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ABSTRACT

Driven by inherent uncertainty and the sim-to-real gap, robust reinforcement
learning (RL) seeks to improve resilience against the complexity and variabil-
ity in agent-environment sequential interactions. Despite the existence of a large
number of RL benchmarks, there is a lack of standardized benchmarks for ro-
bust RL. Current robust RL policies often focus on a specific type of uncertainty
and are evaluated in distinct, one-off environments. In this work, we introduce
Robust-Gymnasium, a unified modular benchmark designed for robust RL that
supports a wide variety of disruptions across all key RL components—agents’ ob-
served state and reward, agents’ actions, and the environment. Offering over sixty
diverse task environments spanning control and robotics, safe RL, and multi-agent
RL, it provides an open-source and user-friendly tool for the community to assess
current methods and foster the development of robust RL algorithms. In addition,
we benchmark existing standard and robust RL algorithms within this framework,
uncovering significant deficiencies in each and offering new insights. The code is
available at this website1.

1 INTRODUCTION

Reinforcement learning (RL) is a popular learning framework for sequential decision-making based
on trial-and-error interactions with an unknown environment, achieving success in a variety of appli-
cations, such as games (Mnih et al., 2015; Vinyals et al., 2019), energy systems (Chen et al., 2022),
finance and trading (Park & Van Roy, 2015; Davenport & Romberg, 2016), and large language
model alignment (OpenAI, 2023; Ziegler et al., 2019).

Despite recent advances in standard RL, its practical application remains limited due to concerns
over robustness and safety. Specifically, policies learned in idealized training environments often
fail catastrophically in real-world scenarios due to various factors such as the sim-to-real gap (Pinto
et al., 2017), uncertainty (Bertsimas et al., 2019), noise, and even malicious attacks (Zhang et al.,
2020; Klopp et al., 2017; Mahmood et al., 2018). Robustness is key to deploying RL in real-world
applications, especially in high-stakes or high-cost fields such as autonomous driving (Ding et al.,
2023b), clinical trials (Liu et al., 2015), robotics (Li et al., 2021), and semiconductor manufacturing
(Kozak et al., 2023). Towards this, Robust RL seeks to ensure resilience in the face of the complexity
and variability of both the physical world (Bertsimas et al., 2019) and human behavior (Tversky &
Kahneman, 1974; Arthur, 1991).

Robust RL policies currently fall short of the requirement for broad deployment. Disruptions or
interventions can occur at various stages of the agent-environment interaction, affecting the agent’s
observed state (Zhang et al., 2020; 2021b; Han et al., 2022; Sun et al., 2021; Xiong et al., 2022),
observed reward (Xu & Mannor, 2006), action (Huang et al., 2017), and the environment (transi-
tion kernel) (Iyengar, 2005; Pinto et al., 2017) and existing robust RL policies are vulnerable to
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Figure 1: The overview of Robust-Gymnasium. For more details, please visit the website.

such real-world failures (Mandlekar et al., 2017). This vulnerability is, in part, a result of the fact
that policies are designed to address only one specific type of disruption (e.g., over the observed
state), among other technical limitations (Ding et al., 2023a). More critically, robust RL policies are
often evaluated in distinct, one-off environments that can be narrow or over-fitted to the proposed
algorithms. The absence of standardized benchmarks is a key bottleneck to progress in robust RL.
Ideally, a benchmark should offer a wide range of diverse tasks for comprehensive evaluation and
account for uncertainty and disruptions over multiple stages throughout the interaction process.

While numerous RL benchmarks exist, including a recent one focused on robustness to environment
shifts (Zouitine et al., 2024), none are specifically designed for comprehensively evaluating robust
RL algorithms. To address this gap, we present Robust-Gymnasium2, a unified, highly modu-
lar benchmark for robust RL. This open-source tool enables flexible construction of diverse tasks,
facilitating the evaluation and development robust RL algorithms. Our main contributions are:

• We introduce a unified framework for robust RL, encompassing diverse disruption
types within a modular agent-environment interaction process (detailed in Sec. 2). This
framework enables the development of Robust-Gymnasium, a benchmark that comprises
over sixty diverse tasks in robotics and control, safe RL, and multi-agent RL; and includes
a wide range of disruptions targeting different stages/sources (agent observations, actions,
and the environment) with varying modes (e.g., random or adversarial disturbances, en-
vironmental shifts) and frequencies. This is a unified benchmark specifically designed for
robust RL, providing a foundational tool for evaluating and developing robust algorithms.

• We conduct a comprehensive evaluation of several state-of-the-art (SOTA) baselines
from standard RL, robust RL, safe RL, and multi-agent RL using representative tasks
in Robust-Gymnasium. Our findings reveal that current algorithms often fall short
of expectations in challenging tasks, even under single-stage disruptions, highlighting
the need for new robust RL approaches. Furthermore, our experiments demonstrate the
flexibility of Robust-Gymnasium by encompassing tasks with disruptions across all
stages and four disturbance modes, including an adversarial model using a large language
model (LLM). This illustrates the potential of LLMs in robust RL research.

2 A UNIFIED ROBUST REINFORCEMENT LEARNING FRAMEWORK

We begin by presenting a robust RL framework that unifies various robust RL tasks explored in the
literature, including combinations of these paradigms. We outline the framework in the context of
single-agent RL and then extend it to encompass broader classes of RL tasks, such as safe RL and
multi-agent RL.

2Website with the introduction, code, and examples: https://robust-gym.github.io/
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Background: Markov decision process (MDP). A single-agent RL problem is formulated as a
finite-horizon Markov decision process (MDP), represented by the tuple M =

(
S,A, T, P 0, r0

)
,

where S and A denote the (possibly infinite) state and action spaces, and T is the horizon length.
The nominal transition kernel P 0 = {P 0

t }1≤t≤T defines the environmental dynamics: P 0
t (s

′ | s, a)
gives the probability of transitioning from state s to state s′ given action a at time step t. The reward
function r0 = {r0t }1≤t≤T represents the immediate reward at time step t, given the current state s
and action a.

Figure 2: The overview of a finite-horizon MDP with disruptors.

2.1 A UNIFIED ROBUST RL FRAMEWORK: MDPS WITH DISRUPTION

To proceed, we introduce an additional disruption module that represents potential uncertainties or
disturbances that impact different stages of the agent-environment interaction process (MDP). This
module provides a categorized summary of the types of uncertainty addressed in prior robust RL
studies.

Disruptors. We introduce each type in detail as follows:

• Observation-disruptor. An agent’s observations may not perfectly reflect the true status
of the environment due to factors like sensor noise and time delays. To model this sens-
ing inaccuracy, we introduce an additional module—the observation-disruptor—which de-
termines the agent’s observations from the environment: Agents’ observed state s̃t: The
observation-disruptor takes the true current state st as input and outputs a perturbed state
s̃t = Ds(st). The agent uses s̃t as input to its policy to select an action; Agents’ ob-
served reward r̃t: The observation-disruptor takes the real immediate reward rt as input
and outputs a perturbed reward r̃t = Dr(rt). The agent observes r̃t and updates its policy
accordingly.

• Action-disruptor. The real action at chosen by the agent may be altered before or during
execution in the environment due to implementation inaccuracies or system malfunctions.
The action-disruptor models this perturbation, outputting a perturbed action ãt = Da(at),
which is then executed in the environment for the next step.

• Environment-disruptor. Recall that a task environment consists of both the internal dynamic
model and the external workspace it interacts with, characterized by its transition dynamics
P and reward function r. The environment during training can differ from the real-world
environment due to factors such as the sim-to-real gap, human and natural variability, exter-
nal disturbances, and more. We attribute this potential nonstationarity to an environment-
disruptor, which determines the actual environment (P, r) the agent is interacting with at
any given moment. These dynamics may differ from the nominal environment (P 0, r0)
that the agent was originally expected to interact with.

MDPs with Disruption. As shown in Fig. 2, a robust RL problem can be formulated as a finite-
horizon MDP with an additional disruption module Mdis =

(
S,A, T, P, r,Ds(·), Dr(·), Da(·)

)
,

abbreviated as Disrupted-MDP. It consists of three potential disruptors introduced above. Specif-
ically, the interaction process between an agent and an MDP with disruption (Fig. 2) unfolds
as follows: at each time step t ∈ [T ], the (possibly perturbed) environment outputs the current
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state st and reward rt. The observation-disruptor then perturbs these, sending the modified state
s̃t = Ds(st) and reward r̃t = Dr(rt) to the agent. Based on these, the agent selects an action
at ∼ πt(· | s̃t), according to its policy π = {πt}1≤t≤T , where πt : S → ∆(A) defines the
probability distribution over actions in A given the observed state s̃t. The action-disruptor then
perturbs this action to ãt = Da(at), which is then sent to a perturbed environment governed by the
environment-disruptor, based on the reference — nominal environment (P 0, r0). The environment
then transitions to the next state st+1 ∼ Pt(· | st, ãt) and provides the reward rt+1(st, ãt), which
becomes the input for the observation-disruptor in the next step t+ 1.

Goal. For any Disrupted-MDP, the objective is to learn a policy (action selection rule) π =
{πt}1≤t≤T that maximizes long-term cumulative rewards, represented by the value function
{V π

t }1≤t≤T : S 7→ R:

max
π

V π
t (s) = E

[
T∑

k=t

rk (sk, ãk)

∣∣∣∣π, (P, r), st = s

]
. (1)

Here, the expectation is taken over the trajectories generated by executing the policy π under the
perturbed transition kernels and reward functions (P, r).

In addition to disruption modes, the Disrupted-MDP allows disruptors to operate flexibly over
time during the interaction process. Disruptors can act at different frequencies, such as step-wise,
episode-wise, or at varying intervals.

3 Robust-Gymnasium: A UNIFIED ROBUST RL BENCHMARK

We now introduce our main contribution, a modular benchmark (Robust-Gymnasium) designed
for evaluating Robust RL policies in robotics and control tasks. Each task is constructed from three
main components: an agent model (the robot object), an environment (the agent’s workspace), and a
task objective (such as navigation or manipulation). Robust-Gymnasium offers robust RL tasks by
integrating various disruptors of different types, modes, and frequencies with these task bases. Not
all task bases support every type of disruption. A detailed list of the robust RL tasks implemented in
this benchmark is available in Figure 17. In the following sections, we introduce over 60 task bases
from eleven sets, outline the design of the disruptors, and describe the construction of a Disrupted-
MDP— robust RL tasks.

3.1 TASK AND ENVIRONMENT BASES

Gymnasium-Box2D (three relative simple control tasks in games).
These tasks are from Gymnasium (Towers et al., 2024), including three robot
models from different games, such as the Bipedal Walker — a 4-joint walking
robot designed to move forward and Car Racing — navigating a track by learning
from pixel inputs (Parberry, 2017; Brockman et al., 2016).

Gymnisium-MuJoCo (eleven control tasks).
It includes various robot models, such as bipedal and quadrupedal robots. This
benchmark is widely used in various RL problems, including standard online
and offline RL, with representative examples like Hopper, Ant, and HalfCheetah
(Todorov et al., 2012; Brockman et al., 2016).

Maze (two navigation environments).
Maze comprises environments where an agent must reach a specified goal within
a maze (Gupta et al., 2020). Two types of agents are available: a 2-degrees of
freedom (DoF) ball (Point-Maze) and a more complex 8-DoF quadruped robot
(Ant-Maze) from Gymnasium-MuJoCo. Various goals and maze configurations
can be generated to create tasks of varying difficulty.

Fetch (four tasks for Fetch Mobile Manipulator robot arm).
Fetch features a 7-degrees of freedom (DoF) Fetch Mobile Manipulator arm with
a two-fingered parallel gripper (Plappert et al., 2018). The environment consists
of a table with various objectives, resulting in four tasks: Reach, Push, Slide,
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and PickAndPlace, which involve picking up or moving the objects to specified
locations.

Franka Kitchen (tasks need long-horizon, multi-task planning for a robot arm).
This environment is based on a 9-degrees of freedom (DoF) Franka robot situ-
ated in a kitchen containing common household items like a microwave and cab-
inets (Gupta et al., 2020). The task goal is to achieve a specified configuration,
which may involve planning and completing multiple sub-tasks. For example, a
goal state could have the microwave open, a kettle inside, and the light over the
burners turned on.

Dexterous Hand (five dexterous hand manipulation tasks).
It is based on the Shadow Dexterous Hand — an anthropomorphic 24-DoF
robotic hand with 92 touch sensors at palm and phalanges of the fingers (Plap-
pert et al., 2018; Melnik et al., 2021). The tasks involve manipulating various
objects, such as a pen, egg, or blocks.

Adroit (four manipulation tasks for a dexterous hand attached to a free arm).
This environment features a free arm equipped with a Shadow Dexterous Hand,
providing up to 30-DoF (Rajeswaran et al., 2018). The high degree of freedom
enables the robot to perform more complex tasks, such as opening a door with a
latch (AdroitHandDoor).

HumanoidBench (four tasks for a high-dimensional humanoid).
We incorporate four tasks from the recent HumanoidBench (Sferrazza et al.,
2024) designed mainly for a Unitree H1 humanoid robot 3, which is equipped
with two dexterous Shadow Hands. Specifically, we include two manipulation
tasks (push, truck) and two locomotion tasks (reach, slide), all of which require
sophisticated coordination among various body parts.

Robosuite (twelve tasks for various modular robot platforms).
Robosuite is a popular modular benchmark (Zhu et al., 2020) that supports seven
robot arms, eight grippers, and six controller modes. The manipulation tasks
are conducted in environments with doors, tables, and multiple robot arms, with
goals such as wiping tables or coordinating to transfer a hammer. Additionally,
we introduce a new task—MultiRobustDoor—featuring an adversarial arm that impedes another
arm’s success to test robustness.

Safety MuJoCo (nine control tasks with additional safety constraints).
Built on standard robot models in Gymnasium-MuJoCo, the Safety MuJoCo
tasks are designed for scenarios that prioritize both long-term returns and safety.
These tasks incorporate safety constraints, such as limiting velocity and prevent-
ing robots from falling (Gu et al., 2024b).

MAMuJoCo (twelve multi-agent cooperation tasks).
MAMuJoCo is based on a multi-agent platform from the factorizations of
Gymnisium-MuJoCo robot models (Peng et al., 2021). The tasks need to be
solved by cooperations of multiple agents. This set of tasks are vulnerable to
disturbance like one leg of a quadruped robot is malfunctioning, or all dynamics
of legs are contaminated by system noise.

3.2 DISRUPTOR DESIGN: MODES AND FREQUENCIES

In a Disrupted-MDP, disruptors affecting various stages of the agent-environment interaction can
operate in different modes. We typically consider four common modes found in the robust RL
literature, each driven by specific real-world scenarios and robustness requirements. These modes
allow the construction of tasks with varying levels of difficulty:

• Random disturbance: for all disruptors. Stochastic noise is ubiquitous in sensors, me-
chanical hardware, and random events, often modeled as random noise added to nominal

3https://www.unitree.com/h1/
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Figure 3: Illustration of two disruption modes of the environment-disruptor: internal dynamic shift
and external disturbance.

components in the interaction process (Duan et al., 2016). The noise typically follows a dis-
tribution such as Gaussian or uniform. This mode can be applied to all disruptors, affecting
the agent’s observed state, observed reward, action, and environment.
We offer Gaussian distribution N(·, ·) (Zhang et al., 2018) and bounded uniform distri-
bution U(·, ·) (Zouitine et al., 2024) as default options. For instance, the environment-
disruptor can introduce noise to robot dynamics (e.g., mass, torso length) or external fac-
tors (e.g., gravity, wind), as shown in Fig. 4. The observation-disruptor can add noise to
the observed state and/or reward, namely, s̃t = st + N (µs, σs) (µs and σs are the mean
and variance) or s̃t = st + U(as, bs) (as, bs are the min and max thresholds). The action-
disruptor can also introduce noise to the action sent to the environment.

• Adversarial disturbance: for all disruptors. In real-world applications, adversarial distur-
bances occur when external forces deliberately attempt to degrade the agent’s performance.
This mode is also relevant when prioritizing safety, ensuring the agent can perform well in
worst-case scenarios within certain predefined sets. It can be applied to all three disruptors.
This mode can be viewed as a two-player zero sum game between the agent and an ad-
versarial player (Tanabe et al., 2022). Any algorithms can acts as the adversarial player
through this interface to adversarially attack the process. This mode is applicable to all dis-
ruptors; for instance, the observation-disruptor generates a fake state that falls within the
prescribed set around the true state, or the environment-disruptor adjusts parameters within
a neighborhood of the nominal values;
Notably, in our benchmark, we implement and feature an algorithm leveraging LLM to
determine the disturbance. In particular, the LLM is told of the task and uses the current
state and reward signal as the input. It directly outputs the disturbed results like a fake state
for the agent. See more details in the code 2 in Appendix C.1.

• Internal dynamic shift: for the environment-disruptor. This mode captures variations in
the agent’s internal model between training and testing, caused by factors such as the sim-
to-real gap, measurement noise, or accidental malfunctions. The environment-disruptor
introduces biases to dynamic parameters within a prescribed uncertainty set. For example,
the torso length (Fig. 4 (c)) might shift from 0.3 to 0.5.
For tasks in control and robotics, the environment disruptor can alter the robot model,
changing the system’s internal dynamics (Zhang et al., 2020; Zouitine et al., 2024). Using
Gymnasium-MuJoCo as an example, Fig. 3(b)-(c) depict the consequences of such disrup-
tion by altering the Ant robot’s head and legs around its original model (Fig. 3(a)).

• External disturbance: for the environment-disruptor. Nonstationarity in the external
workspace can result from variability in the physical world or human behavior, such as
changes in wind, friction, or human intervention. The environment-disruptor uses this
mode to modify the external task environment by altering properties and configurations
within the robot’s workspace or by introducing abrupt external interventions (Luo et al.,
2024; Pinto et al., 2017; Ding et al., 2023a).
For example, in robosuite, Fig. 3(e)-(f) illustrate disrupted tasks compared to the original
reference in Fig. 3(d). In these tasks, the environment disruptor changes the distance be-
tween the table and the arm, or even introduces an additional arm to actively interfere with
the yellow-black robot’s ability to accomplish its goal.

Timing of operations for disruptors. We support perturbations occurring at any stage of the pro-
cess and at different frequencies. Users can choose to apply perturbations at any time step or episode
during the training process, or exclusively during testing.
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(a) Attack on robot wind (b) Attack on robot gravity (c) Attack on robot torso length

Figure 4: Adversary attack on robot environments, dynamics and shape with different distributions
(We can also attack on robot state space, action space and reward signal, etc.).

3.3 CONSTRUCTING ROBUST RL TASKS

Robust-Gymnasium is a modular benchmark that offers flexible methods for constructing robust
RL tasks through three main steps. First, we select a task base from the eleven options outlined in
Sec. 3.1. Second, we choose a disruptor from the observation, action, and environment categories in-
troduced in Sec. 3.2), and specify its operation modes (random disturbance, adversarial disturbance,
internal dynamic shift, and external disturbance, as detailed in Sec. 3.2). Finally, we determine the
interaction process and frequencies between the disruptor, agent, and environment.

In addition to these basic construction methods, our benchmark supports advanced modes: A combi-
nation of disruptors allows users to select multiple disruptors, such as an observation-disruptor and
an environment-disruptor, to simulate conditions where perception sensors have system noise and
external disturbances from human occur; Varying operation frequencies enables disruptors to oper-
ate intermittently during interactions, either at fixed intervals or in a random pattern to characterize
accidental events and uncertainties.

4 EXPERIMENTS AND ANALYSIS

Robust-Gymnasium offers a variety of tasks for comprehensively evaluating the robustness of
different RL paradigms. We demonstrate its flexibility by constructing robust RL tasks based on
various task bases, incorporating disruptions with different types, modes, and frequencies, and eval-
uating several SOTA algorithms on these tasks. In addition to benchmarking existing algorithms,
we also highlight an adversarial disruption mode that leverages LLMs. Examples of robust RL tasks
are shown in Figure 4. More details about the experiments can be found in Appendix E.

Benchmark RL algorithms. Specifically, we benchmark several SOTA algorithms in their corre-
sponding robust RL tasks: Standard RL: Proximal Policy Optimization (PPO) (Schulman et al.,
2017), Soft Actor-Critic (SAC) (Haarnoja et al., 2018); Robust RL: Occupancy-Matching Pol-
icy Optimization (OMPO) (Luo et al., 2024), Robust State-Confounded SAC (RSC) (Ding et al.,
2023a), Alternating Training with Learned Adversaries (ATLA) (Zhang et al., 2021b), and Deep
Bisimulation for Control (DBC) (Zhang et al., 2021a); Safe RL: Projection Constraint-Rectified
Policy Optimization (PCRPO) (Gu et al., 2024b), Constraint-Rectified Policy Optimization (CRPO)
(Xu et al., 2021); Multi-Agent RL: Multi-Agent PPO (MAPPO) (Yu et al., 2022), Independent PPO
(IPPO) (De Witt et al., 2020).

Evaluation processes. We mainly focus on two evaluation settings: In-training: the disruptor si-
multaneously affects the agent and environment during both training and testing at each time step.
This process is typically used in robotics to address sim-to-real gaps by introducing potential noise
during training; 2) Post-training: the disruptor only impacts the agent and environment during test-
ing, mimicking scenarios where learning algorithms are unaware of testing variability.

Robust metrics. In this work, we usually use the performance in the original (deployment) environ-
ment as the robust metric for evaluations. While there are many different formulations of the robust
RL objective (robust metrics), such as risk-sensitive metrics (e.g., CVaR) (Chan et al., 2019), and
the worst-case or average performance when the environment shifts (Zouitine et al., 2024).
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4.1 EVALUATION OF STANDARD RL BASELINES

To begin, we evaluate two types of robust RL tasks: one with an observation disruptor (affecting the
agent’s observed state) and the other with an action disruptor (affecting the action), both subjected
to random disturbances at varying levels. We benchmark the performance of standard RL base-
lines—PPO (Schulman et al., 2017) and SAC (Haarnoja et al., 2018)—on robust RL tasks based on
the representative HalfCheetah-v4 task from Gymnasium-MuJoCo, as partially shown in Figure 5.
Here, S=0.1 indicates that the random disturbance over the state follows a Gaussian distribution
with a mean of 0 and a standard deviation of 0.1 (resp.0.15). The same applies for A=0.1 or A=0.15.
Figures 5 (a)-(b) and Figure 5 (c)-(d) present the results from two different evaluation processes—In-
training and Post-training, respectively. The results show that as the disturbance level increases, the
performance of the baselines degrades quickly, particularly when the training process is unaware
of potential disturbances (as seen in the Post-training results). More experiments, including those
using disturbances over reward or the results for SAC, can be found in Appendix B.1.

4.2 EVALUATION OF ROBUST RL BASELINES

In this section, we evaluate robust RL tasks using an environment disruptor under two representative
modes: internal dynamic shift and external disturbance. The robust RL tasks are based on various
task bases, including Ant-v5 and Hopper-v5 from Gymnasium-MuJoCo, as well as DoorCausal-v1
and LiftCausal-v1 from Robosuite, utilizing the In-training evaluation process.

Specifically, Figure 6(a-b) displays the performance of the robust RL baseline OMPO across two
tasks with internal dynamic shifts: (a) Ant-v5 with varying gravity and wind strength, and (b)
Hopper-v5 with changes to the robot model’s shape, including torso and foot length. Experimental
settings can be found in (4) and (6) in Appendix C.2. The results indicate that OMPO’s performance
significantly declines in non-stationary environments compared to stationary conditions without dis-
turbances.

Figures 6(c-d) illustrate the performance of three robust RL baselines (RSC, ATLA, DBC) in two
tasks from Robosuite involving disruptions on the environment with external semantic disturbances.
In the DoorCausal task, the initial distance of the door from the robot and the height of the door han-
dle are varied in a correlated manner. In the CausalLift task, both the position and color of the object
to be lifted are changed together according to specific patterns. RSC demonstrates greater robust-
ness than ATLA and DBC, maintaining stable reward trajectories throughout the training process.
However, RSC’s training efficiency may need further improvement, as it generates augmentation
data during policy learning.

4.3 EVALUATION OF SAFE RL BASELINES

Two safe RL baselines, PCRPO (Gu et al., 2024b) and CRPO (Xu et al., 2021), are benchmarked on
robust safety-critical tasks using the In-training evaluation process. Specifically, we assess two types
of robust RL tasks based on Walker2d from Gymnasium-MuJoCo: (a) an action-disruption attacks
the agent’s action with different levels; (b) the agent’s observe immediate safety cost is disturbed in
different levels. These attacks follow a Gaussian distribution with a mean of 0 and standard devia-
tions of 0.15 or 0.3 for both the action and the observed cost. The outcomes and safety costs for these
tasks are presented in Figures 12(a-b) and Figures 12(c-d), respectively. The performance of CRPO
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Figure 5: Adversary attack on state and action space in robust HalfCheetah-v4 tasks. S denotes
attack on state and A denotes attack on action.
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Figure 6: (a-b): Internal dynamic shift attacks on Ant-v5 and Hopper-v5 tasks. (c-d): External
semantic attacks on Robosuite tasks.
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Figure 7: Robust safe RL rasks: Random disturbances over either the action or the agent’s observed
immediate cost feedback.

quickly degrades when disruptions occur, while PCRPO demonstrates greater robustness against
disturbances in either action or observed cost. Notably, PCRPO’s performance under disturbance
surpasses its performance without disturbance, suggesting that introducing appropriate disturbances
during training may enhance overall performance. Due to space limitations, additional results can
be found in Appendix B.2.

4.4 EVALUATION OF MULTI-AGENT RL BASELINES

We evaluate two MARL baselines: Multi-Agent PPO (MAPPO) (Yu et al., 2022) and Independent
PPO (IPPO) (De Witt et al., 2020) on MA-HalfCheetah-v4 from MAMoJoCo under various dis-
ruption settings affecting the agents’ observed states, actions, and rewards. Using the In-training
evaluation process, as shown in Figure 8, we apply disruptions to all agents. The results indicate
that the performance of both MAPPO and IPPO degrades accordingly as the disruptions occur. Ad-
ditionally, we conduct experiments involving partial disruptions on a subset of agents within the
multi-agent system; further details can be found in Appendix B.3.
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Figure 8: Multi-Agent HalfCheetah-2x3 robustness: training attack on state, action, and reward for
all the two agents. S denotes state, A denotes action and R denotes reward.

4.5 ADVERSARIAL DISTURBANCE THROUGH LLMS

In addition to benchmarking various existing RL algorithms, this section demonstrates the adver-
sarial disturbance mode by leveraging a featured approach with LLMs. As shown in Figure 9, we
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Figure 9: LLM-based attacks with different settings.

evaluate the performance of PPO on Ant-v4 with adversarial disruptions to the agent’s observed
state. Different attack configurations are employed, including comparisons to uniform noise and
testing varying frequencies. Here, “C[0.2–0.8]” indicates that the noise level from the LLM is
constrained within the [0.2, 0.8] range; “100F” (resp. “500F”) signifies that the agent is attacked
every 100 (resp. 500) steps; and “U[0.2–0.8]” represents noise drawn from a uniform distribution
U(0.2, 0.8). The results show that LLM-based attacks lead to a more significant performance drop
for PPO compared to that using uniform distribution (Figure 9(a)). Figure (b) examines how varying
attack frequencies affect performance, revealing that higher-frequency attacks (PPO-S-100F) result
in greater performance degradation. Due to space constraints, additional frequency experiments on
other robust tasks based on Gymnasium-MuJoCo using PPO are provided in Appendix B.4.

5 CONCLUSION

In this work, we introduce Robust-Gymnasium, a unified modular benchmark explicitly designed
for robust RL. Unlike existing RL benchmarks, Robust-Gymnasium aims to evaluate the resilience
of RL algorithms across a wide range of disruptions. These disruptions include perturbations at ev-
ery stage of the entire agent-environment interaction process, affecting agent observations, actions,
rewards, and environmental dynamics. Robust-Gymnasium provides a comprehensive platform
for benchmarking RL algorithms, featuring over 60 diverse task environments across domains such
as robotics, multi-agent systems, and safe RL. Additionally, we benchmark various SOTA RL algo-
rithms, including PPO, MAPPO, OMPO, RSC, and IPPO, across a wide array of robust RL tasks
in Robust-Gymnasium. The results highlight the deficiencies of current algorithms and motivate
the development of new ones. This work represents a significant step forward in standardizing and
advancing the field of robust RL, promoting the creation of more reliable, generalizable, and robust
learning algorithms.
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Heinrich Küttler, Nantas Nardelli, Alexander Miller, Roberta Raileanu, Marco Selvatici, Edward
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A RELATED WORKS

Related RL benchmarks. To the best of our knowledge, Zouitine et al. (2024) is the only existing
benchmark designed specifically for robustness evaluations, with the same goal of this work. It
introduced six continuous control tasks in Gymnasium-MuJoCo, designed to address environmental
shifts. A clear lack of standardized benchmarks is present that offer a wide range of diverse tasks and
account for uncertainty and disruptions over multiple stages throughout the interaction process, (not
only the environment). Such a comprehensive evaluation platform is essential for the community
to evaluate existing efforts and inspire new algorithms. Robust-Gymnaisum fills the gaps for robust
evaluation of RL as a unified modular benchmark that supports over sixty diverse tasks in robotics
and control for comprehensive evaluation, and accounting for different types of uncertainty and
disruptions across multiple stages of the interaction process.

Moreover, enhancing robustness against environment shifts can be seen as a slight generalization
to unseen tasks or environments. A non-exhaustive list of relevant benchmarks includes: a domain
generalization benchmark in offline RL (Mediratta et al., 2023), Meta-World for meta-RL (Yu et al.,
2020), a generalization benchmark for robot manipulation (Pumacay et al., 2024), SustainGym —
generalization for sustainable energy systems (Yeh et al., 2024), continual robot learning (Wol-
czyk et al., 2021), lifelong robot learning (Liu et al., 2024), skill manipulation robot learning (Mu
et al., 2021), safe RL (Ray et al., 2019; Yuan et al., 2022; Gu et al., 2023), multi-task/objective RL
(Mendez et al., 2022; Gu et al., 2025), human-robot collaboration tasks (Puig et al., 2024), dynamic
algorithm configuration (Eimer et al., 2021), RL in JAX (Bonnet et al., 2024), procedurally gener-
ated environments (Küttler et al., 2020), DM control (Tunyasuvunakool et al., 2020), arcade learning
environments (Bellemare et al., 2013), a MDP playground for evaluation (Rajan et al., 2023), and
others (Marklund et al., 2020; Yao et al., 2022).

RL works involving tasks for robust evaluation. Although not primarily focusing on building a
benchmark for robust RL, there exists a lot of prior works or benchmarks that involves tasks for
robust evaluation. While they typically support a few robust evaluation tasks associated with only
one disruption type, which is not sufficient for comprehensive evaluations for robustness in real-
world applications.

Specifically, there exists a lot of benchmarks for different RL problems, such as standard RL, safe
RL, multi-agent RL, offline RL, and etc. These benchmarks either don’t have robust evaluation
tasks, or only have a narrow range of tasks for robust evaluation (since robust evaluation is not their
primary goals), such as Duan et al. (2016) support 5 tasks with robust evaluations in control. Besides,
there are many existing robust RL works that involve tasks for robust evaluations, while they often
evaluate one-off and a narrow range of tasks in specific domains, such as 8 tasks for robotics and
control (Ding et al., 2023a), 9 robot and control tasks in StateAdvRL (Zhang et al., 2020), 5 robust
RL tasks in RARL (Pinto et al., 2017), a 3D bin-packing task (Pan et al., 2023). Since their primary
goal is to design robust RL algorithms, but not a platform to evaluate the algorithms.

Robustness in single-agent RL. Robustness is a key principle in designing RL algorithms, as train-
ing processes are often idealized and limited in data and scenarios, while real-world environments
are changeable, unpredictable, and highly diverse. An emerging body of work focuses on devel-
oping robust RL algorithms that can withstand potential uncertainties, perturbations, and attacks
during real-world execution. These efforts can largely be categorized under our unified robust RL
framework (Sec. 2), which formulates uncertainty events affecting the agent-environment interac-
tion as behaviors of three types of disruptors. Our proposed Robust-Gymnasium encompasses all
types of robust RL tasks within this framework, providing a flexible and comprehensive platform
for evaluating and developing robust RL algorithms.

Specifically, prior works typically involve one type of disruptors: Zhang et al. (2020; 2021b); Han
et al. (2022); Qiaoben et al. (2021); Sun et al. (2021); Xiong et al. (2022) studied the uncertainty
of agent’s observed state, controlled by the observation-disruptor who can add restricted noise or
perform adversarial attack; Tessler et al. (2019); Tan et al. (2020) considered the robustness w.r.t.
the uncertainty of the action, where the action is possibly distorted by the action-disruptor abruptly or
smoothly before forwarding to the environment to be executed; A large amount of prior works focus
on dealing with the perturbation/shift on the environmental controlled by the environment-disruptor
— includes the reward function, the dynamics, or the task itself, ranging from theory (Iyengar, 2005;
Xu & Mannor, 2012; Wolff et al., 2012; Kaufman & Schaefer, 2013; Ho et al., 2018; Smirnova et al.,
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2019; Ho et al., 2021; Goyal & Grand-Clement, 2022; Derman & Mannor, 2020; Tamar et al., 2014;
Badrinath & Kalathil, 2021; Shi & Chi, 2022; Shi et al., 2023; Wang et al., 2024) to applications
(Pinto et al., 2017; Pattanaik et al., 2017; Tanabe et al., 2022; Ding et al., 2023a). Besides them, only
a few works consider more complex scenarios that more than one disruptors are involved (Mandlekar
et al., 2017). See Moos et al. (2022) for a recent review.

Robustness in safe RL and multi-agent RL. Besides the class of standard single-agent RL, ro-
bustness in RL algorithms are ubiquitously demanded and has emerges a growing line of works for
other RL problems such as partially observable Markov decision processes (POMDPs) (Cubuktepe
et al., 2021), safe RL (Liu et al., 2022; Sun et al., 2024; Zhang et al., 2024; Gu et al., 2024a;c) and
multi-agent RL (Vial et al., 2022; Han et al., 2022; He et al., 2023; Zhou & Liu, 2023; Zhang et al.,
2023; 2021b; Shi et al., 2024b;a; Mazumdar et al., 2024). Additional challenges arise when combin-
ing robustness requirements with issues such as safety constraints and strategic interactions, which
are often understudied and lack standardized benchmarks for evaluation. Our Robust-Gymnasium
not only provides single-agent RL tasks but also encompasses a broader range of RL paradigms,
including safe RL and multi-agent RL. This enables a faster and more comprehensive process for
designing and evaluating robust RL algorithms across a wider array of RL tasks.

B SUPPLEMENTARY EXPERIMENTS AND ANALYSIS

B.1 SUPPLEMENTARY FOR EVALUATION ROBUSTNESS OF STANDARD RL

As shown in Figures 10, they demonstrates the robustness of PPO in the HalfCheetah-v4 environ-
ment under various adversarial conditions. Each graph presents the average episode reward across
training steps, contrasting the performance of the standard PPO algorithm against its adaptations un-
der diverse adversarial attack parameters. Specifically, the figure for in-Training Attack on Reward
(Figure 10 (a)) investigates how modifications to the rewards during training influence the learning
performance, employing multiple levels of perturbation. Moreover, the graph for Post-Training At-
tack on Reward (Figure 10 (b)) assesses how the trained policy withstands alterations to the reward
signals post-training. The experimental results suggest that training an RL agent with disturbances
and then testing it in ideal environments may lead to improved reward performance in test scenarios.
Similarly, we conducted an experiment to evaluate the robustness of another popular RL baseline,
SAC. As shown in Figure 11, the performance of SAC degrades under a disturbance attack.

This experiment aids in understanding the stability and robustness of RL policies under adversarial
conditions, which is pivotal for deploying these models in real-world scenarios where they may
encounter unexpected or adversarial changes in input data.

B.2 SUPPLEMENTARY FOR EVALUATION ROBUSTNESS OF SAFE RL

As depicted in Figures 12(a) and (b), we implement PCRPO (Gu et al., 2024b) and CRPO (Xu et al.,
2021), SOTA safe RL algorithms, in robust safety-critical tasks. We selected a representative task
from robust safe RL to assess the effectiveness of the safe RL algorithm. Specifically, we introduce a
disruptor to attack the Walker2d robot’s observations during training, as shown in Figures 12(a)-(b).
Under these adversarial attacks, the reward performance of both PCRPO and CRPO degrades. The
attacks follow a Gaussian distribution with a mean of 0 and standard deviation of 0.3, highlighting
the importance of considering disturbance testing before deploying safe RL models in real-world
applications.

B.3 SUPPLEMENTARY FOR EVALUATION ROBUSTNESS OF MULTI-AGENT RL

As shown in Figures 13 (d), (e), and (f), we investigate partial state, action, and reward attacks on
MAPPO, where only a subset of agents or aspects is attacked. These figures show a smaller drop in
performance, indicating partial attacks are less harmful compared to full attacks (See Figure 8).

B.4 FREQUENCY ATTACK

We offer interactive modes that support step-wise, variable interactions between disruptors, agents,
and environments, allowing users to apply perturbations at any point in time and in any manner they
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Figure 10: HalfCheetah-v4 robustness: training attack,reward. Specifically, in experiment (a), we
train the PPO algorithm under conditions: without a reward attack, and with a reward attack in-
volving Gaussian noise with standard deviations of 0.1 and 0.5, respectively. In both reward attack
scenarios, the noise has a mean of 0, with attack noise standard deviations of 0.1 and 0.15, respec-
tively. In experiment (b), we test the trained PPO models that are attacked during training with
reward attacks, using standard deviations of 0.1 and 0.15. After the attack-based training, the mod-
els are evaluated in environments without any attacks.
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Figure 11: Evaluation SAC robustness on HalfCheetah-v4 tasks.
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Figure 12: Robust Safety RL Tasks.

choose. As shown in Figure 14, the frequency of attacks on tasks is illustrated. Perturbations can
occur at various points during the training and testing phases, with different frequencies.
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(c) Attack reward signal

Figure 13: Multi-Agent HalfCheetah-2x3 robustness: training attack on state, action, and reward for
all the two agents. S denotes state, A denotes action and R denotes reward, P denotes partial attacks.
Some of agents are attacked with various attack factors.
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Figure 14: Different levels of robust RL’s attack frequency.

As shown in Figure 15, we provide the results of robustness evaluations on the Ant-v4 task un-
der frequency-based adversarial attacks. The figure consists of two subplots, each examining the
performance of PPO-based algorithms under different attack levels and frequencies. In Figure (a),
we explore the impact of varying attack intensities at a fixed attack frequency (every 50 steps) tar-
geting the agent’s actions. As shown, PPO without adversarial intervention achieves the highest
episode rewards. However, as the attack intensity increases (PPO-F50-A-0.01, PPO-F50-A-0.05,
PPO-F50-A-0.1), the performance declines progressively. The highest intensity attack (PPO-F50-
A-0.1) results in the most significant reduction in rewards, indicating a substantial performance
drop under stronger attacks. In Figure (b), we examine the effect of varying attack frequencies
while keeping the attack intensity constant. Here, PPO-F50-S-0.15 and PPO-F100-S-0.15 repre-
sent attacks occurring every 50 and 100 steps, respectively. The results indicate that more frequent
attacks (PPO-F50-S-0.15) lead to a larger decline in episode rewards compared to less frequent at-
tacks (PPO-F100-S-0.15). This suggests that attack frequency plays a critical role in determining
the robustness of PPO algorithms. Overall, these findings demonstrate that both the intensity and
frequency of attacks significantly affect the performance of RL agents, with higher intensities and
more frequent attacks causing greater degradation in task performance.

C OTHER SETTINGS OF THE FRAMEWORK

C.1 BENCHMARK FEATURES

The features of the benchmark are as follows:

High Modularity: It is designed for flexible adaptation to a variety of research needs, featuring
high modularity to support a wide range of experiments.

Wide Coverage of : It provides a comprehensive set of tasks to evaluate robustness across different
RL scenarios. An overview of the task list is shown in Figure 17.

High Compatibility: It can be seamless and compatible with a wide range of existing environments.
An example is shown in Listing 1. Moreover, this benchmark supports vectorized environments,
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Figure 15: Robust Ant Tasks with Frequency attacks.

which means it can be useful to enable parallel processing of multiple environments for efficient
experimentation.

1 from robust_gymnasium.configs.robust_setting import get_config
2 args = get_config().parse_args()
3 action = env.action_space.sample()
4 robust_input = {"action": action, "robust_config": args}
5 observation, reward, terminated, truncated, info = env.step(robust_input)

Listing 1: An example of python interface

Support for New Gym API: It fully supports the latest standards in Gym API, facilitating easy
integration and expansion.

Adversarial Attack with LLMs: We feature an approach that leverages LLMs as adversary poli-
cies. An example is shown in Listing 2.

1 prompt = "This is about a robust reinforcement learning setting; we want
you as an adversary policy. If the current reward exceeds the
previous reward value, please input some observation noise to disturb
the environment and improve the learning algorithm’s robustness." "

The noise should be in this area:" +str((args.region_low, args.
region_high))+ ", the current reward:" + str(reward) + ", the
previous reward is" + str(self.previous_reward) + "please slightly
revise the current environment state values:" + str(observation) + ",
just output the revised state with its original format" "do not

output any other things."
2 prompt_state = gpt_call(prompt)
3 observation = prompt_state

Listing 2: An example of LLMs for robust learning

C.2 ROBUST NON-STATIONARY TASKS:

Inspired by OMPO (Luo et al., 2024), we provide various task settings to evaluate policy robust-
ness, as illustrated in Figure 16. During policy learning, we introduce adversarial attacks during
walking or running tasks by altering robot dynamics and environmental conditions. For instance,
we stochastically adjust the robot’s gravity and the environment’s wind speed, introducing uncer-
tain disturbances during policy learning. Additionally, we stochastically modify the robot’s physical
shape throughout the learning process to test and enhance policy robustness.

Specifically, in non-stationary Ant-v5 Tasks, during each step, we introduce noise into the agent’s
dynamics by attacking factors like the Ant robot’s gravity and the wind speed in the robot’s en-
vironment. As demonstrated in Equation (2) for attacks at initial and training steps, we introduce
deterministic perturbations to the Ant robot, such as variations in gravity and environmental wind
speed, the pseudo code is shown in Listing 3. Furthermore, Equation (3) is for initial noise, and
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Figure 16: Examples of robust non-stationary tasks (Luo et al., 2024).

Equation (4) is for noise during training we use these Equarions to consider the incorporation of
stochastic disturbances into the Ant robot model, again including factors like gravity fluctuations
and wind speed variations, the pseudo code is shown in Listing 4. Apart from wind and gravity
disturbances, we also investigate the robot shape disturbances during policy learning, as shown in
Equations (5)-(8), and an example of pseudo code is shown in Listing 5.

At the initial and training steps, if we choose non-stationary attack as deterministic noise,

Ant deterministic noise =

{
Gravity = 14.715,

Wind = 1.0.
(2)

if we choose non-stationary attack as stochastic noise,

Ant and Humanoid stochastic noise at initial steps =
{

Gravity ∼ Uniform(9.81, 19.82),

Wind ∼ Uniform(0.8, 1.2).
(3)

During training steps, if we choose non-stationary attack as stochastic noise, where iepisode denotes
the training step number,

Ant and Humanoid noise during training =

{
Gravity = 14.715 + 4.905 · sin (0.5 · iepisode) ,

Wind = 1.0 + 0.2 · sin (0.5 · iepisode) .
(4)

Walker stochastic noise at initial steps =
{

Torso Length ∼ Uniform(0.1, 0.3),

Foot Length ∼ Uniform(0.05, 0.15).
(5)

Walker Stochastic noise =

{
Torso Length = 0.2 + 0.1 sin(0.3 · iepisode)

Foot Length = 0.1 + 0.05 sin(0.3 · iepisode)
(6)

Hopper stochastic noise at initial steps =
{

Torso Length ∼ Uniform(0.3, 0.5),

Foot Length ∼ Uniform(0.29, 0.49).
(7)

Walker Stochastic noise =

{
Torso Length = 0.4 + 0.1 · sin(0.2 · iepisode),

Foot Length = 0.39 + 0.1 · sin(0.2 · iepisode).
(8)

1 if config.deter_noise:
2 gravity = 14.715
3 wind = 1.
4 else:
5 gravity = np.random.uniform(9.81, 19.82)
6 wind = np.random.uniform(0.8, 1.2)

Listing 3: An example of Non-stationary Ant python code for initial steps.
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1 if config.deter_noise:
2 gravity = 14.715
3 wind = 1.
4 else:
5 gravity = 14.715 + 4.905 * np.sin(0.5 * i_episode)
6 wind = 1. + 0.2 * np.sin(0.5 * i_episode)

Listing 4: An example of Non-stationary Ant python code for training steps.

1 if config.deter_noise:
2 torso_len = 0.2
3 foot_len = 0.1
4 else:
5 torso_len = 0.2 + 0.1 * np.sin(0.3 * i_episode)
6 foot_len = 0.1 + 0.05 * np.sin(0.3 * i_episode)

Listing 5: An example of Non-stationary Walker python code for training steps.

D REPRESENTATIVE EXAMPLES OF USING Robust-Gymnasium

In this section, we present an overview of the task environments, as illustrated in Figure 17. Addi-
tionally, we show some robustness-focused tasks, detailed in Tables 1-8.

Moreover, inspired by (Yu et al., 2020), to illustrate the standardized usage of our benchmark, we
propose the following framework for evaluation settings. These align with the principles of bench-
marking, including standardized performance metrics and evaluation protocols:

• Random attack (Easy) → Adversarial attack (Hard). Random Attack (Easy): Ran-
dom noise, drawn from distributions such as Gaussian or uniform, is added to the nominal
variables. This mode is applicable to all sources of perturbation and allows for testing ro-
bustness under stochastic disturbances, e.g., see Figure 5 (a) and (b). Adversarial Attack
(Hard): An adversarial attacker selects perturbations to adversely degrade the agent’s per-
formance. This mode can be applied to observation or action perturbations and represents
the most challenging scenario, e.g., see Figure 9 (a) and (b).

• Low state-action dimensions (Easy) → High state-action dimensions (Hard) As the
state and action space dimensions increase, the tasks become significantly more challeng-
ing. The difficulty level of tasks typically progresses from Box2D, Mujoco tasks, robot
manipulation, and safe tasks to multi-agent and humanoid tasks. For instance, the Hu-
manoid task, with a 51-dimensional action space and a 151-dimensional state space, is
substantially more challenging than the Mujoco Hopper task, which has a 3-dimensional
action space and an 11-dimensional state space.

Table 1: A List of Examples for Robustness in MuJoCo Tasks

Tasks\Robust type Robust State Robust Action Robust Reward Robust Dynamics
Ant-v2-v3-v4-v5 ✓ ✓ ✓ ✓
HalfCheetah-v2-v3-v4-v5 ✓ ✓ ✓ ✓
Hopper-v2-v3-v4-v5 ✓ ✓ ✓ ✓
Walker2d-v2-v3-v4-v5 ✓ ✓ ✓ ✓
Swimmer-v2-v3-v4-v5 ✓ ✓ ✓ ✓
Humanoid-v2-v3-v4-v5 ✓ ✓ ✓ ✓
HumanoidStandup-v2-v3-v4-v5 ✓ ✓ ✓ ✓
Pusher-v2-v3-v4-v5 ✓ ✓ ✓ ✓
Reacher-v2-v3-v4-v5 ✓ ✓ ✓ ✓
InvertedPendulum-v2-v3-v4-v5 ✓ ✓ ✓ ✓

E EXPERIMENT SETTINGS

We deploy several SOTA baselines in our benchmark to evaluate their robustness across various
challenging scenarios. The implementation parameters associated with these methods are provided
in Tables 9-13.

24



Published as a conference paper at ICLR 2025

Figure 17: An overview of task environments and supported disruptions in Robust-Gymnasium.

Table 2: A List of Examples for Robustness in Box2d Tasks

Tasks \Robust Type Robust State Robust Action Robust Reward
CarRacing-v2 ✓ ✓ ✓

LunarLanderContinuous-v3 ✓ ✓ ✓
BipedalWalker-v3 ✓ ✓ ✓

LunarLander-v3 (Discrete Task) ✓ ✓ ✓

Since RL performance can be significantly influenced by different random seeds (Henderson et al.,
2018; Colas et al., 2018), we aim to balance computational costs and experimental rigor by typically
using 3–5 seeds in our experiments. For single-agent settings, we use the same 3 seeds across all
baselines to ensure a fair comparison. In multi-agent settings, where variance tends to be higher, we
employ the same 5 seeds across all baselines to achieve a more reliable evaluation. We recognize the
importance of robust experimental evaluation and intend to include additional seeds in future studies
to further examine RL robustness.

Moreover, when selecting different robust disturbance parameters, the choice can significantly af-
fect the evaluation of various RL algorithms. For instance, in standard RL, disturbances can be
modeled as Gaussian distributions, such as N (0, 0.1) or N (0, 0.15), applied to the state or action
space, which can notably influence the performance of algorithms like PPO. Alternatively, uniform
disturbances within the range [0.2, 0.8] can be used to effectively assess the robustness of standard
RL approaches. For robust RL, additional parameters are often employed to evaluate algorithm ro-
bustness. For example, as for the evaluation robustness of MOPO method, wind speed may follow
a uniform distribution U(0.8, 1.2), while robot gravity may vary uniformly within U(9.81, 19.82).
Other factors include variations in the robot’s physical dimensions, such as the torso length, which
can be expressed as the original length plus 0.1 sin(0.2·iteration number), and the foot length, which
follows a similar perturbation. Our benchmark also incorporates robust parameters to evaluate the
safety of RL algorithms. For example, Gaussian disturbances N (0, 0.3) are particularly effective for
assessing the robustness of safe RL algorithms such as PCRPO and CRPO. In the context of multi-
agent RL, robustness can be evaluated by selectively perturbing partial agents. Gaussian distur-
bances, such as N (0, 0.1) or N (0, 0.15), applied to the state or action space, can provide significant
insights into the robustness of algorithms like MAPPO and IPPO.
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Table 3: A List of Examples for Robustness in Robosuite Tasks

Tasks \Robust Type Robust State Robust Action Robust Reward
Lift ✓ ✓ ✓

Door ✓ ✓ ✓
NutAssembly ✓ ✓ ✓

PickPlace ✓ ✓ ✓
Stack ✓ ✓ ✓
Wipe ✓ ✓ ✓

ToolHang ✓ ✓ ✓
TwoArmLift ✓ ✓ ✓

TwoArmPegInHole ✓ ✓ ✓
TwoArmHandover ✓ ✓ ✓
TwoArmTransport ✓ ✓ ✓

MultiDoor ✓ ✓ ✓

Table 4: A List of Examples for Robustness in Safety Tasks

Tasks \Robust Type Robust State Robust Action Robust Reward
SafetyAnt-v4 ✓ ✓ ✓

SafetyHalfCheetah-v4 ✓ ✓ ✓
SafetyHopper-v4 ✓ ✓ ✓

SafetyWalker2d-v4 ✓ ✓ ✓
SafetySwimmer-v4 ✓ ✓ ✓
SafetyHumanoid-v4 ✓ ✓ ✓

SafetyHumanoidStandup-v4 ✓ ✓ ✓
SafetyPusher-v4 ✓ ✓ ✓

SafetyReacher-v4 ✓ ✓ ✓

Table 5: A List of Examples for Robustness in Adroit Hand Tasks

Tasks \Robust Type Robust State Robust Action Robust Reward
AdroitHandDoor-v1 ✓ ✓ ✓

AdroitHandHammer-v1 ✓ ✓ ✓
AdroitHandPen-v1 ✓ ✓ ✓

AdroitHandRelocate-v1 ✓ ✓ ✓

Table 6: A List of Examples for Robustness in Hand Manipulation Tasks

Tasks \Robust Type Robust State Robust Action Robust Reward
HandManipulateEgg BooleanTouchSensors-v1 ✓ ✓ ✓

HandReach-v2 ✓ ✓ ✓
HandManipulateBlock-v1 ✓ ✓ ✓
HandManipulateEgg-v1 ✓ ✓ ✓
HandManipulatePen-v1 ✓ ✓ ✓

Table 7: A List of Examples for Robustness in Fetch Manipulation Tasks

Tasks \Robust Type Robust State Robust Action Robust Reward
FetchPush-v3 ✓ ✓ ✓

FetchReach-v3 ✓ ✓ ✓
FetchSlide-v3 ✓ ✓ ✓

FetchPickAndPlace-v3 ✓ ✓ ✓
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Table 8: A List of Examples for Robustness in Multi-Agent Tasks

Tasks \Robust Type Robust State Robust Action Robust Reward
MA-Ant-2x4, 2x4d, 4x2, 4x1 ✓ ✓ ✓
MA-HalfCheetah-2x3, 6x1 ✓ ✓ ✓

MA-Hopper-3x1 ✓ ✓ ✓
MA-Walker2d-2x3 ✓ ✓ ✓
MA-Swimmer-2x1 ✓ ✓ ✓

MA-Humanoid-9—8 ✓ ✓ ✓
MA-HumanoidStandup-v4 ✓ ✓ ✓

MA-Pusher-3p ✓ ✓ ✓
MA-Reacher-2x1 ✓ ✓ ✓

Many-MA-Swimmer-10x2, 5x4, 6x1, 1x2 ✓ ✓ ✓
Many-MA-Ant-2x3, 3x1 ✓ ✓ ✓
CoupledHalfCheetah-p1p ✓ ✓ ✓

Parameters Value Parameters Value
buffer size 4096 hidden size [64, 64]

lr 3e-4 gamma 0.99
epoch 100 steps per epoch 30000

steps per collect 2048 repeat per collect 10
batch size 64 training num 8

testing num 10 rew norm True
vf coef 0.25 ent coef 0.0

gae lambda 0.95 bound action clip clip
lr decay True max grad norm 0.5
eps clip 0.2 dual clip None

value clip 0 norm adv 0
recompute adv 0

Table 9: Parameter values used for PPO (Schulman et al., 2017), MAPPO (Yu et al., 2022) and IPPO
(De Witt et al., 2020) in experiments.

Parameters Value Parameters Value
buffer size 4096 hidden size [64, 64]

actor lr 1e-3 critic lr 1e-3
gamma 0.99 tau 0.005
alpha 0.0.2 auto alpha False
epoch 100 steps per epoch 30000

steps per collect 2048 update per step 1
start time step 10000 n step 1

batch size 64 training num 8
testing num 10

Table 10: Parameter values used for SAC (Haarnoja et al., 2018) in the experiment.

Parameters Value Parameters Value
start steps 5000 num steps 300000

eval True eval episode 10
eval times 10 local reply size 1000

gamma 0.99 tau 0.005
lr 3e-4 alpha 0.2

batch size 256 update per step 3
target update interval 2 hidden size 256

gail batch 256 exponent 1.5
tomac alpha 1e-3 reward max 1

Table 11: Parameter values used for OMPO (Luo et al., 2024) in non-stationary MuJoCo experi-
ments.
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Parameters Value Parameters Value
image obs False actor lr 3e-4

critic lr 1e-3 gamma 0.99
tau 5e-3 alpha 0.1

auto alpha True alpha lr 3e-4
hidden size [256, 256, 256] n steps 4
buffer size 1e6 step per epoch 1e4

step per collect 20 batch size 128
start time step 0 exploration noise 0

horizon 300 camera agentview
height 128 width 128

encoder type mlp training num 10
test num 10 sigma 0.01
bound 0.01 augmented ratio 0.5

vae sigma 1.0 control frequency 20

Table 12: Parameter values used for RSC (Ding et al., 2023a) in the causaldoor/causallift experi-
ments; for DBC (Zhang et al., 2021a), based on above parameters, transition model type is proba-
bilistic, encoder feature dim is 256, encoder lr is 1e-4, decoder lr is 1e-4, bisim coef is 0.5, log std
min is -10, log std max is 2; for ATLA (Zhang et al., 2021b), policy update max is 100, adv update
max is 100, and adv eps is 0.01.

Parameters Value Parameters Value
gamma 0.995 hidden layer dim 64

cost limit 0.04 slack bound 5e-3
exploration iteration 40 epoch 500

tau 0.97 l2 reg 1e-3
max kl 1e-2 damping 1e-1

batch size 150000 gradient wr 0.4
gradient wc 0.6

Table 13: Parameter values used for PCRPO (Gu et al., 2024b) and CRPO (Xu et al., 2021) in the
safety experiments.
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