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ABSTRACT

RAG has become the de facto method for incorporating new, corpus-specific
knowledge into an instruction following LLM (Instruct LLM). Although RAG-
based prompting improves factual grounding, it fails when retrieval is incorrect or
incomplete, leading to hallucinations. Finetuning methods such as RAFT [Zhang
et al.| (2024b) and PA-RAG Bhushan et al.| (2025) enhance RAG by ingesting
new knowledge into the parameters of the model, but require generating massive
amount of synthetic QA that covers the entire corpus. Continued Pre-Training
(CPT) on the text corpus avoids the need for comprehensive synthetic data gen-
eration but breaks the instruction following capabilities of an Instruct LLM, ne-
cessitating instruction fine-tuning (IFT) post CPT. However, IFT is costly and
may be infeasible due to the unavailability of an instruction tuning corpus. In
this work, we propose KNITLM-KNowledge IngesTion via LoORA Merging. In-
stead of doing CPT on the Instruct LLM, KNITLM performs CPT with Low-
Rank Adapters (LoRA) on its corresponding base LLM to infuse new knowledge.
These knowledge-infused LoRA weights are then merged with the Instruct LLM,
imparting new knowledge without impacting their instruction following capabili-
ties. KNITLM avoids expensive instruction fine-tuning and relies on model merg-
ing (Ilharco et al.| (2023)) to infuse the new knowledge into the Instruct LLM
without destroying its instruction following capabilities. Empirical results show
that KNITLM significantly improves the performance of RAG by taking accu-
racy from 54.17% to 79.26% for retrieval failure cases. In addition, the proposed
method achieves superior performance to existing approaches while requiring sub-
stantially less training data.

1 INTRODUCTION

‘Base LLMs’ trained on an enormous amount of textual data have immense knowledge, but lack
instruction-following capabilities. This necessitates post-training, which typically involves massive
Instruction Fine-Tuning (IFT) (Ouyang et al.| 2022} Shengyu et al.l|2023) followed by RLHF (Schul-
man et al., 2017; Rafailov et al., 2023 [Pandey et al., 2024). ‘Instruct LLMs’ (model obtained after
post-training) have achieved remarkable success across general-purpose tasks (Brown et al., [2020;
Wei et al.| [2022). However, their deployment in specialized domains such as question answering
over technical or confidential policy documents, shifts the emphasis from general reasoning to de-
livering highly accurate, document-specific responses. Often, these specialised documents are either
too scarce or proprietary material that is not available during the pre-training stage. Hence, even the
state-of-the-art instruct LLMs struggle to answer queries that require access to these documents.

A common solution is Retrieval-Augmented Generation (RAG) (Lewis et al.|2020; Karpukhin et al.,
2020), which conditions LLM’s responses on relevant passages retrieved from the target documents.
While effective, RAG is highly sensitive to retrieval quality, and retriever failures often lead to
hallucinations or incomplete answers (Ji et al.| (2023); Nandwani et al.[(2023)). Ingesting the new
knowledge from the specialized documents into the parameters of the model can potentially alleviate
the issues caused by retriever failures, as the model can fall back on its parameteric knowledge.
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Unsupervised Continued Pre-Training (CPT) Ke et al.| (2023) is an effective way of ingesting the
new knowledge, but doing so on the Instruct LLMs results in catastrophic forgetting of the skills
acquired during IFT Ke et al.| (2025). As a result, most of the prior works (Ma et al., 2023} Yang
et al., 2024} Lu et al., 2025)) apply CPT on the ‘base LLM’ but have to redo IFT to re-acquire the
skills present in instruct LLM. This may not always be feasible due to the lack of the IFT dataset
used to create the instruct LLM.

Another way of knowledge ingestion involves direct finetuning of the instruct LLM using IFT-
style training data, such as question-answers (QAs) from the new documents. However, QAs from
the new documents are often not readily available and hence works such as|Zhang et al.| (2024b);
Bhushan et al.| (2025)) resort to QAs generated synthetically by prompting a stronger LLM. A major
advantage of such techniques is that they don’t require expensive IFT after knowledge ingestion.
However, there are two main issues: (1) we need to generate a massive amount of synthetic data,
which may become prohibitively expensive (Yang et al., 2025)), and (2) unlike CPT, it is difficult to
guarantee coverage of the entire knowledge via QAs.

In this work, we ask a research question — how can we capture the

efficiency of CPT to ingest new knowledge and, at the same time,

retain the instruction following ability of the instruct LLMs? To Instruct kUga
tackle this challenge, we resort to the idea of editing models via ___G_I_T_aAa(Ie,BT)
task arithmetic (Ilharco et al., |2023). In task arithmetic, subtract- K

ing the base model’s weights from a fine-tuned model yields the
corresponding ‘task vector’. This task vector captures the skills
present in the fine-tuned model. One can then combine different
‘task vectors’ through arithmetic operations, such as addition, to
impart the corresponding skills to the model. In our case, we wish
to impart new knowledge of the corpus as well as the instruction
following ability of the instruct LLM to the base LLM. The ‘in- —
struction following vector’ of the instruct LLM, which can be eas- BL?_SN? 9 Kn"dwledgﬁ kUga
ily computed by subtracting the publicly available instruct and base B vector H(Ie,Br)
LLM’s weights, captures the instruction following skills. To obtain

a ‘knowledge vector’ that captures the new knowledge, we propose

to train a low-rank adapter (LoRA) via CPT on top of the base LLM. Figure 1: Exploiting task-
Adding the ‘instruct following vector’ and the ‘knowledge vector’ arithmetic to combine new
to the base LLM gives us a model that has the new knowledge from knowledge adapter with in-
the documents as well as the instruction following skills of the In- struction following capabili-
struct LLM. (see fig.[T). ties of Instruct LLM.

We call our method KNITLM: KNowledge IngesTion via LoRA

Merging. It imparts new knowledge to an Instruct LLM via a LoRA

adapter that encodes the new knowledge. Instead of training on top of instruct LLM, the ‘knowledge
LoRA’ is trained via CPT on top of the corresponding base LLM. During inference, the knowledge
LoRA is plugged with the instruct LLM, combining the knowledge of new documents in the LoRA
weights with the instruction following ability of Instruct LLM to respond to document-specific
queries. Note that we use the idea of task-arithmetic to motivate our method. However, in prac-
tice, we need not do any model merging, as the knowledge LoRA can be plugged directly on top of
the Instruct LLM.

To enhance the recall of newly learnt knowledge, we may use a small amount of synthetic QA
during training of the knowledge LoRA adapter (Allen-Zhu & Li, 2024). We note that instruct
LLMs typically have additional tokens in their vocabulary, such as ‘[INST]" for Mistral (Jiang et al.,
2023; Mistral Alj; 2024). LoRAs trained on top of base LLMs would be oblivious to such tokens.
To enhance the adaptability of the knowledge adapter with Instruct LLM, we replace the token
embeddings in the base LLM with those from instruct LLM during training. Our ablation study
shows that this improves the overall performance.

To the best of our knowledge, KNITLM is the first work that proposes an efficient way of imparting
new knowledge to an existing Instruct LLM via a knowledge LoRA trained using the corresponding
base LLM. To summarize, our contributions are as follows:
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1. We propose KNITLM (KNowledge IngesTion via LoORA Merging), a lightweight method
that efficiently ingests knowledge from new documents by first training a knowledge adap-
tor on the base LLM using CPT and then transferring it to the instruct LLM. This enables
knowledge ingestion without the costly IFT phase following CPT.

2. To make KNITLM work, we devise a novel method that uses token embeddings from the
instruct LLM during CPT on the base LLM. This significantly improves the adaptability of
the knowledge adapter.

3. Through extensive experiments and ablations, we demonstrate that our method outperforms
state-of-the-art SFT based knowledge infusion methods (Zhang et al., 2024b; |Bhushan
et al.,[2025) while requiring substantially less synthetic data.

2 RELATED WORK

A central challenge in adapting LLMs to new specialized domains is injecting corpus knowledge
while preserving general reasoning and instruction-following skills. A recent survey [Song et al.
(2025)) categorizes ingestion methods into four categories: (1) dynamic retrieval-based approaches,
(2) static knowledge injection into the parameters, (3) modular adapters, and (4) prompt optimiza-
tion, outlining trade-offs between cost, adaptability, and robustness.

Prompt optimization focuses on designing effective prompts to improve domain-specific responses
from the model’s pre-existing knowledge without any further fine-tuning or architectural changes
(Singhal et al.| [2023}; |Yao et al., [2023)). Hybrid frameworks like DALK further combine dynamic
knowledge injection with prompt optimization for clinical domains |Li et al.| (2024). While promis-
ing, this paradigm suffers from the inherent limitation of in-context learning: context window size.
Designing effective prompts is inefficient, making it unsuitable for scalable knowledge integration.

Dynamic approaches such as Retrieval-Augmented Generation (RAG) (Lewis et al.|[2020;|Guu et al.,
2020; Karpukhin et al., |2020) ingests external knowledge in the context at inference time to ground
responses on retrieved passages. Recent progress has showcased its effectiveness across diverse
domains |Asai et al., 2024} |Qiu et al., 2023 Kim et al., 2024; Tang et al.; [Yan et al., [2024] Re-
cent refinements include joint retriever-generator training for better domain fit (Sachan et al.| 2021}
Siriwardhana et al., 2023} [Shi et al.,|2024). However, RAG-based approaches remain vulnerable to
retrieval failures, leading to hallucinations (Nandwani et al., 2023} Ji et al.; 2023; Setty et al., 2024)).

Another research direction has been static knowledge injection, which infuses domain knowledge
into the model’s parameters via fine-tuning or continued pre-training (CPT), enabling closed-book
inference without access to external documents (Gururangan et al., 2020; Ke et al., 2023; |Wu et al.,
2024; Lu et al) 2025)). Various works have established the utility of CPT across multiple fields,
such as medical (Wu et al., 2024; |(Christophe et al., 2024), materials (Zhao et al., 2025; Zhang et al.,
2024a)), finance (Wu et al., 2023 |[Shah et al., 2022} [ Xie et al., 2023), and education (Dan et al.,
2023). [Cagatay Yildiz et al.| (2025) evaluates CPT across 159 domains and confirms benefits for
smaller models, but notes saturation in learning at larger scales. However, static methods face scala-
bility challenges, and direct CPT on instruction-tuned models causes regression in general skills and
instruction following (Ke et al.| 2025)), supporting our decision to do CPT on base models instead.
Several studies prove the importance of corpus format for effective CPT (Xie et al.| 2024). For
instance, |Allen-Zhu & Li| (2024) demonstrate that incorporating QA-style data during pre-training
enhances knowledge extraction over mere memorization. Similarly, Mix-CPT (Jiang et al.| [2025)
shows that mixing instruction-style corpora during CPT enhances learnability in the post-hoc SFT.
Other hybrid pipelines such as PIT, CPT+SFT, or CPT+RL can boost closed-book performance
(Jiang et al.l 2024} [He et al.,|2025; |Ovadia et al.,|2025)), but rely on costly instruction data or heavy
SFT after knowledge ingestion, which is a common key limitation for these approaches.

Modular adapters tackle scalability by training small, pluggable modules like LoRA to store do-
main knowledge while freezing the base model. This parameter-efficient fine-tuning (PEFT) enables
adapters for diverse domains (Xu et al.[(2024);[Zhang et al.| (2023)). While effective, both static and
modular approaches typically evaluate against base LLMs on domain benchmarks, but neglect RAG
as a stronger baseline. Though more scalable than static ingestion, this still depends on high-quality
instruction data after knowledge ingestion to recover instruction-following abilities.
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Recent works like RAFT (Zhang et al., 2024b) and PA-RAG (Bhushan et al.| [2025) bridge static
and dynamic paradigms. They finetune the Instruct LLM to ingest the document knowledge into the
model’s parameters, and use retrieved passages during inference. Despite improvements, they still
heavily rely on large synthetic QA corpora.

3 METHODOLOGY

Let 0 represent the parameters of an LLM that assigns a probability Pr(p;#) to a sequence of
tokens p = (¢, - - - t,,,). Let 6 and 65 be the weights of the corresponding base and instruct LLMs,
respectively. Further, let D, = {p®}, represent the new knowledge that we wish to ingest on top
of the instruct LLM.

We propose to ingest the knowledge from Dy, into a Low Rank Adapter (LoRA). A naive way to
train such an adapter would be to start with the most optimal weights 6; and minimize the negative
log likelihood over Dy:

ABY = arg min Z —log Pr(p; (6 + A9)) (1)
N

However, [Ke et al.| (2025) observe that such an adapter results in deterioration of instruction fol-
lowing abilities of the instruct LLM 6;. This can be attributed to the fact that the instruct LLM
is obtained via supervised finetuning of the base LLM, whereas the training objective in eq. (1) is
unsupervised next token prediction. Next, we observe that this objective is the same as the training
objective of the base LLMs. Therefore, 85 could be more amenable to continual pretraining and thus
may provide an ideal starting point for ingesting new knowledge. Motivated by this observation, we
propose to train the knowledge adapter on top of the base LLM -

A#Y, = argmin Z —log Pr(p; (05 + A0)) (2)
N

In our notation, the superscript captures the training data and the subscript captures the starting
point, i.e., model initialisation. Note that the final knowledge-infused parameters returned by eq. (2)
are 0 + A0%. However, such a model lacks the instruction following ability of the instruct LLM.
But notice that the new knowledge from Dy, is mainly captured in AH%, which may be combined
with 0 that already has instruction following abilities. Therefore, instead of using 5 + Af% as our
final parameters, we propose to use 7 + aAf%, where a € (0, 1] is a hyperparameter -

0" = 0; + aAdY 3)

Task-arithmetic inspired interpretation

Ilharco et al.| (2023 show that if ; and 65 are two different models finetuned from the same base
model 0, then the corresponding task vectors, AG}B =6, —0p and AH% = 0y — Op, capture the
skills infused in them. If we combine the two task vectors, we get a model that possibly possesses
both the skills -

0° = 0p + aAOL + yA0% (4)
Here, 6 is the combined model capturing the skills of both the finetuned models. « and ~ are
hyperparameters.

Now, let Dy be the data used for the instruction tuning of the instruct LLM. Then the corresponding
‘instruct task vector’ capturing all the skills would be -

A0y =0 — 0p = argmin Z —log Pr(y|x; (05 + A9)) ®)
2% xy)ep.

We can think of our knowledge adapter A0%, as ‘knowledge task vector’ capturing all the knowledge
from the corpus. Now, combining the ‘instruct task vector’ with ‘knowledge task vector’, we get -

0* = 0p + a0y + yAO (6)
Substituting v = 1 and Af% = 07 — 0 from eq. (5), we get -
0" = 0p + 0% +0; — 05 = 0; + aAdf, (7)

which is exactly same as eq. (3).



P Y T N

Under review as a conference paper at ICLR 2026

Adding a small amount of synthetic QA
:[Allen-Zhu & L1f(2024) observe that hav-
ing a few question-answer pairs in the pre-
training data significantly enhances the re-
call of the ingested knowledge. These

Algorithm 1 KNITLM: Knowledge Adapter Training

Input: Base (0p., 0p-), Instruct (01, 01 ), Corpus Dy, QA
set Dyq, learning rate 1, epochs 1T’
Output: Knowledge LoORA A§F29%

(Ie,Br) QAs do not have to necessarily span the
Model Init.: 0 + (6r¢,05-) entire corpus.
LoRA Init.: A6 « (0,A6 . .
onA T (0, Ase 1)) Accordingly, we enhance our training cor-
Union data: Dyyugqq < Di U Dyq . f ;
fort — 1 to T do pus with a small amount o syntheﬂcally
for mini-batch B C Dyuga do generated QAs. Unlike instruction fine-
// Compute loss as in eq. () tuning, where loss is backpropagated only
Ls Y yep —logPr (x; (0re,08r + A0 4, p,)) Over the answer tokens conditioned on
the question, we concatenate the question,
Ab (e, pry  Ab1e,5ry — VLB answer and treat it as part of the new
end knowledge to be ingested. Accordingly,
end let D, = {x' = (sys,q",a")};?, be
Set Aeé‘}i‘f;,r) AT the ‘training data obtz}ined from the syn-
return Aeécluqur) thetic QAs. Here sys is a common system

prompt that asks the model to answer the
question; (sys,q‘,a’) represents the con-
catenation of system prompt, question and
answer; and ngq is the number of synthetically generated QAs. We train our knowledge adapter on
top of the base LLM using Diuge = Dk U Dya-

AGR1% = arg min Z —logPr(x; (0p + A)) 8
a0 x€Dx U Dga

Using token embeddings of the instruct LLLMs

We observe that for certain tokens, embeddings in the base and instruct LL.Ms are quite different. Of-
ten, they correspond to the tokens introduced during the instruction fine-tuning phase, e.g., ‘[INST]
in instruct versions of Mistral. While training the low-rank knowledge adapter, we often target the
linear layers and do not fine-tune the token embeddings, i.e., Af typically contains non-zero entries
only for attention and MLP layers. In addition, the system prompt used in the synthetic QA dataset
also introduces some of these tokens not seen during training of the base LLM, i.e., parameters 6
are oblivious to these tokens. This creates a mismatch: the knowledge adapter is trained with the
base model’s token embeddings but during inference it is used with the instruct LLM’s entirely dif-
ferent embeddings. To mitigate this, we propose to use the token embeddings of the instruct LLM
instead of the base LLM. Concretely, during knowledge LoRA training, we replace the base LLM’s
token embeddings (and the 1m_head, if separate) with those of the instruct LLM. We claim that this
enhances the adaptability of the knowledge LoRA, trained on the base LLM but used with an instruct
LLM. Intuitively, it gives the adapter parameters early exposure to the inference-time environment
and vocabulary, reducing the risk of distribution shift.

If we represent model parameters 0 as (0., 05, ) and 65 as (0;., 61, ), where 5., 01 are the token
embeddings and 6., 05, are the remaining parameters in the base and instruct LLMs, respectively,
then we learn our knowledge LoRA on top of (6;.,05;) -

AG?IL:,J%T) =argmin =~ »  —logPr (x; (0rc, 05, + A)) ©)
Al x€Dy, U an

Algorithm [T] presents our method that returns the trained knowledge LoRA. One can load it on top
of the instruct LLM 6; to obtain the final model parameters as -
0" =01 +a (0,807, ) = (Ore,01) + (0,807, ) = (010,01, + 20275, ) - (10)

4 EXPERIMENTAL SETUP

We seek to answer the following research questions through our experiments:
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1. Can KNITLM effectively ingest knowledge into instruct LLM’s parameters? To test this,
we evaluate the knowledge ingested model in the QA setup where it is provided with only
the question and it has to answer from its parametric knowledge.

2. Can KNITLM effectively combine the knowledge ingested in its parameters with additional
knowledge present in its context? To test this, we compare KNITLM in the RAG setup with
SFT based methods such as RAFT (Zhang et al 2024b) and PA-RAG (Bhushan et al.,
2025)) that rely heavily on an enormous amount of synthetic data.

3. What is the role of synthetic QA data in KNITLM? Specifically, is our method robust to
the size of the synthetic QA dataset and its coverage of the corpus? To this end, we run two
ablations — (1) We vary the size of the synthetic dataset and compare KNITLM with RAFT
and PARAG in both QA and RAG setups. (2) We systematically bias the synthetic QA
dataset by generating training QAs from a specific subset of documents and then measure
the impact on performance.

4. Finally, we seek to quantify the importance of using token embeddings of the instruct LLM
instead of base LLM while training the knowledge adapter, i.e., what happens if we train
the adapter on 05 = (0., 05,) (eq. (B)) instead of (07, 05,) (eq. (9)).

4.1 DATASETS, MODELS, EVALUATION METRICS AND TRAINING DETAILS

Datasets: We train all our models on two datasets introduced in Bhushan et al.|(2025)). Both datasets
consist of text from a technical Redbookﬂ along with corresponding test question answers To test
the performance in the RAG setup, they also provide a list of retrieved passages for each question.

While manually inspecting the test data, we observed that some question-answers in the original
test set are either incomplete or not properly decontextualized. Therefore, we decided to clean up
the test data by prompting Llama-3.1-70B-Instruct to evaluate each QA pair on various dimensions
and assign a rating from 1 to 10. We filtered all QA pairs with a score less than 10. The resulting
datasets have 313 and 1554 test samples, dropping 26% and 32% of the QAs in the original version.
Our small-scale human study reveals that our LLM filter is able to recall 70% of the improper QAs
from the test data, thereby improving its quality. See appendix [A]for the details of the human study
and appendix [F] for the prompt used for cleaning the test data.

Models: We ingest the knowledge from the books into Mistral- 7B-Instruct-v0. and LLama-3.1-
8B-Instrucﬂ These models are selected such that their training cutoff predates the publication
of both Redbooks, ensuring that the models would not have seen these documents during their
pretraining.

Evaluation Metrics: We evaluate our models in two setups — QA and RAG. In the QA setup, the
model is prompted with only the question, and in the RAG setup, we provide the top 5 retrieved pas-
sages along with the question. We use Llama-3.3-70B-Instruct as a judge to evaluate the correctness
of the predicted answer w.r.t. the given gold answer. For each test sample, we provide the judge with
the question, gold answer, and generated answer, and the judge returns a binary score (0/1) after
reasoning across multiple criteria. Full prompt details are in appendix [F

To ensure that our LLM judge is aligned with human judgement, we conduct a small-scale human
study in which we evaluate the responses generated by the instruct LLM. Our LLM judge exhibits
~86% and ~97% agreement with humans in the QA and RAG setup. It is interesting to note the
difference in the agreement rate of the two setups. We attribute this difference to the fact that in the
QA setup, instruct LLM’s responses are not grounded on any text. The model’s responses generated
solely from its parameteric memory tend to be more verbose, confusing the LLM and human judges
alike. In fact, we observe that in the QA setup, inter-annotator agreement amongst humans is also
lower than that in the RAG setup. See appendix [A]for more details on the human study.

Baselines: We compare KNITLM with RAFT [Zhang et al.| (2024b) and PA-RAG Bhushan et al.
(2025)). Both baselines rely on synthetically generated QAs for knowledge ingestion. We prompt

"Book 1: Do More with Less: Automating IBM Storage FlashSystem Tasks with REST APIs, Scripting,
and Ansible. Book 2: Red Hat OpenShift Container Platform on IBM Z and LinuxONE|

“mistralai/Mistral-7B-Instruct-v0.3

meta-llama/LLama-3.1-8B-Instruct


https://www.redbooks.ibm.com/redpieces/pdfs/redp5736.pdf
https://www.redbooks.ibm.com/redpieces/pdfs/redp5736.pdf
https://www.redbooks.ibm.com/redpieces/pdfs/redp5711.pdf
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
https://huggingface.co/meta-llama/LLama-3.1-8B-Instruct
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| Book 1 | Book 2
Train Train
QA RAG Time QA RAG Time
(in mins) (in mins)
Ret. Ret. Ret. Ret.
All Success  Fail. All Success  Fail.
Instruct 53.67 | 71.76 86.27 54.17 27.51 | 61.23 77.96 36.13
RAFT 56.87 | 79.87 88.20 68.89 19 | 27.23 | 62.95 79.16 38.65 35
PA-RAG | 64.22 | 84.66 92.70 74.07 43 | 27.23 | 62.23 78.60 37.64 62
KNITLM | 73.80 | 86.58 92.13  79.26 7 | 40.98 | 66.86 80.67 46.13 13

Table 1: Comparing KNITLM with various baselines. The table reports the fraction of test samples
where the LLM Judge rated the predicted response as good as the gold response. QA: performance
in the QA setup; All: performance over the entire test set in RAG setup; Ret. Success: performance
over test queries where retriever succeeds (match@5=1); Ret. Fail.: performance over test queries
where retriever fails (match@5=0). These results are for Mistral-7B-Instruct-v0.3. Please see Ta-
ble E] for results on Llama-3.1-8B-Instruct. Train Time: Approximate training time in minutes.

Mixtral-8x22B-Instruct-v0.1 to generate synthetic QAs and use the same prompt as described in
Bhushan et al| (2025). See appendix [F for the exact prompt.

Size of the synthetic training data: The number of question—answer pairs in the synthetically gen-
erated training dataset depends on the corpus size. For RAFT and PA-RAG we need to cover the
entire corpus with the generated synthetic data. Therefore, we generate pairs such that the total num-
ber of generated words is twice the number of words in the corpus. PA-RAG additionally requires
multiple answers per question. For each training question, we generate four additional answers us-
ing Mixtral-8x22B-Instruct-v0.1. Consequently, the synthetic dataset for PA-RAG contains about
~ 10 times as many words as the corpus. See appendix [B]for the exact sizes of the training and test
datasets.

Recall that KNITLM also requires a small amount of synthetic QAs, but without the need to cover
the full corpus. Consequently, for KNITLM, we randomly select question-answer pairs such that
the total number of selected words is only 50% of the number of words in the corpus.

Training Details: We run all experiments with Hugging Face’s SFTTrainerﬂ We applied LoRA
to all linear layers in the model with rank » = 16. For KNITLM, after loading the base model, we
replace its token embeddings (and 1m_head if they are separate) with those of the corresponding
instruct model as explained in section 3]

For baseline methods, model selection is based on validation loss with early stopping. For KNITLM
we instead train until convergence of the training loss and control overfitting via the scaling hy-
perparameter a. We sweep a € {0.25, 0.5, 0.75, 1.0} and select the best value using validation
performance. Notably, applying early stopping to KNITLM may yield additional gains, as observed

in appendix [D]
5 EXPERIMENTAL RESULTS

5.1 COMPARISON WITH THE BASELINES

We compare KNITLM with the corresponding instruct LLM, RAFT and PA-RAG in table (1| for
both the datasets in both the QA and RAG setups. In addition to compute the performance over
the entire test set in the RAG setup, we further split the performance depending on the retriever’s
success in fetching the gold passages. Recall that KNITLM utilizes only a fraction of the synthetic
QAs required by PA-RAG. Despite such a low utilizaton, KNITLM outperforms both RAFT and
PA-RAG in both QA and RAG setups.

For Bookl1, performance of KNITLM in the QA setup (73.8) is better than the Instruct LLM in the
RAG setup (71.76). This gain can be attributed to successful knowledge ingestion by KNITLM.

4docs/trl/sft_trainer


https://huggingface.co/docs/trl/sft_trainer
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Figure 2: Impact of scaling synthetic QA on the Redbook1 dataset with Mistral-Instruct-v0.3. Blue
horizontal line corresponds to c-KNITLM- our model trained in an unsupervised manner only using
the document text. Green horizontal line corresponds to Mistral-Instruct-v0.3.

However, note that the performance of KNITLM in the QA setup (73.8) is not at par with the in-
struct LLM when the retriever is able to fetch the gold passage (86.27), indicating that retrieved
passages can still improve the performance of KNITLM. When provided with the retrieved pas-
sages, KNITLM is successfully able to exploit them when the retriever succeeds, as its performance
jumps to 92.13. When the retriever fails, KNITLM is able to ignore the context and answer using
the knowledge infused in model’s parameters. One might expect performance with only distrac-
tor passages (retriever failure) to be lower than in the QA setup (no distractors). Surprisingly, it
is not the case (79.26 vs. 73.8). We hypothesize that even distractor passages in the context help
knowledge-infused models to recall relevant information from their parameters. This observation
holds across RAFT, PA-RAG, and KNITLM. We observe similar trends for Book?2.

5.2 IMPACT OF THE SIZE OF THE SYNTHETIC DATA

In this experiment, we study how scaling the synthetic QA dataset affects model performance. For
this, we progressively increase the number of synthetic QA pairs and compare KNITLM with base-
lines in both QA and RAG setups. We define ‘QA ratio’ as the ratio of number of words in the
synthetic QA dataset to the words in the training document. For KNITLM, QA ratio of 0 corre-
sponds to training only on the corpus (eq. (3)) and we call it corpus-KNITLM or ¢-KNITLM in
short. For RAFT and PA-RAG , 0 corresponds to the instruct model. Note that for PA-RAG , we
need to generate multiple answers for each question, and the QA ratio does not account for it. There-
fore, the actual synthetic QA dataset used for PA-RAG would contain about 5x as many words as
RAFT and KNITLM. Note that the performance numbers in our main experiments correspond to a
ratio of 2 for RAFT and PA-RAG , and 0.5 for KNITLM. For this analysis, we generate additional
data and scale up to a ratio of 4.

Figures 2al2b] presents the analysis. We first observe that c-KNITLM(dotted blue horizontal line)
outperforms both baselines in the QA setup, demonstrating the capability of our method to efficiently
ingest knowledge.

As seen in Figure{2b] KNITLM can achieve near optimal performance with only 0.5x of synthetic
data where the difference of performance is only 2.24% between 0.5x vs 4x of synthetic data. In
contrast, PA-RAG improves by more than 10% going from 0.5x to 4x synthetic data, implying
PA-RAG indeed needs comprehensive volume of synthetic data for effective knowledge ingestion.
A similar trend appears in the QA setup, where KNITLM not only outperforms the baselines but also
shows a smoother saturation curve, unlike the sharp jumps with more synthetic data as seen in PA-
RAG. These results empirically establish that KNITLM is indeed much more lightweight yet the
new state-of-the-art scalable knowledge ingestion recipe, which does not need extensive synthetic
data generation.
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5.3 ROBUSTNESS OF KNITLM TO CORPUS COVERAGE BY SYNTHETIC QAS

In the previous experiment, we observed that

KNITLM is robust to the amount of synthetic

QA dataset and its RAG performance begins | Ch. 1-3 | Ch. 4-5

to saturate even with QA ratio of 0.5. Here, | QA | RAG | QA | RAG
we systematically study the impact of partial c-KNITLM 5280 | 74.40 | 65.96 80.85
knowledge coverage on our method. |Allen-Zhu b-KNITLM +26: 40 +8:00 + 2: 66 ‘ +5:2 5

& Li| (2024) note that “partially augmenting
data can improve knowledge extraction for non-
augmented data”. Here augmentation refers to
adding QAs corresponding to the knowledge
being ingested. To systematically study this,
we run a control experiment — we train a ver-
sion of KNITLM using the document along
with QA data generated from only chapters 1
to 3 of Bookl (we call it biased-KNITLM, or
b-KNITLM) and compare its performance with c-KNITLM (trained without any QA data). Table 2]
shows the results. We observe that adding synthetic QAs from chapters 1 to 3 improves the perfor-
mance even on chapter 4-5. Our result supports the observation in |Allen-Zhu & Li, implying that
even if we have access to QA from only a part of the corpus, KNITLM will still show gains over the
remaining data.

Table 2: Comparison between models trained
without synthetic QA (c-KNITLM i.e., corpus-
KNITLM) and models trained with chapter-
biased synthetic QA(b-KNITLM i.e., biased-
KNITLM). Reported are LLM-as-Judge scores
for QA and RAG setup for two chapter splits.

5.4 IMPACT OF USING INSTRUCT LLM’S TOKEN EMBEDDINGS DURING TRAINING

Recall that in KNITLM we replace the frozen token embeddings fp. in the base LLM
with those from the corresponding instruct LLM. Le., we train the knowledge LoRA adapter
on top of (0r.,0p,) instead of (fp.,0p,). In this experiment, we quantify its im-
pact by comparing the models trained using eq. (8) and eq. (9), respectively. Table [3]
shows the results. For easy reference, we copy the result of PARAG from Table [I]
We find that using instruct LLM’s token em-

beddings improves performance in both QA

and RAG setups. Without them, performance | QA | RAG

drops significantly under retriever failure cases ‘ ‘ All Ret. Ret.
and approaches that of PA-RAG. Thus, replac- Success  Failure
ing the base model’s embeddings with those of PA-RAG | 64.22 | 84.66 92.70 74.07
the instruct model is crucial for KNITLM to KNITLM | 73.80 | 86.58 92.13 79.26
outperform PA-RAG in the RAG setup. e-KNITLM | 72.76 | 84.57 92.13 73.13

Overall, this ablation confirms that using in-
struct token embeddings is a simple yet ef-
fective intervention: it resolves the vocabulary
mismatch between the base and instruct LLMs,
thereby improving the adaptability of knowl-

Table 3: Effectiveness of using instruct LLM’s
embeddings during training. Comparing
KNITLM with a version trained directly on
top of base LLM (e-KNITLM) for Book 1.

edge adapters during inference.

6 CONCLUSION

In this work, we introduced KNITLM, a lightweight and efficient approach for knowledge infusion
in pre-trained LLMs. By training a knowledge adapter through CPT on the base LLM and trans-
ferring it to the instruct LLM, KNITLM enables effective knowledge ingestion without the costly
IFT phase. To further enhance adaptability, we leverage token embeddings from the instruct LLM
during CPT, thereby strengthening the transferability of the knowledge adapter.

Our experiments and ablation study show that KNITLM not only achieves superior performance in
RAG setups but also consistently outperforms state-of-the-art SFT-based knowledge infusion meth-
ods, such as RAFT and PA-RAG, while requiring substantially less synthetic data. These results
highlight KNITLM as a practical and scalable alternative for rapidly incorporating domain-specific
knowledge into LLMs.
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A HUMAN ANNOTATION AND LLM-AS-A-JUDGE ALIGNMENT

A.1 HUMAN ANNOTATION SETUP

To validate the reliability of our evaluation protocol, we conduct a human annotation study using 50
examples sampled from the Book 1 and Book 2 test splits. Responses were generated with Mistral
v0.3 Instruct under both QA and RAG setups. For each instance, annotators were provided with the
question, the gold answer, and the model generated answer. Each example was independently rated
by three domain experts according to the rubric below:

* Fully Correct (1): Response covers all statements in the gold, introduces no contradic-
tions, and may include additional relevant information.

* Incorrect (0): Response contradicts the gold, fails to answer the question, or is incom-
plete/vague.

¢ Tll-formed QA (-1): The question or gold answer is itself vague, incomplete, or not prop-
erly decontextualized.

In cases where all three annotators disagreed, a fourth expert adjudicated to obtain the final label.
The final human score was determined via majority vote.

A.2 HUMAN ANNOTATION RESULTS

Annotation statistics are shown in Table[d] We annotate 50 model responses for both QA and RAG
setups in Book 2, and an additional 50 responses for the QA setup on Book 1, since scores of 0
were over-represented in the QA annotations of Book 2. Inter-annotator agreement is strong for
the RAG setup, with consistently high percent agreement and Krippendorff’s « values, reflecting
stable human judgments. The QA setup shows a lower agreement (o =~ 0.66 compared to ~ 0.92
for RAG), which we attribute to the longer and more verbose responses (196 words on average vs.
135 in RAG). These longer responses often include hallucinations or extraneous details, making
annotation more challenging.

Table 4: Human annotation agreement statistics

Setup Agreement Krippendorff’s« AC2 Annotators Examples Response Word Count

QA 0.78 0.66 0.68 3 100 196
RAG 0.95 0.92 0.92 3 50 135

During annotation, a notable fraction of examples were identified as Ill-formed QA pairs, reflecting
limitations of the synthetic test sets (Table[3).

Table 5: Filtered examples by humans

Dataset Ill-formed Valid Total

Book 1 9 41 50
Book 2 15 35 50

A.3 LLM-AS-A-JUDGE FOR FILTERING

To mitigate dataset noise, we employ Llama 3.1 70B Instruct as an automatic judge. Each evaluation
instance provided the judge with the question and gold answer, and the judge assigns a rating (1-10)
based on Accuracy, Relevance, Clarity, and Usefulness (see appendix [F| for the prompt). QA pairs
with ratings < 10 were filtered out. We adapted our prompt from Synthetic Data Kit

This automatic filtering removes ~ 71% of the Ill-formed QA pairs identified by humans. Extending
this procedure to the full test dataset yields the results in Table[6]

Examples of removed QA pairs are provided in appendix
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Table 6: Dataset size before and after filtering

Dataset Before After

Book 1 425 313
Book 2 2269 1554

A.4 LLM-AS-A-JUDGE FOR EVALUATION

We use Llama 3.3 70B Instruct as the LLM-as-a-Judge to evaluate the generated responses for all
of our experiments. To verify its reliability, we compared the judge’s binary decisions (0/1) against
the human majority labels on the annotated examples after filtering. The results, shown in Table [/}
demonstrate a strong alignment between the LLM-as-a-Judge and human judgments, indicating that
the prompt (detailed in appendix [F) used produces consistent evaluations throughout the data set.

Table 7: Alignment of LLM-as-a-Judge with human annotations

Dataset Accuracy Precision Recal TN FP FN TP Total

QA 0.84 0.86 0.76 39 4 8 25 76
RAG 0.97 1.00 0.94 18 0 1 16 35

A.5 DISCUSSION

Overall, the LL.M-as-a-Judge demonstrates strong alignment with human annotations, achieving
~ 84% accuracy on QA and ~ 97% on RAG. The comparatively lower accuracy on QA reflects the
inherent ambiguity in evaluating context-free generations, where hallucinations and verbose answers
introduce annotator disagreement.

These findings suggest that (i) the synthetic test sets contain a non-trivial proportion of Ill-formed
QA pairs, and (ii) LLM-as-a-Judge provides a reliable and scalable mechanism for filtering and
evaluating examples in large-scale experiments.

B DATA STATISTICS

Please refer to table table [8| for details about both the datasets used in the paper. As mentioned in
section section 4.1} PA-RAG and RAFT train sets were created with 2x the amount of words in the
domain documents.

C RESULTS ON LLAMA

The main table with the results of KNITLM as well as various other baselines using LLaMA 3.1 8B
model are presented in table table 9]

Dataset Chapters Words Train Samples Train Samples Num. Test

PA-RAG RAFT Samples
RedBook 1 5 15,225 1,107 286 313
RedBook2 6 33,795 2,980 770 1,554

Table 8: Data statistics for the datasets used in the paper.

16



Under review as a conference paper at ICLR 2026

\ Book 1 \ Book 2
\ QA \ RAG \ QA \ RAG
Ret. Ret. Ret. Ret.
‘ ‘ all Success Failure ‘ All Success Failure

Instruct 5240 | 67.41 83.71 4593 | 26.61 | 59.86 78.97 31.13
RAFT 60.06 | 77.96 88.76 63.70 | 31.61 | 65.44 80.34 43.06
PA-RAG | 65.81 | 82.75 92.70 69.63 | 31.87 | 64.13 79.03 41.77
KNITLM | 72.20 | 80.19 89.89 67.41 | 34.92 | 64.54 80.58 40.39

Table 9: Main table comparing the performance of various baselines descibed in the paper using
Llama 8b model.

D STOPPING CRITERIA ABLATION

In continual pre-training (CPT), a practical challenge is determining when to stop training. Stopping
too early risks underfitting, while stopping too late may lead to overfitting to the training corpus. This
decision is particularly relevant when merging the CPT base model with an instruction-tuned model.
The objective of this ablation is to illustrate how the choice of stopping point affects downstream
performance.

To study this effect, we conduct experiments on the Book 1 corpus by continually pre-training the
LLaMA 3.1 8B base model for 60 epochs on KNITLM’s training data mixture. At intermediate
checkpoints, we perform task-arithmetic merges with the instruct model using four different merge
weights (0.25-1.0) applied to the knowledge-ingested base model. At each checkpoint, we selected
the optimal merge according to the LLMaJ Score under RAG setup. We conduct evaluations under
both QA and RAG setups. For RAG, the Book 1 validation set was split into two subsets: (i) Ret.
Success, where the retrieved context passages contain the answer, and (ii) Ret. Fail, where the
context does not contain the answer.

The resulting performance trends are shown in Figures [3a{3d]

Across all setups, we observe a consistent trend: performance improves substantially in the early
and mid stages of training, peaks at intermediate checkpoints, and then gradually declines as training
continues to convergence. For the sake of uniformity across baselines and experimental conditions,
we opted to train until convergence before performing merges. As a result, the scores presented in
the main article should be viewed as conservative estimates. More careful stopping criteria could
further enhance performance.

E PERFORMANCE ON GENERAL TASKS

We compare KNITLM with Llama 3.1 8B Instruct (Instruct), RAFT, and PARAG on several bench-
marks:

* Big Bench Hard (Suzgun et al., [2022): 23 challenging tasks spanning language under-
standing and reasoning.

* GPQA (Rein et al.| [2024): Google-Proof Graduate-level STEM questions.
* MATH-Hard (Hendrycks et al.|[2021): Difficult math competition questions.

* MMLU-Pro (Wang et al.| [2024): 12k questions across diverse fields, measuring general
knowledge.

* MUSR (Multistep Soft Reasoning) (Sprague et al.,|2024): Evaluates reasoning capabili-
ties of LLMs.

table [[0]reports the performance for Book 1.

KNITLM maintains competitive performance across all general benchmarks, while RAFT and
PARAG show regression on general tasks relative to Instruct.
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Figure 3: Stopping criteria ablation: best LLMajScore across checkpoints.
Big Bench Hard GPQA MATH-Hard MMLUPro MUSR Aggregate
Instruct 29.88 5.36 17.47 37.83 8.73 19.85
RAFT 29.75 6.22 14.87 37.67 6.01 18.90
PARAG 30.28 4.85 14.63 36.95 6.73 18.69
KNITLM 29.69 7.59 17.11 38.08 6.75 19.84

Table 10: General Task Performance

F PROMPTS AND EXAMPLES

This appendix presents the prompts used for three purposes: (i) filtering low-quality QA pairs from
the dataset, (ii) evaluating responses generated by LLMs, and (iii) generating synthetic QA pairs.
We also provide examples of QA pairs that were removed during the filtering process, along with
sample responses from our method and the baseline models.

F.1 FILTERING PROMPT

The following prompt was used to identify Ill-formed QA pairs during dataset filtration. The filtering
judge receives a question and its gold answer as input. It considers multiple criteria such as accuracy,
relevance, clarity and usefulness and outputs a score from 1-10.

Filtering Prompt

Rate each question-answer pair on a scale from 1-10, based on:
— Accuracy (0-3): factual correctness

— Relevance (0-2): relevance to content

- Clarity (0-2): clear language

— Usefulness (0-3): value for model learning
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YOU MUST RETURN A VALID JSON OBJECT OR ARRAY WITH THIS EXACT SCHEMA

{{

"question": "Exact question text",

"answer": "Exact answer text",

"explanation": {{
"Accuracy": "Short explanation of factual correctness",
"Relevance": "Short explanation of relevance",
"Clarity": "Short explanation of clarity",
"Usefulness": "Short explanation of usefulness"

by

"Accuracy": 2,

"Relevance": 2,
"Clarity": 2,
"Usefulness": 2,

"rating": 8

H}

OR FOR MULTIPLE PAIRS:
[
{{

"question": "Q1",

"answer": "Al",

"explanation": {{
"Accuracy": "Explanation for Accuracy",
"Relevance": "Explanation for Relevance",
"Clarity": "Explanation for Clarity",
"Usefulness": "Explanation for Usefulness"

by

"Accuracy": 2,

"Relevance": 2,

"Clarity": 2,

"Usefulness": 2,

"rating": 8

b1y
{{

"question": "Q2",

"answer": "A2",

"explanation": {{
"Accuracy": "Explanation for Accuracy",
"Relevance": "Explanation for Relevance",
"Clarity": "Explanation for Clarity",
"Usefulness": "Explanation for Usefulness"

I

"Accuracy": 3,

"Relevance": 2,
"Clarity": 2,
"Usefulness": 2,

"rating": 9

H}

*%% YOUR RESPONSE MUST BE VALID JSON AND NOTHING ELSE - NO
EXPLANATION, NO MARKDOWN *xx

QA pairs to rate:
{pairs}
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F.2 LLM-AS-A-JUDGE PROMPT

The following prompt was used to evaluate model-generated responses. The model is provided with
the question, gold answer and model generated answer, and it outputs a binary rating (0/1) according
to the specified evaluation rules.

LLM Evaluation Prompt

You are an evaluator. Your task is to compare a Ground-truth Answer
and a Prediction to decide if the Prediction correctly answers
the given Question.

Evaluation Rules:

(1) Correctness: A correct prediction must include all essential
information from the Ground-truth Answer. Extra information is
allowed if it does not contradict the Ground-truth. If the
Prediction states something as a possibility, treat it as a
definitive statement.

(2) Function, Tool Names, and API Calls: If the Ground-truth Answer
contains specific function names, tool names, API calls, or
exact command identifiers, the Prediction must contain the same
identifier(s) or clearly equivalent forms. Minor syntactic or
formatting variations that do not change meaning should be
treated as equivalent. For example, leading flag prefixes such
as -, ——, or no prefix at all when they clearly refer to the
same option; underscore vs hyphen differences in identifiers
when the intent is identical; surrounding punctuation or
formatting differences such as backticks, quotes, parentheses,
or code block notation; small whitespace differences or
capitalization differences that do not change the identifier’s
meaning etc. However, replacements that change the actual
function/tool/API name, or substitute a different command that
would change the behavior are considered incorrect. Do not
penalize a prediction if it contains additional function / tool
/ API names as long as the ones present in the Ground-Truth are
covered.

(3) URLs: If the Ground-truth Answer contains specific URLs, the
Prediction should reference the same URL or an equivalent
canonical form. Minor differences that do not change the target
resource (for example, presence or absence of a trailing slash,
or http vs https when both resolve to the same canonical
resource) should be treated as equivalent. Altering the domain,
path, or query such that the resource is different is incorrect.

Scoring Rules:

If the Prediction is correct according to the above rules, output <
score>1</score>. If the Prediction is incomplete or incorrect,
output <score>0</score>.

Output Format:
<explanation>

</explanation>
<score>

</score>
First provide reasoning inside <explanation> and </explanation>
tags. Then output the score as specified above within <score>

20



Under review as a conference paper at ICLR 2026

and </score> tags. Do not include any extra text outside these
tags.

F.3 PROMPT FOR GENERATING SYNTHETIC QA

The prompt generates fully contextualized question—answer pairs from a document, covering the
entire content and formatted with specific tags.

QA Generation Prompt

Create question answer pairs from the document given below within <
document> tags. Title of the document is given in the first line
of the document. Do not use co-referencing and pronouns at all
in the questions. Do not refer to the document in the question
like "according to the document ..." or any similar paraphrasing

When needed, contextualize the question by using the topic
that the question is about. You can use the title of the
document as well for contextualizing. There are several figures
in the document, while referring to the figure in any question,
contextualize it by mentioning the title of the passage it was
present in. Put questions within <question> and </question> tags

and answers within <answer> and </answer> tags. Ensure that the

question and answers cover the entire document. When you are
done generating QA pairs, generate </done> token.

F.4 EXAMPLES OF QA PAIRS REMOVED DURING FILTERING

Below are three representative examples of QA pairs that were filtered out by the LLM-as-a-Judge.
Each example shows the question and gold answer.

Question: What is the state of the second volume to be mapped to the hostcluster?
Gold Answer: The state of the second volume to be mapped to the hostcluster is present.

X Vague

Question: What was the status, memory, and CPU usage of the voting-app-worker-py-1 pod in
the Red Hat OpenShift Cluster on IBM LinuxONE?

Gold Answer: The status, memory, and CPU usage of the voting-app-worker-py-1 pod in the
Red Hat OpenShift Cluster on IBM LinuxONE were as follows:

- Status: Completed

- Memory: Not specified

- CPU: Not specified

X Incomplete

Question: What are the settings for the infra nodes in the deployment of Red Hat OpenShift on
IBM Z2?

Gold Answer: The infra nodes have settings such as disk size, RAM, vCPU, VM name, IP
address, and hostname. These settings are defined in Section 10 of the all.yaml file.

X Contextual
21



Under review as a conference paper at ICLR 2026

F.5 EXAMPLE MODEL RESPONSES

Question: What command is used to upgrade the IBM Storage Virtualize collection to the latest
version from Ansible Galaxy?

Gold Answer: The command used to upgrade the IBM Storage Virtualize collection to the
latest version from Ansible Galaxy is:

ansible-galaxy collection install ibm.storage _virtualize —force

To upgrade the IBM Storage Virtualize collection to the latest version from Ansible Galaxy,
you can use the following command:
““ ansible-galaxy collection install ibm.storwize:latest

13

X Instruct

The command used to upgrade the IBM Storage Virtualize collection to the latest version from
Ansible Galaxy is:
“‘bash ansible-galaxy collection install -r requirements.yml —force ““*

X RAFT

The command to upgrade the IBM Storage Virtualize collection to the latest version from An-
sible Galaxy is:
“‘bash ansible-galaxy collection install -r requirements.yml

X PA-RAG

”The command to upgrade the IBM Storage Virtualize collection to the latest version from
Ansible Galaxy is:
ansible-galaxy collection install ibm.storage virtualize —force”

V" KNITLM
Only KNITLM provides the exact command that correctly upgrades the IBM Storage Virtualize
collection. The instruct’s response contains a typo in the collection name (‘storwize‘ instead of
‘storage_virtualize‘), while RAFT and PA-RAG incorrectly rely on a requirements file, which is not
specified in the ground truth.

G LLM USAGE

During the preparation of this manuscript, we employed a Large Language Model (LLM) as a writ-
ing support tool. Specifically, LLM was used to polish the phrasing, improve grammatical accuracy,
and provide paraphrased alternatives to enhance clarity and readability. The LLM’s role was limited
to language refinement, and all suggested edits were reviewed and verified by the authors before
inclusion.
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