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Unbiased Spatiotemporal Representation With
Uncertainty Control for Person Reidentification
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Abstract—For person reidentification (re-id), most current
research aims to encode the spatial and temporal information by
using convolutional neural networks (CNNs) to extract spatial
features and recurrent neural networks (RNNs) or their varia-
tions to discover the time dependencies. However, it ignores the
effect of the complex background, which leads to a biased spatial
representation. Furthermore, it often uses the backpropagation
through time (BPTT) to train RNNs. Unfortunately, it is hard to
learn the long-term dependency via BPTT due to the gradient
vanishing or exploding. The significance of a frame should not
be biased by its position in a given sequence. In this article, a
new method is proposed to learn an unbiased semantic represen-
tation for video-based person re-id. To handle the background
clutter and occlusion, a two-branch CNN model is used to obtain
the enriched representation from both the foreground person and
original pedestrian images. Then, an unbiased bidirectional CNN
architecture is developed to learn the unbiased spatial and tem-
poral representation. The experimental results on three public
data sets demonstrate the effectiveness of the proposed method.

Index Terms—Bidirectional recurrent neural networks
(BRNN), pedestrian detection, person reidentification (re-
id), sparse attentive backtracking, unbiased representation,
uncertainty control.

I. INTRODUCTION

THE AMOUNT of video data has been rapidly increasing
due to the prevalence of both the Internet and record-

ing devices, e.g., cell phones with quality cameras, compact
video cameras, and video surveillance systems. Video ana-
lytics has become a hot topic with increasing demands for
developing automatic processing tools. In this article, we
focus on the person reidentification (re-id) task, which aims
to identify pedestrians across nonoverlapping cameras. It has
attracted much attention from both the research community
and industry, and plays an important role in various surveil-
lance applications [1], [2]. For example, when a girl gets lost
in a theme park, the re-id techniques can be used to search
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Fig. 1. Challenges in re-id task. In (a), the first image is taken from the front
view and the other two images are taken from the side view. In (b), the first
image is taken from the first camera, while the other two frames are captured
by the second camera. Due to the illumination changes, the yellow color of
the backpack differs a lot in different frames. Also, the person changes the
location of bag from the back to hands to hold the bag. In (c), in the subsequent
frames, people are blocked by other persons. In (d), the background keeps
changing as the person moves.

the child in the video camera network. Re-id can be used for
continuous tracking in video games using a Kinect sensor [3].
Still another example, we could use re-id to track a specific
soccer player and obtain video analytics for each player for
the duration of the game [4].

In spite of significant research in recent years, person re-id
remains very challenging. As the common surveillance set-
ting moves into the unconstrained environment, it becomes
very difficult to reidentify pedestrians due to the variations
in view angle of the camera, pose of pedestrian, illumination
conditions, background clutter, and occlusions as shown in
Fig. 1.

In this article, we address the re-id problem in the video con-
text. Compared to the still images, video-based re-id provides
various samples to learn a more discriminative and robust
appearance representation, especially, when frames include
occlusions or complex backgrounds. Another benefit for using
the videos instead of images is that the useful temporal
information, such as gait, pose, and movement captured in
video, may help to distinguish people in difficult scenarios.

Existing video-based person re-id methods extract frame-
level features by using convolutional neural networks (CNNs)
and aggregate the representation with recurrent neural
networks (RNNs) across time [5]–[7]. However, these methods
have several drawbacks. First, most methods learn the person
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Fig. 2. Examples of walking pedestrians in two sequences. For (a) and
(b), seven frames are selected from two videos. In (a), as the person walks,
the background changes. At the same time, the person is blocked by two
different people from frames 3 to 6. In (b), the walking person is captured
from different angles. The early images represent the front angle, and we
could see the purple T-shirt, scarf, and the shopping bag in her right hand,
which disappear gradually as shown in the following images. Occlusions also
exist with varying degrees from frames 3 to 5.

representation either from the full body or integrate differ-
ent body parts from the estimated regions of interest (ROI).
Usually, the ROIs are in the form of rectangular bounding
boxes, which may not capture the silhouettes well and may
even include the complex backgrounds and occlusions. As
shown in Fig. 2(a), the background differs with the frames.
In frame 1, grass and flowers are detected, which disappear
in the frames 2–4. Then, a patch of green grass appears in
frame 5 and 6. Also, the other two persons with different
shirts (striped shirt and white shirt) walk in front of the target
person from the camera view. Thus, learning a good spatial
representation, without bias, for the background is essen-
tial, which may help filter the changing background (grass)
and other pedestrians (frames 4 and 5) with less overlap-
ping with frame 1 in the example. More recent work [8], [9]
has exploited segmentation techniques to emphasize the fore-
ground information to avoid the background clutter. However,
such methods have the following drawbacks: segmentation
methods are usually noisy and do not capture the perfect
silhouette information, especially when there are more than
one pedestrians. Furthermore, the useful information is lost
when the background is removed since there are connections
between the person and background, e.g., backpacks, the car-
ried briefcase, and other belongings. Thus, a hard cut-off of
the background information is detrimental to the performance
of the re-id techniques.

Second, it is very intuitive to obtain the global represen-
tation of a given sequence with RNNs. For our task, the
information that we want to capture is the identity of the per-
son in the given frame, which is consistent along the sequence.
Thus, the importance of each frame should not be dependent
on its position. But, backpropagation through time (BPTT),
which is now commonly used to train RNNs, is not able to
capture the long-term dependencies due to the well-known
gradient vanishing or exploding problem [10]. Although long
short-term memory (LSTM) and gated recurrent unit (GRU)
are proposed to alleviate this problem, it is still doubtful
how much a fixed-length vector can memorize over a long

sequence. All these limitations result in the difficulty in assign-
ing enough or at least fair credit to the earlier time steps in a
long sequence, while looking at the entire sequence would be
considerably better than relying on the last few frames only.
For example, as shown in Fig. 2, the first two frames capture
the front side of the person and the other frames represent
the side view. Both angles are important to achieve a com-
prehensive representation for this specific target. The first two
frames should be given at least the equal emphasis as the latter
frames. Frames 3 and 6 in Fig. 2(a) and frame 5 in Fig. 2(b)
should be assigned with lower weights as they are not help-
ful in recognizing the target persons as they are completely
blocked by the other people.

In light of the above discussions, this article proposes to
learn an unbiased spatiotemporal semantic representation for
person re-id. Specifically, our pipeline first uses a pedestrian
detection method to obtain pixel-level mask for the body, and
then replaces the complex background with a unified repre-
sentation of the background to only capture the foreground
pedestrian. Unlike other research [11]–[13] that learn fea-
tures from either the whole image or foreground image, we
use a two-branch network, which includes both the masked
foreground pedestrian and the original image. In order to
learn the contribution of each branch (masked foreground
branch and original image branch), we introduce homoscedas-
tic uncertainty to combine the loss functions without manual
tuning. Furthermore, instead of BPTT, a sparse attentive back-
tracking mechanism [14] is used to train RNNs in both
forward and backward directions to get the unbiased temporal
representation for pedestrians.

This article is organized as follows. Section II summarizes
the related work and contributions of this article. Section III
presents the framework of the proposed method and describes
each component in detail. The experimental results on three
video-based person re-id public data sets are shown and dis-
cussed in Section IV. Finally, this article is concluded in
Section V.

II. RELATED WORK AND CONTRIBUTIONS

A. Related Work

The re-id task has been extensively explored in the last few
years. The current approaches generally fall into two cate-
gories: 1) developing robust features for the given image or
video and 2) designing discriminative metric learning methods
that push the same person to be close by increasing similarity
and pull different persons to be away by decreasing similar-
ity. Recently, deep learning methods have been successfully
applied to learn feature representation and similarity distance
metric jointly.

For feature-based methods, different cues are used to learn
discriminative and robust feature representation. A large part
of person re-id methods subdivide the whole body into parts
and then integrate different local and global low-level fea-
tures [15]. One example SDALF [16] separates the body
into parts and extracts three sets of entities, which are color
histogram, maximally stable color regions, and recurrent high-
structured patches. It also applies symmetric information to
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obtain good view invariance. Ma et al. [17] combined the
Gabor filters and covariance descriptor to get the BiCov
descriptor and dense color histogram [18]. Some approaches
extract features from the whole body: treat the body as
a whole and represent it using various kinds of features:
haar-like features [19]; SIFT-like interest points [20]; texture
(Schmid and Gabor filters) and color (histograms in differ-
ent color spaces) [21]; color-position histogram [22]; 4-D
multicolor height histogram; transform-normalized RGB (illu-
mination invariant) features [23]; and patch-based saliency
features [24]. Some methods learn feature representations from
multiscales [25], [26]. Some other methods adopt semantic
attributes and co-occurrence properties to model the consistent
features across different views [27], [28].

Metric learning methods aim to learn the distance between
the given images or videos across different camera views
by finding the mapping functions, which make the distance
between the matched persons smaller but larger for differ-
ent people in the learned space. For instance, KISSME [29]
has the assumption that the distance follows a Gaussian dis-
tribution and the metric is formulated as a log-likelihood
ratio test. Liao et al. [30] proposed XQDA to learn a dis-
criminative subspace by linear discriminant analysis (LDA).
Mignon and Jurie [31] utilized a sparse set of pairwise sim-
ilarity constraints to learn the distance metric. An et al. [32]
proposed a modified cosine similarity to measure the match-
ing scores between probe and gallery. Chen et al. [33] learned
the similarity from an explicit polynomial kernel feature map.
Zheng et al. [34] formulated the problem as a relative distance
comparison problem and presented a probabilistic solution.
An et al. [35], [36] learned a subspace in which the cor-
relations of the reference data from different cameras are
maximized using regularized canonical correlation analysis
(RCCA).

Recent advances in deep learning provide a joint solution
to integrate the feature representation and distance metric in
a supervised manner. Li et al. [37] proposed a filter pairing
neural network (FPNN) to handle the body part displace-
ments. Ahmed et al. [38] included a new layer, which encodes
the cross-input neighborhood differences and a subsequent
layer that summarizes these differences in a siamese architec-
ture. Ding et al. [39] developed an effective triplet generation
scheme and used triplet loss to train the model. Zhao et al. [40]
proposed a center-triplet model, which jointly learns the robust
feature representation and optimizes the metric loss function.

Beyond the image-based person re-id, researchers have
exploited temporal information across frames for video-based
re-id. Early work used gait [41]–[43] or HOG3D descrip-
tors [44]. More recently, McLaughlin et al. [5] introduced
RNNs to explore the temporal information and added an addi-
tional pooling layer to summarize a video. Instead of using
regular RNNs, Varior et al. [6] and Zhang et al. [7] adopted
the LSTMs and bidirectional RNNs (BRNNs) to select and
encode more information. Liu et al. [45] constructed motion
net to encode the motion information in their framework.
Xu et al. [46] used a similar architecture but added one spa-
tial pooling layer to select regions from each frame, and added
another attentive temporal pooling layer to select informative

frames. Zhou et al. [47] used a similar attention temporal pool-
ing mechanism, but they employed spatial RNNs to integrate
the neighborhood similarities within and across the frames.
All of the above methods used BPTT to train the networks
and thus, they introduced bias along time. These networks
inevitably put more emphasis on the last few frames even when
the earlier frames may contain more useful information.

As the quality of frames along a video differs significantly,
attention schemes are widely employed to associate weight and
select the informative frames. Li et al. [48] learned multiple
spatial attention models with a diversity regularization term to
localize body parts and combine features using temporal atten-
tion. Wu et al. [49] proposed a Siamese attention architecture
that jointly optimized spatiotemporal video representations and
their similarity metrics. Subramaniam et al. [50] activated a
common set of salient features across multiple frames of a
video with mutual consensus. To deal with the varying lengths
of videos, Chen et al. [51] divided the long video sequences
into multiple short snippets and aggregated the top-ranked
snippets to estimate the sequence-level similarity. Similarly,
Fu et al. [52] computed the clip-level feature representation
by aggregating frame-level representations. Gu et al. [53]
proposed an appearance-preserving 3-D convolution (AP3D)
model to learn better appearance representation for the video
data. Yang et al. [54] applied the dynamic pyramid strategy
to exploit multiscale features under the attention mechanism
to maximally capture discriminative features.

Bayesian models mainly include two types of uncertainty:
1) epistemic uncertainty and 2) aleatoric uncertainty. Aleatoric
uncertainty is inherent in data observations and cannot be
reduced even if more data is collected. Kendall and Gal [55]
divided it into homoscedastic uncertainty and heteroscedastic
uncertainty. Homoscedastic uncertainty is captured indepen-
dent of the input data and varies between different tasks.
Heteroscedastic uncertainty is data dependent and varies across
different data inputs. Epistemic uncertainty refers to the uncer-
tainty in the model and can be reduced with enough training
data. Modeling uncertainty can help to improve both the
robustness and the interoperability of various algorithms.

B. Contributions of This Article

In this article, we propose a new scheme as shown in Fig. 3
to learn an unbiased semantic (spatial and temporal) represen-
tation to handle these difficulties of video-based person re-id.
The contributions of this article are as follows.

1) A novel framework is proposed to effectively model the
temporal correlations among frames by a sparse attentive
backtracking mechanism [14], [56], which emphasizes
the importance of learning long-term dependencies in
re-id. We enable all possible interframe relations among
any RNN units instead of restricting the information flow
only within the adjacent RNN units from BPTT. Then,
we use a temporal attention to select the important routes
to perform backtracking.

2) A two-branch CNN model is used to enrich the unbiased
spatial representation. It enables the model to get rid of
the background clutter and occlusions.
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Fig. 3. Framework of the proposed method. There are three stages: (a) unbiased spatial representation; (b) unbiased temporal representation; and (c) MTL
with uncertainty. The first stage (a) includes a two branch CNN (ResNet). The first branch (O branch) is for the original images, and the second branch (M
branch) is for the foreground images where the pedestrians are detected and their mask is used to replace the background to a uniform color. Both branches
are passed through the SEBblock. In the second stage (b), BRNNs encode temporal information, and use the sparse attentive backtracking method to train
RNNs. The connections among the hidden units are shown in the figure, where the orange lines represent the forward connections among hidden units while
the green lines illustrate the backward links. In the last stage (c), the features from both branches are fused by pooling layers with global average pooling
layer (GAP) and one FC layer. The whole network is trained end-to-end with both the contrastive loss and identification loss, where the identification loss is
computed by aggregating with homoscedastic uncertainty σo and σm.

3) Homoscedastic uncertainty is used to balance the orig-
inal branch and the masked branch instead of a naive
manually tuned approach for estimating weights for the
identification terms.

4) Three public data sets are used for evaluation and
comparison with other state-of-the-art methods. The
importance of each component of our framework is
validated experimentally.

This article is an extension of our previous work [57]. We
make the following major advancements compared with [57].

1) We improve our elementary framework by incorporating
a two-branch CNN to learn the unbiased spatial repre-
sentation along with a principled way to combine the
two identification loss terms. We conduct more exper-
iments on more data sets and achieve state-of-the-art
results, and provide visualization to explain the dynamic
progress of using attentive weights for backtracking.

2) We exploit the temporal information in a bidirectional
way to get a more complete representation of a video,
as the identity of the person remains consistent along
both the forward and backward directions.

3) We explore the related work more extensively, and more
data sets and ablation studies are included for a better
understanding.

III. OUR APPROACH

A. Unbiased Spatial Representation

As the person re-id task often involves an unconstrained
environment, the ROI usually contains occlusions and complex
background information, which is usually considered as noise.
It is very important to achieve a good spatial representation by
extracting features which could resist the interference by noise.

Invariant Background Generation: Most of the early work
takes the entire image as the input to the CNNs to extract
spatial features. However, the presence of occlusions and
variations in the background make it difficult to get the dis-
criminative representation. Therefore, we are motivated to use
a pedestrian detection method to get a segmented person,
and then replace the complex background with a uniform
color. Taking into account the scenario of re-id, we aim to
have a method that is not sensitive to the background clut-
ter, complex poses, and occlusions. Besides, we assume that
there is only one target person in a frame. We used the pre-
trained deep decompositional network (DDN) [58] to get the
estimated mask for the human body. DDN jointly estimates
occluded regions and segments body parts by stacking occlu-
sion estimation layers, completion layers, and decomposition
layers.

When we apply DDN to the images, the masks usually con-
tain sharp boundaries that are neither appropriate to describe
the human silhouette nor good for further feature extraction.
Gaussian smoothing method (kernel 3 × 3) [59] is used to
smooth the undesired boundaries. As shown in Fig. 4, the
first row shows the original images and the second row dis-
plays the corresponding masked images. After applying the
smoothing method, the final outputs are illustrated in the
third row, which excludes the occlusions and other back-
ground clutter. Then, we replace the backgrounds of all the
frames to a unified background, which is black background in
our case.

Two Branch Architecture: We design a two branch architec-
ture to balance both the foreground pedestrian and background
information [60]. One pair of images for each person (both the
original image and the masked image) is fed into the CNN.
Both branches share the same architecture, but their network
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Fig. 4. Examples of invariant background generation. The three rows
show the original frames, the results of pedestrian detection, and Guassian
smoothing, respectively.

Fig. 5. Schema for SEBlock, which aggregates the feature maps across
spatial dimensions H × W for C channels with the reduction factor r).

parameters are not shared. In order to model the interdepen-
dencies between channels, the squeeze and excitation block
(SEBlock) [61] is added to recalibrate the feature responses
of the residual block to enhance spatial structure information.
As shown in Fig. 5, the features X are first passed through a
squeeze operation, which aggregates the feature maps across
spatial dimensions H × W to produce a channel descriptor
for C channels. Then, an extraction operation [fully connected
(FC) layer, ReLU, FC layer, and Sigmoid, scale] is added to
fully capture channelwise dependencies. The reduction factor
r can also help to adjust the cost to improve model efficiency.
Unlike the channel attention, spatial attention concentrates
on processing information into specific locations in space.
Inspired by [62] and [63], we add one self-attention module
after the SEBlock to generate spatial attention map to align
the features.

B. Unbiased Temporal Representation

It is intuitive to use RNNs to capture the time-series dynam-
ics for it tracks the information of previous frames to predict
the states of the current node. However, RNNs, which are
trained using BPTT, suffer from the well-known exploding- or
vanishing-gradient problems and they tend to forget the early
inputs in case of long-term sequences. The existing methods
try to solve this by adding a pooling layer to summarize all
the outputs from all the hidden units including the early ones.
This could somehow include the information from the early
frames, but it is still biased because the interference made from
the early frames do not include the information from the lat-
ter frames. We expect to make the decision after seeing what
has happened across all the previous timesteps, i.e., if we use
the one-directional RNNs, the final decision is made based on
ht(t ∈ 1 · · · N) when we use h1, . . . , ht−1 as the sequence of
the hidden units. To address this problem, we use the sparse
attentive backtracking mechanism [14], which is capable of
learning long term dependencies but not lean toward the last
few frames. Unlike the previous work [57], which uses the
sparse attentive backtracking in one direction, we apply it to
train BRNNs. The hidden state ht at time t is a concatenation
of the hidden state hf

t in the forward direction and hb
t in the

backward direction. To compute hf
t , we split the input into two

sources: 1) the hidden unit from last timestep ht−1 and 2) all
the hidden units prior to t. Likewise, when computing hb

t , we
need hb

t+1 and all the hidden units after t as shown in Fig. 6.
Additionally, the attention mechanism is adopted to assign

credits for each former or latter states to compute hf
t or hb

t . We
follow the attention process in [64] to compute the weights.
The sparse attentive backtracking process is formulated as
follows:

hf
t = tanh

(
Wf

vvt + Wf
hhf

t−1 + Wf

h̃

t−1∑
i=1

α
f
i hf

i

)

α
f
i = wf

h̃

[
hf

i ; hf
t

]

hb
t = tanh

⎛
⎝Wb

v vt + Wb
h hb

t+1 + Wb
h̃

N∑
i=(t+1)

αb
i hb

i

⎞
⎠

αb
i = wb

h̃

[
hb

i ; hb
t

]
(1)

where Wh̃ ∈ R
n×n and wh̃ ∈ R

2n.
The final output of BRNNs is represented as

yt = Wyht

ht =
[
hf

t ; hb
t

]
(2)

where yt is the output of the RNNs at time t, and it is used
as a sequence-level feature representation. Its computation is
dependent not only on the previous frames but also the upcom-
ing frames. Wy represents the parameters of projections from
the hidden layer to the output yt based on the combined hid-
den states of hf

t and hb
t . In this work, we apply one RNN layer

for both the forward pass and the backward pass.
As described above, this sparse attentive backtracking strat-

egy explores all possibilities for correlations among the hidden
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Fig. 6. Illustration for the forward pass with BPTT and sparse attentive back-
tracking to compute the hidden unit h3 (which is [hf

3; hb
3]) in our bidirectional

RNNs. We take the forward direction as an example. In (a), the only way that
hf

3 gets the information from hf
1 is through h2 . In (b), hf

3 could selectively

choose any previous hidden units (hf
1 and hf

2) for direct interaction.

states, and use attention mechanism to select the key routes to
do the backtracking. In order to deal with the varying lengths
of videos and speedup the backtracking, we first divide the
given video into multiple small clips, where each clip includes
T consecutive frames. We only select the clips with the top M
highest attention weights to backpropagate as shown in Fig. 7.
The use of BRNNs adds a stronger constraint for the consis-
tent identity among the frames of any given video. We employ
both techniques (sparse attentive backtracking and bidirectonal
RNNs) to discover the potential long-term dependency patterns
and learn an unbiased temporal representation.

C. Learning With Uncertainty

We employ both contrastive loss and identification loss over
the training samples and the two loss terms are denoted as
Lcontrastive and Lid, respectively.

The contrastive loss aims to push the feature representation
of the same person close and pull the features of different
persons away. We employ the triplet loss with hard mining for
contrastive loss [65]. To form a batch, we randomly sample
P identities and randomly sample K clips for each identity
(each clip contains T frames). The total number of clips in
a batch is PK. For each sample a in the batch, the hardest
positive and the hardest negative samples within the batch are

selected. Ltriplet is defined as

Lcontrastive =

all anchors︷ ︸︸ ︷
P∑

i=1

K∑
a=1

⎡
⎢⎢⎢⎢⎢⎣H +

hardest positive︷ ︸︸ ︷
maxD
p=1···K

(
f
(
xi

a

)
, f
(

xi
p

))

− minD
j=1···P
n=1···K

j �=n

(
f
(
xi

a

)
, f
(
xi

n

))
︸ ︷︷ ︸

⎤
⎥⎥⎥⎥⎥⎦

hardest negative

(3)

where xi
a is the anchor, xi

p is the positive sample, which has
the same identity as xi

a, and xi
n is the negative sample with

different identity from xi
a. D() means the Euclidean distance

and H is the hyperparameter margin in hard-batch triplet loss.
Hard-batch triplet loss makes sure that given an anchor xi

a, xi
p

is closer to xi
a than xi

n.
The second term is an identity related loss. We use the

cross-entropy loss function, which is presented as follows:

Lid = λoLo
id + λmLm

id (4)

where Lo
id and Lm

id are the losses of the original branch O and
masked branch M, respectively.

To optimize λo and λm, one common option is to use a
heuristic approach to weight the losses with grid search [28].
Another solution is to use network learning with validation
loss to determine the weights for the task losses. Both meth-
ods require additional validation data. Model performance
is extremely sensitive to weight selection and remains a
challenging problem for the community.

To solve this problem, we formulate this problem as a
multitask learning (MTL) process. The uncertainty of MTL
is homoscedastic in nature, which is task dependent. Thus,
we infer the weights for the task loss from the observable
homoscedastic uncertainty noise [66], [67].

We derive Lid based on maximizing the Gaussian likelihood
with homoscedastic uncertainty. Let f W be the output of a
neural network with weights W on input x. The classification
likelihood of a Bayesian probabilistic model is defined as

p
(
y|f W(x, σ )

) = Softmax

(
1

σ 2
f W(x)

)
(5)

where y refers to the model output and σ is the observation
noise. The log likelihood for the output is

log p
(
y = c|f W(x), σ

) = 1

σ 2
f W
c (x) − log

∑
c′

exp
1

σ 2
f W
c′ (x). (6)

Then, the identification loss for a given class c can be for-
mulated as − log p(y = c|f W(x), σ ), c′ refers to any possible
class of the classification task. The identification loss could be
defined as L(x, W) = − log Softmax(y, f W(x)), which could be
simplified to

L(x, W, σ ) ≈ 1

σ 2
L(x, W) + log σ. (7)
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Fig. 7. This figure illustrates the forward pass in sparse attentive backtracking when the clip length is T = 2, and only the top M = 3 clips will be
backpropagated. Black arrows describe how attention weights h(t) are calculated by current provisional hidden state h′(t) against the set of all memories H.
The system selects and normalizes only the top k attention weights, while the others are zeroed out. Red arrows show the selected nonzero sparsified attention
weights.

Next, the joint identification loss of two branches is given as

Lid = L(x, W, σo, σm) ≈ 1

σo
2

Lo(x, W) + 1

σ 2
m

Lm(x, W)

+ log σoσm. (8)

The final training objective is the combination of contrastive
loss and identification loss as

L = Lcontrastive + Lid. (9)

According to the above equation, the contrastive loss and the
identification loss terms are assigned the same weight. During
training, we use the given identity labels of the videos as
the outputs of the network. We alternatively feed the pos-
itive (same person) and negative (different people) pairs of
sequences as the inputs. The sparse attentive backtracking is
used to train the bidirectional RNNs over the time steps in the
network. While in the test phase, we discard the softmax layer
and use the network as a feature extractor. Then, we compute
the distance of the extracted features against the gallery set.
Similar pedestrians are closer in the Euclidean distance space.

IV. EXPERIMENTS

In this section, we evaluate the proposed approach on four
of the most popular public video data sets: 1) iLIDs-VID [44];
2) PRID 2011 [80]; 3) MARS [42]; and 4) DukeMTMC-
VideoReID [81], and compare our method with other state-
of-the-art methods.

A. Data Sets

The iLIDs-VID data set [44] contains 300 persons, which
are recorded at an airport arrival hall using a CCTV network.
Each person has two acquisition of videos with the sequence
length varying from 23 to 192 frames. This data set is very
challenging due to the clothing similarities among people,
changing illumination conditions and viewpoints, cluttered
background, and the presence of occlusions.

The PRID 2011 data set [80] consists of 749 persons cap-
tured by two adjacent camera views. Only the first 200 pairs
of videos are taken from both cameras. The length of the
image sequences ranges from 5 to 675, with an average of
100 frames. As compared to the iLIDs-VID data set, this data
set is less challenging because it is taken under the uncrowded

outdoor scenes, and it has relatively simple background and
rare occlusions. We use the first 200 persons for evaluation as
the other compared works [5], [43], [46].

The MARS data set [43] includes 20 478 tracklets of 1261
pedestrians, which are captured at a university campus from
six nonoverlapping camera views. The data set is divided into
a training set with 625 pedestrians and a testing set with 626
pedestrians. There are 8298 tracklets for the training set and
12 180 tracklets for the testing set. MARS data set is one of the
largest publicly available video-based person re-id data sets.

The DukeMTMC-VideoReID is a subset of a large-scale
re-id data set DukeMTMC [81], which is recorded in an
outdoor environment. This data set is very challenging due
to the changing illumination and viewpoint conditions, vary-
ing poses, noisy background, and presence of occlusions. It
includes 2196 tracklets of 702 identities for training and 2636
tracklets of another 702 identities for testing. Each identity
has only one tracklet from one camera.

B. Experimental Setup

We use the cumulative matching characteristic (CMC) curve
and mean average precision (mAP) as the evaluation metrics to
evaluate the performance. CMC curve which shows the iden-
tification rate versus the rank for a closed set consisting of
persons to be reidentified. To be specific, during evaluation,
our USTRU model is used as a feature extractor for both the
gallery sequences and the target sequence. After training for
any test sequence, we sort all the gallery sequences by their
nearest distance to the test sequence arranged in an ascending
order. The recognition score at rank R means target persons
are identified within the top R ranks. We report rank-1, rank-5,
and rank-20 scores to display the CMC curve.

The MARS and DukeMTMC-VideoReID data sets have
provided the splits for the training set and the testing set,
which means the testing identities are fixed. Thus, we report
the mAP for these two data sets. However, the PRID2011 and
iLIDS-VID data sets do not provide the splits for the training
and testing sets. We follow the common strategy to randomly
divide the data sets into training sets and testing sets ten times
as in other papers [5], [74], [75] and report the average CMC
curve for these two data sets.

The hinge margin value in our experiment is set to 4 as we
use BRNN and the dimension of the final representation is

Authorized licensed use limited to: KLA Tencor. Downloaded on March 04,2025 at 18:40:46 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG AND BHANU: UNBIASED SPATIOTEMPORAL REPRESENTATION WITH UNCERTAINTY CONTROL 537

TABLE I
ILIDS-VID DATA SET: COMPARISONS OF THE RECOGNITION RATES AT DIFFERENT RANKS (%). THE TOP THREE SCORES ARE INDICATED IN Red,

Orange, AND Green, RESPECTIVELY. IF TWO SCORES ARE IDENTICAL, WE HAVE LABELED ALL THOSE SCORES WITH THE SAME COLOR

TABLE II
PRID 2011 DATA SET: COMPARISONS OF THE RECOGNITION RATES AT DIFFERENT RANKS (%). THE TOP THREE SCORES ARE INDICATED IN Red,

Orange, AND Green, RESPECTIVELY. IF TWO SCORES ARE IDENTICAL, WE HAVE LABELED ALL THOSE SCORES WITH THE SAME COLOR

512, which is doubled as compared to [5]. We randomly crop
and flip each image in each data set to augment the data. To
train the network, we set the initial learning rate to be 1e − 2
for the first 100 epochs and then change to 1e − 3 for the
remaining epochs, the momentum of 0.9, dropout rate of 0.7,
and the number of epochs to be 600. The frame features are
first extracted by ResNet50, and then the average temporal
pooling is used to obtain the sequence feature. Input images
are resized to 256 × 128. The batch size is set to 32. We
analyze the use of the snippet representation and also compet-
itive similarity aggregation. Our standard version sets the clip
length L = 4, each clip includes T = 4 images.

C. Experimental Results and Discussion

1) Comparisons With State-of-the-Art Methods: We com-
pare our method with the related state-of-the-art results
on iLIDs-VID data set, PRID 2011 data set, MARS
data set, and DukeMTMC-VideoReID data set, shown in
Tables I–IV, respectively. These tables also show the results
using RQEN [68], STAN [48], ADFD [69], VRSTC [70],
COSAM [50], GLTR [71], SCAN [72] MGH [73], AP3D [53],
DCGN [74], PS-GNN [75], DPRM [54], STRF [76], and

Bicnet-TKS [79]. We list the quantitative recognition results
at different ranks by our method and the above approaches.

We achieve rank 1 recognition rates of 89.7%, 95.3%,
90.1% , and 96.7% for the iLIDs-VID data set, PRID 2011
data set, MARS data set, and DukeMTMC-VideoReID data
set, which are reported in Tables I–IV, respectively. USTR
(ours without w/o uncertainty) refers to the case where we take
the same weight for λo and λm of 0.5, while USTRU (ours
with w/ uncertainty) refers the full model using homoscedas-
tic uncertainty to weight the two identification loss terms. The
proposed USTRU outperforms USTR at all ranks on all the
three data sets.

We highlight the top three identification rates at each rank
and mAP in Tables I–IV. Our model outperforms other com-
pared methods with rank 1 accuracy on iLIDs-VID data set
(Table I) and ranks into the top three places for all other data
sets (Tables II–IV). For the MARS data set (Table III), our rank
1 recognition rate 90.1% is 0.2% lower than the best 90.3%
from STRF [76] with a different backbone of 3-D CNN. The
0.2% difference means that our model approximately makes
only one more mistake when recognizing around 600 pedestri-
ans compared to the best model. For the PRID 2011 data set,
we get the second highest rank 1 score of 95.3% compared to
the best 95.5% (Table II). For DukeMTMC-VideoReID data
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TABLE III
MARS DATA SET: COMPARISONS OF THE RECOGNITION RATES AT DIFFERENT RANKS (%). THE TOP THREE SCORES ARE INDICATED IN Red, Orange,

AND Green, RESPECTIVELY. IF TWO SCORES ARE IDENTICAL, WE HAVE LABELED ALL THOSE SCORES WITH THE SAME COLOR

TABLE IV
DUKEMTMC-VIDEOREID DATA SET: COMPARISONS OF THE RECOGNITION RATES AT DIFFERENT RANKS (%). THE TOP

THREE SCORES ARE INDICATED IN Red, Orange, AND Green, RESPECTIVELY. IF TWO SCORES ARE IDENTICAL,
WE HAVE LABELED ALL THOSE SCORES WITH THE SAME COLOR

TABLE V
COMPARISON RESULTS OF METHODS TESTED ON ALL DATA SETS. THE TOP TWO SCORES ARE INDICATED IN Red AND Orange, RESPECTIVELY. NOT

ALL THE METHODS LISTED IN PREVIOUS TABLES I–IV ARE SHOWN IN THIS TABLE SINCE NOT ALL THE METHODS ARE TESTED ON ALL DATA SETS.
IF TWO SCORES ARE IDENTICAL, WE HAVE LABELED ALL THOSE SCORES WITH THE SAME COLOR

set, our USTRU rank 1 score is in the third place (Table IV).
Our model is capable in handling the more challenging data
sets, e.g., iLIDs-VID and MARS data sets.

Note that not all the methods have been tested on all the
four data sets. Table V shows the comparison results for those

algorithms in Tables I–IV with results across the four data
sets. We highlight the top two scores in red and orange colors,
respectively. There is no model that could get the best results
in all data sets. Our USTRU approach is relatively more sta-
ble and could consistently demonstrate relatively good results
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TABLE VI
SPATIAL COMPONENT ANALYSIS ON ILIDS-VID, PRID, MARS, AND

DUKEMTMC-VIDEOREID (DUKE) DATA SETS

TABLE VII
TEMPORAL COMPONENT ANALYSIS ON TILIDS-VID, PRID, MARS,

AND DUKEMTMC-VIDEOREID (DUKE) DATA SETS

on different data sets (see Table V) for it achieves the best
results on all data sets except PRID 2011 (2nd), while the
other methods have bias on some specific data sets.

2) Evaluating the Contribution of the Spatial Component
of the Approach: The contributions of the masked foreground
image and original image information to the reID system. The
results of comparison shown in Table VI, from which we make
the following observations. The background information con-
tributes to re-id. Rank-1 results drop by 6.3%, 4.6%, 6.4%, and
3.7% when only the masked foreground (second row) is used
without background information for iLIDs-VID, PRID 2011,
MARS, and DukeMTMC-VideoReID, respectively. Modeling
foreground and original image (that has background) in two
branches improves the results significantly. The two-branch
model reaches rank 1 accuracy of 89.7%, surpassing the
one branch model RGB by 8.5% for the most challenging
iLIDs-VID data set.

3) Evaluating the Contribution of the Temporal Component
of the Approach: Compared to image-based person re-id, most
video-based re-id methods encode the temporal information
either by applying the pooling layers to summarize the fea-
tures from the frames or by using RNNs and their variants to
embed the temporal information. We evaluate the results while
applying different temporal embedding components including
average pooling, max pooling, RNN, BRNN and bi-directional
LSTM (BLSTM), respectively. The results on MARS data
set are shown in Table VII. Our USTRU with a bidirectional
sparse attentive backtracking model achieved the best results.
We also find that average pooling and max pooling perform
better than RNN and BRNN. The pooling operation captures
and summarizes the long-term information along the sequence,
while the RNN and BRNN are not good at learning long-
term dependencies. Furthermore, both BLSTM and our model
embed the self-attention mechanism, while BLSTM is still
inferior to our model due to its inherent BPTT backbone.

Additionally, to show the efficiency of our method, we pro-
vide an analysis of the runtime of our method. We implement

TABLE VIII
PERFORMANCE OF DIFFERENT SEQUENCE LENGTHS ON ILIDS-VID,
PRID, MARS, AND DUKEMTMC-VIDEOREID (DUKE) DATA SETS

our model with PyTorch and train it end-to-end. For iLIDs-
VID data set, It takes about 8.5, 6, and 13.5 h to train USTRU
(Our model), BRNN model, and BLSTM models, respectively,
using the Nvidia GTX-1080 GPU. Our model runs much faster
than the BLSTM model due to the complicated calculation of
gaits in BLSTM. On the other hand, our model runs a lit-
tle slower compared to the BRNN model since we add the
attention mechanism. However, we achieved 89.7%. for rank
1 accuracy, which is 8.3% higher than the compared BRNN
model (81.4%) for that our model is capable of selecting
important frames for backtracking.

4) Evaluation for Different Sequence Lengths of the
Approach: In order to capture both the long-term and short-
term information, the video sequences are first divided into
clips, where each clip includes the adjacent T = 4 image
frames. Then, our model selects the top N clips according to
the attentive weights for the backpropagation. We investigate
the effect of N on the performance. Table VIII shows the com-
parison results for using different numbers of clips on three
data set. When N = 4, our USTRU model achieves the best
ranking scores when 16 frames are selected.

5) Cross Data Set Generalization: Due to the various con-
ditions in the process of data collection, the data distributions
of different data sets may have a great bias. The performance
of the model trained on one data set may drop a lot on
another one. To evaluate the generalization ability of the
proposed model, we conduct cross-data set validation with
the following setting [82]: we use iLIDs-VID, MARS, and
DukeMTMC-VideoReID data sets as the training sets, respec-
tively, and use the PRID 2011 as the testing set. Table IX
reports the results for rank 1, 5, and 20. Our USTRU model
achieves approximately best recognition rates among all the
listed methods.

6) Visualization of Attention Weights for Backpropagation:
We investigate the effects of the spatial and temporal cues
in our method. As shown in Figs. 8–11 the color of the bar
under each image is an indicator of the attention weights for
the backtracking. As the color gets darker, the weight is higher.

a) iLIDs-VID data set: Fig. 8 shows three successful
examples for our method. The three target people are walking
in the lobby where they get occluded by different people and
other objects from time to time. Our method is able to assign
higher weights to the frames where there are fewer occlu-
sions, for example, frames 13–15 for the first person, frames
33–35 for the second person, and frames 13–15 for the third
person. Also, the attention weights become lower when the
overlapping is more. For example, in example 3, at the very
beginning, the first person is overlapped by a yellow board,
the given attention weight (frames 1–3) is just a little lower
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Fig. 8. iLIDs-VID data set: Visualization of attention weights for backpropagation. Three examples are chosen (Exp. 1, Exp. 2, and Exp. 3) In each row,
selected frames for the given video are listed. The number under each image represents the frame number from the original video and the color of the
rectangular box represents the attention weights for the sparse attentive backtracking. The darker the color is, the higher the weight is. The reference ruler
for the weight is shown on the bottom.

Fig. 9. PRID 2011 data set: Visualization of attention weights for backpropagation. Three examples are chosen (Exp. 1, Exp. 2, and Exp. 3). In each
row, selected frames for the given video are listed. The number under each image represents the frame number from the original video and the color of the
rectangular box represents the attention weights for the sparse attentive backtracking. The darker the color is, the higher the weight is. The reference ruler
for the weight is shown on the bottom.

TABLE IX
CROSS DATA SET MATCHING RESULTS ON PRID 2011 DATA SET. THE FIRST ROW INDICATES THE TRAINING DATA SET

than for frames 13–15. When the person is gradually blocked
by the other people, the attention weights drop significantly
for frames 49–51 and 61–63.

b) PRID 2011 data set: Fig. 9 illustrates another three
correct instances. In general, the colors for this data set has a
less diffused distribution than the other two data sets shown
in Figs. 8 and 10. The reason is that PRID 2011 data set is
relatively simple and includes less complex background and

less instances of occlusions. The learned attention weights are
consistent with the degree of blurriness for the given frames.
For example, the leg of the second person is not very clear in
frames 69–71. Similarly, we could hardly see one leg of the
first person in frames 29–31.

c) MARS data set: Fig. 10 presents the other three
detected examples at their first attempt. The target person is
obscured by other interfering pedestrians as in the iLIDs-VID
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Fig. 10. MARS data set: Visualization of attention weights for backpropagation. Three examples are chosen (Exp. 1, Exp. 2, and Exp. 3). In each row,
selected frames for the given video are listed. The number under each image represents the frame number from the original video and the color of the
rectangular box represents the attention weights for the sparse attentive backtracking. The darker the color is, the higher the weight is. The reference ruler
for the weight is shown on the bottom.

Fig. 11. DukeMTMC-VideoReID data set: Visualization of attention weights for backpropagation. Three examples are chosen (Exp. 1, Exp. 2, and Exp. 3).
In each row, selected frames for the given video are listed. The number under each image represents the frame number from the original video and the color
of the rectangular box represents the attention weights for the sparse attentive backtracking. The darker the color is, the higher the weight is. The reference
ruler for the weight is shown on the bottom.

data set. If we check frames 17–19 and 21–23 for the second
example, the learned weights decrease as the target person
is gradually covered by the other guy. For the following
frames 25–27, the weights increase when the other pedestrian
passes by.

d) DukeMTMC-VideoReID data set: Fig. 11 displays
another three right cases. The target pedestrians suffer a lot
from occlusions as in the iLIDs-VID and Mars data set.
Besides, there are more frames in each tracklet than the other
three data sets. This indicates that the background changes a
lot when the target person is walking. For the first example, the
person walks on the flat ground in frames 1–3, and then goes
up the stairs in frame 41–43, and then walks on the grassland
in frame 125–127.

In summary, the proposed approach is capable to learn
the unbiased representation by focusing on the main

parts of a person (spatial unbiased representation) and
finding the useful frames (temporal unbiased representa-
tion) regardless of the position where the frame is in a
sequence.

V. CONCLUSION

This article proposed an unbiased spatiotemporal learning
framework to address video-based person re-id. The proposed
framework explicitly removed the background clutter by learn-
ing a two branch CNN network. Homoscedastic uncertainty is
used to balance the original and masked foreground branches.
In addition, the long-term dependency issue is handled with
sparse attentive backtracking. Extensive experiments are con-
ducted on three person re-id benchmark data sets, where the
proposed framework achieved favorable performance com-
pared with the recent state-of-the-art methods.
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