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Abstract

The recent Long-Range Graph Benchmark (LRGB, Dwivedi et al. 2022) introduced a set
of graph learning tasks strongly dependent on long-range interaction between vertices. Em-
pirical evidence suggests that on these tasks Graph Transformers significantly outperform
Message Passing GNNs (MPGNNs). In this paper, we carefully reevaluate multiple MPGNN
baselines as well as the Graph Transformer GPS (Rampášek et al. 2022) on LRGB. Through
a rigorous empirical analysis, we demonstrate that the reported performance gap is overes-
timated due to suboptimal hyperparameter choices. It is noteworthy that across multiple
datasets the performance gap completely vanishes after basic hyperparameter optimiza-
tion. In addition, we discuss the impact of lacking feature normalization for LRGB’s vision
datasets and highlight a spurious implementation of LRGB’s link prediction metric. The
principal aim of our paper is to establish a higher standard of empirical rigor within the
graph machine learning community.

1 Introduction

Graph Transformers (GTs) have recently emerged as a popular alternative to conventional Message Pass-
ing Graph Neural Networks (MPGNNs) which dominated deep learning on graphs for years. A central
premise underlying GTs is their ability to model long-range interactions between vertices through a global
attention mechanism. This could give GTs an advantage on tasks where MPGNNs may be limited through
phenomenons like over-smoothing, over-squashing, and under-reaching, thereby justifying the significant
runtime overhead of self-attention.

The Long-Range Graph Benchmark (LRGB) has been introduced by Dwivedi et al. (2022) as a collection of
five datasets with strong dependence on long-range interactions between vertices:

• Peptides-func and Peptides-struct are graph-level classification and regression tasks, respectively.
Their aim is to predict various properties of peptides which are modelled as molecular graphs.

• PascalVOC-SP and COCO-SP model semantic image segmentation as a node-classification task on
superpixel graphs.

• PCQM-Contact is a link prediction task on molecular graphs. The task is to predict pairs of vertices
which are distant in the graph but in contact in 3D space.

The experiments provided by Dwivedi et al. (2022) report a strong performance advantage of GTs over the
MPGNN architectures GCN Kipf & Welling (2017), GINE Hu et al. (2020b), and GatedGCN Bresson &
Laurent (2017), in accordance with the expectations. Subsequently, GPS Rampášek et al. (2022) reached
similar conclusions on LRGB. We note that these two works are strongly related and built on a shared code
base. Newer research on GTs (see Section 1.1) is commonly based on forks of this code base and often cites
the baseline performance reported by Dwivedi et al. (2022) to represent MPGNNs.

Our contribution is three-fold1: First, we show that the three MPGNN baselines GCN, GINE, and Gat-
edGCN all profit massively from further hyperparameter tuning, reducing and even closing the gap to graph

1The source code is provided in the supplement
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Method PEPTIDES-FUNC PEPTIDES-STRUCT
Test AP ↑ rel imp Test MAE ↓ rel imp

LR
G

B

GCN 0.5930 ± 0.0023 0.3496 ± 0.0013
GINE 0.5498 ± 0.0079 0.3547 ± 0.0045
GatedGCN 0.6069 ± 0.0035 0.3357 ± 0.0006
Transformer 0.6326 ± 0.0126 0.2529 ± 0.0016
SAN 0.6439 ± 0.0075 0.2545 ± 0.0012
GPS 0.6535 ± 0.0041 0.2500 ± 0.0005

O
ur

s GCN 0.6860 ± 0.0050 +16% 0.2460 ± 0.0007 +30%
GINE 0.6621 ± 0.0067 +20% 0.2473 ± 0.0017 +30%
GatedGCN 0.6765 ± 0.0047 +11% 0.2477 ± 0.0009 +26%
GPS 0.6534 ± 0.0091 ± 0% 0.2509 ± 0.0014 ± 0%

O
th

er
s

CRaWl 0.7074 ± 0.0032 0.2506 ± 0.0022
DRew 0.7150 ± 0.0044 0.2536 ± 0.0015
Exphormer 0.6527 ± 0.0043 0.2481 ± 0.0007
GRIT 0.6988 ± 0.0082 0.2460 ± 0.0012
Graph ViT 0.6942 ± 0.0075 0.2449 ± 0.0016
G-MLPMixer 0.6921 ± 0.0054 0.2475 ± 0.0015

(a) Previous and updated results on the peptides
datasets. Best results (within stdev) in bold.
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(b) Exchanging the linear prediction head by an MLP ac-
counts for most of the additional performance of all three
MPGNNs, especially on Peptides-Struct

Figure 1: On both Peptides datasets, all three MPGNNs surpass GPS. On Peptides-Struct a basic GCN
model even achieves SOTA results.

transformers on multiple datasets. In fact, GCN yields state-of-the-art results on Peptides-Struct, surpassing
several newer graph transformers. On this dataset in particular, most of the performance boost is due to a
multi-layer prediction head instead of a linear one, again highlighting the importance of hyperparameters.
Second, we show that on the vision datasets PascalVOC-SP and COCO-SP normalization of the input fea-
tures is highly beneficial. We argue that, as in the vision domain, feature normalization should be the default
setting. Third and last we take a closer look at the MRR metric used to evaluate PCQM-Contact. There,
we demonstrate different filtering strategies have a major impact on the results and must be implemented
exactly to specification to facilitate reliable comparisons.

1.1 Related Work

Our primary focus are the commonly used MPGNNs GCN Kipf & Welling (2017), GINE Hu et al. (2020b),
and GatedGCN Bresson & Laurent (2017) as well as the graph transformer GPS Rampášek et al. (2022).
There are many more MPGNN architectures Hamilton et al. (2017); Xu et al. (2018); Chen et al. (2020);
Corso et al. (2020), as well as graph transformers Dwivedi & Bresson (2020); Ying et al. (2021); Kreuzer
et al. (2021); Shi et al. (2020); Park et al. (2022); Weis et al. (2021); Rampášek et al. (2022); Shirzad et al.
(2023); Kim et al. (2022); Ma et al. (2023); He et al. (2023), see also the survey by Min et al. (2022). Many
newer graph transformer architectures have reported results on LRGB datasets, including Exphormer Shirzad
et al. (2023), GRIT Ma et al. (2023) and Graph ViT / GraphMLPMixer He et al. (2023). Several other
architectures not based on transformers have also been evaluated on LRGB, including CRaWl Tönshoff et al.
(2023), DRew Gutteridge et al. (2023) and Virtual Nodes Gilmer et al. (2017); Cai et al. (2023). Finally, we
do see a connection of our work to graph learning benchmarking projects Dwivedi et al. (2020); Hu et al.
(2020a) that also advocate for rigorous testing of graph learning architectures.

2 Concerns

Hyperparameters. In this paper, we argue that the results reported by Dwivedi et al. (2022) are not
representative for MPGNNs and suffer from suboptimal hyperparameters. We provide new results for the
same MPGNN architectures that are obtained after a basic hyperparameter sweep. We tune the main
hyperparameters (such as depth, dropout rate, . . . ) in pre-defined ranges while strictly adhering to the
official 500k parameter budget. The exact hyperparameter ranges and all final configurations are provided in
Appendix A.1. As a point of reference, we reevalute GPS in an identical manner and also achieve significantly
improved results on three datasets with this Graph Transformer. The results reported for GPS may therefore
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(a) Vertex feature matrices (|V | × 14) on PascalVOC-SP
before and after channel-wise normalization.
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(b) The effects of feature normalization and hyperpa-
rameter tuning on PascalVOC-SP.

Figure 2: On PascalVOC-SP and COCO-SP feature normalization and further tuning improves performance
across all compared methods.

also be subject to suboptimal configurations. Note that we also view the usage of positional or structural
encoding (none / LapPE Dwivedi & Bresson (2020) / RWSE Dwivedi et al. (2021)) as a hyperparameter
that is tuned for each method, including all MPGNNs.

Feature Normalization. The vision datasets PascalVOC-SP and COCO-SP have multi-dimensional node
and edge features with values spanning different orders of magnitude for different feature channels. Passing
this input to a neural network without channel-wise normalization can cause poorly conditioned activations.
While feature normalization is standard practice in deep learning and computer vision in particular, neither
Dwivedi et al. (2022) nor any subsequent works using LRGB utilize it, except CRaWl Tönshoff et al. (2023).
We apply channel-wise linear normalization to all input features as visualized in Figure 2a. We show that
all models (baselines and GPS) profit from it in an ablation in Figure 2b.

Link Prediction Metrics. The evaluation metric on the link-prediction dataset PCQM-Contact Dwivedi
et al. (2022) is the Mean Reciprocal Rank (MRR) in a filtered setting, as defined by Bordes et al. (2013).
For predicted edge scores the MRR measures how a given true edge (h, t) is ranked compared to all possible
candidate edges (h, x) of the same head. As there might be multiple true tails t for each head h, the filtered
MRR removes those other true tails (false negatives) from the list of candidates before computing the metric.
This filtering avoids erroneously low MRR values due to the model preferring other true edges and is common
in link-prediction tasks. Even though Dwivedi et al. (2022) explicitly define the metric to be the filtered
MRR, the provided code computes the raw MRR, i.e. keeping other true tails in the list. We report results
on PCQM-Contact in a corrected filtered setting. We additionally provide results with an extended filtering
procedure where self-loops of the form (h, h) are also removed from the set of candidates, since these are
semantically meaningless and never positive. This is impactful as the scoring function used by Dwivedi et al.
(2022) is based on a symmetric dot-product and therefore exhibits a strong bias towards self-loops.

3 Experiments

Peptides-Func and Peptides-Struct Table 1a provides the results obtained on the test splits of the
Peptides-Func and Peptides-Struct. For the MPGNN baselines we observe considerable improvements on
both datasets as all three MPGNNs outperform GPS after tuning. The average precision on Peptides-Func
increased relatively by around 10% to 20%. GCN achieves a score of 68.60%, which is competitive with
newer GTs such as GRIT or Graph ViT. The improvement on Peptides-Struct is even more significant with
a relative reduction of the MAE of 30%, fully closing the gap to recently proposed GTs. Surprisingly, a simple
GCN is all you need to match the best known results on Peptides-Struct. The results for GPS effectively
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Method PASCALVOC-SP COCO-SP
Test F1 ↑ rel imp Test F1 ↑ rel imp

LR
G

B

GCN 0.1268 ± 0.0060⋆ 0.0841 ± 0.0010⋆

GINE 0.1265 ± 0.0076⋆ 0.1339 ± 0.0044⋆

GatedGCN 0.2873 ± 0.0219⋆ 0.2641 ± 0.0045⋆

Transformer 0.2694 ± 0.0098⋆ 0.2618 ± 0.0031⋆

SAN 0.3230 ± 0.0039⋆ 0.2592 ± 0.0158⋆

GPS 0.3748 ± 0.0109⋆ 0.3412 ± 0.0044⋆

O
ur

s GCN 0.2078 ± 0.0031 +64% 0.1338 ± 0.0007 +59%
GINE 0.2718 ± 0.0054 +115% 0.2125 ± 0.0009 +59%
GatedGCN 0.3880 ± 0.0040 +35% 0.2922 ± 0.0018 +11%
GPS 0.4440 ± 0.0065 +18% 0.3884 ± 0.0055 +13%

O
th

er
s CRaWl 0.4588 ± 0.0079 -

DRew 0.3314 ± 0.0024⋆ -
Exphormer 0.3960 ± 0.0027⋆ 0.3430 ±0.0008⋆

(a) Tuning results on vision datasets PascalVOC-SP
and COCO-SP. ⋆No normalization used.
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(b) Results on PCQM-Contact. For our own models we
provide the MRR scores with varying levels of filtering.

stayed the same as in the original paper Rampášek et al. (2022). Those values thus seem to be representative
for GPS.

We observed that the key hyperparameter underlying the improvements of all three MPGNNs is the depth of
the prediction head. To show this Figure 1b contains an ablation where we exchanged the linear prediction
head configured by Dwivedi et al. (2022) with a 2-layer perceptron, keeping all other hyperparameters the
same. While the benefit on Peptides-Func is considerable and highly significant, on Peptides-Struct the head
depth accounts for almost the complete performance gap between MPGNNs and GTs. GPS’ performance
with linear and deeper prediction heads is largely unchanged. For example, our GPS configurations in Table
1a use a 2-layer prediction head. Our results indicate that the prediction targets of both datasets appear to
depend non-linearly on global graph information. In this case, MPGNNs with linear prediction heads are
unable to model the target function. Graph Transformers are not as sensitive to linear prediction heads,
since each layer can process global graph information with a deep feed-forward network. However, we would
argue that switching to a deep predictive head represents a simpler and computationally cheaper solution to
the same issue.

PascalVOC-SP and COCO-SP Table 3a provides the results obtained on the test splits of the superpixel
datasets PascalVOC-SP and COCO-SP. We observe significant improvements for all evaluated methods. On
PascalVOC-SP the F1 score of GatedGCN increases to 38.80% which exceeds the original performance
reported for GPS by Rampášek et al. (2022). GPS also improves significantly to 44.40% F1. This is only one
percentage point below the results achieved by CRaWl, which currently is the only reported result with
normalized features. The previously large performance gap between GPS and CRaWl is therefore primarily
explained by GPS processing raw input signals. On COCO-SP, we observe similar results. Here GPS sets a
new state-of-the-art F1 score of 38.84%.

Note that these improvements are achieved entirely through data normalization and hyperparameter tuning.
Figure 2b provides an ablation on the individual effect of normalization. We train intermediate models with
configurations identical to those used by Dwivedi et al. (2022) and Rampášek et al. (2022), but with feature
normalization. For GatedGCN we observe a slight performance increase but a large reduction in the variance
across random seeds. For the remaining methods, including GPS, normalization of node and edge features
already accounts for at least half of the observed performance gain, emphasizing its importance in practice.

PCQM-Contact Figure 3b plots the MRR scores obtained on the test split with various evaluation
settings as described in the link prediction paragraph of Section 2. First, we provide the results originally
reported for LRGB in the literature (a). Recall that these values are obtained in a raw setting with false
negatives present. We then provide results obtained after training our own model with new hyperparameters
(chosen based on the raw MRR) in b). We still use the raw MRR for evaluation in b) to measure the impact
of hyperparameter tuning. Tuning yields an absolute improvement of around 3%. The previously reported
slight performance edge of GPS is not observable in this setting after tuning.
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In subplot c) we measure the MRR of our models in the filtered setting. Note that these values are based
on the exact same predictions as in b), but false negatives are removed. The measured MRR increases by
roughly 3% when compared to the raw setting. This shift could erroneously be interpreted as a significant
improvement when comparing to literature values obtained in a raw setting. In d) we evaluate our models
(still using the same predictions) in an extended filtered setting where we additionally remove self-loops
from the candidate pool. Compared to the filtered MRR in c) the MRR metric increases by about 10
percentage points, indicating that self-loops strongly affect the results. Note that in d) GPS again slightly
outperforms the MPGNN baselines, in contrast to b) and c). This means that GPS’ predictions seem to
suffer overproportionally when self-loops are not filtered. Therefore, the specific choice of how negative
samples are filtered on PCQM-Contact can directly affect the ranking of compared methods and must be
considered and implemented with care.

4 Conclusion

In our experiments we observed considerable performance gains for all three MPGNN baselines. First, this
indicates that extensive baseline tuning is important for properly assessing one’s own method, escpecially
on relatively recent datasets. And second, only on the two superpixel datasets graph transformers exhibit
clear performance benefits against MPGNNs, indicating that either there are ways to solve the other tasks
without long-range interactions or graph transformers are not inherently better at exploiting such long-range
dependencies. Evaluating this further appears to be promising direction for future research. In addition, we
would invite a discussion on the best-suited link prediction metric on PCQM-Contact.
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A Experiment Details

A.1 Hyperparameters

In the following we describe our methodology for tuning hyperparameters on the LRGB datasets. We did
not conduct a dense grid search, since this would be infeasible for all methods and datasets. Instead we
perform a “linear” hyperparameter search. We start from a empricially chosen default config and tune each
hyperparameter individually within a fixed range. Afterwards, we also evaluate the configuration obtained
by combining the best choices of every hyperparameter. From all tried configurations we then select the one
with the best validation performance as our final setting. For this hyperparameter sweep, we resorted to a
single run per configuration and for the larger datasets slightly reduced the number of epochs. For the final
evaluations runs we average results across four different random seeds as specified by the LRGB dataset.

Overall, we tried to incorporate the most important hyperparameters which we selected to be dropout, model
depth, prediction head depth, learning rate, and the used positional or structural encoding. For GPS we
additionally evaluated the internal MPGNN (but only between GCN and GatedGCN) and whether to use
BatchNorm or LayerNorm. Thus, our hyperparamters and ranges were as follows:

• Dropout [0, 0.1, 0.2], default 0.1

• Depth [6,8,10], default 8. The hidden dimension is chosen to stay within a hard limit of 500k
parameters

• learning rate [0.001, 0.0005, 0.0001], default 0.001

• Head depth [1,2,3], default 2

• Encoding [none, LapPE, RWSE] default none

• Internal MPGNN [GCN, GatedGCN], default GatedGCN (only for GPS)

• Normalization [BatchNorm, LayerNorm] default BatchNorm (only for GPS)

On the larger datasets PCQM-Contact and COCO we reduce the hyperparameters budget slightly for effi-
ciency. There, we did not tune the learning rate (it had been 0.001 in every single other case) and omitted
a dropout rate of 0. We note that the tuning procedure used here is relatively simple and not exhaustive.
The ranges we searched are rather limited, especially in terms of network depth, and could be expanded
in the future. Tables 1 to 5 provide all final model configurations after tuning. Table 6 provides the final
performance on all datasets.

We make some additional setup changes based on preliminary experiments. All models are trained with
an AdamW optimizer using a cosine annealing learning rate schedule and linear warmup. This differs from
Dwivedi et al. (2022), who optimized the MPGNN models with a “Reduce on Plateau” schedule and instead
matches the learning rate schedule of GPS Rampášek et al. (2022). We set the weight decay to 0.0 in
all five datasets and switch to slightly larger batch sizes to speed up convergence. We also choose GeLU
Hendrycks & Gimpel (2016) as our default activation function. Furthermore, we change the prediction head
for graph-level tasks such that all hidden layers have the same hidden dimension as the GNN itself. These
were previously configured to become more narrow with depth, but we could not observe any clear benefit
from this design choice. Last, all MPGNN models use proper skip connections which go around the entire
GNN layer. The original LRGB results use an implementation of GCN as provided by GraphGym You
et al. (2020). The skip connections in this implementation do not skip the actual non-linearity at the end
of each GCN layer, possibly hindering the flow of gradients. We reimplement GCN with skip connections
that go around the non-linearity. Note that these additional tweaks are not used in our ablation studies in
Figure 1b and Figure 2b when training the intermediate models where we only change the head depth and
normalization, respectively. There, we use identical model configurations to those used in the literature.
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A.2 Feature Normalization

On PascalVOC-SP and COCO-SP we apply channel-wise normalisation to the node and edge features. For
each dataset, we compute the channel-wise mean µ ∈ Rd and standard deviation σ ∈ Rd on the train split.
Here, d is the feature dimension. Each feature vector x ∈ Rd is then normalized linearly before beigng passed
to the model:

x̃i = xi − µi

σi
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Table 1: Hyperparameters on Peptides-Func

GCN GINE GatedGCN GPS

lr 0.001 0.001 0.001 0.001
dropout 0.1 0.1 0.1 0.1
#layers 6 8 10 6
hidden dim. 235 160 95 76
head depth 3 3 3 2
PE/SE RWSE RWSE RWSE LapPE
batch size 200 200 200 200
#epochs 250 250 250 250
norm - - - BatchNorm
MPNN - - - GatedGCN
#Param. 486k 491k 493k 479k

Table 2: Hyperparameters on Peptides-Struct.

GCN GINE GatedGCN GPS

lr 0.001 0.001 0.001 0.001
dropout 0.1 0.1 0.1 0.1
#layers 6 10 8 8
hidden dim. 235 145 100 64
head depth 3 3 3 2
PE/SE LapPE LapPE LapPE LapPE
batch size 200 200 200 200
#epochs 250 250 250 250
norm - - - BatchNorm
MPNN - - - GatedGCN
#Param. 488k 492k 445k 452k

Table 3: Hyperparameters on PascalVOC-SP.

GCN GINE GatedGCN GPS

lr 0.001 0.001 0.001 0.001
dropout 0.0 0.2 0.2 0.1
#layers 10 10 10 8
hidden dim. 200 145 95 68
head depth 3 2 2 2
PE/SE RWSE none none LapPE
batch size 50 50 50 50
#epochs 200 200 200 200
norm - - - BatchNorm
MPNN - - - GatedGCN
#Param. 490k 450k 473k 501k

Table 4: Hyperparameters on COCO-SP.

GCN GINE GatedGCN GPS

lr 0.001 0.001 0.001 0.001
dropout 0.1 0.1 0.1 0.1
#layers 6 6 8 8
hidden dim. 280 195 105 68
head depth 1 1 1 1
PE/SE none none none none
batch size 50 50 50 50
#epochs 200 200 200 200
norm - - - LayerNorm
MPNN - - - GatedGCN
#Param. 500k 478k 459k 500k
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Table 5: Hyperparameters on PCQM-Contact.

GCN GINE GatedGCN GPS

lr 0.001 0.001 0.001 0.001
dropout 0.1 0.1 0.1 0.0
#layers 8 8 8 6
hidden dim. 215 160 105 76
head depth 1 1 1 1
PE/SE LapPE LapPE LapPE LapPE
batch size 500 500 500 500
#epochs 150 150 150 150
norm - - - LayerNorm
MPNN - - - GatedGCN
#Param. 456k 466k 477k 478k

Table 6: Performance of our models on the Long-Range Graph Benchmark.

Method PASCALVOC-SP COCO-SP PEPTIDES-FUNC PEPTIDES-STRUCT PCQM-CONTACT
Test F1 ↑ Test F1 ↑ Test AP ↑ Test MAE ↓ Test MRR ↑

raw filter ext. filter

GCN 0.2078 ± 0.0031 0.1338 ± 0.0007 0.6860 ± 0.0050 0.2460 ± 0.0007 0.3424 ± 0.0007 0.3631 ± 0.0006 0.4526 ± 0.0006
GINE 0.2718 ± 0.0054 0.2125 ± 0.0009 0.6621 ± 0.0067 0.2473 ± 0.0017 0.3509 ± 0.0006 0.3725 ± 0.0006 0.4617 ± 0.0005
GatedGCN 0.3880 ± 0.0040 0.2922 ± 0.0018 0.6765 ± 0.0047 0.2477 ± 0.0009 0.3495 ± 0.0010 0.3714 ± 0.0010 0.4670 ± 0.0004
GPS 0.4440 ± 0.0065 0.3884 ± 0.0055 0.6534 ± 0.0091 0.2509 ± 0.0014 0.3498 ± 0.0005 0.3722 ± 0.0005 0.4703 ± 0.0014
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B Additional Experiments

In Table 7 we provide extended results for the ablation study from Figure 1b. More specifically, we evaluate
both GPS and GCN models on Peptides-Struct with predictive heads of various depths. As in Figure 1b,
we study the isolated effect of this hyperparameter on the performance and leave all other hyperparameters
identical to those used by Dwivedi et al. (2022).

The main observation is the large performance jump of GCN when configured with a head of depth two or
three instead of the linear head that was originally chosen. The results of GPS do not suffer from a linear
prediction head, but also do not improve further for deeper configurations. This is probably explained by
the fact that each GPS layer can already process global graph information with a deep feed-forward network.
A deeper prediction head may therefore be redundant in GPS models.

Table 7: Detailed performance on Peptides-Func for GPS and GCN with the depth of the prediction head
varying from 1 to 3 layers.

depth GCN (MAE) GPS (MAE)
1 0.3496 ± 0.0013 0.2500 ± 0.0005
2 0.2547 ± 0.0019 0.2516 ± 0.0012
3 0.2534 ± 0.0013 0.2546 ± 0.0020
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