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ABSTRACT

Although continuous-time consistency models (e.g., sCM, MeanFlow) are the-
oretically principled and empirically powerful for fast academic-scale diffusion,
its applicability to large-scale text-to-image and video tasks remains unclear due
to infrastructure challenges in Jacobian-vector product (JVP) computation and the
limitations of evaluation benchmarks like FID. This work represents the first effort
to scale up continuous-time consistency to general application-level image and
video diffusion models, and to make JVP-based distillation effective at large scale.
We first develop a parallelism-compatible FlashAttention-2 JVP kernel, enabling
SCM training on models with over 10 billion parameters and high-dimensional
video tasks. Our investigation reveals fundamental quality limitations of sCM in
fine-detail generation, which we attribute to error accumulation and the “mode-
covering” nature of its forward-divergence objective. To remedy this, we propose
the score-regularized continuous-time consistency model (rCM), which incorpo-
rates score distillation as a long-skip regularizer. This integration complements
sCM with the “mode-seeking” reverse divergence, effectively improving visual
quality while maintaining high generation diversity. Validated on large-scale mod-
els (Cosmos-Predict2, Wan2.1) up to 14B parameters and 5-second videos, tCM
generally matches the state-of-the-art distillation method DMD2 on quality met-
rics while mitigating mode collapse and offering notable advantages in diversity,
all without GAN tuning or extensive hyperparameter searches. The distilled mod-
els generate high-fidelity samples in only 1 ~ 4 steps, accelerating diffusion sam-
pling by 15x ~ 50x. These results position rCM as a practical and theoretically
grounded framework for advancing large-scale diffusion distillation.
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Figure 1: 5 random video samples from 4-step sCM, DMD?2, SiD, and rCM on Wan2.1 1.3B. rCM
resolves the quality issues of sSCM while showing clear superiority to DMD2/SiD in generation
diversity, exhibiting highly similar object position/orientation/motion to teacher and sSCM.
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Figure 2: High-level comparison of diffusion distillation methods. Despite the theoretical existence
of forward divergence, GANs in practice still suffer from limited diversity and model collapse.

1 INTRODUCTION

Diffusion models have been the cornerstone of generative Al, driving remarkable progress in visual
domains such as image and video synthesis (Dhariwal & Nichol, 2021} [Karras et al.|[2022;[Ho et al.,
2022; Rombach et al., [2022; [Esser et al., [2024; Brooks et al., [2024; |Bao et al., [2024; |[Wan et al.,
2025} |Gao et al.|, 2025). They excel in generation quality, diversity, training stability and scalabil-
ity compared to generative counterparts like generative adversarial networks (GANs) (Goodfellow
et al., 2014), albeit suffering from slow inference. Training-free acceleration via specialized sam-
plers (Song et al., [2021aj; |[Zhang & Chen, 2022; |Lu et al.l [2022b) still requires over 10 steps to
produce satisfactory samples due to the inherent discretization errors of numerical solvers, whereas
training-based distillation enables few-step or even single-step generation.

Representative diffusion distillation methods include knowledge distillation (Luhman & Luhman,
2021)), progressive distillation (Salimans & Hol 2022} Meng et al.| [2023), consistency distilla-
tion (Song et al.| 2023} |Song & Dhariwall, 2023), score distillation (Wang et al., [2023; [Luo et al.,
2023b;|Yin et al.,2024ba; [Salimans et al.| 2024} Zhou et al.,[2024) and adversarial distillation (Sauer
et al.,2024bga; [Lin et al.| [2024;|2025a). Among these, consistency models (CMs) (Song et al.| [2023)
are particularly appealing, as they circumvent the complexities associated with synthetic data gen-
eration or GAN training, maintain generation diversity, and achieve competitive performance on
image benchmarks. More recently, continuous-time CM (sCM) (Lu & Song, |2024) has emerged
as a theoretically principled and elegant extension that, compared to its discrete-time predecessors,
eliminates inherent discretization errors, decouples training from specific samplers, and dispenses
with heuristic annealing schedules. When combined with consistency trajectory models (Kim et al.
2023; Heek et al., [2024)), sCM further gives rise to the popular MeanFlow (Geng et al.| [2025)).

However, the applicability of sCM to real-world, large-scale diffusion models remains unclear.
Although sCM demonstrates scalability by distilling models up to 1.5B parameters on ImageNet
512x512, practical application scenarios pose substantially different challenges. Modern large-
model training typically relies on infrastructures such as BF16 precision, FlashAttention and context
parallelism (CP), which complicate and incur numerical errors in sCM’s Jacobian—vector product
(JVP) computation. Moreover, prior evaluations are limited to weakly conditioned ImageNet bench-
marks measured by FID, while text-to-image (T2I) and text-to-video (T2V) tasks are strongly con-
ditioned and emphasize fine-grained attributes such as text rendering, which FID does not capture.
Currently, score- and adversarial-distillation methods, such as DMD?2 (Yin et al.,[2024a)), remain the
state of the art for large-scale diffusion distillation.

Our work represents the first effort to scale up continuous-time consistency and JVP to general
application-level image and video diffusion models. To this end, we design dedicated infrastructure
by developing a FlashAttention-2 JVP kernel and enabling compatibility with parallelisms including
FSDP and CP. This allows us to explore sCM’s scaling behavior by applying it to 10B+ models and
high-dimensional video data. Through this investigation, we reveal the quality issues of sSCM in
fine-detail generation and identify the error accumulation characteristic of CMs.

At a conceptual level, we argue that the property of diffusion distillation methods is governed by
their underlying divergence (Figure [2)): forward (e.g., CMs), whose objectives are defined on real
or teacher-generated data, and reverse (e.g., score distillation), where the student is supervised on
self-generated samples. Forward divergence, commonly used in pre-traininéﬂ is known to encour-

"For example, MeanFlow aims to train a few-step model from scratch.
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age “mode-covering” by penalizing underestimation of any training sample likelihoods, which often
results in spread-out densities and low sample quality. In contrast, reverse divergence, commonly
used in post-training, is inherently “mode-seeking” and excels in generation quality, despite suffer-
ing from mode collapse and low diversity.

Motivated by this complementarity, we address the quality limitations of SCM by integrating score
distillation as a long-skip regularizer. This design naturally pairs with sCM: the two supervision
signals operate on the forward (external) and reverse (self-generated) data paths, respectively. The
broader philosophy of jointly leveraging forward and reverse divergences echoes recent work such
as DDO (Zheng et al.| [2025a), which incorporates reverse KL into maximum-likelihood training
to achieve state-of-the-art FID on ImageNet, and DDRL (Ye et al., 2025)), which incorporates the
supervised fine-tuning stage into large-scale diffusion reinforcement learning. We term the resulting
distillation framework, together with our other techniques like stable time-derivative computation,
the score-regularized continuous-time consistency model (rCM).

rCM requires no engineering complexities such as multi-stage training, GAN tuning or extensive ar-
chitecture/hyperparameter search. We validate its scalability on unprecedentedly large-scale models
(Cosmos-Predict2 (Ali et al. [2025), Wan2.1 (Wan et al., 2025)), covering T2I and T2V tasks up to
5 seconds and 14B parameters. Empirically, rCM matches or even surpasses DMD?2 on quality met-
rics, while mitigating mode collapse and offering notable advantages in generation diversity. These
results establish rCM as a promising and practical direction for large-scale diffusion distillation.

Extension to Autoregressive Video Diffusion The paradigm of rCM is also promising to autore-
gressive video diffusion (Yin et al.l |2025) for interactive world models. In particular, the currently
dominant approach, Self-Forcing (Huang et al.| [2025), can be viewed as a well-instantiated reverse-
KL-style DMD tailored to a bidirectional teacher and a causal student. rCM suggests that forward-
divergence-based distillation by causal teacher with teacher forcing could potentially complement
self-forcing and enhance diversity and motion dynamics, paving the way for future exploration.

2 BACKGROUND

2.1 DIFFUSION MODELS

Diffusion models (DMs) (Ho et al., [2020; Song et al., [2020) learn continuous data distributions
by gradually perturbing clean data g ~ pgaa With Gaussian noise, which generates a trajectory
{z,}1_, along with associated marginals {g; }._, and then learning to reverse this process. The for-
ward process follows a closed-form transition kernel g;|o(2¢|€o) = N (o, o7 I) with predefined
noise schedule ay, o4, enabling reparameterization as x; = ay@g + o€, € ~ N (0, I). The sampling
process of diffusion models can follow the probability flow ordinary differential equation (PF-ODE)

2
de; = [f(t):nt — %gQ(t)th logqt(:r,t)] dt, where f(t) = %, g3 (t) = dditt — 2%0?,
and Vg, log ¢:(x:) is the score function (Song et all 2020). A key property of diffusion mod-
els is the theoretical equivalence of different parameterizations: the network may predict the score
(Vz, log q:(x+)), the noise (e), the clean data (), or the velocity (v), with optimal predictors be-
ing analytically interconvertible (Zheng et al.,[2023b)). With velocity parameterization vy, diffusion
models are trained by minimizing the mean square error (MSE) Egpyn et [w(¢) |vg (24, ) — v]|3],
where the regression target is v = & &g + ¢€ (denote f; := df;/dt), and the PF-ODE is simplified
to % = vg(x¢,t), commonly known as flow matching (Lipman et al., 2022). A notable special

case, rectified flow (Liu et al.} 2022), employs the schedule o, =1 — ¢, 0, = t.

2.2 CONSISTENCY MODELS

Consistency models (CMs) (Song et al., 2023) aim to learn a consistency function fg : (x¢,t) — @
which maps the point a; at arbitrary time ¢ on the teacher PF-ODE trajectory to the initial point xg.
The consistency function must satisfy the boundary condition fy(x,0) = x. To ensure unrestricted
form and expressiveness of the student neural network Fy(x;,t), fy is parameterized as fy(x,t) =
Cskip (£) + Cout (t) Fo(Cin (), Cnoise(t)) With cuip(0) = 1, cour(0) = 0. This parameterization aligns
with practices in diffusion models (Karras et al.,[2022). fy is the direct counterpart of the clean data
predictor (denoiser) in diffusion models, and typically initialized from the teacher denoiser fieacher-
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CM’s objective is to ensure consistent outputs at adjacent timesteps ¢ — At and ¢ on the teacher
trajectory. Discrete-time CMs minimize the objective with At > 0:

Ewofvpdum,s,t [U/(t)d (f@(mbt)v fo- (it—At, t— At))] ) (D

where w(-) is a positive weighting function, d(-,-) is a distance metric, §~ is the stop-gradient
version of 6, and &;_ ¢ is obtained by solving the teacher PF-ODE from (x;, t) to t — At with nu-
merical solvers. Discrete-time CMs suffer from discretization errors and require manually designed
annealing schedules for At (Song & Dhariwal, 2023}, |Geng et al., 2024).

Continuous-time CMs, represented by sCM (Lu & Songl 2024), offer a clean upgrade by
taking the limit At — 0. When d(z,y) = |z — y||5, the CM loss simplifies to

df,— (z:, df,— )
]EZONPdutqu’t [w(t)fe(wht)TM}’ where M = thfe_ (a:tv )dwt + 8tf0 (wh )
is the tangent of fy at (a,t) along the teacher ODE tra]ectory dmf = Vteacher(Z¢,t). SCM em-

ploys the TrigFlow noise schedule oy = cos(t),o; = sin(t) and preconditioning ceip(t) =
cos(t), cou(t) = —sin(t) EL such that Fy is exactly the velocity predictor vg. The loss fur-

Af, (@e,t) 1 where M= (@t) _
2 )

ther reduces t Eao~pos,e.t [HFg(mt, t) — Fy—(x,t) — w(t) I I

—cos(t)(Fy-(x,t) — dd%) — sin(t)(x; + M), and the full derivative w"’diiw“t) =
Vo, Fo- (21, 1) 5 do, | % can be computed using the forward-mode automatic differentiation,
Jacobian-vector product (JVP). This objective is a simple MSE which enforces the instantaneous
self-consistency at (x;,t). Recent works MeanFlow (Geng et al., 2025) and AYF (Sabour et al.,
20235)) are essentially a combination of SCM and consistency trajectory models (CTM) (Kim et al.,

2023) under the rectified flow schedule (see Appendix [E.T).

2.3 SCORE DISTILLATION

Score distillation methods aim to match the student distribution pg with the teacher distribution
Dreacher, Where samples & ~ pg are generated via € = Gy(z),z ~ p(z) from a noise prior p(z).
Directly matching clean, high-dimensional data distributions is notoriously difficult (Song & Ermon,
2019). A standard remedy is to introduce a “diffused” version by perturbing « through a forward
diffusion process, yielding x; with marginal p, and to minimize certain reverse divergences:

Hlein E¢ [Df (Pé H ptteacher)]J Dy (Pé H ptteacher) = Eptg(mf,) |:f (rp;‘eache,,pé (wt))} 2

where 7t ¢ (xy) = w is the likelihood ratio. For instance, variational score distillation
Preacher? p@ Py (:13 )

(VSD) (Wang et al., {2023} [Luo et al.,[2023b) considers the reverse KL divergence (f(r) = —logr),
also known as distribution matching distillation (DMD) (Yin et al., 2024b)); the more recent score
identity distillation (SiD) (Zhou et al., [2024) considers the Fisher divergence f(r) = ||V, logr|3.

The gradient VoE;[Df(ph || Placher)] typically involves the generator gradient ddc';" and the
score functions V, log ph(x+), Va, 10g Dl,per (), Which are available from diffusion models.
As the student score Vg, logph(x;) is intractable for the few-step generator Gy, an auxiliary
fake score network is introduced. It learns a diffusion model over 3y ~ pg by minimizing
Eaomp e.t[W(t)]| Frake (x4, 1) — @o]|3] and serves as a proxy for the student score. Like the critic/dis-
criminator in GANSs, the fake score is optimized jointly with the student # via adversarial interplay.
Both the student and the fake score are commonly initialized from the teacher diffusion model.

3 ScALING Up sCM

We begin by scaling up sCM to T2I and T2V tasks and investigating its performance under different
prompt types (see Table [5| for image and video text prompts used in this paper).

There is a data std parameter o in original SCM formulatlon inherited from EDM (Karras et al., |2022).
For simplicity, we absorb it into @y itself, i.e., define o := =2 for original data x§
3For simplicity, we absorb cpeise into Fy itself.
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3.1 ALGORITHM DETAILS

The original sCM relies on multiple implementation tricks for training stability, often requiring fine-
tuning or even retraining the teacher model, which is impractical in most distillation scenarios. We
first simplify the sCM implementation without compromising stability.

Adapting to Any Noise Schedule. sCM employs the TrigFlow noise schedule x; = cos(t)xo +
sin(t)e, while the teacher model is typically trained under other schedules such as rectified flow.
Due to the equivalence between different noise schedules and parameterizations in diffusion mod-
els (Kingma et al.l 2021} Zheng et al.| 2023b), a TrigFlow-consistent wrapped teacher can be con-
structed without retraining. Specifically, let the teacher time be t™" with noise schedule v, oyrav.
A reverse mapping ¢ (often analytic) from TrigFlow time ¢ to ™V can be derived by matching
the signal-to-noise ratio, i.e., by solving 7% = tan(t). Denote fi&., (i, 1) as the original
teacher denoiser (can be transformed from other parameterizations). The wrapped teacher is

COS(t)wt - fteacher(wta t)
sin(t)

fteacher(wt; t) = tre?c/her ( a?}(t) + o—i(t)wtv d)(t)) 9 Eeacher(xta t) =
3)

All wrapping conversions are cheap and are performed under FP64 to ensure precision. We also
wrap the student in the same way so that the raw student aligns with the raw teacher.

Simplification. As our concerned models do not involve the unstable Fourier time embedding or
AdaGN layers mentioned in sCM, but instead adopt positional time embedding, AdaLN, and QK
normalization, we keep the network structure. Following sCM’s tangent normalizatiorﬂ the loss is

2
g

-z 4
FIET @

Locn(0) = Eayopuncepe U]Fmt, 0 - Fy (ant)
2

where pg is a time distribution, ¢ = 0.1, and g = w(t)df“”di(f“t). Although BF16 avoids the
overflow issues as in sSCM’s FP16, we still follow the JVP rearrangement by setting w(t) = cos(t)
and absorbing it into the JVP computatiorﬂ sCM'’s adaptive weighting, as also noted in AYF (Sabour

_ _lgli3
o lgli3+c

et al.,[2025)), is unnecessary since HF@ — Fy-

— Hgng - ~ 1 remains nearly constant.
2

3.2 INFRASTRUCTURE

While JVP can be computed with PyTorch’s built-in forward-mode operator torch. func. jvp,
it is not natively compatible with large-scale training setups, necessitating custom implementations.
We detail our infrastructure design in Appendix |C|and summarize below.

Flash Attention. FlashAttention-2 (Dao, 2023) is widely used in large-scale training to reduce
memory cost and improve throughput. To enable efficient JVP computation at scale, we develop
a Triton (Tillet et al., 2019) kernel that integrates JVP into the FlashAttention-2 forward pass with
similar block-wise tiling, supporting both self- and cross-attention.

FSDP. Fully Sharded Data Parallel (FSDP) (Zhao et al.|[2023) reduces the memory footprint by par-
titioning models across GPUs, but current torch. func. jvp implementation does not support
FSDP modules. We therefore refactor networks to perform JVP within each layer: layers expose
standard forward functions while additionally accepting tangent inputs and producing tangent out-
puts. As long as FSDP granularity matches the layer boundaries, models remain fully compatible.

CP. Context (or sequence) parallelism partitions the input tensor of shape [B, H, L, C] (batch
size B, number of heads H, sequence length L, head dimension C) across P GPUs along the sequence
dimension L, enabling training with long inputs. In the Ulysses (Jacobs et al., [2023) strategy, each
GPU first holds a slice of size [B, H, L/P, C] for QKV. An all-to-all operation then redis-
tributes QKV to [B, H/P, L, C] forlocal attention, followed by another all-to-all to restore the
sequence partition. This scheme naturally extends to JVP by distributing the tangents of QKV in the
same way and replacing local attention with our FlashAttention-2 JVP kernel.

“MeanFlow’s adaptive weighting w = 1/(]|A||3 4 ¢)? under its best-performing p = 1 is the same as
tangent normalization.
>We find that the weighting cos(t) and JVP rearrangement are also helpful under BF16.
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3.3 PITFALLS OF SCALED-Up SCM

3.3.1 EMPIRICAL OBSERVATION: QUALITY ISSUES

Cosmos-Predict2 2B Cosmos-Predict2 14B

v Easy Case % Hard Case % Hard Case

Wan2.11.3B +sCM
Frame 40 Frame 50

Figure 3: 4-step generation results with pure sCM distillation.
We observe that SCM alleviates the blurriness of discrete-time CMs (Luo et al., [20234) and are

capable of generating sharp images. However, in scenarios requiring high accuracy or temporal
consistency, distortions are pronounced. As shown in Figure 3] distillation with pure sCM leads to
critical quality issues in both T2I and T2V tasks. (1) For T2I, the outputs are close to the teacher
under typical prompts, but quality degradation becomes evident in challenging cases requiring fine
details, such as small text rendering. Moreover, the issues cannot be solved simply by scaling up
model size. (2) For T2V, the high sensitivity of human perception to temporal consistency makes
artifacts notable across prompts. The results exhibit blurry textures and unstable object geometry
across frames (e.g., object interpenetration), producing significant and distracting visual distortions.

3.3.2 THEORETICAL ANALYSIS: ERROR ACCUMULATION

The distortions can be interpreted from the perspective of error accumulation. Intuitively, CMs aim

to solve the teacher ODE in one step, essentially learning the integral fot Fieacher (T, 7)dT, Where
the errors accumulate as ¢ increases. Specifically, in sCM, the learning target is

dfo- (e, t ) dFy— (xy,t
U &00) s (1)(Fy- (@0.1) ~ Pl 1) — sin(t) (e + -0y )
self-feedback (JVP)

dii’ , weighted by sin(¢), introduces a first-order self-feedback signal via JVP, which is numerically

fragile compared to the zeroth-order signal Fj—, particularly under the limited precision of BF16
(Appendix [E2). Near t = 0, the student closely resembles the teacher. As training progresses,

errors propagate from small to large ¢ and are amplified by self-feedback. When i?:((g — 0 at large

t, the teacher supervision from Fi.,cher Vanishes and the learning dynamics are dominated by JVP.

4 SCORE-REGULARIZED CONTINUOUS-TIME CONSISTENCY MODELS

4.1 QUALITY REPAIR WITH SCORE REGULARIZATION

As shown in Figure[d] we mitigate quality limitations of sCM by introducing score-based regulariza-
tion on long-skip consistency, which complements sCM with reverse divergence. While SiD
achieves impressive results on academic benchmarks, we observe no clear advantage in
T2I and T2V tasks (Figure[I) and instead adopt the more memory-efficient DMD 2024b):

2
ffake(mta t) - fteacher(mta t)
(6)
mean(abs(xo — fieacher(Tt,1))) | {|5
where frye is the denoiser of the fake score network, pp is a time distribution and sg is the stop-

gradient operator. The final rCM objective is L,cm(f) = Liem(0) + ALpmp(#), where M is a
balancing weight. Empirically, we find A = 0.01 generalizes across our used models and tasks.

Lomp (0) = Eagmpg e tmpp l xo— sg [900 -
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Figure 4: Tllustration of rCM. Left: the forward consistency objective of sSCM propagates error from
small to large times; Right: reverse-divergence minimization serves as a long-skip regularizer.

Rollout Strategy. Student generation xy ~ pg is required for DMD loss and fake score training.

As a CM, the student supports arbitrary-step sampling by alternating reverse denoising and forward

.. . 0 0 +en— 0
noising from pure noise: t; = § — 0 A to — 0 e T ty — 0. We randomly choose

the number of simulation steps N from [1, Ny,.x| and only backpropagate the DMD loss through
the final step ¢ty — 0. Unlike DMD2 (Yin et al.| [2024a), which uses fixed ¢1, . ..¢xy, CM should
explore the entire time range. We thus adopt a stochastic scheme by iteratively drawing ¢,, ~ pp
and setting ¢,, = min(%,, t,_1) to ensure a monotonically decreasing timestep sequence.

4.2 STABLE TIME DERIVATIVE CALCULATION

We propose plug-in techniques to stabilize the JVP dlget* = (Va, Fo-) Fieacher + Ot Fy- during rtCM
training, preventing sudden collapse after long training. As first noted in DPM-Solver-v3 (Zheng
et al., [2023a) and verified in sCM, instability arises from the partial time derivative 0; Fy- (¢, ),
due to the oscillatory nature of trigonometric time embeddings. We find two strategies effective.

Semi-Continuous Time. We compute (V, Fy— ) Fieacner €xactly via JVP, while approximating the
cos(At)F,_ (x4,t)—F,_ (z¢,t—At) with At —

sin(At) ’ -
10~%. This method is stable for 2B-scale T2I models and requires no architectural changes.

time derivative with finite difference: 0y Fy- (@, t) ~

High-Precision Time. Finite-difference approximation, however, is sensitive to At and becomes
unstable for 10B+ models and video tasks. In these regimes, we revert to the native continuous-
time derivative computation via full JVP, but enforce FP32 precision for all time embedding layers
using the torch.amp.autocast context (as done in Wan). Although this introduces an initial
mismatch with pretrained Cosmos networks, it ensures stable rCM training.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUPS

Models, Tasks and Datasets. To demonstrate scalability and performance of rCM, we distill
Cosmos-Predict2 (Al et al., [2025) T2I models (0.6B, 2B, 14B) and Wan2.1 (Wan et al.l 2025)
T2V models (1.3B, 14B). We leverage curated data from Ali et al.| (2025), supplemented with syn-
thetic data generated by Wan2.1 T2V 14B for Wan distillation. In principle, the training could also
rely solely on teacher-generated synthetic data, as in|Yin et al.| (2024b; 2025)); Huang et al.| (2025).

Implementation. Our implementation builds on the Cosmos-Predict2 codebase, with infrastructure
support from FSDP2, Ulysses CP, and selective activation checkpointing (SAC). Training alternates
between optimizing the student with the rCM loss and updating the fake score via the flow-matching
loss L(Otke) = Eagmpp.c.topp || Frake (€1, ) — v||3]. The teacher denoiser employs classifier-free
guidance (CFG) (Ho & Salimans, |2022)), which is simultaneously distilled into the student. Both
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the student and the fake score networks are initialized from the teacher parameters. We perform

full-parameter tuning without LoRA, highlighting the stability and performance of rCM.

Evaluation Metrics. We use GenEval (Ghosh et al.,[2023) to evaluate T2I models on complex com-

positional prompts, such as object counting, spatial relations, and attribute binding. For video gen-
eration, we adopt VBench (Huang et al.}[2024)) to systematically assess motion quality and semantic

alignment. We report the number of function evaluations (NFE) as a quantification of inference ef-
ficiency. For video models, we also report throughput in frames per second (FPS), tested with batch

size 1 on a single H100, covering both diffusion sampling and VAE decoding stages.

The training algorithm and additional experiment details are provided in Appendix [B]and[D]

5.2 RESULTS

Table 1: GenEval Results.

. Single Two . . Color
Model #Params  Resolution = NFE | Overall ‘ Object  Object Counting Colors Position Attribution
Pretrained Models

2.6B 1024 x 1024 50x2 0.55 0.98 0.74 0.39 0.85 0.15 0.23

2.5B 1024 x 1024 40x2 0.63 0.98 0.78 0.50 0.81 0.24 0.52

8B 1024 x 1024  28x2 0.71 0.98 0.89 0.73 0.83 0.34 0.47

12B 1024 x 1024 50 0.66 0.98 0.81 0.74 0.79 0.22 0.45

4.8B 1024 x 1024 20x2 0.81 0.99 0.93 0.86 0.84 0.59 0.65

0.6B 1360 x 768  35x2 0.81 1.00 0.97 0.74 0.86 0.59 0.70

2B 1360 x 768  35x2 0.83 1.00 0.99 0.73 0.89 0.65 0.73

14B 1360 x 768  35x2 0.84 1.00 0.98 0.79 0.90 0.64 0.72

Distilled Models

2.6B 1024 x 1024 4 0.50 0.99 0.55 0.38 0.85 0.07 0.14

2.6B 512 x 512 4 0.56 1.00 0.72 0.49 0.82 0.11 0.21

2.6B 1024 x 1024 4 0.53 0.98 0.61 0.44 0.84 0.11 0.21

2.6B 1024 x 1024 4 0.58 1.00 0.77 0.48 0.89 0.11 0.23

2.6B 1024 x 1024 4 0.58 1.00 0.76 0.52 0.88 0.11 0.24

8B 1024 x 1024 4 0.68 0.99 0.89 0.68 0.78 0.23 0.54

12B 1024 x 1024 4 0.69 0.99 0.88 0.64 0.78 0.30 0.52

. 0.6B 1024 x 1024 4 0.77 1.00 0.90 0.71 0.89 0.61 0.54
SANA-Sprint (Chen et al.[[2025 6B 1024x1024 4 | 075 | 100 092 059 091 054 0.5
. 0.6B 1360 x 768 4 0.77 1.00 0.98 0.76 0.85 0.46 0.66
Cosmos-Predict2 + DMD2 2B 1360x768 4 | 080 ‘ 099 098 070 087 057 0.72
0.6B 1360 x 768 4 0.79 1.00 0.99 0.74 0.88 0.48 0.66

Cosmos-Predict2 + rCM 2B 1360 x 768 4 0.81 1.00 0.98 0.73 0.84 0.58 0.72
14B 1360 x 768 4 0.83 1.00 0.98 0.80 0.86 0.59 0.73

0.6B 1360 x 768 2 0.78 0.99 0.98 0.74 0.86 0.48 0.66

Cosmos-Predict2 + rCM 2B 1360 x 768 2 0.82 1.00 0.99 0.76 0.85 0.59 0.74
14B 1360 x 768 2 0.81 1.00 0.99 0.80 0.87 0.47 0.73

0.6B 1360 x 768 1 0.78 1.00 0.98 0.72 0.86 0.49 0.66

Cosmos-Predict2 + rCM 2B 1360 x 768 1 0.81 0.99 0.97 0.77 0.85 0.57 0.71
14B 1360 x 768 1 0.82 1.00 0.98 0.84 0.89 0.49 0.72

SDXL-LCM SDXL-Turbo SDXL-Lightning
(8 steps) (4 steps) (4 steps)

Hyper-SDXL
(4 steps)

SDXL-DMD2

(4 steps)

SANA-Sprint

(4 steps)

SD3.5-L-Turbo Hyper-FLUX FLUX.1-schnell
(8 steps) (8 steps) (4 steps)

Figure 5: Few-step T2I samples compared to open-sourced models. rtCM can render fine-grained
text details such as “Casio G-Shock”, “11:44 AM”, and “Thursday, March 22nd” from the prompt.

We evaluate the proposed rCM both qualitatively and quantitatively, comparing it with pretrained
models as well as existing distillation baselines. We use 4-step generation by default, which strikes

Cosmos-Predict2 2B + rCM

(4 steps)

Cosmos-Predict2 14B + ICM

(8 steps)

a balance between high sample quality and substantial acceleration over the teacher model.
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Table 2: VBench Results for Wan (480p). TRetested with Diffusers and our augmented prompts.

Model #Params Resolution NFE Throughput | Total | Quality Semantic
(FPS) Score | Score Score
Pretrained Models
f 13B  832x480x81 50x2 0.72 83.02 | 83.95  79.26
Wan2.1 T2V (Wan et al.|2025 4B 832x480x 81 50x2 018 | 8358 | 8426 8092
Distilled Models
Wan2.1 T2V + DMD2 3B 832x480x81 4 146 | 8456 | 8558  80.50
3B 832x480x81 4 14.6 84.43 | 8538  80.63
Wan2.1 T2V + rCM 4B 832x480x81 4 45 ‘ 84.92 ‘ 8543 8288
13B 832x480x81 2 23.0 84.00 | 8490  80.86
Wan2.1 T2V +rCM 14B 832x480x81 2 8.3 ‘ 85.05 ‘ 85.57 8295
13B 832x480x81 1 323 82.65 | 83.60  78.82
Wan2.1 T2V +rCM 4B 832x480x 81 1 144 ‘ 83.02 ‘ 8357 808

Table 3: VBench Results for Cosmos (720p).

. Throughput | T2V 2V
Model #Params Resolution NFE (FPS) ‘ Score ‘ Score
Cosmos-Predict2 TI2V 1 2025 2B 1280 x 704 x 93 35 x 2 0.32 83.03 | 88.6
Cosmos-Predict2 TI2V + rCM 2B 1280 x 704 x 93 4 4.6 84.40 | 88.2

Cosmos-Predict2 2B
+rCM

Wan2.1 1.3B
+rCM

Figure 6: Comparison between different numbers of sampling steps.

Performance. For T2I, we report GenEval scores in Table [T] and provide qualitative comparisons
with open-source models in Figure[5] On Cosmos-Predict2, rCM closely approaches the teacher’s
performance and benefits from scaling, with the 14B model achieving a state-of-the-art overall score
of 0.83 in just 4 steps. Under challenging prompts such as small text rendering, rCM also matches
the SOTA few-step model FLUX.1-schnell in visual quality. For T2V, rCM even surpasses the 480p
Wan teacher on VBench (Table[2), reaching a total score of 85 when distilling Wan2.1 14B. We also
apply rCM to Cosmos-Predict2 with a higher resolution of 720p and the additional image-to-video
(I2V) task (Table 3), where similar phenomena are observed. This does not imply that the distilled
model is strictly superior to the teacher, particularly in terms of diversity and physical consistency,
but highlights rCM’s ability to preserve quality under few-step generation.

Comparison with DMD2. We implement the DMD2 baseline by additionally
parameterizing a discriminator as a branch of the fake score network and incorporating the non-
saturating GAN loss to supplement DMD training. This branch takes intermediate features from
the fake score network and queries them with a single learnable token to produce a discrimination
logit, akin to APT [20254). As reported in Tables[I|and 2] rCM matches or even surpasses
DMD?2 in generation quality, measured by GenEval and VBench. Moreover, we observe tCM’s
clear diversity advantage, particularly in video generation. As highlighted in Figure [T} rCM re-
tains the diversity of sCM, while simultaneously resolving sCM’s visual quality issues. In contrast,
DMD?2 tends to produce collapsed generations, where objects converge to similar positions and ori-
entations, leading to reduced diversity. These findings suggest that jointly leveraging forward- and
reverse-divergence-based methods forms a promising distillation paradigm, yielding models that
simultaneously achieve high quality, strong diversity, and substantial speedups.
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Generation with Fewer Steps. We additionally report rtCM’s 1-step and 2-step results in Tables
and 2] and further compare few-step generation quality in Figure [6] For T2I, rCM produces rea-
sonable samples across 1-4 steps, with GenEval scores degrading only slightly under 1- or 2-step
settings. For simple prompts, 1-step generations are nearly indistinguishable from 4-step, whereas
for more challenging prompts they show clear deficiencies in detailed text rendering. For T2V, the
task is more demanding: 1-step outputs appear blurry across prompts and exhibit a marked drop
in VBench scores. In contrast, 2-step generations already reach scores close to the teacher, though
with minor shortcomings in quality and background fidelity. At 4 steps, rCM further refines fine
details and even succeeds at rendering sharp text in complex backgrounds, such as street signs.
Overall, these results highlight rCM’s robustness under extremely few steps, enabling competitive
T2I generation with only 1 step and T2V generation with only 2 steps.

Diversity |

A1=0.01 k | Sweet Spot

N Quality

Figure 7: Video samples from 4-step Wan2.1 1.3B rCM models under different A. For each prompt,
we use 5 different random seeds to demonstrate diversity. VBench scores are in the parentheses.

Ablation Study on \. In principle, the balancing weighting A between sCM and DMD losses
should control the trade-off between diversity (mode-covering) and quality (mode-seeking). To
validate this, we perform a grid search over A € {1,0.1,0.01,0.001} on Wan2.1-1.3B, training each
model with a batch size of 64 for 10k iterations. As shown in Figure[7] larger X (i.e., stronger DMD
weighting) results in better quality but less diversity, while smaller values exhibit the opposite trend.
At a granularity of one order of magnitude, we find that A = 0.01, as the smallest scale to preserve
good quality, offers a “sweet spot” balancing both quality and diversity.

6 CONCLUSION

In this work, we present rCM, a score-regularized continuous-time consistency model that scales
diffusion distillation to large image and video models. By integrating forward-divergence-based
consistency distillation with reverse-divergence-based score distillation, tCM remedies the quality
limitations of sCM while showing superior diversity advantages compared to DMD2. Our distilled
models achieve competitive text-to-image results in a single step and text-to-video results in only
2 steps, delivering up to 50 acceleration over teacher models. Looking forward, we believe that
combining forward- and reverse-divergence principles provides a unifying paradigm that may inspire
new research in generative modeling.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models (LLMs) solely as a writing assistant for language polishing and
improving clarity of presentation. The LLMs were not involved in research ideation, methodolog-
ical design, experimental execution, or result analysis. All scientific contributions and substantive
writing were carried out by the authors.
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A RELATED WORK

Consistency Models Consistency models (CMs) (Song et al., | 2023)) accelerate diffusion sampling
by taking shortcuts along the teacher ODE trajectory and directly predicting the starting point. Con-
sistency trajectory models (CTMs) (Kim et al., [2023)) and multi-step CMs (Heek et al., [2024) gen-
eralize the approach to predict trajectory jumps to arbitrary intermediate points. CDBMs (He et al.}
2024) adapt CMs to diffusion bridges models. However, CMs suffer from training instabilities and
quality issues such as blur. Subsequent efforts address these limitations by introducing dedicated
annealing schedules (Song & Dhariwal, 2023} Geng et al.,|2024), preconditioning strategies (Zheng
et al., 2025b)), or segmented consistency schemes (Wang et al.| |2024; |Ren et al.| |2024; [Lee et al.,
2024). Yet these approaches often come with added complexity, such as multi-stage training or ex-
tensive hyperparameter tuning. The recent sCM (Lu & Song| [2024) represents the most advanced
CM solution, being theoretically principled, practically simple, and empirically effective on aca-
demic image benchmarks. MeanFlow (Geng et al., [2025) and AYF (Sabour et al [2025)), which
directly combine sCM with CTM, have also drawn significant attention. Nonetheless, the applica-
bility of sCM to large-scale, application-level image and video diffusion models remains unclear.
SANA-Sprint (Chen et al.l [2025) applies sCM to a modest 1.6B text-to-image model, while delib-
erately sidestepping the key challenge of JVP computation by relying on a base model with linear
attention rather than the widely adopted FlashAttention, limiting the application scenarios.

Video Diffusion Distillation Existing practices distill video diffusion models with CMs, score
distillation or GANs. T2V-Turbo (Li et al., 2024ajb) employs CMs but relies on additional reward
models to enhance quality. By contrast, we conduct pure distillation while still delivering remarkable
video quality. APT (Lin et al.,[2025a) applies an adversarial GAN loss for one-step video generation.
Another line of work distills a bidirectional teacher into an autoregressive student to enable real-
time streaming video generation. Within this direction, CausVid (Yin et al., 2025) leverages DMD
loss with diffusion forcing, while Self-Forcing (Huang et al} [2025) and APT2 (Lin et al., 2025b)
introduce student forcing to address the exposure bias inherent in diffusion forcing.

JVPs in Generative Modeling Jacobian—vector products (JVPs) are a fundamental computational
primitive in generative modeling, as they enable efficient handling of high-dimensional Jacobian in-
formation without explicitly materializing the full matrix. They are widely employed in normalizing
flows (Chen et al., 2019) and diffusion models (Song et al., [2021b; |Lu et al.l |2022a; [Zheng et al.,
2023bja), for example to estimate matrix traces via Hutchinson’s trick or to derive exact coefficients
for the optimal sampler. To the best of our knowledge, this work is the first to integrate JVP sig-
nals into large-scale generative model training, with modern FlashAttention architectures, diverse
parallelism strategies, 10B+ parameter networks, and high-dimensional video data.

B ALGORITHM

We provide the detailed algorithm of rCM in Algorithm[I] where we adopt a slightly different tangent
warmup strategy compared to sCM. We find the tangent warmup not essential for rCM.

C INFRASTRUCTURE

C.1 FLASHATTENTION-2 JVP

FlashAttention-2 (Dao, |2023) is an optimized attention algorithm that reduces memory usage and
improves throughput by tiling the sequence into blocks and streaming intermediate results without
materializing the full attention matrix. Given query, key, and value sequences Q € RV1*4 K|V ¢
RN2%d where N; and N, denote sequence lengths and d is the head dimension, the attention output
O € RVN1xd i computed as

S=QK'" e RV*N | P —softmax(S) ¢ RM*N2 . 0 =PV ¢ RV1x4,

where softmax is applied row-wise. In multi-head attention (MHA), this computation is carried out
in parallel across heads as well as across the batch dimension (number of input sequences).
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Algorithm 1 Score-Regularized Continuous-Time Consistency Model (rCM)

Require: dataset D, teacher diffusion model Oeyene, With TrigFlow-wrapped consistency function

Fieacher and v-predictor Fieycher, student model 8 with wrapped fy, Fy, fake score model Oy with
wrapped frae, Fiake, time distributions pg, pp, student update frequency F', maximal number
of simulation steps Ny, ax, number of tangent warmup iterations [, number of total iterations /.

Initialize: 6 < eleachen Hfake <~ eteacher
1: fori =1to I do

2:  if1 < H or i mod F' = 0 then

3: xg~D,e ~N(0,I),t~ pg,x; + cos(t)xg + sin(t)e // Generator Step
4 cos(t) sin(t) Soe= « IV (Fy—, (a:, t), (cos(t) sin(t) Feacher (¢, £), cos(t) sin(t)))

5: r < min(1l,i/H)

6: g < —cos(t)y/1 — r2sin®(t) (Fp- (z¢, t) — Feacher(, 1)) — 7 (cos(t) sin(t)a: + cos(t) sin(t) dFd‘f )

2
T LO) | Fo@it) - Fp-(@0,t) - o
Hg”2+c 2

8: if i > H then

9: N ~U(1, Nmax)

10: Starting from t; = 7, iteratively sample timesteps ¢1,...,tn by tn ~pp,tn = min(fn7 tn—1)
11: Perform backward simulation ¢1 g 0 +~E>1 [2) 6—; 0 732 . +€ﬂ>_1 tn & 0 to obtain mg

12: ep ~N(0,I),tp NpD,:E?D <—cos(tD):n8+sin(tD)eD

2
. 0 0 fmkc(me ,tD)*fzcachcr(m?D tD)

13. 'C(a) «— 5(0) + A ’ ) sg |:m0 mean(abs(mg7ftcuchcr(me:tD>>> )

14: end if

15: Update the student 6 with loss £(6)

16:  else

17: N ~U(1, Nmax) // Critic Step
18: Starting from ¢; = g, iteratively sample timesteps ¢1,...,tn by fﬂ, ~ pp,tn = min(fn, tn_l)
19: Perform backward simulation 1 5 0 75 5 %5 0 7% . "% 11 %5 0 to obtain xd
20: €~ N(0,I),t ~pp,x; + cos(t)x) +sin(t)e, v < cos(t)e — sin(t)xf)
21: Update the fake score O with flow-matching loss £(6tke) = || Frake (¢, 1) — v||3
22:  endif
23: end for
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For the Jacobian—vector product (JVP), we seek the tangent tO € R4 given input tangents
tQ € RV *? and tK, tV € RV2*?, defined as tO = 48tQ + 2 tK + G tV. By the chain rule,

this can be expressed in matrix form as
tS =tQK ' + QtK "
tP=PotS—Po((PotS)ly,1y,)
tO =tPV + PtV

where ® denotes the element-wise product. Aggregating terms, we obtain

tO = PtV + HV —diag(rowsum(H))O, where H=P ©tS
—~ —

A B M

As noted in [Lu & Song| (2024)), both O and tO can be computed within a single streaming loop,
analogous to the FlashAttention-2 forward pass. We make this procedure explicit in Algorithm 2]

Algorithm 2 FlashAttention-2 Forward Pass with JVP Computation

Require: Matrices Q, K, V, their tangents tQ, tK, tV, block sizes B, B,.

1: Split Q, tQ into 7). blocks Qi,...,Qr. and th, ..., tQq, of size B, x d.

2: Split K, tK,V,tV into 7T, blocks Kj,.. KT/, tKq,...,tK7, Vi,...,Vp,

tVq,... ,tVTC of size B, X d.

3: Split output O into T;. blocks Oy, ..., Or,, and L into T} blocks Ly, ..., L.

4: Split output tangent tO into 7. blocks tOq,...,tO1 ..
5: fori =1to T, do
6
7

Load Q;,tQ; from HBM to SRAM.
Initialize m; <+ (—o00)?r, £; + 0B, O; «+ 08rxd p. « 0Br, A, + 0Brxd B, « 05-x4,

8: forj=1to7.do

9: Load K, tK;, V;, tV; from HBM to SRAM.
10: Compute S;; = QK] , tS;; = tQ, K] + QitKjT.
11: Compute Mmyeyy = max(m;, rowmax(S;;)).
12: Compute Pij = exp(Sij — Mnew)-
13: Compute lpeyy = ™~ Mnew . (i 4 rowsum(f’ij).
14: Compute Oy, = diag(e™i ™™ )Q; 4 laijVj.
15: Compute A e, = diag(e™ ™ )A; + P;;tV;.
16: Compute I:Ii’j = Pij ® tS”
17: Compute 7yey = €™i™Mmew .y | rowsum(I:Iij).
18: Compute B, = diag(e™i ™™= )B,; + I;IijVj.
19: Update m; <— Mpew, bi < loew> Oi < Opew, Ay < Apew, 7i < Thew> Bi < Bhew-
20:  end for

21:  Compute O; = diag(fnew)  * Onew-

22:  Compute L; = Myew + log(lnew)-

23:  Compute C; = diag(qew)O;

24:  Compute tO; = diag(lnew) 1 (A; + B; — C;).
25: Write OT;, L,’, tOi to HBM.

26: end for

27: return O;, L;,tO;

C.2 NETWORK RESTRUCTURING

To make JVP computation compatible with Fully Sharded Data Parallel (FSDP), we restructure
the forward functions of network layers. Specifically, we define a base class JVP (Listing [I}) that
extends torch.nn.Module and supports both standard forward execution and JVP-mode execu-
tion. When withT=True, the forward pass receives and returns both the primals and their tangents,
with each primal and the correpsonding tangent wrapped in the TensorWithT tuple type.
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For each layer, the original forward logic is moved into _forward, while JVP computation is
delegated to _forward_jvp using torch. func. jvp. Other components (e.g., parameter ini-
tialization) remain unchanged. Figure [8|shows an example restructuring of the RMSNorm layer.

The attention block is an exception since the native FlashAttention-2 does not support JVP compu-
tation with torch. func. jvp. When implementing JVP-mode forward of the attention block, we
replace the self-attention and cross-attention components with our implemented FlashAttention-2
JVP kernel, while the remaining modules still rely on torch. func. jvp.

Listing 1 Base class JVP that supports both standard forward execution (_f orward) and JVP-mode
forward execution (_forward_jvp).

TensorWithT = Tuple[torch.Tensor, torch.Tensor]

class JVP (torch.nn.Module) :
def _ init__ (self):
super () .__init__ ()

def forward(self, xargs, =*xkwargs):
withT = kwargs.pop ("withT", False)
if withT:
return self._forward_jvp(xargs, =**kwargs)
else:
return self._forward(xargs, =xxkwargs)

def _forward_ jvp(self, xargs, *xkwargs):
raise NotImplementedError

def _forward(self, xargs, =*xkwargs):
raise NotImplementedError

class RMSNorm(torch.nn.Module) : class RMSNorm (JVP) :
def __init__(self, dim: int, eps: float = le-5): def __init__(self, dim: int, eps: float = le-5):
super () .__init__() ) ._init__ ()
f.eps - eps
self.weight = nn.Parameter (torch.ones (dim))

ps - eps
self.weight = nn.Parameter (torch.ones(dim))

def reset_parameters (self): def reset_parameters (self):
torch.nn.init.ones_(self.weight) torch.nn.init.ones_(self.weight)

def _norm(self, x): def _norm(self, x):
return x » torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) return x » torch.rsqrt (x.pow(2).mean(-1, keepdim-True) + self.eps)

def forward(self, x: torch.Tensor) -> torch.Tensor: def _forward_jvp(self, x: TensorWithT) —-> TensorWithT:
output = self._ norm(x.float()).type_as (x) x_withT = x
return output self.weight X, t_x = x_withT
out, t_out - torch.func.jvp(self._forward, (x,), (t_x,)
return (out, t_out.detach())

def _forward(self, x: torch.Tensor) —> torch.Tensor:
output = se —norm(x.float ()) .type_as (x)
return output * self.weight

Figure 8: Restructuring example for the RMSNorm layer: (left) original implementation, (right)
JVP-enabled implementation.

D EXPERIMENT DETAILS

Training Details. The rCM training configurations for different models and tasks are summarized in
Table[dl We maintain a smoothed version of the student parameters using the power EMA (Karras
et al., |2024)), and use the EMA model for evaluation. We use the AdamW optimizer with 8; =
0, B2 = 0.999 and weight decay of 0.01 for both student and fake score optimizers, while disabling
gradient clipping, which we find crucial for maintaining training stability of rCM.

Evaluation Details. For GenEval, we repeat the 553 test prompts four times to reduce vari-
ance. For VBench, we follow standard practice and use GPT-4o-augmented prompts. We
observe that o,,x governs the trade-off between quality and diversity. We adopt timesteps
[arctan(omax ), 1.3, 1.0, 0.6] for 4-step sampling and take the first k& entries when sampling with
fewer than 4 steps. We set omax = 80 for high-diversity visualizations, and in some cases increase
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it when computing metrics that emphasize high quality. For the 8-step result in Figure 5| we use
[arctan(omax ), 1.3, 1.0, 1.0, 0.6, 0.6, 0.3, 0.3].

Table 4: Training and evaluation configurations.

M. Cosmos Predict2 T2I | Wan2.1 T2V
odels
0.6B 2B 14B ‘ 1.3B 14B
EMA Length 0.05 0.05 0.05 0.05 0.05
Batch Size 1024 512 256 256 64
Context Parallel Size 1 1 1 1 10
Learning Rate (student) le-6 le-6 le-6 2e-6 le-6
Learning Rate (fake score) 2e-7 2e-7 2e-7 4e-7 le-7
CFG Scale 45 45 4.5 5.0 5.0
Student Update Frequency 5 5 5 5 10
Maximal Simulation Steps 4 4 4 4 4
Tangent Warmup Iterations 0 0 0 1000 200
Total Iterations 80k 30k 25k 10k 10k
Omax 80 80 800 1600 1600
. log z ~ N(=0.8,1.62) logz ~ N (—0.8,1.62) logz ~ N (—0.8,1.6%) | logz ~N(-0.8,1.6%) logz ~ N(—0.8,1.6%)
be t = arctan(z) t = arctan(z) t = arctan(z) t = arctan(v'T>) t = arctan(v'T=2)
u~U(0,1) u~U0,1)
oo log z ~ N(0.0,1.6%) log z ~ N(0.0,1.62) log z ~ N(0.0,1.62) tRE = 145:;“ R = ]iﬂqu
t = arctan(z) t = arctan(z) t = arctan(z) ¢ — arctan l,jf” { — arctan II;R,,FKJ

E MORE DISCUSSIONS

E.1 CONTINUOUS-TIME CONSISTENCY TRAJECTORY MODELS

SCM can be easily combined with consistency trajectory models (CTM) (Kim et al., 2023 [Heek
et al.| 2024)), which adds an additional time condition s < ¢ to CMs and consider more fine-grained
transitions ; — x on the PF-ODE, forming an interpolation between diffusion models and con-
sistency models. Specifically, we can define a consistency trajectory function fg : (x4, t,s) — @
from ¢ to s with preconditioning coefficients derived from the DDIM (Song et al.,|2021a)) step:

Sfo(xe, t,s) = cos(t — s)x; — sin(t — s) Fy (x4,t, ) 7

Continuous-time CTMs (denoted as sCTM) can be trained via similar instantaneous objective of
sCM by simply changing the coefficients, as s is independent of ¢ and remains uninvolved in the
JVP computation w.r.t. ¢:

dfy- (@, t,5) ||
Eg, ts [HFQ (xe,t,8) — Fp- (x4, t,8) — w(t,s)w ] (8)
2
where
d.f@‘ (wtatas) _ _ _ dwt e _ dFG_ (wtatas)
—a - cos(t — s) | Fy- (x4, 1, 9) & sin(t —s) | @ + —a )

The objective naturally recovers flow matching under s = ¢: when w(t,t) = 1 (e.g., w(t,s) =
cos(t — s)), it is exactly the same as flow matching; other arbitrary w(t, s) > 0 gives an equivalent
objective whose gradient is proportional to that of flow matching. Recent methods such as Mean-
Flow (Geng et al.| [2025)) and AYF (Sabour et al., 2025) are the same as SCTM under the rectified
flow schedule, which simply changes the preconditioning to fy(x¢,t,s) = x; — (t — s)Fy(xs, t, s)
and adjusts the JVP coefficients accordingly.

For distillation, we also implemented sCTM without extensive hyperparameter tuning, but observed
that it underperforms sCM in both quality and diversity on basic T2I tasks (Figure[9). This suggests
that sSCTM (or MeanFlow) encounters greater optimization challenges than sCM for diffusion
distillation, as learning arbitrary mappings along the ODE trajectory is inherently more demanding
than learning the mapping solely to the initial point.

E.2 ANALYSIS OF JVP ERRORS

To avoid overflow issues in FP16, BF16 precision is required for neural network computation in

large model training. However, we find that computing the JVP term dﬁf under BF16 incurs

substantially larger numerical errors compared to the zeroth-order signal Fy-.
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(a) sCM (b) sCTM (MeanFlow)

Figure 9: Comparison between sCM and sCTM for distillation. We implement SCTM by adding an
additional time condition s to the network, which goes through a separate embedding layer and is
added to the embedding of ¢ before normalization. We adopt the sCTM training objective in Eq. (8),
along with sCM tricks such as tangent normalization.

To quantify these errors, we compute Fy- using both BF16 and FP32 precision, and measure the
BF16 FP32 || 2
_To— ”

. . F’~
relative Lo error with I "” el 2, where F2F'% and F;*3? denote outputs under BF16 and FP32,
0— 2

respectively. We repeat the procedure for the rearranged JVP term cos(¢) sin(t) dl;i_ . Note that only
the network precision is altered, while all wrapping conversions remain in FP64, consistent with the
main algorithm. Figure [I0| reports the relative Lo errors between BF16 and FP32 computations
across 100 uniformly sampled timesteps from ¢ = 0 to 5, using Cosmos-Predict2 T2I models of
0.6B and 2B parameters. The results indicate that JVP computation is considerably more sensitive
to limited BF16 precision than the network output.

— Fg- 6 - — Fg-
2.5 4Fo dFo-
—— cos(t)sin(t)—4- —— cos(t)sin(t)—-
5.
. 2.0 .
g g 4
w w
5154 5
o o3
2 =
4 -
© 1.0 ©
[J] O 2
@ o«
0.5 y\\ 14 w
0.0 04
00 02 04 06 08 10 12 14 16 00 02 04 06 08 10 12 14 16
t t
(a) Cosmos-Predict2-0.6B (b) Cosmos-Predict2-2B

Figure 10: Relative Lo errors of the network output and JVP under BF16 precision. Empirically,
JVP computation leads to substantially larger numerical errors compared to the network output.

F PROMPTS

21



Published as a conference paper at ICLR 2026

Table 5: Used prompts in this paper.

Prompt References

Image

Red squirrel drumming on tiny twig and acorn drums in autumn woods Figure 36|

A Casio G-Shock digital watch with a metallic silver bezel and a black face. The watch displays the time as
11:44 AM on Thursday, March 22nd, with additional features like Bluetooth connectivity, water resistance

up to 20 bar, and multi-band 6 radio wave reception. The watch strap appears to be made of stainless steel, Figure31516

and the overall design emphasizes durability and functionality.

an alarm clock Figure El
Video

A stylish woman walks down a Tokyo street filled with warm glowing neon and animated city signage. 11

She wears a black leather jacket, a long red dress, and black boots, and carries a black purse. She wears Figure|i}6

sunglasses and red lipstick. She walks confidently and casually. The street is damp and reflective, creating
a mirror effect of the colorful lights. Many pedestrians walk about.

Animated scene features a close-up of a short fluffy monster kneeling beside a melting red candle. The art

style is 3D and realistic, with a focus on lighting and texture. The mood of the painting is one of wonder

and curiosity, as the monster gazes at the flame with wide eyes and open mouth. Its pose and expression  Figure
convey a sense of innocence and playfulness, as if it is exploring the world around it for the first time. The

use of warm colors and dramatic lighting further enhances the cozy atmosphere of the image.

The camera follows behind a white vintage SUV with a black roof rack as it speeds up a steep dirt road
surrounded by pine trees on a steep mountain slope, dust kicks up from it’s tires, the sunlight shines on
the SUV as it speeds along the dirt road, casting a warm glow over the scene. The dirt road curves gently
into the distance, with no other cars or vehicles in sight. The trees on either side of the road are redwoods, Figure(7
with patches of greenery scattered throughout. The car is seen from the rear following the curve with ease,
making it seem as if it is on a rugged drive through the rugged terrain. The dirt road itself is surrounded by
steep hills and mountains, with a clear blue sky above with wispy clouds.

—
~

A close up view of a glass sphere that has a zen garden within it. There is a small dwarf in the sphere who

is raking the zen garden and creating patterns in the sand. Figure

1=

A playful raccoon is seen playing an electronic guitar, strumming the strings with its front paws. The
raccoon has distinctive black facial markings and a bushy tail. It sits comfortably on a small stool, its
body slightly tilted as it focuses intently on the instrument. The setting is a cozy, dimly lit room with Figure|7
vintage posters on the walls, adding a retro vibe. The raccoon’s expressive eyes convey a sense of joy and
concentration. Medium close-up shot, focusing on the raccoon’s face and hands interacting with the guitar.
In an urban outdoor setting, a man dressed in a black hoodie and black track pants with white stripes walks
toward a wooden bench situated near a modern building with large glass windows. He carries a black
backpack slung over one shoulder and holds a stack of papers in his hand. As he approaches the bench,
he bends down, places the papers on it, and then sits down. Shortly after, a woman wearing a red jacket
with yellow accents and black pants joins him. She stands beside the bench, facing him, and appears to Figure|3
engage in a conversation. The man continues to review the papers while the woman listens attentively. In
the background, other individuals can be seen walking by, some carrying bags, adding to the bustling yet
casual atmosphere of the scene. The overall mood suggests a moment of focused discussion or preparation
amidst a busy environment.
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