
Anything Goes? A Crosslinguistic Study of (Im)possible Language
Learning in LMs

Anonymous ACL submission

Abstract

Do LLMs offer insights into human language001
learning? A common argument against this002
idea is that because their architecture and train-003
ing paradigm are so vastly different from hu-004
mans, LLMs can learn arbitrary inputs as easily005
as natural languages. In this paper, we test this006
claim by training LMs to model impossible or007
typologically unattested languages. Unlike pre-008
vious work, which has focused exclusively on009
English, we conduct experiments on 12 natural010
languages from 4 language families. Our re-011
sults show that while GPT-2 small can primarily012
distinguish attested languages from their impos-013
sible counterparts, it does not achieve perfect014
separation between all the attested languages015
and all the impossible ones. We further test016
whether GPT-2 small distinguishes typologi-017
cally attested from unattested languages with018
different NP orders by manipulating word or-019
der based on Greenberg’s Universal 20 and find020
that the model’s perplexity scores do not dis-021
tinguish attested vs. unattested word orders, as022
long as the unattested variants maintain con-023
stituency structure. These findings suggest that024
language models exhibit some human-like in-025
ductive biases, though these biases are weaker026
than those found in human learners.027

1 Introduction028

To what extent can LLMs serve as models of hu-029

man language acquisition and processing? Some,030

such as Piantadosi (2023), argue that LLMs can031

function as comprehensive linguistic theories, chal-032

lenging traditional symbolic generative approaches.033

On the other hand, critics maintain that the success034

of LLMs is largely irrelevant to human cognition035

due to fundamental differences in architecture and036

learning mechanisms (Chomsky et al., 2023; Fox037

and Katzir, 2024). Moreover, studies have shown038

that LLMs fail to acquire key aspects of linguistic039

knowledge, highlighting their limitations as mod-040

els of human language (Fox and Katzir, 2024; Lan041

et al., 2024; Katzir, 2023; Dentella et al., 2024). 042

A particularly compelling argument in this debate 043

is that LLMs are highly flexible learners, capable 044

of acquiring linguistic patterns beyond those learn- 045

able by humans, thus making the ability of LLMs 046

to learn human languages uninformative for under- 047

standing human language acquisition (Chomsky 048

and Moro, 2022; Moro, 2023; Moro et al., 2023). 049

We present data that favors a more moderate 050

stance, in line with other researchers in this field 051

(Futrell and Mahowald, 2025; Millière, 2024; Pater, 052

2019). We present new empirical evidence from the 053

study of impossible languages (Kallini et al., 2024) 054

in a multilingual setting. Our findings suggest that 055

LLMs exhibit learning biases that align with certain 056

aspects of human cognition while simultaneously 057

displaying biases (or a lack thereof) that diverge 058

from human language processing. 059

In this work, we examine both possible (attested 060

or unattested) and impossible (unattested by defi- 061

nition) languages. Specifically, we define attested 062

languages as the natural languages spoken by hu- 063

mans (e.g., English, German, and Chinese); unat- 064

tested languages as languages constructed based 065

on language universals identified in typological 066

studies or generative grammar analysis; and impos- 067

sible languages as those that humans cannot ac- 068

quire and would never produce. Following Kallini 069

et al. (2024), we have selected impossible variants 070

because we take them to be uncontroversial exam- 071

ples of linguistic impossibility, such as languages 072

with randomly shuffled word orders. To explore 073

unattested languages, we draw from Greenberg’s 074

Universal 20 (Greenberg et al., 1963), which identi- 075

fies unattested word order patterns in noun phrases 076

(e.g., adjective-number-determiner-noun). While 077

there is no direct evidence that such languages are 078

unlearnable, previous studies suggest that typologi- 079

cal feature frequencies correlate with learnability 080

in human learners (Culbertson et al., 2020; Gentner 081

and Bowerman, 2009; Saffran et al., 2008). 082
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Regarding impossible language modeling,083

Kallini et al. (2024) provided initial evidence that084

GPT-2 small can distinguish between possible and085

impossible variants of English, suggesting that086

transformer models encode human-like linguistic087

biases (Futrell and Mahowald, 2025). However,088

their study was limited to English, leaving the ques-089

tion of whether this finding generalizes across lan-090

guages. Furthermore, their focus on impossible091

languages leaves the study of unattested languages,092

which we take as an important testbed for LLM-093

human bias alignment, largely unexplored.094

This paper is organized around two main re-095

search questions: (1) Do LLMs encode human-096

like distinctions between attested and impossible097

languages? Specifically, (a) Within each attested098

language, can LLMs correctly differentiate the at-099

tested language from its impossible variants? (b)100

Across different attested languages from multiple101

language families, can LLMs distinguish all at-102

tested languages from all impossible languages?103

(2) Can LLMs recognize unattested languages104

as distinct from attested ones? Specifically, does105

LLMs’ ability to model unattested languages align106

with human typological biases?107

Our findings reveal that GPT-2 small reliably dis-108

tinguishes attested and impossible languages within109

each attested language (1a) but struggles to make110

this distinction across different languages (1b). It111

assigns lower perplexity to unattested languages112

when they preserve constituency and fixed word113

order (2), suggesting a preference for regular struc-114

tures (Hudson Kam and Newport, 2005; Singleton115

and Newport, 2004).1116

2 Related Work117

2.1 Language Models & Cognitive Plausibility118

The advancement of neural networks makes con-119

nectionism a widely adopted framework in cog-120

nitive language studies (e.g., Wilcox et al., 2023;121

Borenstein et al., 2024; Kirov and Cotterell, 2018).122

However, linguists remain divided on whether lan-123

guage models can meaningfully inform linguistic124

theories. On the one hand, language models have125

advanced psycholinguistics by serving as highly126

accurate probability estimators, and, in this capac-127

ity, have already been used for testing and refining128

Surprisal Theory (Goodkind and Bicknell, 2018;129

Oh and Schuler, 2023b,a; Kuribayashi et al., 2024),130

1Our code and data are available at
temporary-pseudo-url.

Uniform Information Density (Meister et al., 2021; 131

Tsipidi et al., 2024), and other cognitive-linguistic 132

theories and psychometrics (Pearl and Mis, 2011; 133

Gibson et al., 2019; Kuribayashi et al., 2025). On 134

the other hand, their limitations, including a lack 135

of generalization (Yao and Koller, 2022; Kim and 136

Linzen, 2020), the shortcomings of prompt-based 137

approaches (Hu and Levy, 2023), and inconsistency 138

with humans (de Dios-Flores et al., 2023; Davis 139

and van Schijndel, 2020) suggest that, beyond their 140

role as sophisticated estimators, they are limited as 141

cognitive models. 142

The most relevant work to our study in this con- 143

text is Kallini et al. (2024), which tests the hypoth- 144

esis that LLMs cannot distinguish between pos- 145

sible and impossible languages (Chomsky et al., 146

2023; Moro et al., 2023). Their study relies on a 147

100M-word dataset from the BabyLM Challenge 148

(Warstadt et al., 2023), focusing on systematically 149

modified versions of English to investigate learn- 150

ability and model performance. Using the language 151

modeling task with English on GPT-2 small archi- 152

tecture and its impossible variants, Kallini et al. 153

(2024) demonstrate that natural English is consis- 154

tently easier to learn than its impossible counter- 155

parts, as reflected in lower perplexity scores. They 156

conclude that the above critique of language mod- 157

els as cognitive models is largely invalid. 158

2.2 Multilingual Language Modeling 159

Whether languages vary in complexity remains a 160

controversial topic, and linguists have taken dif- 161

ferent approaches to address this question (e.g., 162

McWhorter, 2001, 2011; Newmeyer, 2021; Joseph 163

and Newmeyer, 2012). While most generative lin- 164

guists argue that Universal Grammar requires that 165

all languages be equally complex, others have chal- 166

lenged this notion (Gil, 2008).2 167

Initial computational attempts to examine lan- 168

guage complexity using language models were lim- 169

ited to RNN-based architectures (Cotterell et al., 170

2018; Mielke et al., 2019; Johnson et al., 2021) 171

and n-grams (Koplenig and Wolfer, 2023). These 172

studies suggest that language complexity corre- 173

lates with morphological richness and the size of 174

speaker populations. More recently, Arnett and 175

Bergen (2025) investigated why morphologically 176

rich languages are harder to model. By testing 177

monolingual language models trained on carefully 178

curated comparative datasets (Chang et al., 2024), 179

2See Newmeyer (2021) for a more thorough discussion.
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they found that morphological features alone could180

not predict language learnability when training data181

size was controlled.182

While valuable, previous studies often rely on183

comparative corpora, introducing inconsistencies184

across languages. Even with parallel corpora185

(Mielke et al., 2019), studies are limited by small186

datasets and outdated models. Our study addresses187

these gaps using a larger parallel corpus and mod-188

ern transformer architectures.189

3 Data and Implementation Details190

3.1 Parallel Data Construction: OPUS12 and191

OPUS30192

A key challenge in addressing our questions is193

that different languages texts drawn from differ-194

ent sources will have different amounts of informa-195

tion. To control for this, we construct two sentence-196

aligned multilingual parallel corpora to ensure that197

all languages in our dataset match the content. This198

allows us to isolate the effect of how information199

is conveyed, specifically, the role of grammar, in200

learnability differences between languages.201

We name the two parallel corpora OPUS12 and202

OPUS30, gathering aligned sentences from five203

corpora available on OPUS (Tiedemann, 2012):204

NLLB (Schwenk et al., 2021), TED2020 (Reimers205

and Gurevych, 2020), the Bible (Christodouloupou-206

los and Steedman, 2015), OpenSubtitles (Lison207

and Tiedemann, 2016), and CCAligned (El-Kishky208

et al., 2020). Since overlap among languages de-209

creases as more languages are included, we decide210

to select a minimum of 10M words in English as a211

standard for our parallel corpora. 10M words also212

correspond to the amount of input of children’s first213

2 to 5 years of development (Warstadt et al., 2023).214

OPUS12 is a 12-language multilingual sentence-215

aligned corpus3. There are around 10M words216

in the case of English. OPUS30 contains 30 lan-217

guages with a much smaller size: 48K sentences218

with 0.7M words. While the two datasets share219

overlapping languages, their sentences do not over-220

lap, making OPUS30 a suitable test set for addi-221

tional language modeling experiments.222

After deduplicating and removing English sen-223

tences from non-English data split using FastText224

(Joulin et al., 2017), we report the statistics of our225

corpora in Table 1.226

3The languages and their typological information are listed
in Appendix C.

Data Source OPUS12 OPUS30

# Sent # Word # Sent # Word

NLLB 5K 0.1M 16 368
TED2020 164K 2.9M 11K 182K
Bible 40K 1M 14K 324K
OpenSubtitles 680K 4.5M 15K 60K
CCAligned 117K 1.6M 8K 111K
Overall 1M 10.1M 48K 0.7M

Table 1: Data sources of OPUS12 and OPUS30. The
word counts are based on the English data. See Ap-
pendix C for licensing information.

3.2 Validation Experiment 227

To ensure the reliability of our findings presented 228

in the remainder of this paper, we replicate experi- 229

ments in Kallini et al. (2024) using a scaled-down 230

version of their original corpus (10M words). We 231

find a perfect rank correlation between our results 232

and Kallini et al. (2024) (Spearman’s ρ = 1, p < 233

0.001). The results and detailed statistical analyses 234

can be found in the Appendix A. 235

3.3 Model Architecture & Training 236

In our experiments, following Kallini et al. (2024), 237

we trained standard GPT-2 small models for each 238

language and evaluated its performance based on 239

the perplexity over a parallel test split of 10K ran- 240

domly sampled sentences. Due to limited compu- 241

tational resources, we trained each model using 3 242

random seeds instead of the 5 used in the origi- 243

nal study and reduced the maximum training steps 244

from 2000 to 1200 to avoid overfitting and adjusted 245

the warmup steps proportionally to 120.4 246

3.4 Multilingual Tokenization 247

Given our multilingual experiments, tokenization 248

is crucial for fair comparison. To avoid bias toward 249

Latin-script languages, which are overrepresented 250

in our study, we opted against using a multilingual 251

tokenizer with a shared vocabulary. 252

Previous monolingual experiments either set the 253

vocabulary size of tokenizers to be the same across 254

languages (Arnett and Bergen, 2025) or applied the 255

formula 0.4 × |V | (Koplenig et al., 2023; Mielke 256

et al., 2019), where |V | represents the number of 257

unique word types. We conducted a series of pi- 258

lot experiments on tokenization and found neither 259

4We did not experiment with alternative warmup steps, as
Kallini et al. (2024) demonstrated that changing the warmup
schedule does not affect the ranking of perplexities for impos-
sible language models.
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Group Language Definition

Ours
SHUFFLE_LOCAL (W=2) The sentence is reordered with every two tokens reversed in order.
REVERSE_FULL Every word is reversed in order in a sentence.

K+

SHUFFLE_DETERMINISTIC (S=84) The sentence is deterministically shuffled by length with seed 84.
SHUFFLE_DETERMINISTIC (S=57) The sentence is deterministically shuffled by length with seed 57.
SHUFFLE_DETERMINISTIC (S=21) The sentence is deterministically shuffled by length with seed 21.
SHUFFLE_LOCAL (W=10) The sentence is deterministically shuffled in local window size being 10.
SHUFFLE_LOCAL (W=5) The sentence is deterministically shuffled in local window size being 5.
SHUFFLE_LOCAL (W=3) The sentence is deterministically shuffled in local window size being 3.
SHUFFLE_EVEN_ODD The sentence is reordered with even-indexed tokens first, then odd-indexed.

Table 2: Overview of impossible languages in our Experiment1 and Experiment2. K+ languages are borrowed from
Kallini et al. (2024) and the rest are new variants introduced in our experiments.

approach suitable for our experimental design (De-260

tails can be found in Appendix B).261

Given these challenges, we decided to use pre-262

trained tokenizers. The rationale behind this choice263

is that when the tokenizer training data is suffi-264

ciently large and diverse, the resulting tokenization265

scheme should be equally good across languages,266

as long as the tokenizer algorithm and hyperpa-267

rameters (e.g., vocabulary size, subword strategy)268

remain the same.5 Some may argue that the BPE269

algorithm might not be optimized for agglutinative270

languages such as Turkish, which makes the cross-271

linguistic comparison unfair. However, much lit-272

erature on cross-linguistic LM comparison adopts273

BPT tokenizers (e.g., Mielke et al., 2019; Arnett274

and Bergen, 2025). As an additional check, we use275

token counts per word (TCW; reported in Appendix276

E Table 7) to measure the morphological complex-277

ity of a language and report the correlation between278

the perplexity and TCW. The results show the cor-279

relation is not significant (see Section5), suggesting280

that the morphological complexity of a language281

does not substantially impact its learnability.282

While defining sufficiently large and diverse is283

difficult, we consider the size of the training data284

for GPT2 (Radford et al., 2019) as a reference point,285

as English was a high-resource language even in286

2019 when the paper was published. We believe287

that this data size is sufficient to minimize differ-288

ences that tokenization will make across languages.289

When selecting pretrained tokenizers, we primar-290

ily use monolingual BPE tokenizers.6 Our goal291

5Although tokenization quality, measured by metrics like
compression (Schmidt et al., 2024) and Rényi entropy (Zouhar
et al., 2023), has been linked to language modeling perfor-
mance (e.g., Liang et al., 2023; Goldman et al., 2024), recent
studies challenge this connection (Arnett and Bergen, 2025).

6However, for Chinese, we follow previous studies (Mielke

is to maintain a relatively consistent vocabulary 292

size across languages, though we make exceptions 293

for Romanian, Arabic, and Chinese due to limited 294

model availability. The training data for all other 295

languages is at least as large as the English corpus. 296

4 Experiment 1: Attested vs. Impossible 297

Languages in an Intra-Language 298

Modeling Setting 299

4.1 Impossible Languages 300

In this experiment, we use the deterministic shuf- 301

fled languages from Kallini et al. (2024) along with 302

two new variants (see Table 2). We include shuffled 303

languages because (1) Kallini et al. (2024) identify 304

them as the most impossible languages in their lan- 305

guage possibility ranking, and (2) their difficulty 306

is also indirectly supported by empirical studies 307

showing that both adults and children exhibit a reg- 308

ularization bias, meaning they tend to acquire gram- 309

mars with minimal variation (Newmeyer, 2005; 310

Singleton and Newport, 2004). 311

Since all languages are deterministically shuf- 312

fled, the original ones (=attested ones) can be re- 313

covered from their variants through another deter- 314

ministic function. If LLMs function as non-human- 315

like pattern recognizers as Chomsky et al. (2023); 316

Moro et al. (2023) argue, they should be able to 317

learn these deterministic languages. 318

4.2 Results & Discussion 319

The results are presented in Figure 1. First, in 320

all languages except Italian, the perplexity of the 321

attested language is lower than all its impossible 322

variants. For Italian, SHUFFLE_LOCAL (W=2) 323

yields a slightly lower perplexity than natural 324

et al., 2019) and use the Chinese-BERT tokenizer.
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Figure 1: Attested individual Language vs. their corresponding counterparts with a 95% confidence interval over 3
random seeds tested on 10k sentences from OPUS30.

Italian, though the difference is not statistically325

significant (Mann-Whitney U test: W = 63, p326

= 0.353). Additionally, attested languages ex-327

hibit smaller error bars compared to their impos-328

sible counterparts, indicating more stable learn-329

ing. Third, we observe a consistent learnabil-330

ity pattern across languages. For each language,331

smaller shuffling windows result in lower perplex-332

ity. Moreover, most languages perturbed with333

SHUFFLE_DETERMINISTIC are harder to model334

than SHUFFLE_LOCAL ones. We assume this is335

because SHUFFLE_DETERMINISTIC languages are336

shuffled based on sequence length and autoregres-337

sive models do not have direct access to this in-338

formation when predicting the next word, making339

language modeling harder.340

We also conducted a Spearman’s Ranking Corre-341

lation test between the results on OPUS30 English342

and those from Kallini et al. (2024)’s experiments.343

We observe that the ranking of our English impos-344

sible variants aligns perfectly with that reported by345

Kallini et al. (2024) when the rank variation within346

random seeds is ignored (ρ = 1, p = 0.0027).347

Additionally, the observation that the smaller the 348

window size for locally shuffled English, the lower 349

the perplexity aligns with Kallini et al. (2024)’s 350

experiment results. 351

Based on these findings, we answer the first sub- 352

question: language models can (largely) distin- 353

guish between each attested language and their 354

corresponding impossible counterparts. 355

5 Experiment 2: Attested vs. Impossible 356

Languages in an Inter-Language 357

Modeling Setting 358

In this experiment, we gather the learning results 359

of all possible and impossible languages to see 360

if there is a separation boundary between them. 361

If GPT-2 small can distinguish between possible 362

and impossible languages, we expect the former’s 363

perplexity to be lower than the latter’s. 364

The results of different language models are 365

shown in Figure 2.7 Not every language is equally 366

7To highlight the overlap of perplexity between attested
languages and impossible ones, we zoom in on the lower
perplexity range while displaying higher perplexity values in
a separate, compressed section with a break in the y-axis.
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Langs Attested Example

Typo Theo

PERTURB_NNDA NO NO She enjoyed books three the fantastically interesting a lot .
PERTURB_ANND NO NO She enjoyed fantastically interesting three books the a lot .
PERTURB_DANN FEW YES She enjoyed the fantastically interesting books three a lot .
DPERTURB_DNAN MANY YES She enjoyed the three fantastically interesting books a lot .
PERTURB_DNNA MANY YES She enjoyed the books three fantastically interesting a lot .
NP_RANDOM NO NO She enjoyed books fantastically three interesting the a lot .

Table 3: List of NP-perturbations with corresponding categories and examples.
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Figure 2: Attested natural languages vs. impossible
languages with a 95% confidence interval over 3 random
seeds. The x-axis represents the training steps, and the
y-axis shows the perplexity on the test split. All the
impossible languages are marked in light blue.

easy to learn: Chinese is the easiest language, while367

Arabic is the hardest, followed by Turkish and Rus-368

sian. We also observe a moderate positive corre-369

lation between the average number of tokens per370

word (TCW) and perplexity of each of the last371

checkpoints in 11 languages (Chinese is excluded372

because the BERT tokenizer is a character-level373

tokenizer), as indicated by a Spearman’s rank test374

(ρ = 0.569), but it is not significant (p = 0.067).375

This finding aligns with the observation by Arnett376

and Bergen (2025) that there is no significant dif-377

ference in language modeling difficulty of agglu-378

tinative vs. fusional languages when the amount379

of information is controlled. Although all the at-380

tested languages are distributed at the bottom of381

the graph, we see some impossible languages fall382

between these attested languages. For example,383

Russian, Turkish and Arabic all show higher per-384

plexity than English perturbed with shuffle_local385

(w=3). This means that for GPT-2 small, these im-386

possible languages are are just as hard to learn as387

the attested languages.388

To quantify the extent GPT-2 small can distin- 389

guish attested from impossible languages, we train 390

a linear SVM classifier with the average perplexity 391

value across the three random seeds of each check- 392

point as features. The classifier reaches 0.70 macro 393

F1 score averaged over 10-folds cross-validation. 394

Based on this experiment, we answer the second 395

sub-question posed in our paper: Although lan- 396

guage models tend to learn attested languages 397

better than impossible ones, their perplexity 398

does not distinguish all attested languages from 399

all impossible languages overall. 400

6 Experiment 3: Attested vs. Unattested 401

Languages 402

In this experiment, we investigate how well lan- 403

guage models can learn unattested languages, lan- 404

guages whose structure is conceivable according 405

to rules of grammar or morphology, but which 406

have not been attested. While unattested languages 407

are not necessarily unlearnable (e.g., Tsimpli and 408

Smith, 1995), prior research suggests a link be- 409

tween typological feature frequency, cognitive bi- 410

ases, and language learnability (e.g., Gentner and 411

Bowerman, 2009; Culbertson et al., 2012; Culbert- 412

son and Newport, 2015; Culbertson et al., 2020). 413

We focus on Greenberg’s Universal 20 (Green- 414

berg et al., 1963), which suggests that certain 415

determiner-adjective-number-noun orders in an NP 416

are universally unattested. As a well-studied typo- 417

logical phenomenon, Universal 20 serves as a good 418

testbed for comparing human learners and language 419

models, complementing experimental findings that 420

show harmonic NP orders (i.e., the dependents al- 421

ways precedes/follow the head; e.g., NUM-ADJ- 422

NOUN and NOUN-ADJ-NUM) are easier to learn 423

than non-harmonic ones (e.g., NUM-NOUN-ADJ or 424

ADJ-NOUN-NUM) (Culbertson and Newport, 2015, 425

2017; Culbertson et al., 2020). One influential hy- 426

pothesis, the Typological Prevalence Hypothesis, 427

proposes that more common typological patterns 428
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are easier to learn (Gentner and Bowerman, 2009).429

Therefore, we predict that if language models ex-430

hibit similar biases as humans, we expect a gradient431

of difficulty in learning different NP orders, with432

some unattested configurations posing greater chal-433

lenges than others.434

Among the 24 theoretically possible orders of435

adjectives, nouns, determiners, and numbers, we436

select five combinations, covering cases classified437

as FEW, MANY, and ZERO in Cinque (2005)’s typo-438

logical analysis.8 In this experiment, we only per-439

mute words within NPs. If the perplexity of these440

permuted languages is similar to that of attested lan-441

guages, it suggests two possible reasons: (1) Lan-442

guage models can learn these unattested languages;443

(2) the number of words in NP may be a small num-444

ber with respect to the entire data size, and hence445

NP-internal perturbation introduces a much smaller446

noise compared to the entire data perturbation we447

used in previous experiments, which may not sig-448

nificantly affect the learnability of a language. To449

rule out the latter possibility, we also construct a450

control condition in which words corresponding to451

these POS categories are randomly shuffled within452

NPs. This language serves as a baseline, indicat-453

ing the extent to which NP-internal permutations454

influence the learnability of a language.455

Examples of perturbed NP word orders and their456

typological information are listed in Table 3 and457

their word orders are reported below:458

• PERTURB_NNDA: NOUN>NUM>DET>ADJ.459

• PERTURB_ANND: ADJ>NUM>NOUN>DET.460

8Although Cinque (2005) seeks to explain why ZERO lan-
guages really are “underivable” under the minimalist program
we refer to them as unattested to contrast them with the impos-
sible languages of the previous section, i.e., ones that involve
random shuffling or reversed word order.

• PERTURB_DANN: DET>ADJ>NOUN>NUM. 461

• PERTURB_DNAN: DET>NUM>ADJ>NOUN, 462

typical of English and Chinese. 463

• PERTURB_DNNA: DET>NUM>NOUN>ADJ, 464

typical of Italian and Portuguese. 465

• NP_RANDOM: Random permutation of ADJ, 466

NOUN, NUM, and DET within NPs. 467

Since identifying NP structures requires a con- 468

stituency parser, we use Stanza (Qi et al., 2020) 469

to parse raw text. Stanza provides constituency 470

parsing for only Chinese, Portuguese, English, and 471

Italian, with acceptable accuracy (>0.85)9, so we 472

limit our analysis to these four languages. As dif- 473

ferent parsers are trained on distinct treebanks with 474

varying annotation guidelines, we select POS tags 475

based on each treebank’s guidelines. Details are 476

provided in Appendix F. 477

Results Our results are visualized in Figure 3 478

(bottom subgraph). Surprisingly, all five NP- 479

perturbed languages exhibit lower perplexity com- 480

pared to their attested counterparts across all four 481

languages. Two of these (NNDA and ANND) are 482

unattested in typological studies and are ruled out 483

by generative approaches (Cinque, 2005), but we 484

do not observe a significant difference in perplexity 485

between the three languages with attested NP or- 486

ders and the two languages with unattested orders. 487

When these POS tags are shuffled within NPs, 488

perplexity increases, reaching or exceeding the per- 489

plexity of the attested languages. This rules out the 490

possibility that limited perturbations simply do not 491

affect model training. 492

To summarize, this experiment shows that, un- 493

like humans, language models fail to show a gra- 494

9https://stanfordnlp.github.io/stanza/
constituency.html
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dient of difficulty in learning different NP orders495

according to their typological prevalence.496

Discussion: Why Can’t LMs Distinguish Be-497

tween Attested and Unattested Languages? To498

make sense of these results, we propose two key499

factors that influence LM learning outcomes: ran-500

domness and constituency structure. By random-501

ness, we refer to whether the perturbation function502

produces a perturbed text that can be determin-503

istically recovered to its original form. By con-504

stituency structure, we mean whether the phrase505

structures of the original language are preserved in506

the perturbed version.507

Regarding randomness, string distributions with508

higher entropy are harder to learn. This ex-509

plains why NP-perturbed unattested languages510

show lower perplexity than attested languages and511

NP_RANDOM variants. The reasoning is that our512

perturbation procedure enforces a strict ordering513

procedure, which may be (sometimes) violated514

in the original attested language. For example,515

although English is a DNAN language, certain516

constructions such as the DANN (DET-ADJ-NUM-517

NOUN; e.g., a beautiful five days in Austin) does518

not follow the dominant pattern. Once POS tags519

orders are normalized within NPs, the resulting520

constructions become more predictable. Therefore,521

all normalized NPs, including our unattested NPs,522

may have lower overall entropy, which could ex-523

plain why they are easier to learn. In fact, the524

normalized DNAN, which has the same word order525

as English, shows lower perplexity than the origi-526

nal, unnormalized English; and the same applies to527

our other languages in this experiment.528

Regarding constituency structure, we hypothe-529

size that disrupting constituency weakens local de-530

pendency relations within phrase structures. This531

explains why all impossible languages in the previ-532

ous experiments, despite maintaining a determinis-533

tic order, still results in higher perplexity than NP-534

perturbed languages (Figure 3). Similarly, this may535

also explain the higher perplexity of count-based536

grammars in Kallini et al. (2024): the insertion537

of morphological markers disrupts phrase struc-538

ture integrity. One exception is REVERSE_FULL,539

which preserves constituency structure while main-540

taining a deterministic order. As shown in Fig-541

ure 3, REVERSE_FULL exhibits perplexity closer542

to unattested languages. We hypothesize that this543

exception may be due to other factors, such as544

information density (Clark et al., 2023). Since re-545

versing word order alters information flow, it may 546

obscure more accessible information. For exam- 547

ple, predicting a pronoun given a preceding noun is 548

easier than predicting a noun given a preceding pro- 549

noun, potentially increasing difficulty for the LM. 550

One shortcoming of this experiment is that it was 551

based entirely on NP perturbations(Kallini et al., 552

2024). Future work could investigate whether simi- 553

lar effects occur when POS order or constituency 554

structure is disrupted on a larger scale. 555

7 Conclusion 556

In this paper, we extend the initial work of Kallini 557

et al. (2024) to a broader multilingual context. Our 558

experiments provide mixed results that comple- 559

ment those of Kallini et al. (2024). We find that 560

while GPT-2 small can distinguish between attested 561

languages and their impossible variants, its learn- 562

ing outcomes do not separate all attested and all 563

unattested or impossible languages. That being 564

said, LMs do tend to learn attested languages bet- 565

ter, on average, than impossible languages, and 566

we achieve a separability of 0.7 between the two 567

classes based on the models’ perplexity. Finally, 568

we observe that some unattested languages show 569

lower perplexity than their attested counterparts 570

even though they exhibit NP orderings that flout 571

Greenberg’s Universal 20. 572

What to make of these results in the context of 573

our original question–whether LLMs can serve as 574

cognitive models? While our results show that 575

GPT-2 does not behave as we might expect from 576

a fully human-like learner, they also demonstrate 577

that it has a soft preference for attested over impos- 578

sible languages. Skeptics have previously likened 579

LLMs to a bad theory of physics in which “any- 580

thing goes.”10 In line with Kallini et al. (2024), our 581

results demonstrate that these models do not instan- 582

tiate an “anything goes” hypothesis. Rather, their 583

incremental data-processing architectures represent 584

a useful starting point for studying human language 585

processing. Refining models to achieve stronger 586

alignment with people is possible, and will likely 587

lead to lasting insights about human cognitive ar- 588

chitecture. 589

10Chomsky, quoted from an email to Gary Marcus: You
can’t go to a physics conference and say: I’ve got a great
theory. It accounts for everything and is so simple it can
be captured in two words: “Anything goes.” All known and
unknown laws of nature are accommodated, no failures. Of
course, everything impossible is accommodated also.
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8 Limitations590

We acknowledge that our experiments rely on GPT-591

2 Small, which may not generalize to larger mod-592

els. This choice was made for two reasons: (1)593

running experiments across multiple languages is594

computationally expensive; (2) we aimed for com-595

parability with Kallini et al. (2024). Future work596

could explore whether our findings hold for larger597

models. Additionally, the dataset used for training598

the language model is relatively small. This is a599

deliberate trade-off between data size and linguis-600

tic diversity. While a larger dataset might yield601

more robust results, our approach ensures broader602

typological coverage. Lastly, in our experiments603

on unattested languages, we generated synthetic604

data by perturbing languages based on Universal605

20. However, linguistic correlations extend beyond606

word order universals. For instance, Greenbergian607

correlations (Dryer, 1992) suggest that verb-object608

order often correlates with other features such as609

adposition-noun phrase order and determiner-noun610

phrase order. Future work will explore more nu-611

anced perturbations to better capture such cross-612

linguistic dependencies.613

9 Ethical Statement614

Our research adheres to ethical guidelines in data615

collection, model development, and evaluation. We616

use publicly available datasets, ensuring that no617

private or personally identifiable information is in-618

cluded. Our dataset selection prioritizes linguistic619

diversity while maintaining data transparency. Re-620

garding computational resources, we use GPT-2621

small trained on A-100 and V-100 GPUs. Each622

experiment on each language took around 10-12623

hours. Finally, our research is intended for ad-624

vancing linguistic understanding in computational625

models and does not facilitate any malicious appli-626

cations. We encourage responsible usage and open627

discussions on the ethical implications of NLP re-628

search.629
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A Experiment Results of Replicating1065

Kallini et al. (2024)1066

We implement the training and evaluation follow-1067

ing the same experiment setting from Kallini et al.1068

(2024). The result is shown in Figure 4.1069

We calculate Spearman’s rank correlation be-1070

tween our results for the *shuffled languages and1071

those of Kallini et al. (2024) at every 200-step inter-1072

val from 400 to 1,200. The Spearman’s ρ is consis-1073

tently 1 (p < 0.001), indicating perfect agreement1074

between the rankings, showing that 10M words are1075

sufficient enough to replicate the language model-1076

ing experiments using 100M words conducted by1077

Kallini et al. (2024).1078

B Tokenization Pilot Experiments and 1079

Results 1080

In our experiments, where we trained tokenizers 1081

for each language using 10M words (around 60MB 1082

data), testing vocabulary sizes ranging from 30K 1083

to 80K in increments of 10K, we observed two key 1084

findings: (1) tokenizers trained with around 60MB 1085

data resulted in unstable language modeling out- 1086

comes, and (2) different languages require distinct 1087

optimal vocabulary sizes. These results are shown 1088

in Figure 5. Additionally, agglutinative languages 1089

like Turkish, with their large number of unique to- 1090

kens, made large vocabulary sizes impractical. For 1091

instance, Turkish has three times the number of 1092

unique words as English (467K vs. 140K), and ap- 1093

plying 0.4× |V | would result in a vocabulary size 1094

of 186K, which is too large for efficient language 1095

model training with the limited data available and 1096

a small model. 1097

C Details of OPUS12 and OPUS30 1098

The typological features of languages used in the 1099

two corpora are reported in Table 5. The licens- 1100

ing terms vary depending on their original sources, 1101

listed below. 1102

• NLLB: ODC-By 1103

• TED2020: CC BY–NC–ND 4.0 International; 1104

for details, see the official website. 1105

• Bible: CC0 1.0 1106

• OpenSubtitles: GNU General Public License 1107

v3.0 1108

• MultiCCAligned: unknown; see the official 1109

website. 1110

D Tokenizers 1111

Table 6 shows the details of the tokenizers we use 1112

in the experiments. 1113

E TCW 1114

The TCW is reported in Table 7. 1115

F POS tags of each treebank 1116

Different constituency parsers are trained with dif- 1117

ferent treebanks. We select POS-tags that are rel- 1118

evant to the four word classes. The detailed POS- 1119

tags for each language can be found in Table 4. 1120
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Figure 4: Replication of (Kallini et al., 2024) with 10M words from BabyLM Challenge dataset (strict-small track)
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Figure 5: Perplexity results on the development set (10K sentences) for five languages (EN, TR, RO, DE, RU),
trained on a 10M-sentence training set across different vocabulary sizes. Error bars represent the first and last
quartiles (25% and 75%) of the results. A plot for the optimized vocabulary size (labeled ‘BEST’) is also included,
showing high variance for TR and RU even with optimized vocabulary size.

Language Treebank POS-tags

DET NUM ADJ NOUN

English Penn Treebank
(Marcus et al.,
1993)

DT, PRP$, PDT, POS QP, $, CD RB, ADJP, JJR, JJS,
JJ

NN, NNS, NNP,
NNPS

Italian VIT(Delmonte
et al., 2007)

DET NUM, SQ ADJ, SA NOUN, PRON,
PROPN, SYM, X

Chinese CTB 3.0(Xue et al.,
2005)

DT, M, CLP, DP CD, OD, QP JJ, ADJP, DNP, DEC,
DEG

NN, NP, NR, NT,
PRP, PN, FW

Portuguese Cintil (Barreto et al.,
2006)

DET, D, DEM, POSS,
POSS’

QNT, QNT’, NUM,
PERCENTP, PER-
CENTP’, CARD,
CARD’

ADJ, AP N’, NOUN, PRON

Table 4: POS-tag categories across languages
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Language Family Word Order Morphology

OPUS12
English Indo-European (Germanic) SVO Analytic
German Indo-European (Germanic) No dominant Fusional
Russian Indo-European (Slavonic) SVO Fusional
Romanian Indo-European (Romance) SVO Fusional
Turkish Turkic (Altaic) SOV Agglutinative
Dutch Indo-European (Germanic) No dominant Fusional
Polish Indo-European (Slavonic) SVO Fusional
Portuguese Indo-European (Romance) SVO Fusional
Italian Indo-European (Romance) SVO Fusional
French Indo-European (Romance) SVO Fusional
Chinese Sino-Tibetan SVO Analytic
Arabic Afro-Asiatic (Semitic) VSO Root-based (nonconcatenative)

OPUS30
Spanish Indo-European (Romance) SVO Fusional
Czech Indo-European (Slavonic) SVO Fusional
Bulgarian Indo-European (Slavonic) SVO Fusional
Slovak Indo-European (Slavonic) SVO Fusional
Serbian Indo-European (Slavonic) SVO Fusional
Croatian Indo-European (Slavonic) SVO Fusional
Ukrainian Indo-European (Slavonic) SVO Fusional
Danish Indo-European (Germanic) SVO Fusional
Swedish Indo-European (Germanic) SVO Fusional
Greek Indo-European (Hellenic) No dominant Fusional
Persian Indo-European (Indo-Iranian) SVO Fusional
Lithuanian Indo-European (Baltic) SVO Fusional
Vietnamese Austroasiatic SVO Analytic
Hebrew Afro-Asiatic (Semitic) VSO Root-based (nonconcatenative)
Hungarian Uralic SVO Agglutinative
Indonesian Austronesian SVO Analytic
Japanese Japonic SOV Agglutinative
Korean Koreanic SOV Agglutinative

Table 5: Typological features of the OPUS12 and OPUS30 corpora, with OPUS30 including 18 additional languages
beyond those in OPUS12.

Language |Vocab| |Training| Reference

Arabic 64,000 77GB Antoun et al. (2021)

Turkish 50,257 100GB Kesgin et al. (2024)

Russian 50,257 450GB Zmitrovich et al. (2024)

Polish 50,257 47GB Wojczulis and Kłeczek (2021)

German 50,000 51GB Schweter (2020)

Italian 50,176 Trillions toks iGeniusAI (2024)

Portugese 50,258 35B tokens Lopes et al. (2024)

Dutch 50,257 151GB Havinga (2023)

Romanian 64,000 40GB Dumitrescu (2024)

English 50,257 40GB Radford et al. (2019)

French 50,262 130GB Launay et al. (2022)

Chinese 21,128 300GB Devlin et al. (2019)

Table 6: Tokenizers, vocabulary sizes, and training data sizes, and references for each language tested in our
experiments.

LANGS AR TR RU PL DE IT
TCW 2.19 2.05 2.05 1.9 1.61 1.40

LANGS PT NL RO EN FR
TCW 1.68 1.51 1.81 1.45 1.67

Table 7: TCW per language by each of their pretrained tokenizer
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