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Abstract

Federated Learning (FL) has gained significant attention for its privacy-preserving1

capabilities in distributed learning environments. However, the inherent system2

heterogeneity across edge devices brings significant challenges in deploying a3

unified global model. Although many submodel extraction methods are designed4

to address these challenges by selecting a subset of parameters from the global5

model to accommodate client constraints, our experiments show that existing sub-6

model extraction methods exhibit significant performance discrepancies between7

submodels with different resource levels, limiting the overall performance of the8

federated learning system. To overcome these limitations, we propose FedLASE9

– a novel Layer-Adaptive Submodel Extraction framework that selects important10

parameters while preserving the structural integrity of the client models, thereby11

achieving balanced performance across heterogeneous FL clients and improving12

the convergence. Specifically, our approach quantifies layer importance based on13

parameter importance and hierarchically extracts critical parameters within each14

layer while strictly satisfying resource constraints. Theoretically, we rigorously15

analyze the convergence of FedLASE and investigate the influence of system het-16

erogeneity on its performance. Extensive experiments demonstrate the superiority17

of FedLASE over the state-of-the-art methods and its robustness across various18

system-heterogeneous scenarios.19

1 Introduction20

Federated Learning [1, 2] has emerged as a powerful framework for decentralized machine learning,21

allowing multiple clients, such as mobile devices or Internet of Things systems, to collaboratively22

train machine learning models without sharing their private data. This approach ensures data privacy23

and security, as the data remains on the client devices while only model updates are shared. Given24

the increasing prevalence of edge computing and the growing concerns around data privacy [3, 4],25

FL has gained significant attention as a practical solution for training large-scale models across a26

diverse set of clients [5, 6, 7, 8]. However, real-world FL systems are often challenged by system27

heterogeneity [9, 10, 11], where clients possess different computational resources, storage capacities,28

and network bandwidth. For simplicity, we characterize the system heterogeneity by the proportion29

of the model that a client can accommodate relative to the full model, as defined in Definition 1.30

While high-resource clients can accommodate full-scale deep learning models, resource-constrained31

clients, such as mobile devices or embedded systems, struggle to train large models effectively.32

This imbalance leads to inefficient utilization of computational resources and suboptimal model33

performance.34
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(a) Resource level 1.
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(b) Resource level 1/4.
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(c) Resource level 1/16.
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(d) Resource level 1/64.

Figure 1: Convergence of different methods across all client resource levels for CIFAR-100 and het-
erogeneous system {1, 1/4, 1/16, 1/64}−{5, 10, 25, 60}, showing that the performance gap across
resource levels for SOTA methods varies significantly, especially for larger clients with sufficient
resources but fewer in number (see (a)), while our method exhibits a more balanced performance.
* The heterogeneous system {1, 1/4, 1/16, 1/64}−{5, 10, 25, 60} has four distinct resource levels: 5 clients
capable of running the full model (size 1), 10 clients operating with a reduced model of size 1/4, 25 clients using
a smaller model of size 1/16, and 60 clients assigned the smallest model of size 1/64, as shown in Definition 1.

To address system heterogeneity, existing solutions can be broadly categorized into three categories.35

The first category discards resource-constrained clients or limits the model architecture to the weakest36

client [12, 13], thereby ensuring system-wide uniformity, but at the cost of underutilizing available37

computational or data resources. The second category assigns separate models to different client38

groups based on their computational capacities [14, 15, 16]. Although this enables clients to train39

models suited to their resources, aggregating models of different sizes and architectures is inherently40

challenging, especially for knowledge distillation-based approaches, which often require additional41

public datasets, complicating training and posing privacy risks. The third category, submodel42

extraction methods [9, 17, 18, 19, 20, 21, 22, 23], provides a more flexible solution by extracting43

smaller submodels from a shared global model. This method allows clients to participate regardless44

of resource constraints while maintaining a unified global model.45

Among these methods, submodel extraction has gained increasing attention due to its ability to46

balance model flexibility and consistency. Various extraction techniques have been proposed, ranging47

from random selection (e.g., Federated Dropout [17]) to static submodel assignment (e.g., HeteroFL48

[9], FjORD [24]). Although static submodel assignment methods improve training stability compared49

to random selection, they limit the adaptability of submodels to different clients, often leading to50

inefficient parameter utilization. FedRolex [18] alleviated this issue by introducing a rolling extraction51

strategy to improve parameter coverage, while methods such as ScaleFL [25] and DepthFL [13]52

constructed submodels based on predefined width and depth constraints, incorporating self-distillation53

to enhance knowledge transfer. However, the aforementioned methods treat all parameters equally,54

lacking a principled mechanism to determine which parameters should be extracted. Recently,55

Wu et al. [21] introduced an importance-aware extraction method that ranks parameters globally56

based on their magnitudes. Nevertheless, this method overlooks inter-layer discrepancies, leading57

to excessive pruning in certain layers and disrupting the structural integrity of smaller submodels.58

Our experiment presented in Fig. 1 reveals that existing state-of-the-art (SOTA) submodel extraction59

methods exhibit significant performance discrepancies across different resource levels, leading to60

suboptimal performance due to the difficulty of sufficiently utilizing the information of other clients.61

These findings indicate that treating all layers uniformly or relying solely on a global ranking strategy62

is insufficient, highlighting the need for a more structured approach that takes into account both layer63

importance and parameter importance during the submodel extraction process.64

Based on these observations, we propose FedLASE (shown in Fig. 2), a novel Layer-Adaptive65

Submodel Extraction framework designed to balance client performance in system-heterogeneous66

federated learning by preserving the structural integrity of the network architecture through layer-wise67

extraction of important parameters. Unlike existing methods that rely on global ranking or uniform68

selection, FedLASE dynamically extracts submodels by incorporating both layer importance and69

parameter importance, ensuring that critical structural components are retained across different70

client resource levels. This leads to more stable training, improved convergence, and enhanced71

performance, particularly in heterogeneous federated learning environments that more accurately72
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Figure 2: The framework diagram of FedLASE. The server first aggregates the models uploaded
by clients to update the global model ( 1⃝), calculates the importance of each parameter and layer
( 2⃝), determines the layer extracting ratios based on client resources and layer importance ( 3⃝), then
extracts submodels based on extracting ratios ( 4⃝) and sends them the clients for local training ( 5⃝).

reflect real-world scenarios, where the number of resource-rich clients is limited and the majority are73

resource-constrained.74

The key contributions of this paper are as follows:75

• We propose a novel importance-aware layer-adaptive submodel extraction framework (FedLASE)76

that enables efficient training across all clients in system-heterogeneous FL.77

• We show that adaptively selecting parameters based on layer importance and parameter impor-78

tance can ensure the preservation of critical structural components across all resource levels, thus79

balancing the performance of submodels and improving convergence.80

• We provide a rigorous proof that FedLASE converges at a rate of O( 1√
T
), and discuss the impact81

of system heterogeneity on convergence. To the best of our knowledge, this is the first time to82

analyze the impact of system heterogeneity on the convergence rate in system-heterogeneous FL.83

• Extensive experiments demonstrate the superiority of FedLASE over the existing SOTA methods84

in terms of both stability and accuracy under various system heterogeneity scenarios, validating85

its effectiveness in real-world federated learning applications.86

The remainder of this paper is organized as follows. Section 2 introduces the standard formulation of87

FL and extends it to the system-heterogeneous setting. Section 3 provides a detailed description of88

the proposed FedLASE framework. Theoretical analysis is presented in Section 4, while Section 589

reports extensive experimental results that demonstrate the effectiveness and superiority of FedLASE.90

Finally, Section 6 concludes this paper and outlines potential directions for future research.91

2 Preliminaries92

In this section, we first introduce the standard formulation of FL and then extend it to the system-93

heterogeneous setting, which serves as the foundation of our method in subsequent sections.94

The objective of traditional FL is to optimize a global model θ ∈ Rd by minimizing the aggregated95

loss across N clients [1, 7], i.e.,96

min
θ

F (θ) ≜
N∑

n=1

pnFn(θ),

where Fn(θ) =
∑mn

k=1 l(θ; d
n
k )/mn represents the local objective function for client n, l(·) is the97

loss function, pn denotes the aggregation weight, the term dnk corresponds to the kth data sample98
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of client n, and mn is the total number of local training samples for client n. To accommodate the99

diverse computational capabilities of clients in real-world FL scenarios, system-heterogeneous FL100

allows each client to train a submodel suited to its resource constraints. To formalize this extension101

and analyze the impact of system heterogeneity (shown in Section 4), we first give a definition of102

heterogeneous system in federated learning.103

Definition 1: (Heterogeneous System) In federated learning setting, a heterogeneous sys-104

tem denoted by {level1, level2, . . . , levelp}−{N1, N2, . . . , Np} consists of p resource levels105

{level1, level2, . . . , levelp} and the ith resource level is allocated Ni clients with leveli ∈ (0, 1] repre-106

senting the fraction of the global model that clients at this level can accommodate and
∑p

i=1 Ni = N .107

Based on this definition, we now turn to system-heterogeneous federated learning. Denote the108

resource capacity of client n by rn ∈ {level1, level2, . . . , levelp}. Then the submodel for client n109

can be constructed by applying a binary mask Mn ∈ {0, 1}d to the global model θ110

θn = θ ⊙Mn,

where ⊙ represents element-wise multiplication, Mn
i = 1 means that the ith parameter is retained,111

and Mn
i = 0 means that it is pruned. Obviously, the number of retained parameters in each submodel112

satisfies ∥θn∥0 ≤ rnd. Under this system-heterogeneous FL setting, the global objective can be113

reformulated as:114

min
θ,M1,M2,...,MN

N∑
n=1

pnF̃n(θ ⊙Mn) =

N∑
n=1

pnF̃n(θ
n),

where F̃n(θ
n) =

∑mn

k=1 ln(θ
n; dnk )/mn. For simplicity, we assume that all clients are equally115

weighted in the aggregation process, i.e., pn = 1/N .116

3 FedLASE: Importance-aware Layer-adaptive Submodel Extraction117

In system-heterogeneous federated learning, extracting an appropriate submodel for each client118

is crucial for balancing computational resources with model expressiveness. However, existing119

submodel extraction methods often overlook the differences of parameters in different layers, resulting120

in the loss of critical information and reduced representational capacity of the submodels.121

To address these limitations, we propose FedLASE, an importance-aware layer-adaptive submodel ex-122

traction framework that dynamically extracts parameters at each layer based on parameter importance123

and layer importance. The overall framework is presented in Fig. 2, and the corresponding algorithm124

is provided in Algorithm 1 (shown in the Appendix B due to space limitations). Specifically, to125

achieve effective submodel extraction while maintaining model integrity, FedLASE first evaluates126

the importance of each parameter and layer in the aggregated global model, identifying the most127

critical components for extraction (shown in Fig. 2 ( 2⃝)). Then, leveraging the computed importance128

scores along with client resource constraints, the server determines appropriate layer-wise extraction129

ratios for each client (shown in Fig. 2 ( 3⃝)), ensuring that submodels remain computationally feasible130

while preserving the essential structural information of the network architecture. Based on these131

extraction ratios, important parameters are selectively extracted from each layer to form client-specific132

submodels (shown in Fig. 2 ( 4⃝)), which are subsequently trained locally and aggregated (shown in133

Fig. 2 ( 5⃝) and ( 1⃝)) to refine the global model. In the following subsections, we provide a detailed134

explanation of each component.135

3.1 Importance Measurement for Parameters and Layers136

Existing research indicates that the magnitude of model parameters can serve as an effective indicator137

of their importance [26, 27], with parameters having higher absolute values generally exhibiting a138

greater impact on the expressiveness of the model. Although there are alternative metrics for the139

estimation of parameter importance [28, 29, 30, 31], we adopt the magnitude-based criterion for its140

simplicity and computational efficiency.141

Unlike previous methods that rank all parameters globally, FedLASE calculates importance scores142

within each layer to preserve structural integrity and avoid excessive pruning in certain layers.143

Specifically, for the ith parameter θl,i in the lth layer of the global model θ, its importance score is144

measured by sl,i = |θl,i|. In this paper, we measure the importance of the lth layer (denoted by Sl)145
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using the mean importance score of the parameters within that layer, i.e., Sl = meanisl,i. To mitigate146

dominance by extreme values while maintaining relative importance relationships, we normalize147

layer importance using the following logarithmic transformation to ensure a more balanced allocation148

of the extracted parameters between layers:149

S̃l =
log(1 + Sl)∑
j log(1 + Sj)

.

3.2 Layer-adaptive Submodel Extraction150

After obtaining the layer importance scores, another crucial aspect is determining the extraction ratio151

for each layer across different clients, ensuring that the resource constraints of each client are satisfied.152

Let rn denote the fraction of the global model allocated to client n, implying that the number of153

parameters extracted by client n from the global model will not exceed dn ≜ rnd with d being the154

total number of parameters in the global model. Considering the fact that the first layer, last layer,155

normalization layers, and bias terms are crucial for preserving input representations, stabilizing156

training, and maintaining expressiveness, especially in smaller submodels [32, 31], we fully retain157

these components. Let d̃ represent the number of parameters retained due to these prior constraints.158

The remaining parameters available for extraction are then bounded by dn − d̃, with the assumption159

that dn > d̃.160

Denote the set of prunable layers as {l1, l2, . . . , lL}. To allocate extraction ratios according to the161

importance of each layer, we assign a higher extraction ratio to more critical layers. Therefore, based162

on the resource limitation of clients, we assume the extraction ratio of the lith layer for client n as163

rnli = αnS̃li , (αn ≥ 0).

To ensure the submodel satisfy the resource budget of client n, the following inequality should be164

satisfied:165

rnl1dl1 + rnl2dl2 + · · ·+ rnlLdlL ≤ dn − d̃,

where dli is the number of parameters in the lith layer of the global model θ, excluding biases. Thus,
the upper bound of αn is

αn ≤ (dn − d̃)/
( L∑
i=1

S̃lidli
)
.

For simplicity, we can set the importance-aware extraction ratio of each layer for client n as166

rnli = S̃li · (dn − d̃)/
( L∑
i=1

S̃lidli
)
. (1)

After getting the layer-wise extraction ratios for each client, we extract the top rnli · dli parameters in167

the lith layer based on their importance. This results in a threshold value θ̃nli and a corresponding168

mask Mn
li

for the lith layer, which together define the extracted submodel for client n.169

By incorporating prior constraints on key structural components and adapting extraction ratios based170

on layer importance, our method ensures the retention of essential information for each client,171

balancing the performance across submodels and enhancing both convergence and robustness in172

various heterogeneous FL environments.173

3.3 Local Training Optimization and Submodel Aggregation174

To refine submodel extraction and improve the efficiency of local training, we integrate the straight-175

through estimation (STE) technique [21, 33, 34] into the local training process. This method176

enhances gradient flow by sharpening the distinction between important and less important parameters.177

Specifically, to obtain the submodel for client n, we use the probability clip
(
(θl,j − θ̃nl )/(θl,j +178

θ̃nl ), 0, 1
)

to set the mask for the jth parameter in the lth layer θl,j to 1 with θ̃nl being the extraction179

threshold in the lth layer for client n. Then, the lth layer of the gradient updated during the local180

training process for client n is adjusted as181 (
∇θFn(θ ⊙Mn)

)
l
=
(
∇Fn(θ ⊙Mn)

)
l
⊙Mn

l ⊙

(
1 +

2|θl|θ̃nl
(|θl|+ θ̃nl )

2

)
. (2)
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The derivation of Eq. (2) is similar to that of Eq. (3) in [21], and thus is omitted.182

After local training, each client uploads its trained submodel to the server. Due to the model183

heterogeneity introduced by the layer-wise extraction process, different clients retain different subsets184

of model parameters. To protect the personalization of the subnetworks, we adopt the following185

overlapping averaging strategy [27, 35]186

θ =
(∑

n

Mn ⊙ θn
)/(∑

n

Mn
)
. (3)

This strategy ensures that each parameter in the global model is updated based only on clients that187

have retained and trained it, preventing issues arising from missing updates in pruned parameters and188

preserving the personalization of clients.189

3.4 Complexity Analysis190

In the final of this section, we conduct a comparative analysis of computational and communication191

efficiency between FedLASE and the SOTA methods, demonstrating that FedLASE achieves a192

balanced computational and communication complexity compared with the SOTA methods. Detailed193

discussion is presented in Appendix C due to space limitations.194

4 Theoretical Analysis195

To theoretically evaluate the impact of system heterogeneity, we introduce a new assumption about196

model noise reduction based on Definition 1. This assumption extends the concept in [19], aiming to197

quantify the noise introduced by each client due to the submodel extraction process, which is related198

to its resource levels.199

Assumption 1: (Model Reduction Noise) For heterogeneous system {level1, level2, . . . , levelp}−200

{N1, N2, . . . , Np}, assume that there exist some constants δi ≥ 0 such the model reduction noise for201

the client with leveli is bounded by202

∥θt − θt ·M leveli
t ∥2 ≤ (1− leveli)δ2i ∥θt∥2, (4)

where M leveli
t is the mask for the ith resource level in round t.203

Obviously, a higher resource level means less model reduction noise. When the mask is generated by204

globally sorting the parameters based on their magnitudes and leveli · d is an integer, it is easy to205

prove that equality holds in Eq. (4) for δi = 1. Thus, the above assumption is well-defined.206

Based on Assumption 1 and the standard Assumptions 2-5 outlined in Appendix D.2, we establish207

the following convergence theorem, and its proof is presented in Appendix D.2 for brevity.208

Theorem 1: Suppose Assumptions 1, 2, 3, 4 or 1, 2, 3, 5 hold and the local learning rate satisfies209

η = O(1/(K
√
T )) with K and T being the number of local epoch and total round. Then the210

proposed FedLASE converges to a small neighborhood of a stationary point of the standard FL under211

heterogeneous system {level1, level2, . . . , levelp}−{N1, N2, . . . , Np}:212

1

T

T−1∑
t=0

∑
i∈It

E
(
∇F̃ (θt)

)2
i
≤O

( 1√
T

)
+O

( 1√
T

) 1

T

T−1∑
t=0

p∑
i=1

Ni(1− leveli)δ2i ∥θt∥2

+O
( 1

T

) T−1∑
t=0

p∑
i=1

Ni(1− leveli)δ2i ∥θt∥2,

(5)

where It is the index set of elements updated in the tth round.213

Remark 1: For the ideal environment in which all clients have sufficient resources to train the214

full model, i.e., the system {1}−{N}, the last two terms on the right-hand side of Eq. (5) become215

zero. Therefore, FedLASE converges with a rate of O(1/
√
T ). In heterogeneous client resource216

settings, since 1
T

∑T−1
t=0

∑p
i=1 Ni(1− leveli)δ2i ∥θt∥2 in Eq. (5) is often bounded [19], FedLASE will217

converge to a small neighborhood of a stationary point of the standard FL. Moreover, for the fixed218

client allocation {N1, N2, . . . , Np}, the convergence upper bound becomes smaller as the resource219

level increases. In contrast, when the resource level {level1, level2, . . . , levelp} is fixed, the larger the220

number of clients with a higher resource level, the smaller the convergence upper bound, as verified221

in Section 5.222
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5 Experiments223

In this section, we evaluate the effectiveness and superiority of our proposed method in system-224

heterogeneous federated learning. The basic experimental configurations are as follows.225

Datasets and models. To evaluate the effectiveness of FedLASE, we conduct experiments on two226

classical image classification datasets: CIFAR-10 and CIFAR-100 [36]. We employ ResNet-18 as the227

backbone model, replacing batch normalization (BN) layers with static BN [21, 37].228

Data heterogeneity. To evaluate the impact of data heterogeneity on federated learning, we con-229

sider two sets of data distributions across clients: IID distribution and Dirichlet distribution with230

concentration parameter α (denoted as Dir(α)) [21].231

System heterogeneity. To evaluate the impact of system heterogeneity, the two sets of client resource232

levels {1, 1/4, 1/16, 1/64} and {1, 16/25, 9/25, 4/25, 1/25} are considered. Unlike previous stud-233

ies assuming an equal distribution of clients across all resource levels, we explore multiple allocation234

strategies to better reflect real-world scenarios, where resource-rich clients are relatively scarce235

while resource-constrained clients are more prevalent. Specifically, we consider three different client236

allocation schemes for 100 clients: {5, 10, 25, 60}, {10, 20, 30, 40}, and {25, 25, 25, 25} for the237

four-level setting, as well as {5, 5, 10, 20, 60}, {5, 10, 15, 20, 50}, and {20, 20, 20, 20, 20} for the238

five-level setting.239

Baselines. To evaluate the effectiveness of our approach, we compare it with the SOTA submodel240

extraction methods: HeteroFL [9], FedRolex [18], ScaleFL [25], FIARSE [21] and a simple random241

baseline where the parameters are extracted randomly in each layer with equal proportion, while fully242

preserving the first and last layers.243

Experimental setup. To ensure a fair and comprehensive evaluation, we adopt the standardized244

training procedure across all methods. In each communication round, 10% of the 100 clients are245

randomly selected to participate in training. The training process spans 2000 communication rounds,246

with each selected client performing 5 local epochs per round using a batch size of 20, as specified in247

[21]. The default data partitioning follows a Dirichlet distribution with α = 0.1. For optimization, we248

employ SGD with momentum. The learning rate is selected from {0.01, 0.1}, while the momentum249

coefficient is chosen from {0.0, 0.8, 0.9}. All experiments were conducted on 2 NVIDIA GeForce250

RTX 4090 GPUs.251

Evaluation. For performance evaluation, we aggregate the test datasets of all clients to form a global252

test set. By default, all results correspond to the best-performing hyperparameter configuration. To253

ensure robustness and stability, we report the average Top-1 accuracy over the last 20 communication254

rounds, mitigating potential performance fluctuations. Each experiment is repeated three times with255

different random seeds, and the final results are presented as the average accuracy across these runs.256

5.1 Performance Comparison with Baselines257

Local Test Accuracy (AccL) and Global Test Accuracy (AccG). To evaluate the effectiveness and258

generalization of FedLASE, we compare its performance against the state-of-the-art methods from259

two perspectives: local test accuracy and global test accuracy. The results of AccL and AccG for260

different methods under all client resource levels are summarized in Table 1. For AccL, FedLASE261

consistently outperforms existing methods across all system heterogeneity settings, achieving the262

highest average accuracy in all resource levels. Specifically, FedLASE achieves an average AccL263

of 41.95% and 41.35% under two sets of system-heterogeneous scenarios, which are higher than264

the second-best method by 5.55% and 4.82%, respectively. Notably, for the highest resource level265

(i.e., resource level 1), our method outperforms the second-best method by 22.65% and 14.94%,266

demonstrating the effectiveness of FedLASE to enhance the model performance of resource-rich267

clients, even when the number of such clients is limited. For AccG, FedLASE still maintains clear268

superiority, surpassing the second-best method by 9.56% and 7.88% in average global accuracy269

under two sets of scenarios. These results further highlight its superiority and strong generalization270

capability.271

Balanced Client Performance. To provide a more intuitive understanding of the advantages for our272

method, we analyze the convergence behavior of different approaches across all client resource levels273

for heterogeneous system {1, 1/4, 1/16, 1/64}−{5, 10, 25, 60}, as shown in Fig. 1. From these274
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Table 1: Comparison of accuracy for different methods across all client resource levels under CIFAR-
100 and two sets of heterogeneous systems.

Scenario Method
Mean Resource level 1 Resource level 1/4 Resource level 1/16 Resource level 1/64

AccL AccG AccL AccG AccL AccG AccL AccG AccL AccG
Random 1.20 1.91 2.82 3.56 1.64 1.92 1.01 1.14 1.07 1.03
HeteroFL 28.01 22.98 14.71 16.99 24.01 21.21 26.28 25.41 30.51 28.31

{1, 1/4, 1/16, 1/64} FedRolex 24.70 22.61 18.27 19.31 24.66 22.92 26.16 24.82 24.63 23.38
−{5, 10, 25, 60} ScaleFL 36.40 27.78 14.37 17.18 30.60 27.14 34.26 31.23 40.10 35.56

FIARSE 32.45 25.35 11.91 15.80 24.92 23.71 31.92 29.82 35.47 32.06
FedLASE 41.95 37.36 40.92 36.26 41.56 36.94 40.90 37.78 42.55 38.65
Random 2.23 3.36 6.54 7.17 3.78 3.89 1.29 1.29 1.08 1.10
HeteroFL 27.48 25.61 19.77 21.22 29.10 27.14 28.33 28.47 27.97 25.64

{1, 1/4, 1/16, 1/64} FedRolex 26.54 25.26 25.74 25.31 30.38 27.93 30.01 27.66 22.21 20.15
−{10, 20, 30, 40} ScaleFL 36.53 31.31 22.93 23.37 35.78 32.03 36.10 34.34 40.63 35.49

FIARSE 33.42 29.69 21.92 22.90 32.69 30.11 35.22 34.30 35.31 31.47
FedLASE 41.35 39.19 40.68 38.33 41.22 39.10 42.17 41.40 40.96 37.93

* Mean: the average accuracy of all resource levels; AccL/AccG: the local/global test accuracy.
* The methods marked in bold and underlined represent the best-performing methods and second-best methods, respectively.

Table 2: Comparison of average AccG for different methods across two sets of heterogeneous systems.

Dataset Method {1, 1/4, 1/16, 1/64} {1, 16/25, 9/25, 4/25, 1/25}

{5, 10, 25, 60} {10, 20, 30, 40} {25, 25, 25, 25} {5, 5, 10, 20, 60} {5, 10, 15, 20, 50} {20, 20, 20, 20, 20}

CIFAR-10

Random 10.15 (↓ 66.38) 10.79 (↓ 68.55) 20.40 (↓ 59.27) 11.68 (↓ 71.19) 13.28 (↓ 69.52) 45.94 (↓ 36.55)
HeteroFL 61.41 (↓ 15.12) 65.64 (↓ 13.70) 73.88 (↓ 5.79) 65.63 (↓ 17.24) 67.87 (↓ 14.93) 72.51 (↓ 9.98)
FedRolex 58.31 (↓ 18.22) 65.42 (↓ 13.92) 65.09 (↓ 14.58) 69.71 (↓ 13.16) 71.82 (↓ 10.98) 73.75 (↓ 8.74)
ScaleFL 52.52 (↓ 24.01) 57.28 (↓ 22.06) 61.72 (↓ 17.95) 50.97 (↓ 31.90) 55.89 (↓ 26.91) 61.07 (↓ 21.42)
FIARSE 61.60 (↓ 14.93) 72.04 (↓ 7.30) 79.05 (↓ 0.62) 72.37 (↓ 10.50) 75.65 (↓ 7.15) 79.59 (↓ 2.90)
FedLASE 76.53 79.34 79.67 82.87 82.80 82.49

CIFAR-100

Random 1.91 (↓ 35.44) 3.36 (↓ 35.81) 12.67 (↓ 26.12) 5.01 (↓ 41.14) 10.06 (↓ 34.94) 25.13 (↓ 19.93)
HeteroFL 22.98 (↓ 14.37) 25.61 (↓ 13.56) 27.87 (↓ 10.92) 23.94 (↓ 22.21) 25.34 (↓ 19.66) 26.67 (↓ 18.39)
FedRolex 22.61 (↓ 14.74) 25.26 (↓ 13.91) 28.12 (↓ 10.67) 29.03 (↓ 17.12) 30.17 (↓ 14.83) 33.39 (↓ 11.67)
ScaleFL 27.78 (↓ 9.57) 31.31 (↓ 7.86) 35.29 (↓ 3.50) 27.03 (↓ 19.12) 29.46 (↓ 15.54) 34.93 (↓ 10.13)
FIARSE 25.32 (↓ 12.03) 29.69 (↓ 9.48) 35.10 (↓ 3.69) 30.15 (↓ 16.00) 33.38 (↓ 11.62) 38.13 (↓ 6.93)
FedLASE 37.35 39.17 38.79 46.15 45.00 45.06

* Resource levels: {1, 1/4, 1/16, 1/64} and {1, 16/25, 9/25, 4/25, 1/25}.
* Client allocation schemes: {5, 10, 25, 60}, {10, 20, 30, 40}, {25, 25, 25, 25}, {5, 5, 10, 20, 60}, {5, 10, 15, 20, 50}, {20, 20, 20, 20, 20}.
* The values in parentheses indicate the accuracy reduction relative to our method.

results, we observe that FedLASE exhibits more stable performance across different resource levels,275

whereas existing methods suffer from significant performance gaps between high and low resource276

levels. Another key observation is that larger submodels in SOTA methods tend to underperform277

compared to smaller ones, despite being deployed on resource-rich clients. This counterintuitive278

behavior results from an imbalance in training updates: smaller submodels, hosted on the majority279

of resource-constrained clients, receive more frequent updates, while larger submodels, trained on280

fewer high-resource clients, are updated less frequently, leading to suboptimal learning. By contrast,281

FedLASE mitigates this issue through its importance-aware layer-adaptive submodel extraction282

strategy. By prioritizing essential parameters at each layer, FedLASE ensures that all submodels283

retain critical structural information, allowing large submodels to maintain competitive performance284

without compromising small submodel efficiency.285

5.2 Impact of System Heterogeneity286

To systematically investigate the impact of system heterogeneity, we extend our evaluation beyond287

CIFAR-100 to additional datasets and heterogeneous systems, as detailed in Table 2. In most system288

settings, the random method fails to converge, highlighting the inherent difficulty of achieving stable289

learning in highly imbalanced environments. This challenge becomes even more pronounced in290

realistic federated learning scenarios, where high-performance clients are scarce and the majority of291

participating clients possess only limited computational resources.292

From Table 2, it can be seen that FedLASE consistently outperforms SOTA methods, achieving293

significantly superior test accuracy. This demonstrates the robustness of our approach in various294

system-heterogeneous federated learning environments. Moreover, more clients with high resource295

levels often result in better performance, verifying the statement in Remark 1. Notably, one can296

find that existing SOTA methods exhibit substantial performance fluctuations as the proportion of297
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resource-constrained clients increases. For example, the test accuracy of FIARSE for CIFAR-100298

drops sharply from 38.13% to 30.15% in the second set of resource level settings, demonstrating the299

instability caused by inefficient adaptation to clients with vastly different computational capabilities.300

In contrast, FedLASE maintains significantly more stable accuracy, with fluctuations constrained301

between 45% and 46.15% across different client distributions. This stability is attributed to our layer-302

wise adaptive parameter extraction, which ensures submodels consistently retain critical structural303

components. By prioritizing key parameters within each layer, FedLASE prevents excessive pruning304

in essential layers, thereby mitigating the adverse effects of system heterogeneity.305

5.3 Impact of Data Heterogeneity306

To examine the effect of data heterogeneity, we perform comparative experiments with the SOTA307

methods under different data heterogeneity settings, including IID and Dirichlet distributions, as308

shown in Table 3. It can be seen that as the degree of data heterogeneity increases, the performance309

of all methods decreases. Notably, FedLASE consistently achieves higher accuracy than the recent310

methods FIARSE and ScaleFL in all settings, with a particularly significant improvement in highly311

non-IID scenarios. These results illustrate that our importance-aware layer-adaptive extraction312

strategy can enhance model robustness under diverse data distributions.313

Table 3: Comparison of global test accuracy for different methods across various data distributions
under heterogeneous system {1, 1/4, 1/16, 1/64}−{10, 20, 30, 40}.

Method CIFAR-10 CIFAR-100
iid Dir(0.3) Dir(0.1) iid Dir(0.3) Dir(0.1)

HeteroFL 77.68 (↓ 6.53) 72.11 (↓ 6.93) 65.64 (↓ 13.70) 31.25 (↓ 13.81) 29.45 (↓ 12.75) 25.61 (↓ 13.56)
FedRolex 77.49 (↓ 6.72) 68.26 (↓ 10.78) 65.42 (↓ 13.92) 35.05 (↓ 10.01) 31.26 (↓ 10.94) 25.26 (↓ 13.91)
ScaleFL 80.87 (↓ 3.34) 68.60 (↓ 10.44) 57.28 (↓ 22.06) 42.62 (↓ 2.44) 38.01 (↓ 4.19) 31.31 (↓ 7.86)
FIARSE 82.64 (↓ 1.57) 77.75 (↓ 1.29) 72.04 (↓ 7.30) 37.03 (↓ 8.03) 34.04 (↓ 8.16) 29.69 (↓ 9.48)
FedLASE 84.21 79.04 79.34 45.06 42.20 39.17

5.4 Impact of Network Architecture314

This subsection further investigates the impact of different network architectures. The experimental315

results shown in Table 4 demonstrate that our method consistently outperforms existing methods316

across two distinct network architectures under two sets of heterogeneous scenarios. In particular,317

for the heterogeneous system {1, 1/4, 1/16, 1/64}−{5, 10, 25, 60}, our method achieves a notable318

performance improvement on CIFAR-100, surpassing the second-best method by 9.57% and 11.79%319

for the two network architectures, respectively. This further validates the robustness of our approach,320

highlighting its adaptability to different network architectures in real-world scenarios.321

Table 4: Comparison of global test accuracy for different methods on CIFAR-10 and CIFAR-100
using ResNet-18 and ResNet-34, under two heterogeneous system settings.

Method
{1, 1/4, 1/16, 1/64}−{5, 10, 25, 60} {1, 1/4, 1/16, 1/64}−{10, 20, 30, 40}

CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100
ResNet-18 ResNet-34 ResNet-18 ResNet-34 ResNet-18 ResNet-34 ResNet-18 ResNet-34

ScaleFL 52.52 (↓ 24.01) 46.45 (↓ 24.10) 27.78 (↓ 9.57) 25.72 (↓ 12.41) 57.28 (↓ 22.06) 51.65 (↓ 23.97) 31.32 (↓ 7.85) 29.84 (↓ 9.54)
FIARSE 61.60 (↓ 14.93) 62.63 (↓ 7.92) 25.36 (↓ 11.99) 26.34 (↓ 11.79) 72.04 (↓ 7.30) 66.11 (↓ 9.51) 29.71 (↓ 9.46) 31.95 (↓ 7.43)
FedLASE 76.53 70.55 37.35 38.13 79.34 75.62 39.17 39.38

6 Conclusion322

In this paper, we proposed the FedLASE framework, an importance-aware layer-adaptive submodel323

extraction method designed to address the challenges posed by system heterogeneity in federated324

learning. By considering both parameter importance and layer importance, our method ensures that325

the critical components in each layer of the global model are preserved, even in resource-constrained326

environments. Through extensive experiments across different datasets and system-heterogeneous327

scenarios, we demonstrate that FedLASE significantly outperforms state-of-the-art methods in both328

global and local test accuracy. In particular, it excels in maintaining stable performance across a wide329

range of client capacities, ensuring efficient and effective training in heterogeneous FL environments.330

This illustrates its effectiveness in real-world federated learning scenarios, where clients have different331

resource capacities. In the future, we will focus on exploring more efficient resource allocation332

strategies and aggregation schemes to further optimize the performance of system-heterogeneous333

federated learning, leveraging the characteristics of system heterogeneity.334
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A Related Work450

We systematically review existing approaches to address system heterogeneity in federated learning,451

categorizing them into three primary strategies: a) client exclusion or model architecture restriction,452

b) client-specific model training, and c) submodel extraction methods. Our analysis focuses on453

submodel extraction due to its superior adaptability in heterogeneous environments.454

A.1 Client Exclusion or Model Architecture Restriction455

The simplest strategy involves excluding resource-constrained clients or constraining the global456

model architecture to match the weakest devices [12, 13]. While this approach ensures uniform457

model architecture across clients and simplifies aggregation, it introduces two critical limitations.458

First, client exclusion reduces data diversity, potentially inducing model bias and compromising459

generalization capabilities. Second, architectural constraints prevent high-resource clients from460

leveraging more complex models that could enhance learning outcomes. These limitations ultimately461

undermine the system’s capacity to utilize available computational resources effectively.462

A.2 Client-Specific Model Training463

Alternative approaches enable clients to train models commensurate with their computational capabili-464

ties [14, 38, 16, 39]. In this paradigm, high-capacity clients train larger models while resource-limited465

clients operate smaller variants. However, aggregating heterogeneous model architectures poses466

significant technical challenges. Knowledge distillation has emerged as a primary solution, where467

larger teacher models transfer knowledge to smaller student models [40]. Notable implementations468

include FedDF [14], which distilled knowledge from multiple client classifiers using an additional469

public dataset, and FedGKT [38], employing group knowledge transfer to enable clients to train470

small models while a larger model is maintained on the server. Nevertheless, these knowledge471

distillation-based approaches often depend on additional datasets that may be unavailable due to472

privacy constraints or domain incompatibility.473

A.3 Submodel Extraction Methods474

Unlike the aforementioned approaches, which limit the flexibility of the model or require complex475

aggregation schemes, the submodel extraction methods allow clients to train smaller models derived476

from a global model while maintaining a unified architecture between clients. This approach balances477

adaptability and implementation simplicity, making it particularly suitable for heterogeneous FL478

systems. For example, inspired by dropout techniques in centralized learning [41], Federated Dropout479

[17] randomly selected a subset of neurons per layer to form client-specific submodels. Although sim-480

ple to implement, its randomness leads to unstable training and performance degradation, especially481

in the case of high system and data heterogeneity, as shown in our experiments. To improve stability,482

structured submodel extraction methods such as HeteroFL [9] and FjORD [24] predefined fixed483

submodel assignments for each client. Although this reduces randomness, it restricts data utilization,484

as different submodels are trained only on specific client subsets, limiting the generalization of the485

global model. FedRolex [18] alleviated this issue by introducing a rolling submodel extraction strat-486

egy, allowing different model segments to be trained over time, thus improving parameter coverage487

and mitigating model drift. ScaleFL [25] and DepthFL [13] further refined submodel selection based488

on depth and width configurations, using self-distillation to enhance knowledge transfer between489

different resource levels. Despite these advancements, most existing methods lack a principled mech-490

anism for parameter selection, treating all model components equally. This often results in suboptimal491

submodel configurations that fail to retain the most crucial information. To address this, FIARSE492

[21] introduced an importance-aware approach that globally ranks parameters by importance before493

extraction. While this strategy demonstrates superior performance compared to uniform selection,494

it does not consider the variations of parameter importance across different layers. Consequently,495

certain layers may be excessively pruned in smaller submodels, leading to structural imbalances that496

degrade model stability and overall performance.497
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B Algorithm of FedLASE498

Algorithm 1 FedLASE: Importance-aware Layer-Adaptive Submodel Extraction
Input: Local learning rate η, total round T , local epoch K, initial global model θ0, client resource constraints
{rn}.
1: for t = 0, 1, . . . , T − 1 do
2: Sample a set of clients A ⊆ [N ]
3: Server-side Submodel Extraction:
4: for each client n ∈ A in parallel do
5: Compute layer-wise extraction ratio rnt,li using Eq. (1)
6: Extract top rnt,li · dli most important parameters per layer to obtain mask Mn

t and threshold θ̃nt,li
7: Send θt ⊙Mn

t and θ̃nt,li to client n
8: end for
9: Client-side Local Training:

10: for each client n ∈ A in parallel do
11: Initialize θnt,0 = θt ⊙Mn

t

12: for k = 0, . . . ,K − 1 do
13: Compute gradient using Eq. (2): gnt,k = ∇θn

t,k
F̃n(θ

n
t,k ⊙Mn

t )

14: Update local model: θnt,k+1 = θnt,k − η · gnt,k
15: end for
16: Upload the trained submodel θnt ≜ θnt,K to the server
17: end for
18: Server-side Model Aggregation:
19: Aggregate local models using Eq. (3): θt+1 =

( ∑
n∈A

Mn
t ⊙ θnt

)/( ∑
n∈A

Mn
t

)
20: end for

C Complexity Analysis499

In this section, we conduct a comparative analysis of computational and communication efficiency500

between FedLASE and SOTA methods (HeteroFL [9], FedRolex [18], ScaleFL [25], and FIARSE501

[21]), focusing specifically on per-round cost analysis as summarized in Table 5.502

Computational Complexity. The computational complexity arises from both server-side and503

client-side operations. On the server side, three primary tasks contribute to the computational load:504

parameter aggregation, mask computation, and submodel extraction. While all compared methods505

share the common O(d) complexity for aggregation and submodel extraction, their mask computation506

approaches differ in implementation paradigms. HeteroFL, FedRolex, and ScaleFL employ predefined507

submodel extraction schemes with constant-time mask computation (O(1)). Notably, ScaleFL needs508

additional computational overhead from solving an optimization subproblem during initialization to509

determine client-specific width and depth configurations. In comparison, FIARSE and FedLASE510

require parameter importance evaluation (O(d)) followed by parameter sorting. The global sorting511

of FIARSE results in O(d log(d)) complexity, whereas the layer-wise sorting of FedLASE achieves512

O(
L∑

i=1

dli log(dli)). Given that dli ≪ d for typical deep learning architectures, our method possesses513

superior computational efficiency in sorting operations.514

Client-side computations involve three core components: loss calculation, gradient computation,515

and model updating. HeteroFL, FedRolex, FIARSE, and FedLASE have equivalent training loss516

computation complexity (denoted by O(C1)), while ScaleFL needs an additional cost (denoted by517

O(C2)) due to self-distillation, making the total loss computation complexity of O(C1) +O(C2).518

Suppose the gradient computation of training loss across all methods is O(C2). In comparison,519

ScaleFL introduces an extra cost for gradient calculation due to self-distillation, represented as520

O(C4). The additional gradient computational cost for FIARSE and FedLASE introduced by the521

STE technique is O(dn) with dn = rnd. For the model updating, the computational costs for all522

approaches are O(dn). Therefore, in the local calculation process, our method does not introduce a523

large amount of computational overhead.524
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Table 5: Computational and communication complexity comparison per training round
Method

Computational cost Communication cost
Server Client n

Upstream Downstream
Aggregation Mask Submodel extracting Local loss Local gradient Model updating

HeteroFL O(d) O(1) O(d) O(C1) O(C2) O(dn) O(dn) O(dn)

FedRolex O(d) O(1) O(d) O(C1) O(C2) O(dn) O(dn) O(dn)

ScaleFL O(d) O(1) O(d) O(C1) + O(C3) O(C2) + O(C4) O(dn) O(dn) O(dn)

FIARSE O(d) O(d) + O(d log(d)) O(d) O(C1) O(C2) + O(dn) O(dn) O(dn) O(dn)

FedLASE O(d) O(d) + O(
∑L

i=1 dli
log(dli

)) O(d) O(C1) O(C2) + O(dn) O(dn) O(dn) O(dn)

* dn = rnd; C1: Training loss computation; C2: Gradient computation for training loss; C3 & C4: Self-distillation costs for ScaleFL.

Communication Complexity. In terms of communication overhead, all compared methods ex-525

hibit equivalent complexity for bidirectional transmission of client submodels (O(dn)). Although526

FIARSE and FedLASE require additional threshold communication for submodel extraction, this527

supplementary cost becomes negligible relative to the dominant model parameter transmission.528

Through systematic complexity analysis, we demonstrate that FedLASE achieves a balanced com-529

putational and communication complexity. The proposed layer-wise sorting mechanism reduces530

server-side computation compared to global sorting approaches while maintaining client-side com-531

plexity comparable to baseline methods.532

D Standard Assumptions and Proof of Theorem 1533

D.1 Assumptions534

To analyze the convergence of federated learning, the following standard assumptions are commonly535

used in previous works [19, 22, 21], where Assumptions 2-3 ensure that the gradients are smooth and536

bounded, and Assumptions 4-5 account for the noise in gradients.537

Assumption 2: (L-smoothness) The local objective function F̃n(θ) is L-smooth, i.e., for any538

θ, θ′ ∈ Rd and n,539

∥∇F̃n(θ)−∇F̃n(θ
′)∥ ≤ L∥θ − θ′∥.

Assumption 3: (Bounded Gradient) The expected squared norm of the stochastic gradient is540

bounded uniformly, i.e., for a constant G > 0 and any n, t, k,541

E∥∇F̃n(θ
n
t,k, ξt,k)∥2 ≤ G.

Assumption 4: (Gradient Noise for IID Data) For IID data distribution, assume that542

E[∇F̃n(θ
n
t,k, ξt,k)] = ∇F̃ (θnt,k),

and543

E∥∇F̃n(θ
n
t,k, ξt,k)−∇F̃n(θ

n
t,k)∥2 ≤ σ2.

Assumption 5: (Gradient Noise for non-IID Data) For non-IID data distribution, assume that544

E
[ 1

|Nt,i|
∑

n∈Nt,i

(
∇F̃n(θ

n
t,k, ξt,k)

)
i

]
=
(
∇F̃ (θnt,k)

)
i
,

and545

E
∥∥∥ 1

|Nt,i|
∑

n∈Nt,i

(
∇F̃n(θ

n
t,k, ξt,k)−∇F̃ (θnt,k)

)
i

∥∥∥2 ≤ σ2,

where Nt,i ≜ {n|mn
t,i ≥ 1} is the set of clients training the ith parameter in round t, mn

t,i is the ith546

elements of the mask Mn
t for client n in round t, and |Nt,i| is the number of elements in the set Nt,i.547

D.2 Proof of Theorem 1548

From Assumption 2, we can obtain549

E[F̃ (θt+1)]− E[F̃ (θt)] ≤ E
〈
∇F̃ (θt), θt+1 − θt

〉
+

L

2
E∥θt+1 − θt∥2. (6)

In the sequel, we analyze the upper bounds of each term on the right side of Eq. (6). Before this,550

we first calculate the difference between the global models at t + 1th round and tth round. Let551
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Nt,i ≜ {n|mn
t,i ≥ 1} denote the set of clients training the ith parameter in round t. Then for the ith552

element of the global model (i ∈ It ≜ {i|
∑N

n=1 m
n
t,i ≥ 1}), we have553

θt+1,i − θt,i =

(
1

|Nt,i|
∑

n∈Nt,i

θnt,K,i

)
− θt,i

(a)
=

1

|Nt,i|
∑

n∈Nt,i

[
θt,i ·mn

t,i −
K−1∑
k=0

η
(
∇θn

t,k
F̃n(θ

n
t,k ⊙Mn

t , ξ
n
t,k)
)
i

]
− θt,i

(b)
= − 1

|Nt,i|
∑

n∈Nt,i

K−1∑
k=0

η
(
∇θn

t,k
F̃n(θ

n
t,k ⊙Mn

t , ξ
n
t,k)
)
i
,

(7)

where mn
t,i is the ith elements of the mask Mn

t for client n in round t, (a) is obtained by the global554

aggregation θt+1 =
∑

n Mn
t ⊙θn

t∑
n Mn

t
=

∑
n Mn

t ⊙θn
t,K∑

n Mn
t

and local training θnt,k+1 = θnt,k −∇θn
t,k
F̃n(θ

n
t,k ⊙555

Mn
t , ξ

n
t,k), and (b) holds because mn

t,i = 1 when n ∈ Nt,i.556

The first term on the right side of Eq. (6) can be amplified as557

E
〈
∇F̃ (θt), θt+1 − θt

〉
=
∑
i∈It

E

[
(∇F̃ (θt))i · (θt+1,i − θt,i)

]

(a)
=
∑
i∈It

E

[
(∇F̃ (θt))i ·

(
− 1

|Nt,i|
∑

n∈Nt,i

K−1∑
k=0

η
(
∇θn

t,k
F̃n(θ

n
t,k ⊙Mn

t , ξ
n
t,k)
)
i

)]

=− ηK
∑
i∈It

E(∇F̃ (θt))
2
i −

∑
i∈It

E

[
(∇F̃ (θt))i ·

(
1

|Nt,i|
∑

n∈Nt,i

K−1∑
k=0

η
(
∇θn

t,k
F̃n(θ

n
t,k ⊙Mn

t , ξ
n
t,k)−∇F̃ (θt)

)
i

)]

=− ηK
∑
i∈It

E(∇F̃ (θt))
2
i − ηK

∑
i∈It

E

[
(∇F̃ (θt))i ·

(
1

K|Nt,i|
∑

n∈Nt,i

K−1∑
k=0

(
∇θn

t,k
F̃n(θ

n
t,k ⊙Mn

t , ξ
n
t,k)−∇F̃ (θt)

)
i

)]
(b)

≤ − ηK
∑
i∈It

E(∇F̃ (θt))
2
i +

ηK

2

∑
i∈It

E

[
(∇F̃ (θt))i

]2

+
ηK

2

∑
i∈It

E

[(
1

K|Nt,i|
∑

n∈Nt,i

K−1∑
k=0

(
∇θn

t,k
F̃n(θ

n
t,k ⊙Mn

t , ξ
n
t,k)−∇F̃ (θt)

)
i

)]2
,

(8)

where (a) comes from Eq. (7), (b) holds because ab ≤ 1
2 (a

2 + b2). The third term on the right side of558

Eq. (8) is bounded by559

ηK

2

∑
i∈It

E

[(
1

K|Nt,i|
∑

n∈Nt,i

K−1∑
k=0

(
∇θn

t,k
F̃n(θ

n
t,k ⊙Mn

t , ξ
n
t,k)−∇F̃ (θt)

)
i

)]2
(a)

≤ ηK

2

∑
i∈It

1

K|Nt,i|
∑

n∈Nt,i

K−1∑
k=0

E

[(
∇θn

t,k
F̃n(θ

n
t,k ⊙Mn

t , ξ
n
t,k)−∇F̃n(θt, ξt)

)
i

]2

≤ηK

2

1

K|Nt,i|min

N∑
n=1

K−1∑
k=0

E
∥∥∥∥∇θn

t,k
F̃n(θ

n
t,k ⊙Mn

t , ξ
n
t,k)−∇F̃n(θt, ξt)

∥∥∥∥2
(b)

≤ ηK

2

L2

K|Nt,i|min

N∑
n=1

K−1∑
k=0

E
∥∥∥∥θnt,k ⊙Mn

t − θt

∥∥∥∥2,
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where |Nt,i|min = mini{|Nt,i|}, (a) holds because ∥ 1
s

∑s
i=1 ai∥2 ≤ 1

s

∑s
i=1 ∥ai∥2, and (b) comes560

from Assumption 2. By introducing an additional term θnt,0⊙Mn
t , the above inequality can be further561

amplified as562

ηK

2

∑
i∈It

E

[(
1

K|Nt,i|
∑

n∈Nt,i

K−1∑
k=0

(
∇θn

t,k
F̃n(θ

n
t,k ⊙Mn

t , ξ
n
t,k)−∇F̃ (θt)

)
i

)]2

≤ηK

2

L2

K|Nt,i|min

N∑
n=1

K−1∑
k=0

E
∥∥∥∥θnt,k ⊙Mn

t − θnt,0 ⊙Mn
t + θt ⊙Mn

t − θt

∥∥∥∥2

≤ηK

2

2L2

K|Nt,i|min
K

N∑
n=1

E
∥∥∥∥θt ⊙Mn

t − θt

∥∥∥∥2 + ηK

2

2L2

K|Nt,i|min

N∑
n=1

K−1∑
k=0

E
∥∥∥∥θnt,k ⊙Mn

t − θnt,0 ⊙Mn
t

∥∥∥∥2
(a)
=

ηK

2

2L2

K|Nt,i|min
K

N∑
n=1

E
∥∥∥∥θt ⊙Mn

t − θt

∥∥∥∥2 + ηK

2

2L2

K|Nt,i|min

N∑
n=1

K−1∑
k=1

E
∥∥∥∥− k−1∑

j=0

η∇θn
t,j
F̃n(θ

n
t,j ⊙Mn

t )

∥∥∥∥2
(b)

≤ ηK

2

2L2

K|Nt,i|min
K

N∑
n=1

E
∥∥∥∥θt ⊙Mn

t − θt

∥∥∥∥2 + ηK

2

2L2

K|Nt,i|min

N∑
n=1

K−1∑
k=1

k

k−1∑
j=0

E
∥∥∥∥− η∇θn

t,j
F̃n(θ

n
t,j ⊙Mn

t )

∥∥∥∥2,
(9)

where (a) is obtained by the local updates, (b) holds because ∥
∑s

i=1 ai∥2 ≤ s
∑s

i=1 ∥ai∥2.563

Combining Eqs. (9) with Eq. (8) gives564

E
〈
∇F̃ (θt), θt+1 − θt

〉
≤− ηK

∑
i∈It

E(∇F̃ (θt))
2
i +

ηK

2

∑
i∈It

E

[
(∇F̃ (θt))i

]2

+
ηK

2

∑
i∈It

E

[(
1

K|Nt,i|
∑

n∈Nt,i

K−1∑
k=0

(
∇θn

t,k
F̃n(θ

n
t,k ⊙Mn

t , ξ
n
t,k)−∇F̃ (θt)

)
i

)]2

≤−ηK
2

∑
i∈It

E

[
(∇F̃ (θt))i

]2
+ ηK

2
2L2

K|Nt,i|min
K

N∑
n=1

E
∥∥∥∥θt ⊙Mn

t − θt

∥∥∥∥2 + ηK
2

2L2

K|Nt,i|min

N∑
n=1

K−1∑
k=1

k
k−1∑
j=0

E
∥∥∥∥− η∇θn

t,j
F̃n(θ

n
t,j ⊙Mn

t )

∥∥∥∥2.
(10)

For another term on the right side of Eq. (6), we have565

L

2
E∥θt+1 − θt∥2

(a)
=

L

2

∑
i∈It

E

[
− 1

|Nt,i|
∑

n∈Nt,i

K−1∑
k=0

η
(
∇θn

t,k
F̃n(θ

n
t,k ⊙Mn

t , ξ
n
t,k)
)
i

]2

=
L

2

∑
i∈It

E

[
1

|Nt,i|
∑

n∈Nt,i

K−1∑
k=0

η
(
∇θn

t,k
F̃n(θ

n
t,k ⊙Mn

t , ξ
n
t,k)−∇θn

t,k
F̃n(θ

n
t,k ⊙Mn

t )
)
i

+
1

|Nt,i|
∑

n∈Nt,i

K−1∑
k=0

η
(
∇θn

t,k
F̃n(θ

n
t,k ⊙Mn

t )−∇F̃n(θt)
)
i
+

1

|Nt,i|
∑

n∈Nt,i

K−1∑
k=0

η
(
∇F̃n(θt)

)
i

]2
(b)

≤ 3L

2

∑
i∈It

E

[
1

|Nt,i|
∑

n∈Nt,i

K−1∑
k=0

η
(
∇θn

t,k
F̃n(θ

n
t,k ⊙Mn

t , ξ
n
t,k)−∇θn

t,k
F̃n(θ

n
t,k ⊙Mn

t )
)
i

]2

+
3L

2

∑
i∈It

E

[
1

|Nt,i|
∑

n∈Nt,i

K−1∑
k=0

η
(
∇θn

t,k
F̃n(θ

n
t,k ⊙Mn

t )−∇F̃n(θt)
)
i

]2
+

3η2K2L

2

∑
i∈It

E
(
∇F̃ (θt)

)2
i
,

(11)
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where (a) comes from Eq. (7), (b) is obtained by ∥
s∑

i=1

ai∥2 ≤ s
s∑

i=1

∥ai∥2 and Assumptions 4 and 5.566

Combining Assumption 2 and Eq. (9), the second term on the right side of the above inequality can567

be amplified as568

3L

2
E
∑
i∈It

[
1

|Nt,i|
∑

n∈Nt,i

K−1∑
k=0

η
(
∇θn

t,k
F̃n(θ

n
t,k ⊙Mn

t )−∇F̃n(θt)
)
i

]2

≤3η2K2L

2

1

K|Nt,i|min

N∑
n=1

K−1∑
k=0

E
∥∥∥∇θn

t,k
F̃n(θ

n
t,k ⊙Mn

t )−∇F̃n(θt)
∥∥∥2

≤3η2K2L

2

L2

K|Nt,i|min

N∑
n=1

K−1∑
k=0

E
∥∥∥θnt,k ⊙Mn

t − θt

∥∥∥2
≤3η2K2L

2

2KL2

K|Nt,i|min

N∑
n=1

E
∥∥∥∥θt ⊙Mn

t − θt

∥∥∥∥2

+
3η2K2L

2

2L2

K|Nt,i|min

N∑
n=1

K−1∑
k=1

k

k−1∑
j=0

E
∥∥∥∥− η∇θn

t,j
F̃n(θ

n
t,j ⊙Mn

t )

∥∥∥∥2.

(12)

According to Assumptions 4 and 5, the first term on the right side of Eq. (11) is bounded by569

i) iid570

3L

2

∑
i∈It

E

[
1

|Nt,i|
∑

n∈Nt,i

K−1∑
k=0

η
(
∇θn

t,k
F̃n(θ

n
t,k ⊙Mn

t , ξ
n
t,k)−∇θn

t,k
F̃n(θ

n
t,k ⊙Mn

t )
)
i

]2

=
3η2K2L

2

∑
i∈It

E

[
1

K|Nt,i|
∑

n∈Nt,i

K−1∑
k=0

(
∇θn

t,k
F̃n(θ

n
t,k ⊙Mn

t , ξ
n
t,k)−∇θn

t,k
F̃n(θ

n
t,k ⊙Mn

t )
)
i

]2

≤3η2K2L

2

∑
i∈It

1

K|Nt,i|
∑

n∈Nt,i

K−1∑
k=0

E

[(
∇θn

t,k
F̃n(θ

n
t,k ⊙Mn

t , ξ
n
t,k)−∇θn

t,k
F̃n(θ

n
t,k ⊙Mn

t )
)
i

]2

≤3η2K2L

2

1

K|Nt,i|min

N∑
n=1

K−1∑
k=0

E
∥∥∥∇θn

t,k
F̃n(θ

n
t,k ⊙Mn

t , ξ
n
t,k)−∇θn

t,k
F̃n(θ

n
t,k ⊙Mn

t )
∥∥∥2

≤3η2K2L

2

NKσ2

K|Nt,i|min

(13)

ii) non-iid571

3L

2

∑
i∈It

E

[
1

|Nt,i|
∑

n∈Nt,i

K−1∑
k=0

η
(
∇θn

t,k
F̃n(θ

n
t,k ⊙Mn

t , ξ
n
t,k)−∇θn

t,k
F̃n(θ
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i
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=
3η2K2L

2

∑
i∈It

E

[
1

K

K−1∑
k=0

1
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∑

n∈Nt,i

(
∇θn

t,k
F̃n(θ

n
t,k ⊙Mn

t , ξ
n
t,k)−∇θn

t,k
F̃n(θ
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t,k ⊙Mn
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)
i

]2

≤3η2K2L

2

∑
i∈It

1

K

K−1∑
k=0

E

[
1
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∑

n∈Nt,i

(
∇θn
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F̃n(θ

n
t,k ⊙Mn

t , ξ
n
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F̃n(θ

n
t,k ⊙Mn

t )
)
i

]2

≤3η2K2Lσ2d

2
(14)
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Substituting Eqs. (12)-(14) into Eq. (11), we have572

L

2
E∥θt+1 − θt∥2

≤3L

2
E
∑
i∈It

[
1

|Nt,i|
∑

n∈Nt,i

K−1∑
k=0

η
(
∇θn

t,k
F̃n(θ

n
t,k ⊙Mn

t , ξ
n
t,k)−∇θn

t,k
F̃n(θ

n
t,k ⊙Mn

t )
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i

]2

+
3L

2
E
∑
i∈It

[
1

|Nt,i|
∑

n∈Nt,i

K−1∑
k=0

η
(
∇θn

t,k
F̃n(θ

n
t,k ⊙Mn

t )−∇F̃n(θt)
)
i

]2
+

3η2K2L

2
E
∑
i∈It

(
∇F̃ (θt)

)2
i

≤3η2K2L

2
E
∑
i∈It

(
∇F̃ (θt)

)2
i
+

3η2K2L

2

NKσ2

K|Nt,i|min
(iid) +

3η2K2Lσ2d

2
(non-iid)

+
3η2K2L

2

2KL2

K|Nt,i|min

N∑
n=1

E
∥∥∥∥θt ⊙Mn

t − θt

∥∥∥∥2 + 3η2K2L

2

2L2
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k

k−1∑
j=0

E
∥∥∥∥− η∇θn
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F̃n(θ

n
t,j ⊙Mn

t )

∥∥∥∥2
(15)

From Eqs. (6), (10), and (15), one can get573

E[F̃ (θt+1)]− E[F̃ (θt)]

≤E
〈
∇F̃ (θt), θt+1 − θt

〉
+

L

2
E∥θt+1 − θt∥2

≤ηK

2

2L2
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∥∥∥∥2
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+
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∥∥∥∥2

+
3η2K2L

2

2L2

K|Nt,i|min

N∑
n=1

K−1∑
k=1

k

k−1∑
j=0

E
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where (a) comes from Assumptions 3 and 1, (b) is given by 6ηKL < 1. Taking the sum over574

t = 0, 1, . . . , T − 1 on both sides of the above inequality gives575
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where Q1 = 4E[F̃ (θ0)], Q2 = 6LNσ2

|Nt,i|min
, Q3 = 6Lσ2d,Q4 = 4L2

|Nt,i|min
, Q5 = 2L2NG

3|Nt,i|min
, (a) holds576

because η = O( 1
K

√
T
). This completes the proof.577

E Limitations578

In this paper, we propose FedLASE, an importance-aware layer-adaptive submodel extraction frame-579

work that selects critical parameters within each layer based on both parameter and layer importance.580

This design enables structurally consistent and expressive submodels, leading to balanced perfor-581

mance across heterogeneous clients and improved convergence. Although the proposed strategy is582

effective and computationally efficient, it may not be the theoretically optimal extraction solution.583

Future work could explore more principled submodel construction methods from an optimization per-584

spective. Nonetheless, the primary objective of this work is to emphasize the importance of assigning585

appropriate layer-wise extraction ratios for each client in system-heterogeneous federated learning,586

especially for the case that high-resource clients are few and the majority are resource-constrained.587

F Broader impacts588

This work highlights the potential of shifting large-scale model training from centralized computing589

resources to decentralized collaborative paradigms. With the advancement of federated learning,590

individual users, small organizations, and resource-constrained devices can increasingly participate591

in model training, reducing dependence on traditional computing monopolies and improving the592

accessibility and openness of AI technologies. In particular, our method is well suited for practical593

deployment scenarios where a few clients have abundant computational resources while most are594

resource-limited, offering a more feasible solution for real-world applications.595
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made in the paper.605
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NA answer to this question will not be perceived well by the reviewers.608

• The claims made should match theoretical and experimental results, and reflect how609

much the results can be expected to generalize to other settings.610

• It is fine to include aspirational goals as motivation as long as it is clear that these goals611

are not attained by the paper.612

2. Limitations613

Question: Does the paper discuss the limitations of the work performed by the authors?614

Answer: [Yes]615

Justification: We have provides a clear discussion of the limitations of the proposed method,616

outlining potential directions for future improvement. For more details, please refer to617

Appendix E.618

Guidelines:619

• The answer NA means that the paper has no limitation while the answer No means that620

the paper has limitations, but those are not discussed in the paper.621

• The authors are encouraged to create a separate "Limitations" section in their paper.622

• The paper should point out any strong assumptions and how robust the results are to623

violations of these assumptions (e.g., independence assumptions, noiseless settings,624

model well-specification, asymptotic approximations only holding locally). The authors625

should reflect on how these assumptions might be violated in practice and what the626

implications would be.627

• The authors should reflect on the scope of the claims made, e.g., if the approach was628

only tested on a few datasets or with a few runs. In general, empirical results often629
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• The authors should reflect on the factors that influence the performance of the approach.631

For example, a facial recognition algorithm may perform poorly when image resolution632
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used reliably to provide closed captions for online lectures because it fails to handle634
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• The authors should discuss the computational efficiency of the proposed algorithms636

and how they scale with dataset size.637

• If applicable, the authors should discuss possible limitations of their approach to638

address problems of privacy and fairness.639

• While the authors might fear that complete honesty about limitations might be used by640

reviewers as grounds for rejection, a worse outcome might be that reviewers discover641

limitations that aren’t acknowledged in the paper. The authors should use their best642

judgment and recognize that individual actions in favor of transparency play an impor-643

tant role in developing norms that preserve the integrity of the community. Reviewers644

will be specifically instructed to not penalize honesty concerning limitations.645

3. Theory assumptions and proofs646

Question: For each theoretical result, does the paper provide the full set of assumptions and647

a complete (and correct) proof?648
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Answer: [Yes]649

Justification: For the convergence analysis of the proposed FedLASE, all assumptions have650

been clearly stated and referenced and the proof of the convergence theorem for FedLASE651

have been given in Appendix D.2.652

Guidelines:653

• The answer NA means that the paper does not include theoretical results.654

• All the theorems, formulas, and proofs in the paper should be numbered and cross-655

referenced.656

• All assumptions should be clearly stated or referenced in the statement of any theorems.657

• The proofs can either appear in the main paper or the supplemental material, but if658

they appear in the supplemental material, the authors are encouraged to provide a short659

proof sketch to provide intuition.660

• Inversely, any informal proof provided in the core of the paper should be complemented661

by formal proofs provided in appendix or supplemental material.662

• Theorems and Lemmas that the proof relies upon should be properly referenced.663

4. Experimental result reproducibility664

Question: Does the paper fully disclose all the information needed to reproduce the main ex-665

perimental results of the paper to the extent that it affects the main claims and/or conclusions666

of the paper (regardless of whether the code and data are provided or not)?667

Answer: [Yes]668

Justification: The paper has provided sufficient details on the experimental setup, model669

configurations, and evaluation metrics to reproduce the main results.670

Guidelines:671

• The answer NA means that the paper does not include experiments.672

• If the paper includes experiments, a No answer to this question will not be perceived673

well by the reviewers: Making the paper reproducible is important, regardless of674

whether the code and data are provided or not.675

• If the contribution is a dataset and/or model, the authors should describe the steps taken676

to make their results reproducible or verifiable.677

• Depending on the contribution, reproducibility can be accomplished in various ways.678

For example, if the contribution is a novel architecture, describing the architecture fully679

might suffice, or if the contribution is a specific model and empirical evaluation, it may680

be necessary to either make it possible for others to replicate the model with the same681

dataset, or provide access to the model. In general. releasing code and data is often682

one good way to accomplish this, but reproducibility can also be provided via detailed683

instructions for how to replicate the results, access to a hosted model (e.g., in the case684

of a large language model), releasing of a model checkpoint, or other means that are685

appropriate to the research performed.686

• While NeurIPS does not require releasing code, the conference does require all submis-687

sions to provide some reasonable avenue for reproducibility, which may depend on the688

nature of the contribution. For example689

(a) If the contribution is primarily a new algorithm, the paper should make it clear how690

to reproduce that algorithm.691

(b) If the contribution is primarily a new model architecture, the paper should describe692

the architecture clearly and fully.693

(c) If the contribution is a new model (e.g., a large language model), then there should694

either be a way to access this model for reproducing the results or a way to reproduce695

the model (e.g., with an open-source dataset or instructions for how to construct696

the dataset).697

(d) We recognize that reproducibility may be tricky in some cases, in which case698

authors are welcome to describe the particular way they provide for reproducibility.699

In the case of closed-source models, it may be that access to the model is limited in700

some way (e.g., to registered users), but it should be possible for other researchers701

to have some path to reproducing or verifying the results.702
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5. Open access to data and code703

Question: Does the paper provide open access to the data and code, with sufficient instruc-704

tions to faithfully reproduce the main experimental results, as described in supplemental705

material?706

Answer: [No]707

Justification: We plan to release the code and data publicly upon acceptance to minimize708

the risk of plagiarism. However, the paper includes comprehensive algorithmic details and709

experimental settings, enabling readers to reproduce the main results by closely following710

the provided descriptions.711
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• The answer NA means that paper does not include experiments requiring code.713

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/714

public/guides/CodeSubmissionPolicy) for more details.715

• While we encourage the release of code and data, we understand that this might not be716

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not717

including code, unless this is central to the contribution (e.g., for a new open-source718

benchmark).719

• The instructions should contain the exact command and environment needed to run to720

reproduce the results. See the NeurIPS code and data submission guidelines (https:721

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.722

• The authors should provide instructions on data access and preparation, including how723

to access the raw data, preprocessed data, intermediate data, and generated data, etc.724

• The authors should provide scripts to reproduce all experimental results for the new725

proposed method and baselines. If only a subset of experiments are reproducible, they726

should state which ones are omitted from the script and why.727

• At submission time, to preserve anonymity, the authors should release anonymized728

versions (if applicable).729

• Providing as much information as possible in supplemental material (appended to the730

paper) is recommended, but including URLs to data and code is permitted.731

6. Experimental setting/details732

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-733

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the734

results?735

Answer: [Yes]736

Justification: The paper has specified all necessary training and testing details, including data737

splits, hyperparameters, and optimization settings, etc, to ensure clarity and reproducibility738

of the results.739
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• The answer NA means that the paper does not include experiments.741

• The experimental setting should be presented in the core of the paper to a level of detail742

that is necessary to appreciate the results and make sense of them.743

• The full details can be provided either with the code, in appendix, or as supplemental744

material.745

7. Experiment statistical significance746

Question: Does the paper report error bars suitably and correctly defined or other appropriate747

information about the statistical significance of the experiments?748

Answer: [No]749

Justification: Although this paper does not include error bars or formal statistical signif-750

icance analyzes, the empirical results of FedLASE consistently demonstrate substantial751

improvements over baseline methods. Across various heterogeneous scenarios, FedLASE752

achieves performance gains ranging from 7% to 16% compared to the second-best approach.753

These consistent improvements across different settings provide strong empirical support754

for the effectiveness of FedLASE.755
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• The answer NA means that the paper does not include experiments.757

• The authors should answer "Yes" if the results are accompanied by error bars, confi-758

dence intervals, or statistical significance tests, at least for the experiments that support759

the main claims of the paper.760

• The factors of variability that the error bars are capturing should be clearly stated (for761
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run with given experimental conditions).763

• The method for calculating the error bars should be explained (closed form formula,764

call to a library function, bootstrap, etc.)765

• The assumptions made should be given (e.g., Normally distributed errors).766

• It should be clear whether the error bar is the standard deviation or the standard error767

of the mean.768

• It is OK to report 1-sigma error bars, but one should state it. The authors should769

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis770

of Normality of errors is not verified.771

• For asymmetric distributions, the authors should be careful not to show in tables or772

figures symmetric error bars that would yield results that are out of range (e.g. negative773

error rates).774

• If error bars are reported in tables or plots, The authors should explain in the text how775

they were calculated and reference the corresponding figures or tables in the text.776

8. Experiments compute resources777

Question: For each experiment, does the paper provide sufficient information on the com-778

puter resources (type of compute workers, memory, time of execution) needed to reproduce779

the experiments?780

Answer: [No]781

Justification: Reproducers can use a single server to perform a simulation of FedLASE782

federated training. The following is a representative hardware and software configuration783

used in our experiments:784

• CPU: AMD Ryzen 9 9950X 16-Core Processor (32 threads)785

• Memory: 128 GB786

• Disk: 1.8 TB SSD787

• GPU: 2 NVIDIA GeForce RTX 4090 (24 GB each)788

• System: Linux789

• Library: PyTorch 2.5.1790

The total training time across all experiments can take up to 3–4 weeks.791

Guidelines:792

• The answer NA means that the paper does not include experiments.793

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,794

or cloud provider, including relevant memory and storage.795

• The paper should provide the amount of compute required for each of the individual796

experimental runs as well as estimate the total compute.797

• The paper should disclose whether the full research project required more compute798

than the experiments reported in the paper (e.g., preliminary or failed experiments that799

didn’t make it into the paper).800

9. Code of ethics801

Question: Does the research conducted in the paper conform, in every respect, with the802

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?803

Answer: [Yes]804

Justification: We have conducted in the paper conform, in every respect, with the NeurIPS805

Code of Ethics.806
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.808

• If the authors answer No, they should explain the special circumstances that require a809

deviation from the Code of Ethics.810

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-811

eration due to laws or regulations in their jurisdiction).812

10. Broader impacts813

Question: Does the paper discuss both potential positive societal impacts and negative814

societal impacts of the work performed?815

Answer: [Yes]816

Justification: We provide further discussion on potential societal impacts in Appendix F817
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• The answer NA means that there is no societal impact of the work performed.819
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technology is being used as intended but gives incorrect results, and harms following835
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strategies (e.g., gated release of models, providing defenses in addition to attacks,838

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from839

feedback over time, improving the efficiency and accessibility of ML).840

11. Safeguards841

Question: Does the paper describe safeguards that have been put in place for responsible842

release of data or models that have a high risk for misuse (e.g., pretrained language models,843

image generators, or scraped datasets)?844

Answer: [NA]845

Justification: No such risks.846
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• We recognize that providing effective safeguards is challenging, and many papers do855
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faith effort.857

12. Licenses for existing assets858

25



Question: Are the creators or original owners of assets (e.g., code, data, models), used in859

the paper, properly credited and are the license and terms of use explicitly mentioned and860

properly respected?861

Answer: [Yes]862

Justification: All external assets, including datasets and baseline implementations, are863

properly credited in the paper. Their usage complies with the respective licenses and terms864

of use as stated in the referenced works.865

Guidelines:866
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the derived asset (if it has changed) should be provided.879

• If this information is not available online, the authors are encouraged to reach out to880

the asset’s creators.881

13. New assets882

Question: Are new assets introduced in the paper well documented and is the documentation883
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Answer: [NA]885

Justification:886
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• The answer NA means that the paper does not release new assets.888

• Researchers should communicate the details of the dataset/code/model as part of their889

submissions via structured templates. This includes details about training, license,890

limitations, etc.891

• The paper should discuss whether and how consent was obtained from people whose892

asset is used.893
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Answer: [NA]900
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