versions of five models: LLaMA 3.2 1B (11), LLaMA 2 7B (51), Qwen-2.5 1B (58), Qwen-2.5
3B, and Qwen-2.5 7B.

3 Do Alignment Subspaces Encode Safety?
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Figure 2: Parallel projection-based update schemes across varying SVD fractions. We report
the energy-kept ratio for models fine-tuned on Full Useful and Full Harmful data, utility for
models fine-tuned on Full Useful, and harmfulness for models fine-tuned on Full Harmful.

A central question in understanding safety alignment is whether specific directions in weight
space, such as those defined by the difference between a base model and its RLHF-aligned
counterpart, encode information unique to safety. If this is the case, then constraining FT
updates to lie within these subspaces could offer a principled way to guard against harmful
optimization. We begin our investigation by examining whether task-specific FT updates
align differently with the top directions of the alignment matrix, depending on whether the
task is helpful or harmful.



Experimental Setup. We fine-tune an aligned instruction-tuned model on two distinct
datasets. The first is a 20K subset of MetaMathQA (63), a benchmark of math word problems
representing a useful task without safety concerns. The second is a 4K unsafe subset of
BeaverTails (26), a synthetic dataset of harmful instruction-response pairs designed to elicit

unsafe behavior. We denote the resulting weight updates as A[Tjsef‘ﬂ and AHarmful respectively.
To quantify behavioral effects, we evaluate harmfulness using the AdvBench dataset (68),
with GPT-40-mini (24) scoring each response from 1 (least harmful) to 5 (most harmful); the
final score is the average across samples. Utility is measured by accuracy on the GSM8k test
set (8), using final answer correctness. We compute these metrics, energy-kept ratio, utility,
and harmfulness, for the projected models Wparaiiel and Worihogonal, @s well as for the base,
aligned, fine-tuned, and control models.

Results: Energy Is Uniform Across Subspaces, Performance Is Not. As shown in Figure 2,
the fraction of energy retained in projected updates increases linearly with subspace rank
and is consistent across all three subspace types. This pattern holds for both helpful and
harmful updates. There is no evidence that update energy is preferentially concentrated
in the top directions of A4 for safe vs unsafe FT. This suggests that if a "safety subspace”
exists, it is not captured simply by energetic alignment with the dominant directions of A4.
However, while energy is evenly distributed, behavioral impact is not. We can observe that
projecting Agseful onto the top-k directions consistently improves utility relative to random

projections with equal energy, in Figure 2 and Table 1. Similarly, projecting AFa™ful onto

the same directions increases harmfulness. Thus, the top singular directions of A 4 are not
uniquely aligned with safety, but they are generally potent. Updates along these directions
are more effective, whether the goal is to enhance utility or to elicit harmful behavior. We
present results on all models in Table 3 (Appendix B).

Table 1: Parallel projection-based update schemes across varying SVD fractions. We report
the utility for models fine-tuned on Full Useful data, and harmfulness for models fine-tuned
on Full Harmful.

Model Method | Utility (1) I Harmful Score (|)
| Aligned | SVD Fractions | FT || Aligned| SVD Fractions | FT
\ 0.01 0.25 0.50 0.75 0.99| | 0.01 0.25 0.50 0.75 0.99|
Top-K 0.47 ]0.50 0.53 0.55 0.57 0.58]0.61|] 1.55 |1.62 1.80 1.92 1.90 1.97|2.09
Qwen-2.51.5B Random-K| 0.47 ]0.49 0.50 0.53 0.56 0.58|0.61|| 1.55 |1.55 1.66 1.78 1.92 2.00|2.09
Random 0.47 0.49 0.50 0.53 0.53 0.56|0.61|] 1.55 |1.56 1.65 1.74 1.83 1.95|2.09
Top-K 0.13 |0.14 0.21 0.25 0.30 0.34|0.36|| 2.80 |2.89 3.29 3.51 3.66 3.84|4.07
Llama-3.21B Random-K| 0.13 ]0.13 0.16 0.23 0.29 0.34|0.36|| 2.80 |2.83 3.11 3.37 3.55 3.84|4.07
Random 0.13 |0.13 0.17 0.22 0.29 0.34|0.36|| 2.80 |2.81 3.05 3.34 3.56 3.83|4.07

Implications: Alignment Directions Reflect Update Sensitivity, Not Safety. This sym-
metry across tasks is important. The fact that top-k directions amplify both helpful and
harmful behavior equally suggests they do not encode alignment directly. Instead, they
appear to represent axes of general parameter sensitivity, directions where updates tend
to induce large changes in model behavior. In this sense, A4 captures a general learning
geometry: directions that are especially effective for optimization, not inherently safe. We
draw three key takeaways. First, neither helpful nor harmful updates preferentially align
with the top subspaces of A4 in terms of energy. Second, those same subspaces are more
behaviorally expressive, enhancing both utility and harmfulness depending on the task.
Third, this challenges the notion that A 4 encodes safety-specific information. Its dominant
directions support effective learning broadly, without guiding its ethical character. Thus,
using A 4 to constrain updates may regulate the magnitude of behavior change, but not its
direction or valence.

4 Can Harmful Subspaces Be Removed?

Having analyzed helpful and harmful updates in isolation, we now consider a more realistic
scenario: contaminated FT. This involves adding a small fraction of harmful examples to an
otherwise benign dataset, producing updates that blend both signals. Contaminated data



is particularly dangerous because it can degrade alignment without obvious signs. Prior
work shows that even limited contamination can erode safety, causing models to revert to
unsafe behaviors. While earlier experiments identified expressive subspaces, we now ask
the reverse: can we remove harmful components from an update? We test whether filtering
specific subspaces, particularly those aligned with the dominant directions of the alignment
matrix, can reduce harmfulness while preserving utility.

Experimental Setup. We construct a contaminated dataset by mixing 20% harmful data
from BeaverTails with 80% of the 20K MetaMathQA subset. FT on this mixture yields a
single contaminated update, At. To suppress harmful behavior, we apply the orthogonal
projection strategy from Section 2, removing components along the top-k alignment direc-
tions. Specifically, we compute At = P*Ar, where P- projects onto the complement of the
alignment subspace. We evaluate the resulting models on GSMS8K (utility) and AdvBench
(harmfulness). Our goal is to test whether removing alignment-aligned components can
reduce harmfulness while preserving task performance.

Results: Utility And Harmfulness Drop Together. Figure 3 shows the effects of orthogonal
projection on retained energy, utility, and harmfulness. As k increases, implying more of the
update is removed, the retained energy declines steadily across all projection types (random,
top-k, and random-k). Utility and harmfulness scores (Figure 3, Table 2) follow a similar
downward trend. However, the rate of decline differs by projection strategy. Removing
top-k alignment components reduces utility more sharply than random projections. At
the same time, harmfulness decreases at a similar rate, indicating no selective suppression
of harmful behavior. In effect, safety improvements come at a proportional cost to task
performance, with no clear advantage in targeting the alignment subspace. We present
results on all models in Table 4 (Appendix C).
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Figure 3: Parallel projection-based update schemes across varying SVD fractions. We report
the energy-kept ratio for models fine-tuned on Full Useful, Full Harmful and Contaminated
data; and utility and harmfulness for models fine-tuned on Contaminated.

Implications: No Selective Removal Is Possible. These results indicate that the alignment
subspace does not uniquely encode safety or harmfulness but rather captures directions
broadly important for learning. Removing these directions degrades both utility and
harmfulness at similar rates. If harmful behavior were confined to distinct subspaces, we
would expect a steeper drop in harmfulness than utility, yet this is not observed. Even if
safety-relevant directions exist, they are not recoverable from the alignment matrix alone,
especially under contamination. The update blends helpful and harmful objectives, making



Table 2: Parallel projection-based update schemes across varying SVD fractions. We report
the utility and harmfulness for models fine-tuned on Contaminated data.

Model Method | Utility (1) I Harmful Score (|)
| Aligned | SVD Fractions | FT || Aligned| SVD Fractions | FT
\ 0.01 0.25 0.50 0.75 0.99| | 0.01 0.25 0.50 0.75 0.99|
Top-K 0.47 0.50 0.53 0.55 0.57 0.58|0.60|| 1.55 |1.58 1.65 1.80 1.91 1.92|2.16

Qwen-2.51.5B Random-K| 0.47 [0.49 0.52 0.53 0.55 0.55(0.60|| 1.55 |1.56 1.62 1.63 1.87 1.92|2.16
Random 0.47 0.49 0.50 0.52 0.52 0.54|0.61|] 1.55 |1.58 1.64 1.68 1.74 1.92|2.16

Top-K 0.61 |0.63 0.64 0.65 0.68 0.69(0.73|| 147 |1.49 1.58 1.69 1.76 1.83|1.99
Qwen-253B Random-K| 0.61 [0.62 0.64 0.64 0.66 0.69(0.73|| 1.47 |1.45 1.55 1.62 1.65 1.91|1.99
Random 0.61 |0.62 0.63 0.64 0.65 0.68(0.73|| 1.47 |1.45 1.50 1.57 1.75 1.83|1.99

Top-K 0.74 |0.74 0.75 0.75 0.75 0.78|0.81|] 1.30 |1.31 1.56 1.60 1.68 1.67|1.96
Qwen-257B Random-K| 0.74 [0.74 0.75 0.76 0.75 0.78(0.81|| 1.30 |1.35 1.41 1.46 1.59 1.67|1.96
Random 0.74 |0.74 0.75 0.75 0.75 0.78|0.81|] 1.30 |1.34 1.40 1.48 1.56 1.63|1.96

its projection agnostic to intent. As a result, orthogonal projection fails to selectively suppress
harmful behavior. Subspace filtering based on alignment directions imposes a strict tradeoff:
gains in safety come with proportional utility loss. This challenges the effectiveness of
subspace-based defenses under contaminated FT.

5 Are Safety Weight Subspaces Distinct?
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Figure 4: Mode Subspace Overlap (MSO) at the 70- and 85- percentile layers for pairwise
comparisons of the dominant subspaces from Harmful fine-tuned (H), Instruction-tuned (I),
and Base (B) models.

A natural question is whether a dedicated region of parameter space, what we might call a
safety subspace, captures safety-specific behavior. Such a subspace should meet two criteria:
(i) safety-relevant updates, whether from alignment or harmful FT, should lie significantly
within it; and (ii) task-specific updates unrelated to safety should have minimal overlap, with
projections onto the subspace leaving model safety unchanged. Crucially, these properties
must generalize across tasks and datasets to rule out dataset-specific artifacts. Our earlier
results argue against the top subspaces of the alignment matrix meeting these criteria. These
directions are highly sensitive to any update, helpful or harmful, but do not isolate safety.
Still, it remains open whether some other set of directions, possibly outside the alignment
subspace, could fulfill this role. To explore this, we directly compare the dominant subspaces
of different update types.

Experimental Setup. We compare the principal subspaces of 3 updates: the alignment
update A4 (from base to aligned model), the harmful FT update A?armful (trained on

BeaverTails), and the useful update A[Tjseful (trained on a 20K subset of MetaMathQA).
Notably, the negated alignment update, —A 4, reverses alignment by pushing the model
back toward its unaligned base state, effectively acting as a harmful update and serving



as a useful reference. For a given energy threshold 1 € (0,1], we compute MSO(-, -; 17)
(Section 2 for three pairs: (i) (A[Tjsef‘ﬂ, A?armﬁ‘l), to assess whether helpful and harmful
FT affect similar subspaces; (ii) (AY**f!, ~A4), to test alignment between helpful updates

and reversed alignment; and (iii) (A?armf‘ﬂ, —A A), to compare two harmful directions.
We sweep over 7, with small values isolating high-energy directions and larger values
approaching full-rank overlap. We include the random-subspace baseline max(ky, ky ) /d;
values above this baseline indicate significant geometric alignment, while values near it
suggest chance-level overlap.

Results: Representations Overlap Across Tasks. Figure 4 shows the pairwise overlap
between the dominant subspaces (top-k directions) of each update. All pairs exhibit greater
overlap than random baselines, indicating shared structure. However, the strongest overlap
is between the useful and harmful updates, not between alignment and harmful updates,
as one might expect if safety were a shared component. This is a key finding. If a safety
subspace existed, it would likely appear in the shared directions between alignment and
harmful updates, which affect safety in opposite ways. This lack of substantial overlap
suggests that no consistent, linear safety-specific subspace exists.

Implications: Shared Subspaces Drive Behavior, Not Safety. Together with earlier results,
these findings suggest that safety-relevant updates do not lie in a well-defined or isolatable
subspace. Instead, both alignment and harmfulness operate over complex, task-dependent,
and likely non-linear directions. The high overlap between harmful and helpful update
subspaces supports our earlier hypothesis: these directions form a general learning subspace,
expressive across tasks but agnostic to safety. We find no evidence for a distinct safety
subspace. Updates that influence safety, positively or negatively, do not share dominant
directions. Any shared structure reflects general learning capacity rather than safety-specific
behavior. As such, geometric separation of alignment remains elusive, and linear subspace
methods cannot cleanly isolate safety in parameter space.

6 Do Safety Subspaces Exist In Representation Space?
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Figure 5: Average Mode Subspace Overlap (MSO) across layers in the 65-90% depth range
for pairwise comparisons of activations from Useful (U) and multiple Harmful (H1, H2)
prompt sets.

So far, our analysis has focused on the weight space, probing whether certain update
directions correspond to safety-related behavior. Across experiments, we found no evidence
for distinct subspaces encoding safety at the parameter level. However, safety may instead
manifest through how inputs interact with the model, specifically, through the regions of
representation space they activate. This motivates a final question: do safety-relevant inputs
elicit distinct activation patterns, even if their corresponding weight updates overlap? While
weight updates may distribute energy broadly, inputs could selectively activate specific
directions. This perspective also offers a possible explanation for earlier results: even



low-energy projections onto alignment directions produced strong behavioral effects, likely
because inputs activated those directions disproportionately.

Experimental Setup. We compare internal activations induced by different prompt cat-
egories. Specifically, we pass useful (benign) prompts from the MATH dataset (17) and
harmful prompts from BeaverTails (test set) and ToxiGen (14) through three models: the
aligned model, the useful fine-tuned model, and the contaminated fine-tuned model. For
each prompt, we record the hidden state of the last generated token at each transformer layer
£ €0,...,L. Ateach layer, these hidden states are stacked into activation matrices of shape

R"*?, where d is the model’s hidden size and 7 is the number of prompts (5000 for each
dataset). We compute MSO (see Section 2) between activation matrices corresponding to the
prompts from different datasets, sweeping over energy thresholds 7. Lower values of # cap-
ture high-energy activation modes, while higher values approximate full-rank comparisons.
We plot MSO curves alongside the random-subspace baseline max(kyseful, KHarmful) /4, and
report averages over layers in the 65-90 % depth percentile.

Results: Representation Subspaces Overlap Across Tasks. Figure 5 reports MSO values
across all pairs of prompt categories. Useful and harmful prompts consistently exhibit
overlap above the random baseline, indicating activation of shared high-energy subspaces
in representation space. Notably, the overlap between the two harmful prompt sets is
not consistently higher than their overlap with helpful prompts; in some cases, the use-
ful-harmful overlap is greater than the harmful-harmful one. The degree of overlap also
varies across model configurations. Some models show strong alignment even in the top
subspaces, while others exhibit more gradual increases in overlap, becoming significant
only at higher energy thresholds. This variability suggests that representational similarity is
influenced more by model-specific factors than by the safety content of the prompts alone.
Results on more models are provided in Figure 6 (Appendix D).

Implications: Shared Subspaces Drive Behavior, Not Safety. These observations suggest
that while all prompt types activate shared subspaces more than expected by chance,
there is no evidence of a distinct safety-violating subspace. If such a subspace existed,
activations from harmful prompts would consistently exhibit greater mutual overlap than
with useful prompts, which is not the case. Instead, the results indicate that prompts with
differing safety implications are processed through broadly overlapping representations.
This supports our earlier hypothesis: the directions most responsible for driving behavior
reflect general-purpose representational subspaces rather than safety-specific ones. These
directions are activated across tasks and prompt types, implying that LLMs do not internally
separate “safe” and “unsafe” activation modes, but instead rely on shared, high-impact
subspaces. We find no evidence of a distinct safety subspace in representation space. Useful
and harmful prompts show substantial overlap, even across prompt sets with very different
behavioral consequences. Combined with our findings in weight space, these results suggest
that both aligned and harmful behaviors emerge from shared representational mechanisms
rather than separable subspaces.

7 Conclusion

This work set out to investigate how safety alignment is encoded in LLMs, and whether it
can be isolated through geometric structure in weight or activation space. Motivated by the
challenge of preserving alignment under continued fine-tuning, particularly in adversarial
or contaminated settings, we conducted a systematic study across four experiments and five
open-source LLMs, examining both parameter updates and internal representations. Our
findings challenge the common assumption that alignment corresponds to safety-specific
subspaces. Subspaces with high behavioral impact are not unique to alignment; they
enhance both utility and harmfulness, and their removal degrades both. This indicates that
these directions reflect general-purpose learning rather than safety alone. Moreover, harmful
and helpful prompts activate overlapping regions of representation space, offering no
evidence for distinct “safety activation” geometry. Together, these results suggest that safety
alignment is not cleanly separable in geometric terms. While this complicates subspace-
based defenses, it also highlights the potential of high-impact directions, if appropriately
constrained, for guiding both safe fine-tuning and activation-level control. More broadly,
our work calls for rethinking geometric assumptions in interpretability and alignment, and
for developing methods that engage with the entangled nature of learned representations.
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A Related Work

Safety Alignment and Task-Specific Fine-Tuning in LLMs. Large Language Models
(LLMs) do not inherently follow instructions and often exhibit socially undesirable behav-
iors. To address this, various post-training methods, instruction-tuning and reinforcement
learning from human feedback, are applied to align base LLMs with human values and im-
prove their instruction-following capabilities (37; 44; 46; 55). However, studies have shown
that fine-tuning these aligned models on harmful data can undo this alignment, restoring
their original, socially unacceptable behaviors (59). This unalignment phenomenon has
been demonstrated in both open-source models (29; 60) and proprietary models (4; 42; 64)
via publicly available fine-tuning APISs, thereby exposing a new attack surface (9; 23; 27).
Moreover, even fine-tuning on benign downstream tasks can degrade alignment (15; 16).

Defense Methods. To safeguard aligned LLMs against unalignment during fine-tuning,
defenses have been proposed at three stages of the pipeline: the alignment stage, the fine-
tuning stage, and the post-processing stage. The effectiveness of these defense methods is
evaluated using downstream model utility and harmfulness (20).

Alignment Stage Defenses. Alignment stage defenses update the initial instruction-tuning
process to ensure that downstream fine-tuning cannot easily overwrite the model’s safety be-
havior. One approach augments the alignment loss, making harmful representations harder
to recover during fine-tuning updates (45). Another line of work relies on safety-oriented
data curation to preserve alignment under downstream fine-tuning(33). Adversarial and
meta-learning techniques have also been combined to develop tamper-resistant methods
that prevent harmfulness while maintaining task performance (48). A separate strategy
introduces a regularization term to the alignment loss, which has been shown to preserve
safety after fine-tuning (22). Perturbing safety-critical layers during instruction-tuning has
also been shown to protect alignment (32). Additional work traces unalignment to excessive
dependence on maximume-likelihood training, motivating an integrity preserving variant
of this method (6). A study on “shallow alignment” also shows that instruction-tuning
influences only the first few output tokens, whereas deeper alignment improves robustness
(41).

Fine-Tuning Stage Defenses. Fine-tuning stage defenses modify the fine-tuning process
to ensure that the model’s alignment is preserved after update. One class of defenses
focuses on data curation, augmenting the fine-tuning dataset to maintain alignment after
update (5; 13). Another approach uses safety examples prefixed with a secret prompt,
which act as backdoor triggers to reactivate safe behavior after fine-tuning (52). A data
ranking based strategy has also been proposed, where low-quality data is down-ranked and
high-quality data is up-ranked to better preserve safety (47). It has also been shown that
prompt templates play an important role; removing the safety prompt during fine-tuning
and reintroducing it at inference time can maintain alignment (35).

Optimization based defenses are another type of fine-tuning stage defenses. One line of
work splits fine-tuning into an alignment phase and a utility phase, safeguarding both safety
and task performance (21). Another approach combines safety and helpfulness objectives
into a single loss (65).

Parameter level methods can also be used to preserve safety. One strategy identifies safety
neurons and updates only those parameters (66). Another approach involves localizing
safety layers and freezing their gradients, which has been shown to prevent unalignment
(31). Another line of work explores constraining parameter changes to directions orthogonal
to existing safety features, showing that this method preserves alignment (30). It has also
been shown that harmful data can be filtered by matching fine-tuning embeddings against
the top-k singular vectors of an activation matrix generated using a harmful dataset (7).

Post-Processing Stage Defenses. Post-processing stage defenses adjust the fine-tuned
model to restore alignment and preserve usefulness. One approach adds a safety vector,
defined as the difference between aligned and unaligned weights, to the fine-tuned parame-
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ters to regain safe behavior (3). Another line of work projects the fine-tuning update onto
the alignment vector when their similarity drops below a threshold, or selectively merges
layers from the fine-tuned and aligned models under the same criterion to achieve a similar
effect (10; 18). A third strategy removes parameters identified as harmful after fine-tuning
to restore alignment (19). It has been shown that safety directions in attention-head activa-
tions can also be located and used for targeted intervention (67) to realign the fine-tuned
model. Another method detects update parameters whose signs contradict the original
alignment and removes them (57). Additional work restores safety-critical neurons (61),
fuses aligned and fine-tuned models (62), or adds an optimized post-hoc perturbation to
recover alignment (53).

Safety Mechanisms in Fine-Tuned and Aligned LLMs. Recent studies have examined
how LLMs express safety over neurons, layers, and activations. One study finds that safety
related information is language agnostic, identifies parameters whose modification affects
alignment, and shows that freezing these parameters during fine-tuning does not ensure
safety (40). Another line of work locates sparse regions in parameter space whose removal
weakens alignment, and likewise observes that freezing these regions alone is insufficient to
maintain model alignment (54). A separate analysis maps a safety basin in weight space,
noting that random perturbations inside the basin leave safety intact, whereas fine-tuning
moves weights outside it (39). Finally, work on the activation residual stream isolates a
refusal direction, removing this direction prevents refusal to harmful prompts, while adding
it triggers refusal to benign ones (2).

B Do Alignment Subspaces Encode Safety?

We provide additional results in Table 3 to support the analysis presented in Section 3.

C Can Harmful Subspaces Be Removed?

Table 4 presents supplementary results that further substantiate the findings discussed in
Section 4.

D Do Safety Subspaces Exist in Representation Space?

To complement the discussion in Section 5, we include extended results in Figure 6.

E Experimental Details

We implemented all experiments using PyTorch (38) and the HuggingFace Transformers
library (56). We ran all experiments on a single NVIDIA A6000 GPU (48 GB). To save
memory, all base models are initalized in torch.bfloat16 precision. All models are trained
using the AdamW optimizer (34). Detailed hyperparameter configurations for full fine-
tuning of each model are presented in Table 5.

F Dataset Details

We use the MetaMathQA dataset (63) for fine-tuning, which reformulates existing math
problems from alternative perspectives without introducing new content. To evaluate perfor-
mance, we rely on the GSM8K benchmark (8), a dataset of elementary-level math questions
that require multi-step reasoning. Models are assessed based solely on the correctness of
the final numerical answer. For our activation-based analysis, we sample prompts from the
MATH dataset (17), which contains challenging, competition-style arithmetic problems.

BeaverTails (26) is a valuable dataset for studying safety by independently annotating
question—answer pairs for both helpfulness and harmlessness. We use the training set to
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Table 3: Parallel projection-based update schemes across varying SVD fractions. We report
the utility for models fine-tuned on Full Useful data, and harmfulness for models fine-tuned

on Full Harmful.

Utility (1) Harmful Score (])
Model Method SVD Fractions SVD Fractions

0.01]0.25] 0.50 | 0.75 | 0.99 || 0.01 | 0.25 | 0.50 | 0.75 | 0.99

Base 0.21 3.27

Aligned 0.47 1.55

Fine-Tuned 0.61 2.09
Qwen-25158 1 0.50 | 0.53 | 0.55 | 0.57 | 0.58 || 1.62 | 1.80 | 1.92 | 1.90 | 1.97
Random-K | 0.49 | 0.50 | 0.53 | 0.56 | 0.58 || 1.55 | 1.66 | 1.78 | 1.92 | 2.00
Random 049 (0501053 |1053|0561(156(1.65(1.74|1.83|1.95

Base 0.03 4.13

Aligned 0.13 2.80

Llama-3.2 1B Fine-Tuned 0.36 4.07
’ Top-K 0.14 1 0.21 1 0.25|10.30 | 0.34 || 2.89 | 3.29 | 3.51 | 3.66 | 3.84
Random-K [ 0.13 | 0.16 | 0.23 | 0.29 | 0.34 || 2.83 | 3.11 | 3.37 | 3.55 | 3.84
Random 0.1310.17 1022 10.29 |1 0.34 || 2.81 | 3.05 | 3.34 | 3.56 | 3.83

Base 0.44 2.53

Aligned 0.61 1.47

Qwen-2.5 3B Fine-Tuned 0.72 2.16
’ Top-K 0.630.64|0.65|0.68|0.69 (148171181191 |1.92
Random-K [ 0.62 | 0.63 | 0.64 | 0.65|0.69 || 1.44 |155|1.62|1.74|1.91
Random 0.620.63|10.64 065|068 144|150 ]|1.66|1.75|1.83

Base 0.69 1.90

Aligned 0.74 1.30

Qwen-2.5 7B Fine-Tuned 0.81 2.12
’ Top-K 0.7210.74]10.76 | 0.77 | 0.77 || 1.34 | 1.56 | 1.66 | 1.76 | 1.84
Random-K [ 0.730.75|0.74 | 0.75|0.77 || 1.34 | 1.44 | 1.53 | 1.64 | 1.84
Random 0.7410.75]0.75|10.76 | 0.76 || 1.33 | 1.40 | 1.48 | 1.56 | 1.75

Base 0.05 4.27

Aligned 0.20 1.74

Llama-2 7B Fine-Tuned 0.30 3.41
Top-K 0.21]024]026|028|029| 181234261290 ]|3.15
Random-K | 0.20 | 0.23 | 0.25[0.28 | 0.29 || 1.74 | 1.91 | 2.09 | 2.63 | 3.13
Random 0.20]0.23]10.25|0.28 028|177 191|215 |257|3.03

fine-tune models in both harmful and contaminated settings, and draw prompts from the
test split for our activation-based experiments.

AdvBench (68) consists of 500 prompts designed to elicit a wide range of harmful behaviors,
including profanity, threats, misinformation, discrimination, cybercrime, and other forms
of dangerous or illegal content framed as instructions. We use this benchmark to quantify
model harmfulness: higher success in responding to these prompts indicates greater unsafe
behavior.

ToxiGen (14) is a large-scale dataset composed of both toxic and non-toxic statements. We
use a subset of its prompts to analyze model activations in response to harmful content.
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Table 4: Parallel projection-based update schemes across varying SVD fractions. We report

the utility and harmfulness for models fine-tuned on Contaminated data.

Utility (1) Harmful Score (])
Model Method emphSVD Fractions emphSVD Fractions
| 0.01 | 0.25 | 0.50 | 0.75 | 0.99 || 0.01 | 0.25 | 0.50 | 0.75 | 0.99
Base 0.21 3.27
Aligned 0.47 1.55
FT 0.60 2.16
Qwen-2.51.5B Top-K 0.50 | 0.53 | 0.52 | 0.55 | 0.56 || 1.59 | 1.65 | 1.79 | 1.91 | 1.92
Random-K | 0.49 | 0.52 | 0.53 | 0.55 | 0.55 || 1.56 | 1.62 | 1.63 | 1.87 | 1.92
Random | 0.49 | 0.50 | 0.52 | 0.52 | 0.54 || 1.58 | 1.64 | 1.68 | 1.74 | 1.92
Base 0.026 4.13
Aligned 0.13 2.80
FT 0.37 3.60
Llama-3.2 1B Top-K 0.14 [ 0.20 | 0.25 | 0.29 | 0.33 || 2.84 | 2.90 | 3.05 | 3.36 | 3.45
Random-K | 0.13 | 0.16 | 0.22 | 0.29 | 0.33 || 2.81 | 2.90 | 3.03 | 3.19 | 3.45
Random | 0.13 | 0.16 | 0.22 | 0.28 | 0.33 || 2.84 | 2.90 | 3.19 | 3.19 | 3.45
Base 0.44 253
Aligned 0.61 1.47
FT 0.73 1.99
Qwen-2.5 3B Top-K 0.62 [ 0.63 | 0.65]0.68 | 0.69 || 1.49 | 1.58 | 1.69 | 1.76 | 1.83
Random-K | 0.62 | 0.64 | 0.64 | 0.66 | 0.69 || 1.45 | 1.55 | 1.62 | 1.65 | 1.91
Random | 0.62 | 0.63 | 0.64 | 0.65 | 0.68 || 1.45 | 1.50 | 1.57 | 1.75 | 1.83
Base 0.69 1.90
Aligned 0.74 1.30
FT 0.81 1.96
Qwen-2.57B Top-K 0.74 [ 0.75 | 0.75 | 0.75 | 0.78 || 1.30 | 1.55 | 1.60 | 1.68 | 1.67
Random-K | 0.74 | 0.75 | 0.76 | 0.75 | 0.78 || 1.35 | 1.41 | 1.46 | 1.59 | 1.67
Random | 0.74 | 0.75 | 0.75 | 0.75 | 0.78 || 1.34 | 1.40 | 1.48 | 1.56 | 1.63
Base 0.053 4.27
Aligned 0.20 1.74
Laman7p  FT 0.30 3.08
Top-K 0.21 1023025027028 || 1.77 | 1.91 | 2.15 | 2.38 | 2.74
Random-K | 0.20 | 0.23 | 0.26 | 0.28 | 0.28 || 1.74 | 1.91 | 2.09 | 2.38 | 2.79
Random | 0.20 | 023 | 0.25|0.27 [ 028 || 1.77 | 1.91 | 2.15 | 2.38 | 2.74

Table 5: Hyperparameter settings for fine-tuning the various models.

Optimizer AdamW
Batch size 1
Max. Seq. Len 512
Grad Acc. Steps 32
Epochs 1
Learning Rate 1x107°
LR Scheduler Cosine
Warmup Ratio 0.02
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Figure 6: Average Mode Subspace Overlap (MSO) across layers in the 65-90% depth range
for pairwise comparisons of activations from Useful (U) and multiple Harmful (H1, H2)
prompt sets.
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