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Abstract

Federated Learning (FL) has gained significant attention for its privacy-preserving
capabilities in distributed learning environments. However, the inherent system
heterogeneity across edge devices brings significant challenges in deploying a
unified global model. Although many submodel extraction methods are designed
to address these challenges by selecting a subset of parameters from the global
model to accommodate client constraints, our experiments show that existing sub-
model extraction methods exhibit significant performance discrepancies between
submodels with different resource levels, limiting the overall performance of the
federated learning system. To overcome these limitations, we propose FedLASE
— a novel Layer-Adaptive Submodel Extraction framework that selects important
parameters while preserving the structural integrity of the client models, thereby
achieving balanced performance across heterogeneous FL clients and improving
the convergence. Specifically, our approach quantifies layer importance based on
parameter importance and hierarchically extracts critical parameters within each
layer while strictly satisfying resource constraints. Theoretically, we rigorously
analyze the convergence of FedLASE and investigate the influence of system het-
erogeneity on its performance. Extensive experiments demonstrate the superiority
of FedLASE over the state-of-the-art methods and its robustness across various
system-heterogeneous scenarios.

1 Introduction

Federated Learning [1} 2] has emerged as a powerful framework for decentralized machine learning,
allowing multiple clients, such as mobile devices or Internet of Things systems, to collaboratively
train machine learning models without sharing their private data. This approach ensures data privacy
and security, as the data remains on the client devices while only model updates are shared. Given
the increasing prevalence of edge computing and the growing concerns around data privacy [3} 4[],
FL has gained significant attention as a practical solution for training large-scale models across a
diverse set of clients [} 16} [7} [8]. However, real-world FL systems are often challenged by system
heterogeneity [9,/10, [11], where clients possess different computational resources, storage capacities,
and network bandwidth. For simplicity, we characterize the system heterogeneity by the proportion
of the model that a client can accommodate relative to the full model, as defined in Definition
While high-resource clients can accommodate full-scale deep learning models, resource-constrained
clients, such as mobile devices or embedded systems, struggle to train large models effectively.
This imbalance leads to inefficient utilization of computational resources and suboptimal model
performance.

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.
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(a) Resource level 1. (b) Resource level 1/4.  (c) Resource level 1/16.  (d) Resource level 1/64.

Figure 1: Convergence of different methods across all client resource levels for CIFAR-100 and het-
erogeneous system {1,1/4,1/16,1/64}_{5, 10, 25,60}, showing that the performance gap across
resource levels for SOTA methods varies significantly, especially for larger clients with sufficient
resources but fewer in number (see (a)), while our method exhibits a more balanced performance.

* The heterogeneous system {1,1/4,1/16,1/64}_{5, 10,25, 60} has four distinct resource levels: 5 clients
capable of running the full model (size 1), 10 clients operating with a reduced model of size 1/4, 25 clients using
a smaller model of size 1/16, and 60 clients assigned the smallest model of size 1/64, as shown in Deﬁnitionm

To address system heterogeneity, existing solutions can be broadly categorized into three categories.
The first category discards resource-constrained clients or limits the model architecture to the weakest
client [12[13], thereby ensuring system-wide uniformity, but at the cost of underutilizing available
computational or data resources. The second category assigns separate models to different client
groups based on their computational capacities [[14, 15 [16]. Although this enables clients to train
models suited to their resources, aggregating models of different sizes and architectures is inherently
challenging, especially for knowledge distillation-based approaches, which often require additional
public datasets, complicating training and posing privacy risks. The third category, submodel
extraction methods [9, [17, [18] 19} 20} 21} 22| [23]], provides a more flexible solution by extracting
smaller submodels from a shared global model. This method allows clients to participate regardless
of resource constraints while maintaining a unified global model.

Among these methods, submodel extraction has gained increasing attention due to its ability to
balance model flexibility and consistency. Various extraction techniques have been proposed, ranging
from random selection (e.g., Federated Dropout [17]) to static submodel assignment (e.g., HeteroFL.
[9], FjORD [24]). Although static submodel assignment methods improve training stability compared
to random selection, they limit the adaptability of submodels to different clients, often leading to
inefficient parameter utilization. FedRolex [18]] alleviated this issue by introducing a rolling extraction
strategy to improve parameter coverage, while methods such as ScaleFL [25] and DepthFL [[13]]
constructed submodels based on predefined width and depth constraints, incorporating self-distillation
to enhance knowledge transfer. However, the aforementioned methods treat all parameters equally,
lacking a principled mechanism to determine which parameters should be extracted. Recently,
Wu et al. [21] introduced an importance-aware extraction method that ranks parameters globally
based on their magnitudes. Nevertheless, this method overlooks inter-layer discrepancies, leading
to excessive pruning in certain layers and disrupting the structural integrity of smaller submodels.
Our experiment presented in Fig. [T|reveals that existing state-of-the-art (SOTA) submodel extraction
methods exhibit significant performance discrepancies across different resource levels, leading to
suboptimal performance due to the difficulty of sufficiently utilizing the information of other clients.
These findings indicate that treating all layers uniformly or relying solely on a global ranking strategy
is insufficient, highlighting the need for a more structured approach that takes into account both layer
importance and parameter importance during the submodel extraction process.

Based on these observations, we propose FedLASE (shown in Fig. [2), a novel Layer-Adaptive
Submodel Extraction framework designed to balance client performance in system-heterogeneous
federated learning by preserving the structural integrity of the network architecture through layer-wise
extraction of important parameters. Unlike existing methods that rely on global ranking or uniform
selection, FedLASE dynamically extracts submodels by incorporating both layer importance and
parameter importance, ensuring that critical structural components are retained across different
client resource levels. This leads to more stable training, improved convergence, and enhanced
performance, particularly in heterogeneous federated learning environments that more accurately
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Figure 2: The framework diagram of FedLASE. The server first aggregates the models uploaded
by clients to update the global model (D), calculates the importance of each parameter and layer
(®), determines the layer extracting ratios based on client resources and layer importance (@), then
extracts submodels based on extracting ratios (@) and sends them the clients for local training (3)).

reflect real-world scenarios, where the number of resource-rich clients is limited and the majority are
resource-constrained.

The key contributions of this paper are as follows:

» We propose a novel importance-aware layer-adaptive submodel extraction framework (FedLASE)
that enables efficient training across all clients in system-heterogeneous FL.

* We show that adaptively selecting parameters based on layer importance and parameter impor-
tance can ensure the preservation of critical structural components across all resource levels, thus
balancing the performance of submodels and improving convergence.

* We provide a rigorous proof that FedLASE converges at a rate of O (%), and discuss the impact

of system heterogeneity on convergence. To the best of our knowledge, this is the first time to
analyze the impact of system heterogeneity on the convergence rate in system-heterogeneous FL.

» Extensive experiments demonstrate the superiority of FedLASE over the existing SOTA methods
in terms of both stability and accuracy under various system heterogeneity scenarios, validating
its effectiveness in real-world federated learning applications.

The remainder of this paper is organized as follows. Section [2]introduces the standard formulation of
FL and extends it to the system-heterogeneous setting. Section [3|provides a detailed description of
the proposed FedLASE framework. Theoretical analysis is presented in Section[d] while Section[3]
reports extensive experimental results that demonstrate the effectiveness and superiority of FedLASE.
Finally, Section [6]concludes this paper and outlines potential directions for future research.

2 Preliminaries

In this section, we first introduce the standard formulation of FL and then extend it to the system-
heterogeneous setting, which serves as the foundation of our method in subsequent sections.

The objective of traditional FL is to optimize a global model § € R? by minimizing the aggregated
loss across N clients [11[7], i.e.,

N
: a
min F9) = ;pnFn(9)7

where F,(0) = >, 1(6; d}t) /m., represents the local objective function for client n, I(-) is the
loss function, p,, denotes the aggregation weight, the term dj;! corresponds to the kth data sample
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of client n, and m,, is the total number of local training samples for client n. To accommodate the
diverse computational capabilities of clients in real-world FL scenarios, system-heterogeneous FL.
allows each client to train a submodel suited to its resource constraints. To formalize this extension
and analyze the impact of system heterogeneity (shown in Section[d)), we first give a definition of
heterogeneous system in federated learning.

Definition 1: (Heterogeneous System) In federated learning setting, a heterogeneous sys-
tem denoted by {levely,levels,...,level,}_{Ny, No,...,N,} consists of p resource levels
{levely, levels, . .., level, } and the ith resource level is allocated N; clients with level; € (0, 1] repre-
senting the fraction of the global model that clients at this level can accommodate and Zle N; = N.

Based on this definition, we now turn to system-heterogeneous federated learning. Denote the

resource capacity of client n by v € {levely, levels,. .., level,}. Then the submodel for client n
can be constructed by applying a binary mask M™ € {0, 1} to the global model 6
" =00 M",

where © represents element-wise multiplication, M* = 1 means that the ¢th parameter is retained,
and M.* = 0 means that it is pruned. Obviously, the number of retained parameters in each submodel
satisfies ||0™]|o0 < r"d. Under this system-heterogeneous FL setting, the global objective can be

reformulated as:
N

0M1M2 MNan 9®M” an "),

where F,(0") = S0 1,(0";d})/my,. For simplicity, we assume that all clients are equally
weighted in the aggregatlon process, i.e., p, = 1/N.

3 FedLASE: Importance-aware Layer-adaptive Submodel Extraction

In system-heterogeneous federated learning, extracting an appropriate submodel for each client
is crucial for balancing computational resources with model expressiveness. However, existing
submodel extraction methods often overlook the differences of parameters in different layers, resulting
in the loss of critical information and reduced representational capacity of the submodels.

To address these limitations, we propose FedLLASE, an importance-aware layer-adaptive submodel ex-
traction framework that dynamically extracts parameters at each layer based on parameter importance
and layer importance. The overall framework is presented in Fig. [2] and the corresponding algorithm
is provided in Algorithm [I] (shown in the Appendix [B]due to space limitations). Specifically, to
achieve effective submodel extraction while maintaining model integrity, FedLASE first evaluates
the importance of each parameter and layer in the aggregated global model, identifying the most
critical components for extraction (shown in Fig. 2] (®)). Then, leveraging the computed importance
scores along with client resource constraints, the server determines appropriate layer-wise extraction
ratios for each client (shown in Fig. 2](®)), ensuring that submodels remain computationally feasible
while preserving the essential structural information of the network architecture. Based on these
extraction ratios, important parameters are selectively extracted from each layer to form client-specific
submodels (shown in Fig. [2](®))), which are subsequently trained locally and aggregated (shown in
Fig. 2 (®) and (D)) to refine the global model. In the following subsections, we provide a detailed
explanation of each component.

3.1 Importance Measurement for Parameters and Layers

Existing research indicates that the magnitude of model parameters can serve as an effective indicator
of their importance [26} [27], with parameters having higher absolute values generally exhibiting a
greater impact on the expressiveness of the model. Although there are alternative metrics for the
estimation of parameter importance [28| 29,130, [31]], we adopt the magnitude-based criterion for its
simplicity and computational efficiency.

Unlike previous methods that rank all parameters globally, FedLASE calculates importance scores
within each layer to preserve structural integrity and avoid excessive pruning in certain layers.
Specifically, for the ith parameter 6; ; in the /th layer of the global model 6, its importance score is
measured by s; ; = |6 ;|. In this paper, we measure the importance of the /th layer (denoted by S;)
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using the mean importance score of the parameters within that layer, i.e., S; = mean;s; ;. To mitigate
dominance by extreme values while maintaining relative importance relationships, we normalize
layer importance using the following logarithmic transformation to ensure a more balanced allocation
of the extracted parameters between layers:

g log(1+ S))
e > log(1+8;5)

3.2 Layer-adaptive Submodel Extraction

After obtaining the layer importance scores, another crucial aspect is determining the extraction ratio
for each layer across different clients, ensuring that the resource constraints of each client are satisfied.
Let r™ denote the fraction of the global model allocated to client n, implying that the number of
parameters extracted by client n from the global model will not exceed d” £ ™d with d being the
total number of parameters in the global model. Considering the fact that the first layer, last layer,
normalization layers, and bias terms are crucial for preserving input representations, stabilizing
training, and maintaining expressiveness, especially in smaller submodels [32| 31]], we fully retain
these components. Let d represent the number of parameters retained due to these prior constraints.
The remaining parameters available for extraction are then bounded by d" — d, with the assumption
that d™ > d.
Denote the set of prunable layers as {l1, 2, ..., }. To allocate extraction ratios according to the
importance of each layer, we assign a higher extraction ratio to more critical layers. Therefore, based
on the resource limitation of clients, we assume the extraction ratio of the /;th layer for client n as
. =a"Sy,, (a" >0).

To ensure the submodel satisfy the resource budget of client n, the following inequality should be
satisfied: _

'r‘lnldll + ledlz R TlnLdlL <d" —d,
where d;, is the number of parameters in the /;th layer of the global model 8, excluding biases. Thus,

the upper bound of o™ is
L
o < (d"—d)/( D Sdy

For simplicity, we can set the importance-aware extraction ratio of each layer for client n as
=8, (d" - Zsl d,) ey

After getting the layer-wise extraction ratios for each client, we extract the top ;! - d;, parameters in

the /;th layer based on their importance. This results in a threshold value 9" and a corresponding
mask M} for the /;th layer, which together define the extracted submodel for client n.

By 1ncorp0rat1ng prior constraints on key structural components and adapting extraction ratios based
on layer importance, our method ensures the retention of essential information for each client,
balancing the performance across submodels and enhancing both convergence and robustness in
various heterogeneous FL environments.

3.3 Local Training Optimization and Submodel Aggregation

To refine submodel extraction and improve the efficiency of local training, we integrate the straight-
through estimation (STE) technique [21} 133} 134] into the local training process. This method
enhances gradient flow by sharpening the distinction between important and less important parameters.
Specifically, to obtain the submodel for client n, we use the probability clip((6;; — 6;")/(6,; +

él”), 0, 1) to set the mask for the jth parameter in the /th layer §; ; to 1 with 671” being the extraction
threshold in the Ith layer for client n. Then, the /th layer of the gradient updated during the local
training process for client n is adjusted as

(van(e@M ))l - (VFn(a@M ))l@Ml ® (H(Iemél”)?)' 2)
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The derivation of Eq. (2)) is similar to that of Eq. (3) in [21]], and thus is omitted.

After local training, each client uploads its trained submodel to the server. Due to the model
heterogeneity introduced by the layer-wise extraction process, different clients retain different subsets
of model parameters. To protect the personalization of the subnetworks, we adopt the following
overlapping averaging strategy [27, 35]]

o= (S ew) /(L)

This strategy ensures that each parameter in the global model is updated based only on clients that
have retained and trained it, preventing issues arising from missing updates in pruned parameters and
preserving the personalization of clients.

3.4 Complexity Analysis

In the final of this section, we conduct a comparative analysis of computational and communication
efficiency between FedLLASE and the SOTA methods, demonstrating that FedLLASE achieves a
balanced computational and communication complexity compared with the SOTA methods. Detailed
discussion is presented in Appendix [C]due to space limitations.

4 Theoretical Analysis

To theoretically evaluate the impact of system heterogeneity, we introduce a new assumption about
model noise reduction based on Definition[I} This assumption extends the concept in [19], aiming to
quantify the noise introduced by each client due to the submodel extraction process, which is related
to its resource levels.

Assumption 1: (Model Reduction Noise) For heterogeneous system {levely, levels, .. ., level, } _
{N1,Na,...,N,}, assume that there exist some constants d; > 0 such the model reduction noise for
the client with level; is bounded by

16 — 0 - M2 < (1 — level; )7 16, “)

where M,*"*!" is the mask for the ith resource level in round ¢.

Obviously, a higher resource level means less model reduction noise. When the mask is generated by
globally sorting the parameters based on their magnitudes and level; - d is an integer, it is easy to
prove that equality holds in Eq. @) for é; = 1. Thus, the above assumption is well-defined.

Based on Assumption []and the standard Assumptions 2[5 outlined in Appendix[D.2] we establish
the following convergence theorem, and its proof is presented in Appendix [D.2]for brevity.
Theorem 1: Suppose Assumptions|[I] 2] 3| @ or[T] 2] B] 5| hold and the local learning rate satisfies

n = O(1/(K+/T)) with K and T being the number of local epoch and total round. Then the
proposed FedLASE converges to a small neighborhood of a stationary point of the standard FL under

heterogeneous system {levely, levels, . .., level,} _{N1, Na,..., N}
1 -2 1 11 o1 1o
T E(VF(at))i go(ﬁ) + o(ﬁ) T O D0 Ni(1 ~ Tevel )37 4
t=0 i€, t=0 i=1 )
1 T—1 p
2 2
+0(7) ; ;Ni(l — level, )82 [10: 1,
where Z; is the index set of elements updated in the tth round.

Remark 1: For the ideal environment in which all clients have sufficient resources to train the
full model, i.e., the system {1} _{ N}, the last two terms on the right-hand side of Eq. (5) become
zero. Therefore, FedLASE converges with a rate of O(1/+/T). In heterogeneous client resource
settings, since + ZtT;()l P Ni(1—1level;)6?(|6:]|? in Eq. (3) is often bounded [19]], FedLASE will
converge to a small neighborhood of a stationary point of the standard FL. Moreover, for the fixed
client allocation { N1, Na, ..., Np}, the convergence upper bound becomes smaller as the resource
level increases. In contrast, when the resource level {levely, levels, . . ., levelp} is fixed, the larger the
number of clients with a higher resource level, the smaller the convergence upper bound, as verified
in Section
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5 Experiments

In this section, we evaluate the effectiveness and superiority of our proposed method in system-
heterogeneous federated learning. The basic experimental configurations are as follows.

Datasets and models. To evaluate the effectiveness of FedLASE, we conduct experiments on two
classical image classification datasets: CIFAR-10 and CIFAR-100 [36]. We employ ResNet-18 as the
backbone model, replacing batch normalization (BN) layers with static BN [21} 37].

Data heterogeneity. To evaluate the impact of data heterogeneity on federated learning, we con-
sider two sets of data distributions across clients: IID distribution and Dirichlet distribution with
concentration parameter « (denoted as Dir(«)) [21].

System heterogeneity. To evaluate the impact of system heterogeneity, the two sets of client resource
levels {1,1/4,1/16,1/64} and {1,16/25,9/25,4/25,1/25} are considered. Unlike previous stud-
ies assuming an equal distribution of clients across all resource levels, we explore multiple allocation
strategies to better reflect real-world scenarios, where resource-rich clients are relatively scarce
while resource-constrained clients are more prevalent. Specifically, we consider three different client
allocation schemes for 100 clients: {5,10,25,60}, {10, 20, 30,40}, and {25, 25, 25,25} for the
four-level setting, as well as {5, 5, 10, 20,60}, {5, 10,15, 20,50}, and {20, 20, 20, 20, 20} for the
five-level setting.

Baselines. To evaluate the effectiveness of our approach, we compare it with the SOTA submodel
extraction methods: HeteroFL [9], FedRolex [18]], ScaleFL [25]], FIARSE [21]] and a simple random
baseline where the parameters are extracted randomly in each layer with equal proportion, while fully
preserving the first and last layers.

Experimental setup. To ensure a fair and comprehensive evaluation, we adopt the standardized
training procedure across all methods. In each communication round, 10% of the 100 clients are
randomly selected to participate in training. The training process spans 2000 communication rounds,
with each selected client performing 5 local epochs per round using a batch size of 20, as specified in
[21]. The default data partitioning follows a Dirichlet distribution with o = 0.1. For optimization, we
employ SGD with momentum. The learning rate is selected from {0.01, 0.1}, while the momentum
coefficient is chosen from {0.0,0.8,0.9}. All experiments were conducted on 2 NVIDIA GeForce
RTX 4090 GPUs.

Evaluation. For performance evaluation, we aggregate the test datasets of all clients to form a global
test set. By default, all results correspond to the best-performing hyperparameter configuration. To
ensure robustness and stability, we report the average Top-1 accuracy over the last 20 communication
rounds, mitigating potential performance fluctuations. Each experiment is repeated three times with
different random seeds, and the final results are presented as the average accuracy across these runs.

5.1 Performance Comparison with Baselines

Local Test Accuracy (AccL) and Global Test Accuracy (AccG). To evaluate the effectiveness and
generalization of FedLASE, we compare its performance against the state-of-the-art methods from
two perspectives: local test accuracy and global test accuracy. The results of AccL and AccG for
different methods under all client resource levels are summarized in Table [T} For AccL, FedLASE
consistently outperforms existing methods across all system heterogeneity settings, achieving the
highest average accuracy in all resource levels. Specifically, FedLASE achieves an average AccL
of 41.95% and 41.35% under two sets of system-heterogeneous scenarios, which are higher than
the second-best method by 5.55% and 4.82%, respectively. Notably, for the highest resource level
(i.e., resource level 1), our method outperforms the second-best method by 22.65% and 14.94%,
demonstrating the effectiveness of FedLASE to enhance the model performance of resource-rich
clients, even when the number of such clients is limited. For AccG, FedLASE still maintains clear
superiority, surpassing the second-best method by 9.56% and 7.88% in average global accuracy
under two sets of scenarios. These results further highlight its superiority and strong generalization
capability.

Balanced Client Performance. To provide a more intuitive understanding of the advantages for our
method, we analyze the convergence behavior of different approaches across all client resource levels
for heterogeneous system {1,1/4,1/16,1/64}_{5,10,25,60}, as shown in Fig.|l} From these
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Table 1: Comparison of accuracy for different methods across all client resource levels under CIFAR-
100 and two sets of heterogeneous systems.

. Mean Resource level 1 Resource level 1/4  Resource level 1/16 ~ Resource level 1/64
Scenario Method
AccL AccG AccL AccG AccL AccG AccL AccG AccL AccG
Random  1.20 1.91 2.82 3.56 1.64 1.92 1.01 1.14 1.07 1.03
HeteroFL  28.01 22.98 14.71 16.99 24.01 21.21 26.28 25.41 30.51 28.31
{1,1/4,1/16,1/64} FedRolex 24.70 22.61 18.27 19.31 24.66 22.92 26.16 24.82 24.63 23.38
_{5,10,25,60} ScaleFL ~ 36.40  27.78 14.37 17.18 30.60 27.14 34.26 31.23 40.10 35.56
FIARSE 3245 25.35 11.91 15.80 24.92 23.71 31.92 29.82 3547 32.06
FedLASE 41.95 37.36 40.92 36.26 41.56 36.94 40.90 37.78 42.55 38.65
Random 223 3.36 6.54 7.17 3.78 3.89 1.29 1.29 1.08 1.10
HeteroFL ~ 27.48 25.61 19.77 21.22 29.10 27.14 28.33 28.47 27.97 25.64
{1,1/4,1/16,1/64} FedRolex 26.54 25.26 2574 2531 30.38 27.93 30.01 27.66 22.21 20.15
_{10,20, 30,40} ScaleFL ~ 36.53  31.31 2293 23.37 35.78 32.03 36.10 3434 40.63 35.49
FIARSE  33.42 29.69 21.92 22.90 32.69 30.11 3522 34.30 35.31 31.47
FedLASE 41.35 39.19 40.68 38.33 41.22 39.10 42.17 41.40 40.96 37.93

* Mean: the average accuracy of all resource levels; AccL/AccG: the local/global test accuracy.
* The methods marked in bold and underlined represent the best-performing methods and second-best methods, respectively.

Table 2: Comparison of average AccG for different methods across two sets of heterogeneous systems.
{1, 1/4, 1/16, 1/64} {1, 16/25, 9/25, 4/25, 1/25}
{5, 10, 25, 60} {10, 20, 30, 40} {25, 25, 25,25} {5,5, 10, 20, 60} {5, 10, 15, 20, 50} {20, 20, 20, 20, 20}

Dataset Method

Random  10.15 (] 66.38) 10.79 (1 68.55) 20.40 (4 59.27) 11.68 (1 71.19) 13.28 (| 69.52) 45.94 (4 36.55)
HeteroFL  61.41 ({ 15.12) 65.64 (. 13.70) 73.88 (1 5.79) 65.63 (1 17.24) 67.87 (4 14.93) 72.51 (4 9.98)
FedRolex 58.31 (| 18.22) 65.42 (4 13.92) 65.09 ({ 14.58) 69.71 (1 13.16) 71.82({ 10.98) 73.75 (1 8.74)

CIFAR-10 ScaleFL  52.52 (] 24.01) 57.28 ({ 22.06) 61.72 (4 17.95) 50.97 (1 31.90) 55.89 (4 26.91) 61.07 (4 21.42)
FIARSE  61.60 (| 14.93) 72.04 (1 7.30) 79.05 (1 0.62) 72.37 (1 10.50) 75.65 (1 7.15) 79.59 (1 2.90)
FedLASE 76.53 79.34 79.67 82.87 82.80 82.49
Random 191 (] 35.44) 3.36 (] 35.81) 12.67 (] 26.12) 5.01 (1 41.14) 10.06 (] 34.94) 25.13 (4 19.93)

HeteroFL  22.98 (| 14.37) 25.61 ({ 13.56) 27.87 (1 10.92) 23.94 (1 22.21) 25.34 (4 19.66) 26.67 ({ 18.39)
FedRolex 22.61 (] 14.74) 25.26 (. 13.91) 28.12 (4 10.67) 29.03 (1 17.12) 30.17 (4 14.83) 3339 (J 11.67)
ScaleFL ~ 27.78 (1 9.57) 31.31 () 7.86) 35.29 (4 3.50) 27.03 (1 19.12) 29.46 (1 15.54) 34.93 (4 10.13)
FIARSE  25.32 (] 12.03) 29.69 (1 9.48) 35.10 ({ 3.69) 30.15 ({ 16.00) 33.38 () 11.62) 38.13 (J 6.93)
FedLASE 37.35 39.17 38.79 46.15 45.00 45.06

CIFAR-100

* Resource levels: {1, 1/4, 1/16, 1/64} and {1, 16/25, 9/25, 4/25, 1/25}.
* Client allocation schemes: {5, 10, 25, 60}, {10, 20, 30, 40}, {25, 25, 25, 25}, {5, 5, 10, 20, 60}, {5, 10, 15, 20, 50}, {20, 20, 20, 20, 20}.
* The values in parentheses indicate the accuracy reduction relative to our method.

results, we observe that FedLASE exhibits more stable performance across different resource levels,
whereas existing methods suffer from significant performance gaps between high and low resource
levels. Another key observation is that larger submodels in SOTA methods tend to underperform
compared to smaller ones, despite being deployed on resource-rich clients. This counterintuitive
behavior results from an imbalance in training updates: smaller submodels, hosted on the majority
of resource-constrained clients, receive more frequent updates, while larger submodels, trained on
fewer high-resource clients, are updated less frequently, leading to suboptimal learning. By contrast,
FedLASE mitigates this issue through its importance-aware layer-adaptive submodel extraction
strategy. By prioritizing essential parameters at each layer, FedLASE ensures that all submodels
retain critical structural information, allowing large submodels to maintain competitive performance
without compromising small submodel efficiency.

5.2 Impact of System Heterogeneity

To systematically investigate the impact of system heterogeneity, we extend our evaluation beyond
CIFAR-100 to additional datasets and heterogeneous systems, as detailed in Table [2] In most system
settings, the random method fails to converge, highlighting the inherent difficulty of achieving stable
learning in highly imbalanced environments. This challenge becomes even more pronounced in
realistic federated learning scenarios, where high-performance clients are scarce and the majority of
participating clients possess only limited computational resources.

From Table [2} it can be seen that FedLASE consistently outperforms SOTA methods, achieving
significantly superior test accuracy. This demonstrates the robustness of our approach in various
system-heterogeneous federated learning environments. Moreover, more clients with high resource
levels often result in better performance, verifying the statement in Remark [T} Notably, one can
find that existing SOTA methods exhibit substantial performance fluctuations as the proportion of
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resource-constrained clients increases. For example, the test accuracy of FIARSE for CIFAR-100
drops sharply from 38.13% to 30.15% in the second set of resource level settings, demonstrating the
instability caused by inefficient adaptation to clients with vastly different computational capabilities.
In contrast, FedLASE maintains significantly more stable accuracy, with fluctuations constrained
between 45% and 46.15% across different client distributions. This stability is attributed to our layer-
wise adaptive parameter extraction, which ensures submodels consistently retain critical structural
components. By prioritizing key parameters within each layer, FedLASE prevents excessive pruning
in essential layers, thereby mitigating the adverse effects of system heterogeneity.

5.3 Impact of Data Heterogeneity

To examine the effect of data heterogeneity, we perform comparative experiments with the SOTA
methods under different data heterogeneity settings, including IID and Dirichlet distributions, as
shown in Table[3] It can be seen that as the degree of data heterogeneity increases, the performance
of all methods decreases. Notably, FedLASE consistently achieves higher accuracy than the recent
methods FIARSE and ScaleFL in all settings, with a particularly significant improvement in highly
non-IID scenarios. These results illustrate that our importance-aware layer-adaptive extraction
strategy can enhance model robustness under diverse data distributions.

Table 3: Comparison of global test accuracy for different methods across various data distributions
under heterogeneous system {1,1/4,1/16,1/64}_{10, 20, 30, 40}.

Method CIFAR-10 CIFAR-100
fid Dir(0.3) Dir(0.1) fid Dir(0.3) Dir(0.1)
HeteroFL | 77.68 (1 6.53) 7211 (1 6.93) 65.64 (] 13.70) 3125 (] 13.81)  2945(1 12.75)  25.61 (] 13.56)
FedRolex | 77.49 (| 6.72) 68.26 (1 10.78)  65.42 (] 13.92) 3505(L10.01)  3126(,1094)  2526({ 13.91)
ScaleFL | 80.87 ( 3.34) 68.60 (1 10.44)  57.28 (| 22.06) 42.62 (] 2.44) 38.01 (J. 4.19) 31.31 (] 7.86)
FIARSE | 82.64 (| 1.57) 7775 (1 1.29) 72.04 (1 7.30) 37.03 (1 8.03) 34.04 (1. 8.16) 29.69 (1. 9.48)
FedLASE| 84.21 79.04 79.34 45.06 42.20 39.17

5.4 Impact of Network Architecture

This subsection further investigates the impact of different network architectures. The experimental
results shown in Table 4| demonstrate that our method consistently outperforms existing methods
across two distinct network architectures under two sets of heterogeneous scenarios. In particular,
for the heterogeneous system {1,1/4,1/16,1/64}_{5, 10, 25,60}, our method achieves a notable
performance improvement on CIFAR-100, surpassing the second-best method by 9.57% and 11.79%
for the two network architectures, respectively. This further validates the robustness of our approach,
highlighting its adaptability to different network architectures in real-world scenarios.

Table 4: Comparison of global test accuracy for different methods on CIFAR-10 and CIFAR-100
using ResNet-18 and ResNet-34, under two heterogeneous system settings.

{1,1/4,1/16,1/64}_{5, 10, 25,60} {1,1/4,1/16,1/64}_{10, 20, 30, 40}
Method CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100
ResNet-18 ResNet-34 ResNet-18 ResNet-34 ResNet-18 ResNet-34 ResNet-18 ResNet-34
ScaleFL | 52.52 (] 24.01) 46.45 (| 24.10) 27.78 (1. 9.57) 25.72 (1 12.41) 57.28 (1 22.06) 51.65 (] 23.97) 31.32 (] 7.85) 29.84 (1 9.54)
FIARSE | 61.60 ({. 14.93) 62.63 (1 7.92) 25.36 (. 11.99) 26.34 (4 11.79) 72.04 ({ 7.30) 66.11 (4 9.51) 29.71 (1 9.46) 31.95(] 7.43)
FedLASE| 76.53 70.55 37.35 38.13 79.34 75.62 39.17 39.38

6 Conclusion

In this paper, we proposed the FedLASE framework, an importance-aware layer-adaptive submodel
extraction method designed to address the challenges posed by system heterogeneity in federated
learning. By considering both parameter importance and layer importance, our method ensures that
the critical components in each layer of the global model are preserved, even in resource-constrained
environments. Through extensive experiments across different datasets and system-heterogeneous
scenarios, we demonstrate that FedLASE significantly outperforms state-of-the-art methods in both
global and local test accuracy. In particular, it excels in maintaining stable performance across a wide
range of client capacities, ensuring efficient and effective training in heterogeneous FL environments.
This illustrates its effectiveness in real-world federated learning scenarios, where clients have different
resource capacities. In the future, we will focus on exploring more efficient resource allocation
strategies and aggregation schemes to further optimize the performance of system-heterogeneous
federated learning, leveraging the characteristics of system heterogeneity.
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A Related Work

We systematically review existing approaches to address system heterogeneity in federated learning,
categorizing them into three primary strategies: a) client exclusion or model architecture restriction,
b) client-specific model training, and ¢) submodel extraction methods. Our analysis focuses on
submodel extraction due to its superior adaptability in heterogeneous environments.

A.1 Client Exclusion or Model Architecture Restriction

The simplest strategy involves excluding resource-constrained clients or constraining the global
model architecture to match the weakest devices [12, [13]. While this approach ensures uniform
model architecture across clients and simplifies aggregation, it introduces two critical limitations.
First, client exclusion reduces data diversity, potentially inducing model bias and compromising
generalization capabilities. Second, architectural constraints prevent high-resource clients from
leveraging more complex models that could enhance learning outcomes. These limitations ultimately
undermine the system’s capacity to utilize available computational resources effectively.

A.2 Client-Specific Model Training

Alternative approaches enable clients to train models commensurate with their computational capabili-
ties [14} 38} [16,139]. In this paradigm, high-capacity clients train larger models while resource-limited
clients operate smaller variants. However, aggregating heterogeneous model architectures poses
significant technical challenges. Knowledge distillation has emerged as a primary solution, where
larger teacher models transfer knowledge to smaller student models [40]. Notable implementations
include FedDF [14], which distilled knowledge from multiple client classifiers using an additional
public dataset, and FedGKT [38]], employing group knowledge transfer to enable clients to train
small models while a larger model is maintained on the server. Nevertheless, these knowledge
distillation-based approaches often depend on additional datasets that may be unavailable due to
privacy constraints or domain incompatibility.

A.3 Submodel Extraction Methods

Unlike the aforementioned approaches, which limit the flexibility of the model or require complex
aggregation schemes, the submodel extraction methods allow clients to train smaller models derived
from a global model while maintaining a unified architecture between clients. This approach balances
adaptability and implementation simplicity, making it particularly suitable for heterogeneous FL
systems. For example, inspired by dropout techniques in centralized learning [41]], Federated Dropout
[17] randomly selected a subset of neurons per layer to form client-specific submodels. Although sim-
ple to implement, its randomness leads to unstable training and performance degradation, especially
in the case of high system and data heterogeneity, as shown in our experiments. To improve stability,
structured submodel extraction methods such as HeteroFL [9] and FjORD [24] predefined fixed
submodel assignments for each client. Although this reduces randomness, it restricts data utilization,
as different submodels are trained only on specific client subsets, limiting the generalization of the
global model. FedRolex [18] alleviated this issue by introducing a rolling submodel extraction strat-
egy, allowing different model segments to be trained over time, thus improving parameter coverage
and mitigating model drift. ScaleFL [25] and DepthFL [13]] further refined submodel selection based
on depth and width configurations, using self-distillation to enhance knowledge transfer between
different resource levels. Despite these advancements, most existing methods lack a principled mech-
anism for parameter selection, treating all model components equally. This often results in suboptimal
submodel configurations that fail to retain the most crucial information. To address this, FIARSE
[21] introduced an importance-aware approach that globally ranks parameters by importance before
extraction. While this strategy demonstrates superior performance compared to uniform selection,
it does not consider the variations of parameter importance across different layers. Consequently,
certain layers may be excessively pruned in smaller submodels, leading to structural imbalances that
degrade model stability and overall performance.
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B Algorithm of Fed LASE

Algorithm 1 FedLASE: Importance-aware Layer-Adaptive Submodel Extraction
Input: Local learning rate 7, total round 7', local epoch K, initial global model 6y, client resource constraints
{r"}

1: fort =0,1,..., 7 —1do

2:  Sample a set of clients A C [N]
3 Server-side Submodel Extraction:
4:  for each client n € A in parallel do
5: Compute layer-wise extraction ratio r;';, using Eq.
6 Extract top 7, - d;; most important parameters per layer to obtain mask M;" and threshold 67,
7 Send 6; © M{" and 07, to client n
8 end for
9:  Client-side Local Training:
10:  for each client n € A in parallel do
11: Initialize 07 = 6; © M;"
12: fork=0,...,K —1do
13: Compute gradient using Eq. (2): g1’y = Vgﬁkﬁn(ﬁf,k © M)
14: Update local model: 6y, = 07 —n - gt",c
15: end for
16: Upload the trained submodel 6;* £ 07 i to the server
17:  end for

18:  Server-side Model Aggregation:
19:  Aggregate local models using Eq. (B): 0:41 = ( > MO 0?)/( > Mt")

neA neA
20: end for

C Complexity Analysis

In this section, we conduct a comparative analysis of computational and communication efficiency
between FedLASE and SOTA methods (HeteroFL [9], FedRolex [18]], ScaleFL [25]], and FIARSE
[211]), focusing specifically on per-round cost analysis as summarized in Table 5}

Computational Complexity. The computational complexity arises from both server-side and
client-side operations. On the server side, three primary tasks contribute to the computational load:
parameter aggregation, mask computation, and submodel extraction. While all compared methods
share the common O(d) complexity for aggregation and submodel extraction, their mask computation
approaches differ in implementation paradigms. HeteroFL, FedRolex, and ScaleFL employ predefined
submodel extraction schemes with constant-time mask computation (O(1)). Notably, ScaleFL needs
additional computational overhead from solving an optimization subproblem during initialization to
determine client-specific width and depth configurations. In comparison, FIARSE and FedLASE
require parameter importance evaluation (O(d)) followed by parameter sorting. The global sorting
of FIARSE results in O(d log(d)) complexity, whereas the layer-wise sorting of FedLASE achieves

L
O(> dj, log(dy,)). Given that d;, < d for typical deep learning architectures, our method possesses
i=1
superior computational efficiency in sorting operations.

Client-side computations involve three core components: loss calculation, gradient computation,
and model updating. HeteroFL, FedRolex, FIARSE, and FedLASE have equivalent training /oss
computation complexity (denoted by O(C1)), while ScaleFL needs an additional cost (denoted by
O(C3)) due to self-distillation, making the total loss computation complexity of O(Cy) + O(Cs).
Suppose the gradient computation of training loss across all methods is O(C5). In comparison,
ScaleFL introduces an extra cost for gradient calculation due to self-distillation, represented as
O(Cy). The additional gradient computational cost for FIARSE and FedLASE introduced by the
STE technique is O(d™) with d" = r™d. For the model updating, the computational costs for all
approaches are O(d™). Therefore, in the local calculation process, our method does not introduce a
large amount of computational overhead.
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Table 5: Computational and communication complexity comparison per training round

Computational cost Communication cost

Method Server Client n Upstres D .
Aggregation Mask Submodel extracting Local loss Local gradient Model updating pstream ownstream

HeteroFL O(d) o(1) O(d) O(Ch) O(Cz) o(d"™) o(d"™) O(d™)
FedRolex O(d) o(1) O(d) O(Cy) O(C2) O(d"™) o(d"™) O(d™)
ScaleFL O(d) (1) O(d) O(C1) 4+ 0(C3)  O(C2) 4+ O(Cy) o(d"™) o) O(d"™)
FIARSE O(d) O(d) + O(dlog(d)) O(d) O(Cy) O(C2) +0O(d") O(d"™) o(d"™) O(d™)
FedLASE O(d) O(d) + O(XE | dy, log(dy,)) O(d) O(Cy) O(Cy) + O(d™) O(d"™) O(d"™) O(d™)

*d"™ = r™d; Cy: Training loss computation; C2: Gradient computation for training loss; C's & Cj: Self-distillation costs for ScaleFL.

Communication Complexity. In terms of communication overhead, all compared methods ex-
hibit equivalent complexity for bidirectional transmission of client submodels (O(d™)). Although
FIARSE and FedLASE require additional threshold communication for submodel extraction, this
supplementary cost becomes negligible relative to the dominant model parameter transmission.

Through systematic complexity analysis, we demonstrate that FedLASE achieves a balanced com-
putational and communication complexity. The proposed layer-wise sorting mechanism reduces
server-side computation compared to global sorting approaches while maintaining client-side com-
plexity comparable to baseline methods.

D Standard Assumptions and Proof of Theorem I

D.1 Assumptions

To analyze the convergence of federated learning, the following standard assumptions are commonly
used in previous works [[19}[22] 21]], where Assumptions E]-E]ensure that the gradients are smooth and
bounded, and Assumptions @}f5] account for the noise in gradients.

Assumption 2: (L-smoothness) The local objective function Fn(ﬁ) is L-smooth, i.e., for any
6,6’ € R? and n,
IV Eu(8) = VE, (0| < L0 — 0.
Assumption 3: (Bounded Gradient) The expected squared norm of the stochastic gradient is
bounded uniformly, i.e., for a constant G > 0 and any n, t, k,

[V Eo (075, &0)1* < G.
Assumption 4: (Gradient Noise for IID Data) For IID data distribution, assume that
E[VFn(ezkagt,k)] = VF( ;lk)v

and ~ ~
B[V Fu (071, &) — VEL(071)]1? < 0.
Assumption 5: (Gradient Noise for non-IID Data) For non-IID data distribution, assume that

1 o o
E[W nGZN: (VFn(et,k,Et,k))i] = (VE(71)),,
and . - - 2 2
Eui Z (VEL(0f k) — VF(07)),|| <02
Weal &7

where Ny ; £ {n|mf; > 1} is the set of clients training the ith parameter in round ¢, m}, is the ith
elements of the mask M;" for client » in round ¢, and \J\/m\ is the number of elements in the set J\/'“

D.2 Proof of Theorem[T]
From Assumption[2] we can obtain
~ - ~ L
E[F(0i41)] — E[F(6:)] <E <VF(‘9t)7 Or1 — 9t> + §E||9t+1 — 0%, (6)

In the sequel, we analyze the upper bounds of each term on the right side of Eq. (6). Before this,
we first calculate the difference between the global models at ¢ + 1th round and ¢th round. Let
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ss2 Npi = {n|m{; > 1} denote the set of clients training the ith parameter in round ¢. Then for the ith
553 element of the global model (i € Z; = {i| Zn L mi; > 1}), we have

1
Orp1,i — Ori = <|/\/t > ?K1> — Ot

neNt,;
(a) 1 . K-1 ~ .
= W Z et,i . mt,i - Z (VO?L (Gt k © Mt 7£t k)) — Qt’i (7)
neN; k=0

K—
(i) |~/\/t Z Z (ng 2 thMZL7§tk))
i . k=0

ne

s54  where my; is the ith elements of the mask A/;* for client n in round ¢, (a) is obtained by the global

M 0” MnQGn -~
555 aggregation 0,41 = ZZ Ma = Z"Z Sy * and local training 67, ; = 0, — Ver F,(07, ©

ss6 M, &' ), and (b) holds because mi; = 1 whenn € Ny ;.

557 The first term on the right side of Eq. (6) can be amplified as

E <vﬁ(9t)7 Or i1 — 9t>

:ZE

(VE®:))i - (Ors1, — et,i)]

1€Ly
K-1
(a) I 1 n n n ¢n
ENTE[(VE®:)): - (— w2 2 n(Vop, B0, © M; ,gt,k>)i)
i€, M neN: i k=0
K—-1 B B
=— 0K Y E(VF(0,))] - Y E|(VE(0,)) (M S 3 (o, Fa0 © M €55) — VE(0))) )]
i€Ly i€Ts 20 neN:,; k=0 '
. . 1 Kl . .
==K Y E(VE0)); ~nK Y E|(VE(0:)); - ( RN > (Vop, a0 © M7 &14) = VE(©))) )1
icT, icT, bl neN: k=0 !
0) ?
< —nK > E(VF(0,)); ZIE (VF(6,)) 1
1€L, €Ly
K—1 ) ~ 2
E V“ Fn 9” @M", 3 _VFQ ,
Z (K|Mz| neZN; kz:; ( 07 ( tk t ft,k) ( t))zﬂ

®)

ss8 where (a) comes from Eq. (]Z]), (b) holds because ab < %(a2 + b2). The third term on the right side of
sse  Eq. (8) is bounded by

K-1 2
nkK 1 n 3
QZE[(W Z Z (vf)" n(ethMt 7€tk) VF(et))l)]
iE€ET: " neNt,; k=0
2
(“)nK n n n
=% 2 Kw“ P Z | (Fon ot 0 07 ) - VF"(gt’&))i]
N K-1
Sﬂ ! Z Z Hve" w00 © M, &) — Y (6:, &) 2
2 K‘Mi'min n=1 k—0
Onx 1 N K-1 2
< n n_
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s0 where [\ ;|min = min; {|NV¢;|}, (a) holds because || 377 | a;[|2 < 1377 [|a;||*, and (b) comes
561 from Assumptlon@ By introducing an additional term Gt 0® M , the above inequality can be further

se2 amplified as

LS
E
X > | (o

K— 2
> Z (Vop, a0 © My €2%) vﬁ(fm)i)]

i neNy,; k=
N K-1 2
STm; I;JE Ork © My* — 00 © My* + 6, © M* — 6,
2 2 N K-1 2
nK  2L? nK 2L
<——+—"7—K E|0; © M —0y|| + ————+—— E||07 . © M — 07y © M
2 K|-/V;5 1|m1n Z:l ¢ t ¢ 2 K|-/\[t,i|min nz::l k=0 bk t .0 ¢
N 2 2 N K-1 k—1 2
(@nK  2L? nK 2L H -
=——K E|0; © M —0y|| + ————+—— E|l - Vor F, (07 © M
2 K|~/V;5,i|min 1; ¢ t ¢ 2 K|M,i|min n; k—1 ;n b ( bJ ¢ )
oK 2L N 2 K or N K-1 k-1 ’ ) 2
<——7>—"—K E|0; © M —0y|| + ———+—— k E|| — nVgr F, (07, © M
2 K|-/\[t,i|min nz::l K ¢ K 2 K|M,i|min ; h—1 JZ::O g et’] ( £ ¢ )
©)
ses  where (a) is obtained by the local updates, (b) holds because || Y7_; a;]|? < s>°7_, [la;]|?.
se4 Combining Eqgs. (9) with Eq. (8) gives
E <vﬁ(at),9t+1 - 9t>
2
<-nK Y E(VE(6)); ZE (VE(6y))
1€Ly i€Ty
nK 1 K-1 3 2
VS (g D X (Van Pt o M7 ) - VF00) )
€Ly t’l| nENt,i k=0 !
K - ’ 012 N 2 2 N K=l 5 2
<15y B (VF O+ i S Efo o -+ e £ 5 S 6] - vy R 0 0
(10)
s65  For another term on the right side of Eq. (6)), we have
L
§EWHJ—9N2
WL 1 K—1 . 2
LS e T X oS o)
1€Ly ’ nENt,i k=0
L 1 = . N
—2YE n(Vop, (071 © M7, €13) = Vop, Fu(67,, © M)
2 | + | t,k t,k i
i€l v TLGNt,i k=0
1 K-1 1 K-1 ~ 2
+ 5 Zn(vgn Fo(07), © M) — VFn(Ht)) Ty Zn(VFn(&))_
‘ t’i| neN:,; k=0 ‘ tz| neN:,; k=0 '
2
(®)3L 1 — - -
<5 2 E R n(Vop, P07 © M, €55) = Vo, Fa (07 © M) )
ieT, bl N, k=0 ‘
K—1 2
3L 1 ~ ~ 32 K2L ~ 2
+ N E| n(Vop, Fal0 © M) = VE(0)) | + 2= S E(VE@))
2 IV 4] i 2 : i
€T, ’ €Ny, k=0 €T,

(1)
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ses  where (a) comes from Eq. (@), (b) is obtained by || Z a;||?> <s Z |la;||* and Assumptlonsland

567 Combining Assumption[2]and Eq. (9), the second term on the rlght side of the above inequa
see be amplified as

Ko 2
SQLEZ[W I S CAACREIOR vﬁnwo)i]

ity can

€T, neNy,; k=0
3n°K2L K= . 2
< . MP) — VE, (8 H
SN memmnz Z E|[ Vo, Fu(Of, © M) = VEn(60)
2K2L L2 K- 2
<30 R E 07, © M — 0, (12)
‘ t,i|min n—=1 k=0

3°K2L  2KL? 2

o 2 K‘Mi'min n—1

E(6, © M* — 6,

N K-1

3PK?L 212
T KN 2 2

n=1

k—1
ZEH —nVop Fu(07; @M")
J=

seo  According to Assumptions @] and 3] the first term on the right side of Eq. (TT) is bounded by

s70 1) iid

- 2
% Z b Z Z (Ven 071 © M]', &%) = Vop, Fu(07) © Mtn))Z]
neN, i k=

i€l

i€,

37]2K2 K—1 } 2
3 ZE[m S Y (Vor, bl © M7 60) ~ Vg, F wk@w)l
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K—

3772K L
= ZKINHI 2 Z

2
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1€Ty neN: ;
3?K2L 1 Y= ~ i )
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2 K‘/V'ti|minn 1;0 t,k t tk) tk ( t,k t )

3°K2L NKo?
o 2 K‘M,i'min

(13)
571 ii) non-iid

o

i€,

K— 2
> Z (Vop (b © M, €15) — ve;k,an:k@Mm)_]
nENs k=0 !
K—

_3772K2L
L s el S

2
> (Ven (07 © M, E8) — Ve?,kﬁn(ezk © Mm)ll

i€y ENt,i
2
37]2K2 = n n n ¢n n n n
_7 Z Z E N Z (Vef‘an(et,k@Mt 7€t,k)_V9?an(9t,k®Mt ))
zel} —0 [Nl neN ; ’ ’ !
§3772K;L02d
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572 Substituting Eqs. (12)-(T4) into Eq. (TT), we have
L
§EH9t+1 — 67

K-—1 2
EZ R 2 2 n(Ton Falbis © M7 60) = Vop, B0 0 47)),
‘ tl neNy i k=0 ’ ’ ¢
3L e, _ _ Lo2K2L o2
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N 2

32K2L  2KL?
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n=1 k=1 j=0

E|6, ® M — 6,

i (1s)
573 From Egs. (6), (I0), and (T3)), one can get
E[F (014+1)] — E[F(6,)]
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where (a) comes from Assumptions 3] and [T} (b) is given by 6n/K L < 1. Taking the sum over

t=20,1,...,7 — 1 on both sides of the above inequality gives
1 T—-1 ~ 2
7 & S E(vF0),
t=0 i€Z;
4 - - 3?K2LNo*T . 3n?K2Lo?%dT .
— |E[F(6y)] — E[F (6 g (i) —————— -iid
<UKT [F'(60)] — E[F(07)] + SN, o (iid) + 5 (non-iid)
4 | nKL*(1+3nKL) x~ « o e MPK2LANGT
(1 — level)02104]]* + ———F——— (1 +3nL)(K — 1)(2K — 1
IKT | Wotlm ;; 1660 + N T 3PP~ DEE 1)
4 - 6nKLN
gﬁE[ (60)] + ﬁ (iid) + 6nK Lo®d  (non-iid)
AL2(1 4 3nKL) <=~ & 22K L2NG
t T N;(1 — level;)02(|60:||* + (1 +3nL)(K — 1)(2K — 1)
‘./\/t i tz; ; 3‘~/\/t i|min
Q (14+3nKL) lizp:Nl 1 — level;)62 |6, ||?
KT T t=0 =1
+Qsn*(1 + 3nL)K (K — 1)(2K — 1)
( ) 1 1 1 T-1 p T—l P
a
Z0(—) +0(—=)= N;(1 — level;)62|6||> + N;(1 — level;)62|6; ||,
(17)

where Q1 = 4E[F(0)], Q2 = (37—, Qs = 6L0%d, Qs = (x5 —, Qs = 525 NYC-, (a) holds

because 1) = O( \F) This completes the proof.

|mm

E Limitations

In this paper, we propose FedLASE, an importance-aware layer-adaptive submodel extraction frame-
work that selects critical parameters within each layer based on both parameter and layer importance.
This design enables structurally consistent and expressive submodels, leading to balanced perfor-
mance across heterogeneous clients and improved convergence. Although the proposed strategy is
effective and computationally efficient, it may not be the theoretically optimal extraction solution.
Future work could explore more principled submodel construction methods from an optimization per-
spective. Nonetheless, the primary objective of this work is to emphasize the importance of assigning
appropriate layer-wise extraction ratios for each client in system-heterogeneous federated learning,
especially for the case that high-resource clients are few and the majority are resource-constrained.

F Broader impacts

This work highlights the potential of shifting large-scale model training from centralized computing
resources to decentralized collaborative paradigms. With the advancement of federated learning,
individual users, small organizations, and resource-constrained devices can increasingly participate
in model training, reducing dependence on traditional computing monopolies and improving the
accessibility and openness of Al technologies. In particular, our method is well suited for practical
deployment scenarios where a few clients have abundant computational resources while most are
resource-limited, offering a more feasible solution for real-world applications.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We have provides a clear discussion of the limitations of the proposed method,
outlining potential directions for future improvement. For more details, please refer to
Appendix [E]

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: For the convergence analysis of the proposed FedLASE, all assumptions have
been clearly stated and referenced and the proof of the convergence theorem for FedLASE
have been given in Appendix [D.2]

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper has provided sufficient details on the experimental setup, model
configurations, and evaluation metrics to reproduce the main results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: We plan to release the code and data publicly upon acceptance to minimize
the risk of plagiarism. However, the paper includes comprehensive algorithmic details and
experimental settings, enabling readers to reproduce the main results by closely following
the provided descriptions.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper has specified all necessary training and testing details, including data
splits, hyperparameters, and optimization settings, etc, to ensure clarity and reproducibility
of the results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Although this paper does not include error bars or formal statistical signif-
icance analyzes, the empirical results of FedLASE consistently demonstrate substantial
improvements over baseline methods. Across various heterogeneous scenarios, FedLASE
achieves performance gains ranging from 7% to 16% compared to the second-best approach.
These consistent improvements across different settings provide strong empirical support
for the effectiveness of FedLASE.
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Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:

Justification: Reproducers can use a single server to perform a simulation of FedLASE
federated training. The following is a representative hardware and software configuration
used in our experiments:
* CPU: AMD Ryzen 9 9950X 16-Core Processor (32 threads)
* Memory: 128 GB
Disk: 1.8 TB SSD
* GPU: 2 NVIDIA GeForce RTX 4090 (24 GB each)
e System: Linux
* Library: PyTorch 2.5.1

The total training time across all experiments can take up to 3—4 weeks.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We have conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics.

Guidelines:
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¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We provide further discussion on potential societal impacts in Appendix [H
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: No such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
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13.

14.

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All external assets, including datasets and baseline implementations, are

properly credited in the paper. Their usage complies with the respective licenses and terms
of use as stated in the referenced works.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification:
Guidelines:

» The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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15.

16.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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