
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

KNITLM: WEAVING KNOWLEDGE INTO
INSTRUCTION-TUNED LANGUAGE MODELS VIA CON-
TINUAL PRETRAINING AND MERGING

Anonymous authors
Paper under double-blind review

ABSTRACT

RAG has become the de facto method for incorporating new, corpus-specific
knowledge into an instruction following LLM (Instruct LLM). Although RAG-
based prompting improves factual grounding, it fails when retrieval is incorrect or
incomplete, leading to hallucinations. Finetuning methods such as RAFT Zhang
et al. (2024b) and PA-RAG Bhushan et al. (2025) enhance RAG by ingesting
new knowledge into the parameters of the model, but require generating massive
amount of synthetic QA that covers the entire corpus. Continued Pre-Training
(CPT) on the text corpus avoids the need for comprehensive synthetic data gen-
eration but breaks the instruction following capabilities of an Instruct LLM, ne-
cessitating instruction fine-tuning (IFT) post CPT. However, IFT is costly and
may be infeasible due to the unavailability of an instruction tuning corpus. In
this work, we propose KNITLM-KNowledge IngesTion via LoRA Merging. In-
stead of doing CPT on the Instruct LLM, KNITLM performs CPT with Low-
Rank Adapters (LoRA) on its corresponding base LLM to infuse new knowledge.
These knowledge-infused LoRA weights are then merged with the Instruct LLM,
imparting new knowledge without impacting their instruction following capabili-
ties. KNITLM avoids expensive instruction fine-tuning and relies on model merg-
ing (Ilharco et al. (2023)) to infuse the new knowledge into the Instruct LLM
without destroying its instruction following capabilities. Empirical results show
that KNITLM significantly improves the performance of RAG by taking accu-
racy from 54.17% to 79.26% for retrieval failure cases. In addition, the proposed
method achieves superior performance to existing approaches while requiring sub-
stantially less training data.

1 INTRODUCTION

‘Base LLMs’ trained on an enormous amount of textual data have immense knowledge, but lack
instruction-following capabilities. This necessitates post-training, which typically involves massive
Instruction Fine-Tuning (IFT) (Ouyang et al., 2022; Shengyu et al., 2023) followed by RLHF (Schul-
man et al., 2017; Rafailov et al., 2023; Pandey et al., 2024). ‘Instruct LLMs’ (model obtained after
post–training) have achieved remarkable success across general-purpose tasks (Brown et al., 2020;
Wei et al., 2022). However, their deployment in specialized domains such as question answering
over technical or confidential policy documents, shifts the emphasis from general reasoning to de-
livering highly accurate, document-specific responses. Often, these specialised documents are either
too scarce or proprietary material that is not available during the pre-training stage. Hence, even the
state-of-the-art instruct LLMs struggle to answer queries that require access to these documents.

A common solution is Retrieval-Augmented Generation (RAG) (Lewis et al., 2020; Karpukhin et al.,
2020), which conditions LLM’s responses on relevant passages retrieved from the target documents.
While effective, RAG is highly sensitive to retrieval quality, and retriever failures often lead to
hallucinations or incomplete answers (Ji et al. (2023); Nandwani et al. (2023)). Ingesting the new
knowledge from the specialized documents into the parameters of the model can potentially alleviate
the issues caused by retriever failures, as the model can fall back on its parameteric knowledge.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Unsupervised Continued Pre-Training (CPT) Ke et al. (2023) is an effective way of ingesting the
new knowledge, but doing so on the Instruct LLMs results in catastrophic forgetting of the skills
acquired during IFT Ke et al. (2025). As a result, most of the prior works (Ma et al., 2023; Yang
et al., 2024; Lu et al., 2025) apply CPT on the ‘base LLM’ but have to redo IFT to re-acquire the
skills present in instruct LLM. This may not always be feasible due to the lack of the IFT dataset
used to create the instruct LLM.

Another way of knowledge ingestion involves direct finetuning of the instruct LLM using IFT-
style training data, such as question-answers (QAs) from the new documents. However, QAs from
the new documents are often not readily available and hence works such as Zhang et al. (2024b);
Bhushan et al. (2025) resort to QAs generated synthetically by prompting a stronger LLM. A major
advantage of such techniques is that they don’t require expensive IFT after knowledge ingestion.
However, there are two main issues: (1) we need to generate a massive amount of synthetic data,
which may become prohibitively expensive (Yang et al., 2025), and (2) unlike CPT, it is difficult to
guarantee coverage of the entire knowledge via QAs.

Base
LLM Knowledge

vector

Instruct
LLM

Figure 1: Exploiting task-
arithmetic to combine new
knowledge adapter with in-
struction following capabili-
ties of Instruct LLM.

In this work, we ask a research question – how can we capture the
efficiency of CPT to ingest new knowledge and, at the same time,
retain the instruction following ability of the instruct LLMs? To
tackle this challenge, we resort to the idea of editing models via
task arithmetic (Ilharco et al., 2023). In task arithmetic, subtract-
ing the base model’s weights from a fine-tuned model yields the
corresponding ‘task vector’. This task vector captures the skills
present in the fine-tuned model. One can then combine different
‘task vectors’ through arithmetic operations, such as addition, to
impart the corresponding skills to the model. In our case, we wish
to impart new knowledge of the corpus as well as the instruction
following ability of the instruct LLM to the base LLM. The ‘in-
struction following vector’ of the instruct LLM, which can be eas-
ily computed by subtracting the publicly available instruct and base
LLM’s weights, captures the instruction following skills. To obtain
a ‘knowledge vector’ that captures the new knowledge, we propose
to train a low-rank adapter (LoRA) via CPT on top of the base LLM.
Adding the ‘instruct following vector’ and the ‘knowledge vector’
to the base LLM gives us a model that has the new knowledge from
the documents as well as the instruction following skills of the In-
struct LLM. (see fig. 1).

We call our method KNITLM: KNowledge IngesTion via LoRA
Merging. It imparts new knowledge to an Instruct LLM via a LoRA
adapter that encodes the new knowledge. Instead of training on top of instruct LLM, the ‘knowledge
LoRA’ is trained via CPT on top of the corresponding base LLM. During inference, the knowledge
LoRA is plugged with the instruct LLM, combining the knowledge of new documents in the LoRA
weights with the instruction following ability of Instruct LLM to respond to document-specific
queries. Note that we use the idea of task-arithmetic to motivate our method. However, in prac-
tice, we need not do any model merging, as the knowledge LoRA can be plugged directly on top of
the Instruct LLM.

To enhance the recall of newly learnt knowledge, we may use a small amount of synthetic QA
during training of the knowledge LoRA adapter (Allen-Zhu & Li, 2024). We note that instruct
LLMs typically have additional tokens in their vocabulary, such as ‘[INST]’ for Mistral (Jiang et al.,
2023; Mistral AI; 2024). LoRAs trained on top of base LLMs would be oblivious to such tokens.
To enhance the adaptability of the knowledge adapter with Instruct LLM, we replace the token
embeddings in the base LLM with those from instruct LLM during training. Our ablation study
shows that this improves the overall performance.

To the best of our knowledge, KNITLM is the first work that proposes an efficient way of imparting
new knowledge to an existing Instruct LLM via a knowledge LoRA trained using the corresponding
base LLM. To summarize, our contributions are as follows:

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

1. We propose KNITLM (KNowledge IngesTion via LoRA Merging), a lightweight method
that efficiently ingests knowledge from new documents by first training a knowledge adap-
tor on the base LLM using CPT and then transferring it to the instruct LLM. This enables
knowledge ingestion without the costly IFT phase following CPT.

2. To make KNITLM work, we devise a novel method that uses token embeddings from the
instruct LLM during CPT on the base LLM. This significantly improves the adaptability of
the knowledge adapter.

3. Through extensive experiments and ablations, we demonstrate that our method outperforms
state-of-the-art SFT based knowledge infusion methods (Zhang et al., 2024b; Bhushan
et al., 2025) while requiring substantially less synthetic data.

2 RELATED WORK

A central challenge in adapting LLMs to new specialized domains is injecting corpus knowledge
while preserving general reasoning and instruction-following skills. A recent survey Song et al.
(2025) categorizes ingestion methods into four categories: (1) dynamic retrieval-based approaches,
(2) static knowledge injection into the parameters, (3) modular adapters, and (4) prompt optimiza-
tion, outlining trade-offs between cost, adaptability, and robustness.

Prompt optimization focuses on designing effective prompts to improve domain-specific responses
from the model’s pre-existing knowledge without any further fine-tuning or architectural changes
(Singhal et al., 2023; Yao et al., 2023). Hybrid frameworks like DALK further combine dynamic
knowledge injection with prompt optimization for clinical domains Li et al. (2024). While promis-
ing, this paradigm suffers from the inherent limitation of in-context learning: context window size.
Designing effective prompts is inefficient, making it unsuitable for scalable knowledge integration.

Dynamic approaches such as Retrieval-Augmented Generation (RAG) (Lewis et al., 2020; Guu et al.,
2020; Karpukhin et al., 2020) ingests external knowledge in the context at inference time to ground
responses on retrieved passages. Recent progress has showcased its effectiveness across diverse
domains Asai et al., 2024; Qiu et al., 2023; Kim et al., 2024; Tang et al.; Yan et al., 2024. Re-
cent refinements include joint retriever-generator training for better domain fit (Sachan et al., 2021;
Siriwardhana et al., 2023; Shi et al., 2024). However, RAG-based approaches remain vulnerable to
retrieval failures, leading to hallucinations (Nandwani et al., 2023; Ji et al., 2023; Setty et al., 2024).

Another research direction has been static knowledge injection, which infuses domain knowledge
into the model’s parameters via fine-tuning or continued pre-training (CPT), enabling closed-book
inference without access to external documents (Gururangan et al., 2020; Ke et al., 2023; Wu et al.,
2024; Lu et al., 2025). Various works have established the utility of CPT across multiple fields,
such as medical (Wu et al., 2024; Christophe et al., 2024), materials (Zhao et al., 2025; Zhang et al.,
2024a), finance (Wu et al., 2023; Shah et al., 2022; Xie et al., 2023), and education (Dan et al.,
2023). Çağatay Yıldız et al. (2025) evaluates CPT across 159 domains and confirms benefits for
smaller models, but notes saturation in learning at larger scales. However, static methods face scala-
bility challenges, and direct CPT on instruction-tuned models causes regression in general skills and
instruction following (Ke et al., 2025), supporting our decision to do CPT on base models instead.
Several studies prove the importance of corpus format for effective CPT (Xie et al., 2024). For
instance, Allen-Zhu & Li (2024) demonstrate that incorporating QA-style data during pre-training
enhances knowledge extraction over mere memorization. Similarly, Mix-CPT (Jiang et al., 2025)
shows that mixing instruction-style corpora during CPT enhances learnability in the post-hoc SFT.
Other hybrid pipelines such as PIT, CPT+SFT, or CPT+RL can boost closed-book performance
(Jiang et al., 2024; He et al., 2025; Ovadia et al., 2025), but rely on costly instruction data or heavy
SFT after knowledge ingestion, which is a common key limitation for these approaches.

Modular adapters tackle scalability by training small, pluggable modules like LoRA to store do-
main knowledge while freezing the base model. This parameter-efficient fine-tuning (PEFT) enables
adapters for diverse domains (Xu et al. (2024); Zhang et al. (2023)). While effective, both static and
modular approaches typically evaluate against base LLMs on domain benchmarks, but neglect RAG
as a stronger baseline. Though more scalable than static ingestion, this still depends on high-quality
instruction data after knowledge ingestion to recover instruction-following abilities.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Recent works like RAFT (Zhang et al., 2024b) and PA-RAG (Bhushan et al., 2025) bridge static
and dynamic paradigms. They finetune the Instruct LLM to ingest the document knowledge into the
model’s parameters, and use retrieved passages during inference. Despite improvements, they still
heavily rely on large synthetic QA corpora.

3 METHODOLOGY

Let θ represent the parameters of an LLM that assigns a probability Pr(p; θ) to a sequence of
tokens p = (t1 · · · tm). Let θB and θI be the weights of the corresponding base and instruct LLMs,
respectively. Further, let Dk = {pi}Ni=1 represent the new knowledge that we wish to ingest on top
of the instruct LLM.

We propose to ingest the knowledge from Dk into a Low Rank Adapter (LoRA). A naı̈ve way to
train such an adapter would be to start with the most optimal weights θI and minimize the negative
log likelihood over Dk:

∆θkI = argmin
∆θ

∑
p∈Dk

− logPr(p; (θI +∆θ)) (1)

However, Ke et al. (2025) observe that such an adapter results in deterioration of instruction fol-
lowing abilities of the instruct LLM θI . This can be attributed to the fact that the instruct LLM
is obtained via supervised finetuning of the base LLM, whereas the training objective in eq. (1) is
unsupervised next token prediction. Next, we observe that this objective is the same as the training
objective of the base LLMs. Therefore, θB could be more amenable to continual pretraining and thus
may provide an ideal starting point for ingesting new knowledge. Motivated by this observation, we
propose to train the knowledge adapter on top of the base LLM -

∆θkB = argmin
∆θ

∑
p∈Dk

− logPr(p; (θB +∆θ)) (2)

In our notation, the superscript captures the training data and the subscript captures the starting
point, i.e., model initialisation. Note that the final knowledge-infused parameters returned by eq. (2)
are θB +∆θkB . However, such a model lacks the instruction following ability of the instruct LLM.
But notice that the new knowledge from Dk is mainly captured in ∆θkB , which may be combined
with θI that already has instruction following abilities. Therefore, instead of using θB +∆θkB as our
final parameters, we propose to use θI + α∆θkB , where α ∈ (0, 1] is a hyperparameter -

θ∗ = θI + α∆θkB (3)

Task-arithmetic inspired interpretation

Ilharco et al. (2023) show that if θ1 and θ2 are two different models finetuned from the same base
model θB , then the corresponding task vectors, ∆θ1B = θ1 − θB and ∆θ2B = θ2 − θB , capture the
skills infused in them. If we combine the two task vectors, we get a model that possibly possesses
both the skills -

θc = θB + α∆θ1B + γ∆θ2B (4)
Here, θc is the combined model capturing the skills of both the finetuned models. α and γ are
hyperparameters.

Now, let Ds be the data used for the instruction tuning of the instruct LLM. Then the corresponding
‘instruct task vector’ capturing all the skills would be -

∆θsB = θI − θB = argmin
∆θ

∑
(x,y)∈Ds

− logPr(y|x; (θB +∆θ)) (5)

We can think of our knowledge adapter ∆θkB as ‘knowledge task vector’ capturing all the knowledge
from the corpus. Now, combining the ‘instruct task vector’ with ‘knowledge task vector’, we get -

θ∗ = θB + α∆θkB + γ∆θsB (6)
Substituting γ = 1 and ∆θsB = θI − θB from eq. (5), we get -

θ∗ = θB + α∆θkB + θI − θB = θI + α∆θkB (7)
which is exactly same as eq. (3).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 KNITLM: Knowledge Adapter Training
1 Input: Base (θBe, θBr), Instruct (θIe, θIr), Corpus Dk, QA

set Dqa, learning rate η, epochs T
2 Output: Knowledge LoRA ∆θk∪qa

(Ie,Br)

3 Model Init.: θ ← (θIe, θBr)
4 LoRA Init.: ∆θ ← (0,∆θ(Ie,Br))

5 Union data: Dk∪qa ← Dk ∪ Dqa

6 for t = 1 to T do
7 for mini-batch B ⊂ Dk∪qa do

// Compute loss as in eq. (9)
LB ←

∑
x∈B − logPr

(
x;

(
θIe, θBr +∆θ(Ie,Br)

))
∆θ(Ie,Br) ← ∆θ(Ie,Br) − η∇LB

end
end

8 Set ∆θk∪qa
(Ie,Br) ← ∆θ(Ie,Br)

9 return ∆θk∪qa
(Ie,Br)

Adding a small amount of synthetic QA
: Allen-Zhu & Li (2024) observe that hav-
ing a few question-answer pairs in the pre-
training data significantly enhances the re-
call of the ingested knowledge. These
QAs do not have to necessarily span the
entire corpus.

Accordingly, we enhance our training cor-
pus with a small amount of synthetically
generated QAs. Unlike instruction fine-
tuning, where loss is backpropagated only
over the answer tokens conditioned on
the question, we concatenate the question,
answer and treat it as part of the new
knowledge to be ingested. Accordingly,
let Dqa = {xi = (sys,qi,ai)}nqi=1 be
the training data obtained from the syn-
thetic QAs. Here sys is a common system
prompt that asks the model to answer the
question; (sys,qi,ai) represents the con-
catenation of system prompt, question and

answer; and nq is the number of synthetically generated QAs. We train our knowledge adapter on
top of the base LLM using Dk∪qa = Dk

⋃
Dqa.

∆θk∪qa
B = argmin

∆θ

∑
x∈Dk

⋃
Dqa

− logPr(x; (θB +∆θ)) (8)

Using token embeddings of the instruct LLMs

We observe that for certain tokens, embeddings in the base and instruct LLMs are quite different. Of-
ten, they correspond to the tokens introduced during the instruction fine-tuning phase, e.g., ‘[INST]’
in instruct versions of Mistral. While training the low-rank knowledge adapter, we often target the
linear layers and do not fine-tune the token embeddings, i.e., ∆θ typically contains non-zero entries
only for attention and MLP layers. In addition, the system prompt used in the synthetic QA dataset
also introduces some of these tokens not seen during training of the base LLM, i.e., parameters θB
are oblivious to these tokens. This creates a mismatch: the knowledge adapter is trained with the
base model’s token embeddings but during inference it is used with the instruct LLM’s entirely dif-
ferent embeddings. To mitigate this, we propose to use the token embeddings of the instruct LLM
instead of the base LLM. Concretely, during knowledge LoRA training, we replace the base LLM’s
token embeddings (and the lm head, if separate) with those of the instruct LLM. We claim that this
enhances the adaptability of the knowledge LoRA, trained on the base LLM but used with an instruct
LLM. Intuitively, it gives the adapter parameters early exposure to the inference-time environment
and vocabulary, reducing the risk of distribution shift.

If we represent model parameters θB as (θBe, θBr) and θI as (θIe, θIr), where θBe, θIe are the token
embeddings and θBr, θIr are the remaining parameters in the base and instruct LLMs, respectively,
then we learn our knowledge LoRA on top of (θIe, θBr) -

∆θk∪qa
(Ie,Br) = argmin

∆θ

∑
x∈Dk

⋃
Dqa

− logPr (x; (θIe, θBr +∆θ)) (9)

Algorithm 1 presents our method that returns the trained knowledge LoRA. One can load it on top
of the instruct LLM θI to obtain the final model parameters as -

θ∗ = θI + α
(
0,∆θk∪qa

(Ie,Br)

)
= (θIe, θIr) + α

(
0,∆θk∪qa

(Ie,Br)

)
=

(
θIe, θIr + α∆θk∪qa

(Ie,Br)

)
(10)

4 EXPERIMENTAL SETUP

We seek to answer the following research questions through our experiments:

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

1. Can KNITLM effectively ingest knowledge into instruct LLM’s parameters? To test this,
we evaluate the knowledge ingested model in the QA setup where it is provided with only
the question and it has to answer from its parametric knowledge.

2. Can KNITLM effectively combine the knowledge ingested in its parameters with additional
knowledge present in its context? To test this, we compare KNITLM in the RAG setup with
SFT based methods such as RAFT (Zhang et al., 2024b) and PA-RAG (Bhushan et al.,
2025) that rely heavily on an enormous amount of synthetic data.

3. What is the role of synthetic QA data in KNITLM? Specifically, is our method robust to
the size of the synthetic QA dataset and its coverage of the corpus? To this end, we run two
ablations – (1) We vary the size of the synthetic dataset and compare KNITLM with RAFT
and PARAG in both QA and RAG setups. (2) We systematically bias the synthetic QA
dataset by generating training QAs from a specific subset of documents and then measure
the impact on performance.

4. Finally, we seek to quantify the importance of using token embeddings of the instruct LLM
instead of base LLM while training the knowledge adapter, i.e., what happens if we train
the adapter on θB = (θBe, θBr) (eq. (8)) instead of (θIe, θBr) (eq. (9)).

4.1 DATASETS, MODELS, EVALUATION METRICS AND TRAINING DETAILS

Datasets: We train all our models on two datasets introduced in Bhushan et al. (2025). Both datasets
consist of text from a technical Redbook1 along with corresponding test question answers To test
the performance in the RAG setup, they also provide a list of retrieved passages for each question.

While manually inspecting the test data, we observed that some question-answers in the original
test set are either incomplete or not properly decontextualized. Therefore, we decided to clean up
the test data by prompting Llama-3.1-70B-Instruct to evaluate each QA pair on various dimensions
and assign a rating from 1 to 10. We filtered all QA pairs with a score less than 10. The resulting
datasets have 313 and 1554 test samples, dropping 26% and 32% of the QAs in the original version.
Our small-scale human study reveals that our LLM filter is able to recall 70% of the improper QAs
from the test data, thereby improving its quality. See appendix A for the details of the human study
and appendix F for the prompt used for cleaning the test data.

Models: We ingest the knowledge from the books into Mistral-7B-Instruct-v0.32 and LLama-3.1-
8B-Instruct3. These models are selected such that their training cutoff predates the publication
of both Redbooks, ensuring that the models would not have seen these documents during their
pretraining.

Evaluation Metrics: We evaluate our models in two setups – QA and RAG. In the QA setup, the
model is prompted with only the question, and in the RAG setup, we provide the top 5 retrieved pas-
sages along with the question. We use Llama-3.3-70B-Instruct as a judge to evaluate the correctness
of the predicted answer w.r.t. the given gold answer. For each test sample, we provide the judge with
the question, gold answer, and generated answer, and the judge returns a binary score (0/1) after
reasoning across multiple criteria. Full prompt details are in appendix F.

To ensure that our LLM judge is aligned with human judgement, we conduct a small-scale human
study in which we evaluate the responses generated by the instruct LLM. Our LLM judge exhibits
∼86% and ∼97% agreement with humans in the QA and RAG setup. It is interesting to note the
difference in the agreement rate of the two setups. We attribute this difference to the fact that in the
QA setup, instruct LLM’s responses are not grounded on any text. The model’s responses generated
solely from its parameteric memory tend to be more verbose, confusing the LLM and human judges
alike. In fact, we observe that in the QA setup, inter-annotator agreement amongst humans is also
lower than that in the RAG setup. See appendix A for more details on the human study.

Baselines: We compare KNITLM with RAFT Zhang et al. (2024b) and PA-RAG Bhushan et al.
(2025). Both baselines rely on synthetically generated QAs for knowledge ingestion. We prompt

1Book 1: Do More with Less: Automating IBM Storage FlashSystem Tasks with REST APIs, Scripting,
and Ansible. Book 2: Red Hat OpenShift Container Platform on IBM Z and LinuxONE.

2mistralai/Mistral-7B-Instruct-v0.3
3meta-llama/LLama-3.1-8B-Instruct

6

https://www.redbooks.ibm.com/redpieces/pdfs/redp5736.pdf
https://www.redbooks.ibm.com/redpieces/pdfs/redp5736.pdf
https://www.redbooks.ibm.com/redpieces/pdfs/redp5711.pdf
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
https://huggingface.co/meta-llama/LLama-3.1-8B-Instruct

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Book 1 Book 2

QA RAG
Train
Time

(in mins)
QA RAG

Train
Time

(in mins)

All Ret.
Success

Ret.
Fail. All Ret.

Success
Ret.
Fail.

Instruct 53.67 71.76 86.27 54.17 27.51 61.23 77.96 36.13
RAFT 56.87 79.87 88.20 68.89 19 27.23 62.95 79.16 38.65 35
PA-RAG 64.22 84.66 92.70 74.07 43 27.23 62.23 78.60 37.64 62
KNITLM 73.80 86.58 92.13 79.26 7 40.98 66.86 80.67 46.13 13

Table 1: Comparing KNITLM with various baselines. The table reports the fraction of test samples
where the LLM Judge rated the predicted response as good as the gold response. QA: performance
in the QA setup; All: performance over the entire test set in RAG setup; Ret. Success: performance
over test queries where retriever succeeds (match@5=1); Ret. Fail.: performance over test queries
where retriever fails (match@5=0). These results are for Mistral-7B-Instruct-v0.3. Please see Ta-
ble 9 for results on Llama-3.1-8B-Instruct. Train Time: Approximate training time in minutes.

Mixtral-8x22B-Instruct-v0.1 to generate synthetic QAs and use the same prompt as described in
Bhushan et al. (2025). See appendix F for the exact prompt.

Size of the synthetic training data: The number of question–answer pairs in the synthetically gen-
erated training dataset depends on the corpus size. For RAFT and PA-RAG we need to cover the
entire corpus with the generated synthetic data. Therefore, we generate pairs such that the total num-
ber of generated words is twice the number of words in the corpus. PA-RAG additionally requires
multiple answers per question. For each training question, we generate four additional answers us-
ing Mixtral-8x22B-Instruct-v0.1. Consequently, the synthetic dataset for PA-RAG contains about
∼ 10 times as many words as the corpus. See appendix B for the exact sizes of the training and test
datasets.

Recall that KNITLM also requires a small amount of synthetic QAs, but without the need to cover
the full corpus. Consequently, for KNITLM, we randomly select question-answer pairs such that
the total number of selected words is only 50% of the number of words in the corpus.

Training Details: We run all experiments with Hugging Face’s SFTTrainer4. We applied LoRA
to all linear layers in the model with rank r = 16. For KNITLM, after loading the base model, we
replace its token embeddings (and lm head if they are separate) with those of the corresponding
instruct model as explained in section 3.

For baseline methods, model selection is based on validation loss with early stopping. For KNITLM
we instead train until convergence of the training loss and control overfitting via the scaling hy-
perparameter α. We sweep α ∈ {0.25, 0.5, 0.75, 1.0} and select the best value using validation
performance. Notably, applying early stopping to KNITLM may yield additional gains, as observed
in appendix D.

5 EXPERIMENTAL RESULTS

5.1 COMPARISON WITH THE BASELINES

We compare KNITLM with the corresponding instruct LLM, RAFT and PA-RAG in table 1 for
both the datasets in both the QA and RAG setups. In addition to compute the performance over
the entire test set in the RAG setup, we further split the performance depending on the retriever’s
success in fetching the gold passages. Recall that KNITLM utilizes only a fraction of the synthetic
QAs required by PA-RAG. Despite such a low utilizaton, KNITLM outperforms both RAFT and
PA-RAG in both QA and RAG setups.

For Book1, performance of KNITLM in the QA setup (73.8) is better than the Instruct LLM in the
RAG setup (71.76). This gain can be attributed to successful knowledge ingestion by KNITLM.

4docs/trl/sft trainer

7

https://huggingface.co/docs/trl/sft_trainer

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) QA (b) RAG

Figure 2: Impact of scaling synthetic QA on the Redbook1 dataset with Mistral-Instruct-v0.3. Blue
horizontal line corresponds to c-KNITLM– our model trained in an unsupervised manner only using
the document text. Green horizontal line corresponds to Mistral-Instruct-v0.3.

However, note that the performance of KNITLM in the QA setup (73.8) is not at par with the in-
struct LLM when the retriever is able to fetch the gold passage (86.27), indicating that retrieved
passages can still improve the performance of KNITLM. When provided with the retrieved pas-
sages, KNITLM is successfully able to exploit them when the retriever succeeds, as its performance
jumps to 92.13. When the retriever fails, KNITLM is able to ignore the context and answer using
the knowledge infused in model’s parameters. One might expect performance with only distrac-
tor passages (retriever failure) to be lower than in the QA setup (no distractors). Surprisingly, it
is not the case (79.26 vs. 73.8). We hypothesize that even distractor passages in the context help
knowledge-infused models to recall relevant information from their parameters. This observation
holds across RAFT, PA-RAG, and KNITLM. We observe similar trends for Book2.

5.2 IMPACT OF THE SIZE OF THE SYNTHETIC DATA

In this experiment, we study how scaling the synthetic QA dataset affects model performance. For
this, we progressively increase the number of synthetic QA pairs and compare KNITLM with base-
lines in both QA and RAG setups. We define ‘QA ratio’ as the ratio of number of words in the
synthetic QA dataset to the words in the training document. For KNITLM, QA ratio of 0 corre-
sponds to training only on the corpus (eq. (3)) and we call it corpus-KNITLM or c-KNITLM in
short. For RAFT and PA-RAG , 0 corresponds to the instruct model. Note that for PA-RAG , we
need to generate multiple answers for each question, and the QA ratio does not account for it. There-
fore, the actual synthetic QA dataset used for PA-RAG would contain about 5× as many words as
RAFT and KNITLM. Note that the performance numbers in our main experiments correspond to a
ratio of 2 for RAFT and PA-RAG , and 0.5 for KNITLM. For this analysis, we generate additional
data and scale up to a ratio of 4.

Figures 2a-2b presents the analysis. We first observe that c-KNITLM(dotted blue horizontal line)
outperforms both baselines in the QA setup, demonstrating the capability of our method to efficiently
ingest knowledge.

As seen in Figure-2b KNITLM can achieve near optimal performance with only 0.5× of synthetic
data where the difference of performance is only 2.24% between 0.5× vs 4× of synthetic data. In
contrast, PA-RAG improves by more than 10% going from 0.5× to 4× synthetic data, implying
PA-RAG indeed needs comprehensive volume of synthetic data for effective knowledge ingestion.
A similar trend appears in the QA setup, where KNITLM not only outperforms the baselines but also
shows a smoother saturation curve, unlike the sharp jumps with more synthetic data as seen in PA-
RAG. These results empirically establish that KNITLM is indeed much more lightweight yet the
new state-of-the-art scalable knowledge ingestion recipe, which does not need extensive synthetic
data generation.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5.3 ROBUSTNESS OF KNITLM TO CORPUS COVERAGE BY SYNTHETIC QAS

Ch. 1-3 Ch. 4-5
QA RAG QA RAG

c-KNITLM 52.80 74.40 65.96 80.85
b-KNITLM +26.40 +8.00 + 2.66 +5.25

Table 2: Comparison between models trained
without synthetic QA (c-KNITLM i.e., corpus-
KNITLM) and models trained with chapter-
biased synthetic QA(b-KNITLM i.e., biased-
KNITLM). Reported are LLM-as-Judge scores
for QA and RAG setup for two chapter splits.

In the previous experiment, we observed that
KNITLM is robust to the amount of synthetic
QA dataset and its RAG performance begins
to saturate even with QA ratio of 0.5. Here,
we systematically study the impact of partial
knowledge coverage on our method. Allen-Zhu
& Li (2024) note that “partially augmenting
data can improve knowledge extraction for non-
augmented data”. Here augmentation refers to
adding QAs corresponding to the knowledge
being ingested. To systematically study this,
we run a control experiment – we train a ver-
sion of KNITLM using the document along
with QA data generated from only chapters 1
to 3 of Book1 (we call it biased-KNITLM, or
b-KNITLM) and compare its performance with c-KNITLM (trained without any QA data). Table 2
shows the results. We observe that adding synthetic QAs from chapters 1 to 3 improves the perfor-
mance even on chapter 4-5. Our result supports the observation in Allen-Zhu & Li, implying that
even if we have access to QA from only a part of the corpus, KNITLM will still show gains over the
remaining data.

5.4 IMPACT OF USING INSTRUCT LLM’S TOKEN EMBEDDINGS DURING TRAINING

Recall that in KNITLM we replace the frozen token embeddings θBe in the base LLM
with those from the corresponding instruct LLM. I.e., we train the knowledge LoRA adapter
on top of (θIe, θBr) instead of (θBe, θBr). In this experiment, we quantify its im-
pact by comparing the models trained using eq. (8) and eq. (9), respectively. Table 3
shows the results. For easy reference, we copy the result of PARAG from Table 1.

QA RAG

All Ret.
Success

Ret.
Failure

PA-RAG 64.22 84.66 92.70 74.07
KNITLM 73.80 86.58 92.13 79.26

e-KNITLM 72.76 84.57 92.13 73.13

Table 3: Effectiveness of using instruct LLM’s
embeddings during training. Comparing
KNITLM with a version trained directly on
top of base LLM (e-KNITLM) for Book 1.

We find that using instruct LLM’s token em-
beddings improves performance in both QA
and RAG setups. Without them, performance
drops significantly under retriever failure cases
and approaches that of PA-RAG. Thus, replac-
ing the base model’s embeddings with those of
the instruct model is crucial for KNITLM to
outperform PA-RAG in the RAG setup.

Overall, this ablation confirms that using in-
struct token embeddings is a simple yet ef-
fective intervention: it resolves the vocabulary
mismatch between the base and instruct LLMs,
thereby improving the adaptability of knowl-
edge adapters during inference.

6 CONCLUSION

In this work, we introduced KNITLM, a lightweight and efficient approach for knowledge infusion
in pre-trained LLMs. By training a knowledge adapter through CPT on the base LLM and trans-
ferring it to the instruct LLM, KNITLM enables effective knowledge ingestion without the costly
IFT phase. To further enhance adaptability, we leverage token embeddings from the instruct LLM
during CPT, thereby strengthening the transferability of the knowledge adapter.

Our experiments and ablation study show that KNITLM not only achieves superior performance in
RAG setups but also consistently outperforms state-of-the-art SFT-based knowledge infusion meth-
ods, such as RAFT and PA-RAG, while requiring substantially less synthetic data. These results
highlight KNITLM as a practical and scalable alternative for rapidly incorporating domain-specific
knowledge into LLMs.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.1, knowledge storage and
extraction. In Forty-first International Conference on Machine Learning, 2024. URL https:
//openreview.net/forum?id=5x788rqbcj.

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. Self-rag: Learning to
retrieve, generate, and critique through self-reflection. In The Twelfth International Conference
on Learning Representations, 2024.

Kushagra Bhushan, Yatin Nandwani, Dinesh Khandelwal, Sonam Gupta, Gaurav Pandey, Di-
nesh Raghu, and Sachindra Joshi. Systematic knowledge injection into large language mod-
els via diverse augmentation for domain-specific RAG. In Luis Chiruzzo, Alan Ritter, and
Lu Wang (eds.), Findings of the Association for Computational Linguistics: NAACL 2025, Al-
buquerque, New Mexico, USA, April 29 - May 4, 2025, pp. 5922–5943. Association for Com-
putational Linguistics, 2025. doi: 10.18653/V1/2025.FINDINGS-NAACL.329. URL https:
//doi.org/10.18653/v1/2025.findings-naacl.329.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In Advances in Neu-
ral Information Processing Systems 33: Annual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

Clément Christophe, Tathagata Raha, Svetlana Maslenkova, Muhammad Umar Salman, Praveen K.
Kanithi, Marco AF Pimentel, and Shadab Khan. Beyond fine-tuning: Unleashing the poten-
tial of continuous pretraining for clinical llms. In Yaser Al-Onaizan, Mohit Bansal, and Yun-
Nung Chen (eds.), Findings of the Association for Computational Linguistics: EMNLP 2024,
Miami, Florida, USA, November 12-16, 2024, pp. 10549–10561. Association for Computa-
tional Linguistics, 2024. doi: 10.18653/V1/2024.FINDINGS-EMNLP.618. URL https:
//doi.org/10.18653/v1/2024.findings-emnlp.618.

Yuhao Dan, Zhikai Lei, Yiyang Gu, Yong Li, Jianghao Yin, Jiaju Lin, Linhao Ye, Zhiyan Tie,
Yougen Zhou, Yilei Wang, Aimin Zhou, Ze Zhou, Qin Chen, Jie Zhou, Liang He, and Xipeng
Qiu. Educhat: A large-scale language model-based chatbot system for intelligent education.
CoRR, abs/2308.02773, 2023. doi: 10.48550/ARXIV.2308.02773. URL https://doi.org/
10.48550/arXiv.2308.02773.

Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. Don’t stop pretraining: Adapt language models to domains and tasks. In
Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault (eds.), Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, pp. 8342–8360, Online, July
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.740. URL
https://aclanthology.org/2020.acl-main.740/.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Mingwei Chang. Retrieval augmented
language model pre-training. In International conference on machine learning, pp. 3929–3938.
PMLR, 2020.

Bolei He, Xinran He, Run Shao, Shanfu Shu, Xianwei Xue, Mingquan Cheng, Haifeng Li, and
Zhenhua Ling. Select to know: An internal-external knowledge self-selection framework for
domain-specific question answering. ArXiv, abs/2508.15213, 2025. URL https://api.
semanticscholar.org/CorpusID:280699870.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset.
In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track (Round 2), 2021. URL https://openreview.net/forum?id=7Bywt2mQsCe.

10

https://openreview.net/forum?id=5x788rqbcj
https://openreview.net/forum?id=5x788rqbcj
https://doi.org/10.18653/v1/2025.findings-naacl.329
https://doi.org/10.18653/v1/2025.findings-naacl.329
https://doi.org/10.18653/v1/2024.findings-emnlp.618
https://doi.org/10.18653/v1/2024.findings-emnlp.618
https://doi.org/10.48550/arXiv.2308.02773
https://doi.org/10.48550/arXiv.2308.02773
https://aclanthology.org/2020.acl-main.740/
https://api.semanticscholar.org/CorpusID:280699870
https://api.semanticscholar.org/CorpusID:280699870
https://openreview.net/forum?id=7Bywt2mQsCe

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Gabriel Ilharco, Marco Túlio Ribeiro, Mitchell Wortsman, Ludwig Schmidt, Hannaneh Hajishirzi,
and Ali Farhadi. Editing models with task arithmetic. In The Eleventh International Confer-
ence on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net,
2023. URL https://openreview.net/forum?id=6t0Kwf8-jrj.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang,
Andrea Madotto, and Pascale Fung. Survey of hallucination in natural language generation. ACM
Comput. Surv., 55(12), March 2023. ISSN 0360-0300. doi: 10.1145/3571730. URL https:
//doi.org/10.1145/3571730.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https:
//arxiv.org/abs/2310.06825.

Jinhao Jiang, Junyi Li, Xin Zhao, Yang Song, Tao Zhang, and Ji-Rong Wen. Mix-cpt: A
domain adaptation framework via decoupling knowledge learning and format alignment. In
The Thirteenth International Conference on Learning Representations, ICLR 2025, Singapore,
April 24-28, 2025. OpenReview.net, 2025. URL https://openreview.net/forum?id=
h1XoHOd19I.

Zhengbao Jiang, Zhiqing Sun, Weijia Shi, Pedro Rodriguez, Chunting Zhou, Graham Neubig,
Xi Lin, Wen-tau Yih, and Srini Iyer. Instruction-tuned language models are better knowl-
edge learners. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the
62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-
pers), pp. 5421–5434, Bangkok, Thailand, August 2024. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024.acl-long.296. URL https://aclanthology.org/2024.
acl-long.296/.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In Proc.
of EMNLP, 2020. doi: 10.18653/v1/2020.emnlp-main.550.

Zixuan Ke, Yijia Shao, Haowei Lin, Tatsuya Konishi, Gyuhak Kim, and Bing Liu. Continual pre-
training of language models. In Proceedings of The Eleventh International Conference on Learn-
ing Representations, 2023.

Zixuan Ke, Yifei Ming, Xuan-Phi Nguyen, Caiming Xiong, and Shafiq Joty. Demystifying domain-
adaptive post-training for financial llms, 2025. URL https://arxiv.org/abs/2501.
04961.

Jaehyung Kim, Jaehyun Nam, Sangwoo Mo, Jongjin Park, Sang-Woo Lee, Minjoon Seo, Jung-Woo
Ha, and Jinwoo Shin. Sure: Summarizing retrievals using answer candidates for open-domain qa
of llms. arXiv preprint arXiv:2404.13081, 2024.

Patrick S. H. Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, and
Douwe Kiela. Retrieval-augmented generation for knowledge-intensive NLP tasks. In Advances
in Neural Information Processing Systems 33: Annual Conference on Neural Information Pro-
cessing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

Dawei Li, Shu Yang, Zhen Tan, Jae Young Baik, Sukwon Yun, Joseph Lee, Aaron Chacko, Bojian
Hou, Duy Duong-Tran, Ying Ding, et al. Dalk: Dynamic co-augmentation of llms and kg to
answer alzheimer’s disease questions with scientific literature. arXiv preprint arXiv:2405.04819,
2024.

Wei Lu, Rachel K. Luu, and Markus J. Buehler. Fine-tuning large language models for domain
adaptation: exploration of training strategies, scaling, model merging and synergistic capabil-
ities. npj Computational Materials, 11(1), March 2025. ISSN 2057-3960. doi: 10.1038/
s41524-025-01564-y. URL http://dx.doi.org/10.1038/s41524-025-01564-y.

11

https://openreview.net/forum?id=6t0Kwf8-jrj
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://openreview.net/forum?id=h1XoHOd19I
https://openreview.net/forum?id=h1XoHOd19I
https://aclanthology.org/2024.acl-long.296/
https://aclanthology.org/2024.acl-long.296/
https://arxiv.org/abs/2501.04961
https://arxiv.org/abs/2501.04961
http://dx.doi.org/10.1038/s41524-025-01564-y

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Shirong Ma, Shen Huang, Shulin Huang, Xiaobin Wang, Yangning Li, Hai-Tao Zheng, Pengjun Xie,
Fei Huang, and Yong Jiang. Ecomgpt-ct: Continual pre-training of e-commerce large language
models with semi-structured data. arXiv preprint arXiv:2312.15696, 2023.

Mistral AI. Mistral tokenization guide. https://docs.mistral.ai/guides/
tokenization.

Mistral AI. Model card: Mistral instruct v0.3. https://huggingface.co/mistralai/
Mistral-7B-Instruct-v0.3, 2024.

Yatin Nandwani, Vineet Kumar, Dinesh Raghu, Sachindra Joshi, and Luis Lastras. Pointwise mutual
information based metric and decoding strategy for faithful generation in document grounded di-
alogs. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing, pp. 10335–10347, Singapore, December
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.639. URL
https://aclanthology.org/2023.emnlp-main.639/.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Oded Ovadia, Meni Brief, Rachel Lemberg, and Eitam Sheetrit. Knowledge-instruct: Effective con-
tinual pre-training from limited data using instructions, 2025. URL https://arxiv.org/
abs/2504.05571.

Gaurav Pandey, Yatin Nandwani, Tahira Naseem, Mayank Mishra, Guangxuan Xu, Dinesh Raghu,
Sachindra Joshi, Asim Munawar, and Ramón Fernandez Astudillo. BRAIn: Bayesian reward-
conditioned amortized inference for natural language generation from feedback. In Forty-first
International Conference on Machine Learning, 2024. URL https://openreview.net/
forum?id=nxzXTLByXO.

Huachuan Qiu, Hongliang He, Shuai Zhang, Anqi Li, and Zhenzhong Lan. Smile: Single-turn to
multi-turn inclusive language expansion via chatgpt for mental health support. arXiv preprint
arXiv:2305.00450, 2023.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in neural information processing systems, 36:53728–53741, 2023.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R. Bowman. GPQA: A graduate-level google-proof q&a
benchmark. In First Conference on Language Modeling, 2024. URL https://openreview.
net/forum?id=Ti67584b98.

Devendra Singh Sachan, Siva Reddy, William L. Hamilton, Chris Dyer, and Dani Yogatama. End-
to-end training of multi-document reader and retriever for open-domain question answering. In
Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman
Vaughan (eds.), Advances in Neural Information Processing Systems 34: Annual Conference
on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual,
2021.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Spurthi Setty, Harsh Thakkar, Alyssa Lee, Eden Chung, and Natan Vidra. Improving retrieval for
rag based question answering models on financial documents, 2024.

Raj Sanjay Shah, Kunal Chawla, Dheeraj Eidnani, Agam Shah, Wendi Du, Sudheer Chava, Natraj
Raman, Charese Smiley, Jiaao Chen, and Diyi Yang. When flue meets flang: Benchmarks and
large pre-trained language model for financial domain. arXiv preprint arXiv:2211.00083, 2022.

12

https://docs.mistral.ai/guides/tokenization
https://docs.mistral.ai/guides/tokenization
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
https://aclanthology.org/2023.emnlp-main.639/
https://arxiv.org/abs/2504.05571
https://arxiv.org/abs/2504.05571
https://openreview.net/forum?id=nxzXTLByXO
https://openreview.net/forum?id=nxzXTLByXO
https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=Ti67584b98

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zhang Shengyu, Dong Linfeng, Li Xiaoya, Zhang Sen, Sun Xiaofei, Wang Shuhe, Li Jiwei, Runyi
Hu, Zhang Tianwei, Fei Wu, et al. Instruction tuning for large language models: A survey. arXiv
preprint arXiv:2308.10792, 2023.

Weijia Shi, Sewon Min, Michihiro Yasunaga, Minjoon Seo, Richard James, Mike Lewis, Luke
Zettlemoyer, and Wen-tau Yih. Replug: Retrieval-augmented black-box language models. In
Proceedings of the 2024 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies (Volume 1: Long Papers), 2024.

Karan Singhal, Shekoofeh Azizi, Tao Tu, S. Sara Mahdavi, Jason Wei, Hyung Won Chung, Nathan
Scales, Ajay Tanwani, Heather Cole-Lewis, Stephen Pfohl, Perry Payne, Martin Seneviratne,
Paul Gamble, Chris Kelly, Abubakr Babiker, Nathanael Schärli, Aakanksha Chowdhery, Philip
Mansfield, Dina Demner-Fushman, Blaise Agüera y Arcas, Dale Webster, Greg S. Corrado, Yossi
Matias, Katherine Chou, Juraj Gottweis, Nenad Tomasev, Yun Liu, Alvin Rajkomar, Joelle Barral,
Christopher Semturs, Alan Karthikesalingam, and Vivek Natarajan. Large language models en-
code clinical knowledge. Nature, 620(7972):172–180, July 2023. ISSN 1476-4687. doi: 10.1038/
s41586-023-06291-2. URL http://dx.doi.org/10.1038/s41586-023-06291-2.

Shamane Siriwardhana, Rivindu Weerasekera, Elliott Wen, Tharindu Kaluarachchi, Rajib Rana,
and Suranga Nanayakkara. Improving the domain adaptation of retrieval augmented generation
(RAG) models for open domain question answering. Transactions of the Association for Compu-
tational Linguistics, 2023. doi: 10.1162/tacl a 00530.

Zirui Song, Bin Yan, Yuhan Liu, Miao Fang, Mingzhe Li, Rui Yan, and Xiuying Chen. Injecting
domain-specific knowledge into large language models: A comprehensive survey, 2025. URL
https://arxiv.org/abs/2502.10708.

Zayne Rea Sprague, Xi Ye, Kaj Bostrom, Swarat Chaudhuri, and Greg Durrett. MuSR: Testing the
limits of chain-of-thought with multistep soft reasoning. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
jenyYQzue1.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V. Le, Ed H. Chi, Denny Zhou, and Jason Wei. Challenging big-
bench tasks and whether chain-of-thought can solve them. CoRR, abs/2210.09261, 2022. URL
https://doi.org/10.48550/arXiv.2210.09261.

Xiangru Tang, Tianyu Hu, Muyang Ye, Yanjun Shao, Xunjian Yin, Siru Ouyang, Wangchunshu
Zhou, Pan Lu, Zhuosheng Zhang, Yilun Zhao, et al. Chemagent: Self-updating library in large
language models improves chemical reasoning. In The Twelfth International Conference on
Learning Representations.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weim-
ing Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max Ku, Kai Wang, Alex Zhuang,
Rongqi Fan, Xiang Yue, and Wenhu Chen. MMLU-pro: A more robust and challenging multi-
task language understanding benchmark. In The Thirty-eight Conference on Neural Information
Processing Systems Datasets and Benchmarks Track, 2024. URL https://openreview.
net/forum?id=y10DM6R2r3.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 2022.

Chaoyi Wu, Weixiong Lin, Xiaoman Zhang, Ya Zhang, Weidi Xie, and Yanfeng Wang. Pmc-llama:
toward building open-source language models for medicine. Journal of the American Medical
Informatics Association, 31(9):1833–1843, 2024.

Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabravolski, Mark Dredze, Sebastian Gehrmann, Prab-
hanjan Kambadur, David Rosenberg, and Gideon Mann. Bloomberggpt: A large language model
for finance. arXiv preprint arXiv:2303.17564, 2023.

13

http://dx.doi.org/10.1038/s41586-023-06291-2
https://arxiv.org/abs/2502.10708
https://openreview.net/forum?id=jenyYQzue1
https://openreview.net/forum?id=jenyYQzue1
https://doi.org/10.48550/arXiv.2210.09261
https://openreview.net/forum?id=y10DM6R2r3
https://openreview.net/forum?id=y10DM6R2r3

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Qianqian Xie, Weiguang Han, Xiao Zhang, Yanzhao Lai, Min Peng, Alejandro Lopez-Lira, and
Jimin Huang. Pixiu: A large language model, instruction data and evaluation benchmark for
finance. arXiv preprint arXiv:2306.05443, 2023.

Yong Xie, Karan Aggarwal, and Aitzaz Ahmad. Efficient continual pre-training for building domain
specific large language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Find-
ings of the Association for Computational Linguistics: ACL 2024, pp. 10184–10201, Bangkok,
Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
findings-acl.606. URL https://aclanthology.org/2024.findings-acl.606/.

Tianhan Xu, Zhe Hu, Ling Chen, and Bin Li. Sa-mdkif: A scalable and adaptable medical domain
knowledge injection framework for large language models. arXiv preprint arXiv:2402.00474,
2024.

Shi-Qi Yan, Jia-Chen Gu, Yun Zhu, and Zhen-Hua Ling. Corrective retrieval augmented generation,
2024. URL https://openreview.net/forum?id=JnWJbrnaUE.

Xianjun Yang, Junfeng Gao, Wenxin Xue, and Erik Alexandersson. Pllama: An open-source large
language model for plant science. arXiv preprint arXiv:2401.01600, 2024.

Zitong Yang, Neil Band, Shuangping Li, Emmanuel J. Candès, and Tatsunori Hashimoto. Syn-
thetic continued pretraining. In The Thirteenth International Conference on Learning Repre-
sentations, ICLR 2025, Singapore, April 24-28, 2025. OpenReview.net, 2025. URL https:
//openreview.net/forum?id=07yvxWDSla.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in neural information processing systems, 36:11809–11822, 2023.

Di Zhang, Wei Liu, Qian Tan, Jingdan Chen, Hang Yan, Yuliang Yan, Jiatong Li, Weiran Huang,
Xiangyu Yue, Wanli Ouyang, et al. Chemllm: A chemical large language model. arXiv preprint
arXiv:2402.06852, 2024a.

Kai Zhang, Yangyang Kang, Fubang Zhao, and Xiaozhong Liu. Llm-based medical assistant per-
sonalization with short-and long-term memory coordination. arXiv preprint arXiv:2309.11696,
2023.

Tianjun Zhang, Shishir G Patil, Naman Jain, Sheng Shen, Matei Zaharia, Ion Stoica, and Joseph E.
Gonzalez. RAFT: Adapting language model to domain specific RAG. In First Conference on
Language Modeling, 2024b.

Zihan Zhao, Da Ma, Lu Chen, Liangtai Sun, Zihao Li, Yi Xia, Bo Chen, Hongshen Xu, Zichen Zhu,
Su Zhu, et al. Developing chemdfm as a large language foundation model for chemistry. Cell
Reports Physical Science, 6(4), 2025.

Çağatay Yıldız, Nishaanth Kanna Ravichandran, Nitin Sharma, Matthias Bethge, and Beyza Ermis.
Investigating continual pretraining in large language models: Insights and implications, 2025.
URL https://arxiv.org/abs/2402.17400.

14

https://aclanthology.org/2024.findings-acl.606/
https://openreview.net/forum?id=JnWJbrnaUE
https://openreview.net/forum?id=07yvxWDSla
https://openreview.net/forum?id=07yvxWDSla
https://arxiv.org/abs/2402.17400

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A HUMAN ANNOTATION AND LLM-AS-A-JUDGE ALIGNMENT

A.1 HUMAN ANNOTATION SETUP

To validate the reliability of our evaluation protocol, we conduct a human annotation study using 50
examples sampled from the Book 1 and Book 2 test splits. Responses were generated with Mistral
v0.3 Instruct under both QA and RAG setups. For each instance, annotators were provided with the
question, the gold answer, and the model generated answer. Each example was independently rated
by three domain experts according to the rubric below:

• Fully Correct (1): Response covers all statements in the gold, introduces no contradic-
tions, and may include additional relevant information.

• Incorrect (0): Response contradicts the gold, fails to answer the question, or is incom-
plete/vague.

• Ill-formed QA (–1): The question or gold answer is itself vague, incomplete, or not prop-
erly decontextualized.

In cases where all three annotators disagreed, a fourth expert adjudicated to obtain the final label.
The final human score was determined via majority vote.

A.2 HUMAN ANNOTATION RESULTS

Annotation statistics are shown in Table 4. We annotate 50 model responses for both QA and RAG
setups in Book 2, and an additional 50 responses for the QA setup on Book 1, since scores of 0
were over-represented in the QA annotations of Book 2. Inter-annotator agreement is strong for
the RAG setup, with consistently high percent agreement and Krippendorff’s α values, reflecting
stable human judgments. The QA setup shows a lower agreement (α ≈ 0.66 compared to ≈ 0.92
for RAG), which we attribute to the longer and more verbose responses (196 words on average vs.
135 in RAG). These longer responses often include hallucinations or extraneous details, making
annotation more challenging.

Table 4: Human annotation agreement statistics

Setup Agreement Krippendorff’s α AC2 Annotators Examples Response Word Count
QA 0.78 0.66 0.68 3 100 196
RAG 0.95 0.92 0.92 3 50 135

During annotation, a notable fraction of examples were identified as Ill-formed QA pairs, reflecting
limitations of the synthetic test sets (Table 5).

Table 5: Filtered examples by humans

Dataset Ill-formed Valid Total
Book 1 9 41 50
Book 2 15 35 50

A.3 LLM-AS-A-JUDGE FOR FILTERING

To mitigate dataset noise, we employ Llama 3.1 70B Instruct as an automatic judge. Each evaluation
instance provided the judge with the question and gold answer, and the judge assigns a rating (1–10)
based on Accuracy, Relevance, Clarity, and Usefulness (see appendix F for the prompt). QA pairs
with ratings < 10 were filtered out. We adapted our prompt from Synthetic Data Kit

This automatic filtering removes ∼ 71% of the Ill-formed QA pairs identified by humans. Extending
this procedure to the full test dataset yields the results in Table 6.

Examples of removed QA pairs are provided in appendix F.

15

https://github.com/meta-llama/synthetic-data-kit/blob/main/configs/config.yaml

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 6: Dataset size before and after filtering

Dataset Before After
Book 1 425 313
Book 2 2269 1554

A.4 LLM-AS-A-JUDGE FOR EVALUATION

We use Llama 3.3 70B Instruct as the LLM-as-a-Judge to evaluate the generated responses for all
of our experiments. To verify its reliability, we compared the judge’s binary decisions (0/1) against
the human majority labels on the annotated examples after filtering. The results, shown in Table 7,
demonstrate a strong alignment between the LLM-as-a-Judge and human judgments, indicating that
the prompt (detailed in appendix F) used produces consistent evaluations throughout the data set.

Table 7: Alignment of LLM-as-a-Judge with human annotations

Dataset Accuracy Precision Recall TN FP FN TP Total
QA 0.84 0.86 0.76 39 4 8 25 76
RAG 0.97 1.00 0.94 18 0 1 16 35

A.5 DISCUSSION

Overall, the LLM-as-a-Judge demonstrates strong alignment with human annotations, achieving
∼ 84% accuracy on QA and ∼ 97% on RAG. The comparatively lower accuracy on QA reflects the
inherent ambiguity in evaluating context-free generations, where hallucinations and verbose answers
introduce annotator disagreement.

These findings suggest that (i) the synthetic test sets contain a non-trivial proportion of Ill-formed
QA pairs, and (ii) LLM-as-a-Judge provides a reliable and scalable mechanism for filtering and
evaluating examples in large-scale experiments.

B DATA STATISTICS

Please refer to table table 8 for details about both the datasets used in the paper. As mentioned in
section section 4.1, PA-RAG and RAFT train sets were created with 2x the amount of words in the
domain documents.

C RESULTS ON LLAMA

The main table with the results of KNITLM as well as various other baselines using LLaMA 3.1 8B
model are presented in table table 9.

Dataset Chapters Words Train Samples
PA-RAG

Train Samples
RAFT

Num. Test
Samples

RedBook 1 5 15,225 1,107 286 313
RedBook2 6 33,795 2,980 770 1,554

Table 8: Data statistics for the datasets used in the paper.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Book 1 Book 2
QA RAG QA RAG

All Ret.
Success

Ret.
Failure All Ret.

Success
Ret.

Failure
Instruct 52.40 67.41 83.71 45.93 26.61 59.86 78.97 31.13
RAFT 60.06 77.96 88.76 63.70 31.61 65.44 80.34 43.06
PA-RAG 65.81 82.75 92.70 69.63 31.87 64.13 79.03 41.77
KNITLM 72.20 80.19 89.89 67.41 34.92 64.54 80.58 40.39

Table 9: Main table comparing the performance of various baselines descibed in the paper using
Llama 8b model.

D STOPPING CRITERIA ABLATION

In continual pre-training (CPT), a practical challenge is determining when to stop training. Stopping
too early risks underfitting, while stopping too late may lead to overfitting to the training corpus. This
decision is particularly relevant when merging the CPT base model with an instruction-tuned model.
The objective of this ablation is to illustrate how the choice of stopping point affects downstream
performance.

To study this effect, we conduct experiments on the Book 1 corpus by continually pre-training the
LLaMA 3.1 8B base model for 60 epochs on KNITLM’s training data mixture. At intermediate
checkpoints, we perform task-arithmetic merges with the instruct model using four different merge
weights (0.25–1.0) applied to the knowledge-ingested base model. At each checkpoint, we selected
the optimal merge according to the LLMaJ Score under RAG setup. We conduct evaluations under
both QA and RAG setups. For RAG, the Book 1 validation set was split into two subsets: (i) Ret.
Success, where the retrieved context passages contain the answer, and (ii) Ret. Fail, where the
context does not contain the answer.

The resulting performance trends are shown in Figures 3a-3d.

Across all setups, we observe a consistent trend: performance improves substantially in the early
and mid stages of training, peaks at intermediate checkpoints, and then gradually declines as training
continues to convergence. For the sake of uniformity across baselines and experimental conditions,
we opted to train until convergence before performing merges. As a result, the scores presented in
the main article should be viewed as conservative estimates. More careful stopping criteria could
further enhance performance.

E PERFORMANCE ON GENERAL TASKS

We compare KNITLM with Llama 3.1 8B Instruct (Instruct), RAFT, and PARAG on several bench-
marks:

• Big Bench Hard (Suzgun et al., 2022): 23 challenging tasks spanning language under-
standing and reasoning.

• GPQA (Rein et al., 2024): Google-Proof Graduate-level STEM questions.
• MATH-Hard (Hendrycks et al., 2021): Difficult math competition questions.
• MMLU-Pro (Wang et al., 2024): 12k questions across diverse fields, measuring general

knowledge.
• MUSR (Multistep Soft Reasoning) (Sprague et al., 2024): Evaluates reasoning capabili-

ties of LLMs.

table 10 reports the performance for Book 1.

KNITLM maintains competitive performance across all general benchmarks, while RAFT and
PARAG show regression on general tasks relative to Instruct.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

(a) RAG: Some overlap (b) RAG: No overlap

(c) RAG: All (d) QA setup

Figure 3: Stopping criteria ablation: best LLMajScore across checkpoints.

Big Bench Hard GPQA MATH-Hard MMLU Pro MUSR Aggregate
Instruct 29.88 5.36 17.47 37.83 8.73 19.85
RAFT 29.75 6.22 14.87 37.67 6.01 18.90
PARAG 30.28 4.85 14.63 36.95 6.73 18.69
KNITLM 29.69 7.59 17.11 38.08 6.75 19.84

Table 10: General Task Performance

F PROMPTS AND EXAMPLES

This appendix presents the prompts used for three purposes: (i) filtering low-quality QA pairs from
the dataset, (ii) evaluating responses generated by LLMs, and (iii) generating synthetic QA pairs.
We also provide examples of QA pairs that were removed during the filtering process, along with
sample responses from our method and the baseline models.

F.1 FILTERING PROMPT

The following prompt was used to identify Ill-formed QA pairs during dataset filtration. The filtering
judge receives a question and its gold answer as input. It considers multiple criteria such as accuracy,
relevance, clarity and usefulness and outputs a score from 1–10.

Filtering Prompt

Rate each question-answer pair on a scale from 1-10, based on:
- Accuracy (0-3): factual correctness
- Relevance (0-2): relevance to content
- Clarity (0-2): clear language
- Usefulness (0-3): value for model learning

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

YOU MUST RETURN A VALID JSON OBJECT OR ARRAY WITH THIS EXACT SCHEMA
:

{{
"question": "Exact question text",
"answer": "Exact answer text",
"explanation": {{
"Accuracy": "Short explanation of factual correctness",
"Relevance": "Short explanation of relevance",
"Clarity": "Short explanation of clarity",
"Usefulness": "Short explanation of usefulness"

}},
"Accuracy": 2,
"Relevance": 2,
"Clarity": 2,
"Usefulness": 2,
"rating": 8

}}

OR FOR MULTIPLE PAIRS:
[
{{
"question": "Q1",
"answer": "A1",
"explanation": {{
"Accuracy": "Explanation for Accuracy",
"Relevance": "Explanation for Relevance",
"Clarity": "Explanation for Clarity",
"Usefulness": "Explanation for Usefulness"

}},
"Accuracy": 2,
"Relevance": 2,
"Clarity": 2,
"Usefulness": 2,
"rating": 8

}},
{{
"question": "Q2",
"answer": "A2",
"explanation": {{
"Accuracy": "Explanation for Accuracy",
"Relevance": "Explanation for Relevance",
"Clarity": "Explanation for Clarity",
"Usefulness": "Explanation for Usefulness"

}},
"Accuracy": 3,
"Relevance": 2,
"Clarity": 2,
"Usefulness": 2,
"rating": 9

}}
]

*** YOUR RESPONSE MUST BE VALID JSON AND NOTHING ELSE - NO
EXPLANATION, NO MARKDOWN ***

QA pairs to rate:
{pairs}

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

F.2 LLM-AS-A-JUDGE PROMPT

The following prompt was used to evaluate model-generated responses. The model is provided with
the question, gold answer and model generated answer, and it outputs a binary rating (0/1) according
to the specified evaluation rules.

LLM Evaluation Prompt

You are an evaluator. Your task is to compare a Ground-truth Answer
and a Prediction to decide if the Prediction correctly answers

the given Question.

Evaluation Rules:
(1) Correctness: A correct prediction must include all essential

information from the Ground-truth Answer. Extra information is
allowed if it does not contradict the Ground-truth. If the
Prediction states something as a possibility, treat it as a
definitive statement.

(2) Function, Tool Names, and API Calls: If the Ground-truth Answer
contains specific function names, tool names, API calls, or

exact command identifiers, the Prediction must contain the same
identifier(s) or clearly equivalent forms. Minor syntactic or
formatting variations that do not change meaning should be
treated as equivalent. For example, leading flag prefixes such
as -, --, or no prefix at all when they clearly refer to the
same option; underscore vs hyphen differences in identifiers
when the intent is identical; surrounding punctuation or
formatting differences such as backticks, quotes, parentheses,
or code block notation; small whitespace differences or
capitalization differences that do not change the identifier’s
meaning etc. However, replacements that change the actual
function/tool/API name, or substitute a different command that
would change the behavior are considered incorrect. Do not
penalize a prediction if it contains additional function / tool
/ API names as long as the ones present in the Ground-Truth are
covered.

(3) URLs: If the Ground-truth Answer contains specific URLs, the
Prediction should reference the same URL or an equivalent
canonical form. Minor differences that do not change the target
resource (for example, presence or absence of a trailing slash,
or http vs https when both resolve to the same canonical
resource) should be treated as equivalent. Altering the domain,
path, or query such that the resource is different is incorrect.

Scoring Rules:
If the Prediction is correct according to the above rules, output <

score>1</score>. If the Prediction is incomplete or incorrect,
output <score>0</score>.

Output Format:
<explanation>
...
</explanation>
<score>
...
</score>

First provide reasoning inside <explanation> and </explanation>
tags. Then output the score as specified above within <score>

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

and </score> tags. Do not include any extra text outside these
tags.

F.3 PROMPT FOR GENERATING SYNTHETIC QA

The prompt generates fully contextualized question–answer pairs from a document, covering the
entire content and formatted with specific tags.

QA Generation Prompt

Create question answer pairs from the document given below within <
document> tags. Title of the document is given in the first line
of the document. Do not use co-referencing and pronouns at all

in the questions. Do not refer to the document in the question
like "according to the document ..." or any similar paraphrasing
. When needed, contextualize the question by using the topic
that the question is about. You can use the title of the
document as well for contextualizing. There are several figures
in the document, while referring to the figure in any question,
contextualize it by mentioning the title of the passage it was
present in. Put questions within <question> and </question> tags
and answers within <answer> and </answer> tags. Ensure that the
question and answers cover the entire document. When you are

done generating QA pairs, generate </done> token.

F.4 EXAMPLES OF QA PAIRS REMOVED DURING FILTERING

Below are three representative examples of QA pairs that were filtered out by the LLM-as-a-Judge.
Each example shows the question and gold answer.

× Vague

Question: What is the state of the second volume to be mapped to the hostcluster?
Gold Answer: The state of the second volume to be mapped to the hostcluster is present.

× Incomplete

Question: What was the status, memory, and CPU usage of the voting-app-worker-py-1 pod in
the Red Hat OpenShift Cluster on IBM LinuxONE?
Gold Answer: The status, memory, and CPU usage of the voting-app-worker-py-1 pod in the
Red Hat OpenShift Cluster on IBM LinuxONE were as follows:
- Status: Completed
- Memory: Not specified
- CPU: Not specified

× Contextual

Question: What are the settings for the infra nodes in the deployment of Red Hat OpenShift on
IBM Z?
Gold Answer: The infra nodes have settings such as disk size, RAM, vCPU, VM name, IP
address, and hostname. These settings are defined in Section 10 of the all.yaml file.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

F.5 EXAMPLE MODEL RESPONSES

Question: What command is used to upgrade the IBM Storage Virtualize collection to the latest
version from Ansible Galaxy?
Gold Answer: The command used to upgrade the IBM Storage Virtualize collection to the
latest version from Ansible Galaxy is:
ansible-galaxy collection install ibm.storage virtualize –force

× Instruct

To upgrade the IBM Storage Virtualize collection to the latest version from Ansible Galaxy,
you can use the following command:
“‘ ansible-galaxy collection install ibm.storwize:latest “‘

× RAFT

The command used to upgrade the IBM Storage Virtualize collection to the latest version from
Ansible Galaxy is:
“‘bash ansible-galaxy collection install -r requirements.yml –force “‘

× PA-RAG

The command to upgrade the IBM Storage Virtualize collection to the latest version from An-
sible Galaxy is:
“‘bash ansible-galaxy collection install -r requirements.yml “‘

✓ KNITLM

”The command to upgrade the IBM Storage Virtualize collection to the latest version from
Ansible Galaxy is:
ansible-galaxy collection install ibm.storage virtualize –force”

Only KNITLM provides the exact command that correctly upgrades the IBM Storage Virtualize
collection. The instruct’s response contains a typo in the collection name (‘storwize‘ instead of
‘storage virtualize‘), while RAFT and PA-RAG incorrectly rely on a requirements file, which is not
specified in the ground truth.

G LLM USAGE

During the preparation of this manuscript, we employed a Large Language Model (LLM) as a writ-
ing support tool. Specifically, LLM was used to polish the phrasing, improve grammatical accuracy,
and provide paraphrased alternatives to enhance clarity and readability. The LLM’s role was limited
to language refinement, and all suggested edits were reviewed and verified by the authors before
inclusion.

22

	Introduction
	Related Work
	Methodology
	Experimental Setup
	Datasets, Models, Evaluation Metrics and Training Details

	Experimental Results
	Comparison with the baselines
	Impact of the size of the synthetic data
	Robustness of KnItLM to corpus coverage by synthetic QAs
	Impact of using instruct LLM's token embeddings during training

	Conclusion
	Human Annotation and LLM-as-a-Judge Alignment
	Human Annotation Setup
	Human Annotation Results
	LLM-as-a-Judge for Filtering
	LLM-as-a-Judge for Evaluation
	Discussion

	Data Statistics
	Results on Llama
	Stopping Criteria Ablation
	Performance on general tasks
	Prompts and Examples
	Filtering Prompt
	LLM-as-a-Judge Prompt
	Prompt for generating synthetic QA
	Examples of QA Pairs Removed During Filtering
	Example Model Responses

	LLM Usage

