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Abstract

Continuous-time generative models, such as Flow
Matching (FM), construct probability paths to
transport between one distribution and another
through the simulation-free learning of the neu-
ral ordinary differential equations (ODEs). Dur-
ing inference, however, the learned model of-
ten requires multiple neural network evaluations
to accurately integrate the flow, resulting in a
slow sampling speed. We attribute the reason
to the inherent (joint) heterogeneity of source
and/or target distributions, namely the singularity
problem, which poses challenges for training the
neural ODEs effectively. To address this issue,
we propose a more general framework, termed
Switched FM (SFM), that eliminates singulari-
ties via switching ODEs, as opposed to using a
uniform ODE in FM. Importantly, we theoret-
ically show that FM cannot transport between
two simple distributions due to the existence and
uniqueness of initial value problems of ODEs,
while these limitations can be well tackled by
SFM. From an orthogonal perspective, our frame-
work can seamlessly integrate with the existing
advanced techniques, such as minibatch optimal
transport, to further enhance the straightness of
the flow, yielding a more efficient sampling pro-
cess with reduced costs. We demonstrate the ef-
fectiveness of the newly proposed SFM through
several numerical examples.

1Research Institute of Intelligent Complex Systems, Fudan Uni-
versity, China. 2School of Mathematical Sciences, LMNS, and
SCMS, Fudan University, China. 3State Key Laboratory of Med-
ical Neurobiology and MOE Frontiers Center for Brain Science,
Institutes of Brain Science, Fudan University, China. 4Shanghai Ar-
tificial Intelligence Laboratory, China. Correspondence to: Qunxi
Zhu <qxzhu16@fudan.edu.cn>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

1. Introduction
Generative modeling is a fundamental task in the machine
learning and data science communities, whose primary ob-
jective is to transform samples from one (empirical) prob-
ability distribution to another through a learnable transfor-
mation. Over the years, several methods have been exten-
sively proposed for generative modeling, including genera-
tive adversarial networks (GAN) (Goodfellow et al., 2014),
variational autoencoders (VAE) (Kingma & Welling, 2013;
Rezende et al., 2014), energy-based models (Teh et al., 2003;
LeCun et al., 2006; Du & Mordatch, 2019; Song & Kingma,
2021), normalizing flow models (Dinh et al., 2014; 2016;
Rezende & Mohamed, 2015), and autoregressive models
(Germain et al., 2015; Van Den Oord et al., 2016; Van den
Oord et al., 2016; Oord et al., 2016).

Despite their successes across various domains, these mod-
els have some limitations. For instance, training GANs can
be challenging because of several major issues, including
mode collapse (Goodfellow et al., 2014; Metz et al., 2016),
vanishing gradient (Arjovsky et al., 2017; Weng, 2019), and
unstable convergence (Arjovsky & Bottou, 2017; Farnia &
Ozdaglar, 2020). VAE and energy-based models employ
surrogate losses to aid in successful training via utilizing
the evidence lower bound (with the parameterization trick)
(Kingma & Welling, 2013) and contrastive divergence (Hin-
ton, 2002), respectively. Normalizing flow (Dinh et al.,
2014; 2016; Rezende & Mohamed, 2015) and autoregres-
sive models (Germain et al., 2015; Van Den Oord et al.,
2016; Van den Oord et al., 2016; Oord et al., 2016) often
impose architectural constraints to build a normalized prob-
ability model.

Diffusion models (Sohl-Dickstein et al., 2015; Song & Er-
mon, 2019; Ho et al., 2020; Song et al., 2020a), the current
state-of-the-art generative models, have delivered outstand-
ing results in a myriad of tasks (Chen et al., 2020; Nichol
et al., 2021; Rombach et al., 2022; Saharia et al., 2022),
primarily due to the scalable and stable training method-
ologies (Dhariwal & Nichol, 2021). In a significant leap
forward, Song et al. (2020b) introduced a general framework
that encapsulates the essence of previous diffusion models
through the stochastic differential equations (SDEs), which,
equivalently, correspond to the neural ordinary differential
equations (ODEs) (Chen et al., 2018) in the sense of proba-
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bility flow. Recently, Lipman et al. (2022), developed the
Flow matching (FM), a scalable, simulation-free approach
to train the probability flow, also known as continuous nor-
malizing flow (Chen et al., 2018; Grathwohl et al., 2018), by
directly regressing vector fields along specific conditional
probability paths. We note that two concurrent studies, the
stochastic interpolant by Albergo & Vanden-Eijnden (2022)
and the rectified flow by Liu et al. (2022), propose similar
methodologies for matching distributions using flows, albeit
from distinct viewpoints.

However, during inference, generating a high-quality sam-
ple via simulating the learned ODEs often requires multi-
ple function evaluations, leading to a long inference time.
This inefficiency arises from the utilization of independent
couplings that overlook the intrinsic structures connecting
source and target distributions (Lipman et al., 2022; Liu
et al., 2022). To mitigate this issue, there has been a shift
towards designing non-trivial couplings inspired by optimal
transport theory (Pooladian et al., 2023; Tong et al., 2023a;b)
or learning a coupling based on an auxiliary VAE-style ob-
jective function to minimize the trajectory curvature (Lee
et al., 2023). Notably, these existing continuous-time gener-
ative models, have predominantly adopted a uniform/single
ODE to model the transportation process between two (em-
pirical) distributions.

Contributions. We introduce Switched FM (SFM), a gener-
alized framework that eliminates singularities via switching
ODEs as opposed to employing a single ODE in FM. The
core principle of SFM is that according to the inherent (joint)
heterogeneity of the underlying distributions, i.e., (jointly)
dependent on the source or/and target data samples, a spe-
cific ODE should be selected from the pool of the candidate
ODEs to facilitate the transportation process while preserv-
ing the marginal vector fields or probability paths.

To summarize, the major contributions of this study are
multi-folded, including:

1. Development of SFM: We establish SFM, a versa-
tile continuous-time generative model that eliminates
singularities encountered in the FM via switching the
candidate ODEs, and allows the intersection of proba-
bility paths from different ODEs.

2. Theoretical insights: Through rigorous analysis, we
demonstrate that FM struggles with transporting be-
tween simple distributions due to the existence and
uniqueness of initial value problems of ODEs while
such limitation can be effectively addressed by SFM,
offering a more efficient solution.

3. Integration with advanced techniques: SFM can
seamlessly integrate with the existing advanced tech-
niques, for example, minibatch optimal transport, to

further enhance the straightness of the flow, facilitating
a more efficient sampling process.

4. Empirical validation: We validate the effectiveness
of the newly proposed SFM through extensive experi-
ments on both synthetic and real-world datasets, achiev-
ing competitive or even better performance compared
to existing methods, such as FM.

Organization. The rest of this article is organized as fol-
lows. Section 2 introduces some preliminaries on (neural)
ODEs, continuous normalizing flows, flow matching, and
optimal transport. In Sec. 3, we theoretically show the limi-
tations of FM. Then, we present the SFM in Sec. 4. Related
works are discussed in Sec. 5. In Sec. 6, we provide nu-
merical verifications on synthetic and real-world datasets.
Finally, we conclude the article in Sec. 7, and all the details
of this work are found in the appendices.

Notations. Before ending this section, we provide the fol-
lowing notations that will be used throughout the article:
R (resp. R+) – the set of (resp. positive) real numbers;
Rd – the Euclidean space; ∥ · ∥ – the d-dimensional (d-d)
Euclidean norm; ∇ and ∇· – the gradient and divergence
operator, respectively; 1d – the d-d vector with all elements
being 1; Id – the d-d identity matrix; Tr(A) – the trace
of the square matrix A ∈ Rd×d; δx – the Dirac mass at
the point x ∈ Rd; P(Rd) – the space of Borel probability
measures on Rd; For given q0 ∈ P(Rd) and q1 ∈ P(Rd),
then Π(q0, q1) is defined as the set of all joint probabil-
ity measures on Rd × Rd whose marginals are q0 and q1,
and q ∈ Π(q0, q1) is called a coupling between q0 and q1;
U(a, b) – the uniform distribution over the interval [a, b];
N (µ,Σ) – the multivariate Gaussian distribution with the
mean vector µ and the covariance matrix Σ; Hd – the d-d
Hausdorff measure (with suitable normalization); |S| – the
cardinality of the set S.

2. Preliminaries
2.1. ODE and Probability Flows

Definition 2.1 (O’Searcoid (2006); Villani (2009)). A
map f : X → Y between metric spaces (X , dX ) and
(Y, dY) is said to be Lipschitz continuous (or L-Lipschitz)
if dY [f(x),f(x′)] ≤ LdX (x,x′) for all x, x′ in X . The
best admissible constant L is called the Lipschitz constant
of f , denoted by ∥f∥Lip.

The Cauchy problem or the initial value problem (IVP) is de-
fined as the time-dependent Ordinary Differential Equation
(ODE) of the following general form:

dx(t)

dt
= ut(x), t ∈ [0, 1], x(0) = x0, (1)
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where ut(x) : [0, 1]× Rd → Rd is a smooth1 vector field.
The solution x(t) of this ODE (1) induces a map, called
the time-dependent flow: ϕt(x0) : [0, 1] × Rd → Rd, de-
fined as ϕt(x0) := x(t). For a given initial distribution
x0 ∼ q0(x0), the above ODE (1) induces the associated
probability flows pt(x) : [0, 1]× Rd → R+, satisfying the
continuity equation (Pedlosky, 2013):

∂pt(x)

∂t
= −∇ · [pt(x)ut(x)], (2)

with the initial condition p0(x0) = q0(x0). Typically,
(ϕt)#p0 stands for the image measure or push-forward of
p0 by ϕt. In addition, if, for a given target distribution
x1 ∼ q1(x1), it holds p1(x1) = q1(x1), then the set of
all these vector fields satisfying the boundary conditions is
defined as U(q0, q1).

2.2. Continuous Normalizing Flow

Chen et al. (2018) proposed a continuous-time generative
model, called the Continuous Normalizing Flow (CNF), that
can be trained via performing maximum likelihood estima-
tion. Specifically, the generative process works by first sam-
pling data points from the source distribution x0 ∼ q0(x0).
Then, these data points are transformed into different ones
by solving the initial value problem of the neural ODE
(NODE) (Chen et al., 2018):

dx(t)

dt
= vt(x;θ), t ∈ [0, 1], x(0) = x0, (3)

where vt(x;θ) is a parameterized neural network with the
trainable weights θ and the flow map is defined as φt(x0;θ).
The object is that the final states x(1) from the above
ODE (3) should constitute the target data instances. In
addition, based on the instantaneous change of variables
formula (Chen et al., 2018), the change in log probability
follows a second ODE:

dlog pt(x)

dt
= −Tr

[
∂vt(x;θ)

∂x

]
, (4)

resulting in the total change in log density as follows:

log p1(x) = log q0(x0)−
∫ 1

0

Tr
[
∂vt(x;θ)

∂x

]
dt. (5)

Finally, the CNF can be trained by maximizing (5). We
note that the CNF requires simulating the ODEs (3) and (4)
during training, yielding high computational costs.

1In this work, we assume that the vector field is (locally) Lip-
schitz continuous in both arguments t and x and thereby the Pi-
card’s existence theorem (Arnold, 1992) guarantees the existence
and uniqueness of the solution locally defined on a maximal time
interval.

2.3. (Conditional) Flow Matching

Different from the training of the CNF as well as its objec-
tive, Lipman et al. (2022) proposed Flow Matching (FM),
a simple simulation-free training method that employs a
stable objective by regressing a target vector field ut(x)
that generates the desired probability paths pt(x), satisfy-
ing p0[x(0)] = q0(x0) and p1[x(1)] = q1(x1). Then, the
regression objective is

LFM(θ) = Et,pt(x) ∥vt(x;θ)− ut(x)∥2 , (6)

where t ∼ U(0, 1) and x(t) ∼ pt(x). Ideally, when the
above objective (6) approaches zero, the learned vector field
vt(x;θ) will generate pt(x). However, this objective (6) is,
in general, computationally intractable without knowing the
explicit forms of ut(x) and pt(x).

Regarding this intractable issue, Conditional FM (CFM)
(Lipman et al., 2022; Pooladian et al., 2023; Tong et al.,
2023a;b) employs a simpler and tractable regression objec-
tive to effectively learn the vector field vt(x;θ) by incorpo-
rating a latent condition z:

LCFM(θ) = Et,q(z),pt(x|z)∥vt(x;θ)− ut(x|z)∥2, (7)

which has the same gradient, w.r.t. θ as the FM objective (6)
(Lipman et al., 2022; Pooladian et al., 2023; Tong et al.,
2023a;b). Usually, q(z) is chosen as an independent cou-
pling between two distributions, i.e.,

q(z) := q(x0,x1) = q0(x0)q1(x1), (8)

with x(t) being the linear interpolation of x0 and x1:

x(t) = (1− t)x0 + tx1, (9)

resulting in a constant speed vector field given z:

ut(x|z) = x1 − x0. (10)

This specific CFM model was also extensively investigated
in prior research, notably in studies such as Liu et al. (2022);
Albergo & Vanden-Eijnden (2022), where it is referred to as
the rectified flow or the stochastic interpolant. In addition,
q(z) can be also selected as the (minibatch) optimal trans-
port coupling (Fatras et al., 2019; Pooladian et al., 2023;
Tong et al., 2023a;b). Here, we call these two methods
independent CFM (I-CFM) and optimal transport CFM (OT-
CFM).

2.4. Static and Dynamic Optimal Transport

The (static) optimal transport theory (Villani, 2009; Santam-
brogio, 2015; Peyré & Cuturi, 2019), a field in mathematics,
focuses on efficiently transferring one distribution to another.
Usually, the optimal transport cost between two measures
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Figure 1. Illustration of the optimal transport (OT) coupling (a)
and the ODE coupling (b) on the example in Proposition 3.1.

is defined as the Kantorovich problem (Kantorovich, 1942),
which can be described as follows:

C(q0, q1) = inf
π∈Π(q0,q1)

∫
c(x0,x1)dπ(x0,x1), (11)

where c(x0,x1) is the cost for transporting one unit of mass
from x0 to x1. In this paper, we consider the cost defined
in terms of Euclidean distance, resulting in the following
squared 2-Wasserstein distance:

W (q0, q1)
2 = inf

π∈Π(q0,q1)

∫
∥x0 −x1∥2dπ(x0,x1). (12)

Notably, the squared 2-Wasserstein distance has the equiva-
lent dynamic form, known as the Benamou-Brenier formula
(Benamou & Brenier, 1999; Brenier, 2003; Villani, 2009):

W (q0, q1)
2 = inf

ut∈U(q0,q1)

∫ 1

0

∫
pt(x)∥ut(x)∥2dxdt.

(13)

3. Limitations of Folw Matching
In reality, the inherent (joint) heterogeneity of the source
or/and target distributions may lead to a scenario where
even an optimally trained FM model exhibits pronounced
singularity. Consequently, this section aims to theoretically
elucidate the limitations inherent to FM models through
a series of propositions. All the details of the proofs are
relegated to the appendices.

Proposition 3.1 (Heterogeneity in q0 or q1). Suppose the
source distribution q0 is an 1-d uniform distribution q0 =
U(−2b, 2b) and the target distribution q1 is an 1-d uniform
mixture (2-modes) q1 = 1
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Figure 2. Illustration of the OT coupling (a) and the crossing cou-
pling (b) on the example in Proposition 3.5.

b, a+b), where a ≫ b ≥ 0. Consider the (dynamic) optimal
transport problem as defined in Eq. (12) (or Eq. (13)).

1. If the NODE (3) exactly2 solves the problem, then
x(0) = 0 is a singular point, i.e., where the flow map
φ1(0;θ) : x(0) = 0 → x(1) is not well-defined or
discontinuous (with two directions to q1), as shown in
Fig. 1(a).

2. If the NODE (3) approximately3 solves the problem,
resulting in an approximated target distribution q′1,
then there is a neighborhood O of x(0) = x0 which is
homeomorphically mapped to the open subset in target
space connecting the two modes, as shown in Fig. 1(b).

3. If the two modes of q1 are far away from each other, i.e.,
a ≫ 1, then the flow map φ1[x0;θ] within a neighbor-
hood O as defined in the above-approximated NODE
(the second bulletin) has a large Lipchitz constant.

Remark 3.2. In Proposition 3.1, without loss of generality,
we only consider the target distribution q1 with heterogene-
ity (two modes). The intuition behind the theoretical results
is simple. Within the context of bulletin 1 from Proposi-
tion 3.1, the mechanism of optimal transport coupling ne-
cessitates the division of p0 into two symmetrical segments
at the juncture x(0) = 0, directing these segments towards
the dual modes of q1. This process engenders a singularity
at x(0) = 0, a direct consequence of q1’s heterogeneity. For
the bulletins 2 & 3 of Proposition 3.1, these statements are

2To be precise, q0 can be completely transported to q1 with the
minimum of the squared 2-Wasserstein distance (13).

3A small fraction (ϵ ≪ 1) of the mass cannot be transferred
from the source q0 to the target q1.

4



Switched Flow Matching

the consequences of the flow map φt(x(0);θ) being a homo-
morphism (more precisely, diffeomorphism), i.e. a bijective
and continuous function whose inverse is also continuous.

A straightforward corollary emerging from Proposition 3.1
is articulated as follows.

Corollary 3.3. Given the discrete distributions q0 = δ0 and
q1 = 1

2δ−a + 1
2δa, consider the optimal coupling q(x0 =

0, x1 = ±a) = 1
2 , then it cannot be solved by an ODE.

Furthermore, the learned flow map φ1(0;θ) transfers the
initial Dirac mass to some point a′ in the open set (−a, a),
i.e., q′1 = δa′ .

Remark 3.4. Intuitively, to resolve the issue identified in
Corollary 3.3, the flow map should assign the initial state to
two disparate target states, thereby challenging the existence
and uniqueness theorem of the IVP for a smooth ODE.

Proposition 3.5 (Heterogeneity in both q0 and q1). Sup-
pose the source and target distributions q0 and q1 are
two different 1-d uniform mixtures (2-modes), respectively,
i.e., q0 = 2

3U(−a − b,−a + b) + 1
3U(3a − b, 3a) and

q1 = 1
3U(−3a,−3a + b) + 2

3U(a − b, a + b), where
a ≫ b ≥ 0. Consider the (dynamic) optimal transport prob-
lem as defined in Eq. (12) (or Eq. (13)). If the NODE (3) ex-
actly solves the problem, then x(0) = −a (reps., x(1) = a)
is a singular point as shown in Fig. 2(a).

Remark 3.6. The conceptual underpinnings of Proposi-
tion 3.5 closely mirror that of Proposition 3.1. However,
the identified singularity originates from the heterogeneity
present in both q0 and q1 under the optimal coupling in-
duced by the squared 2-Wasserstein distance (12). Instead,
a crossing coupling, illustrated in Fig. 2(b), enables an exact
transportation between two large (resp., small) modes of
q0 and q1, adeptly sidestepping any potential singularities.
This coupling is locally optimal given the source and target
modes, although it does not constitute a global optimum.
Regrettably, achieving such coupling via a single ODE is
impossible, as ODE trajectories cannot intersect (Arnold,
1992; Dupont et al., 2019; Zhang et al., 2020; Massaroli
et al., 2020; Zhu et al., 2021; Liu et al., 2022).

Proposition 3.7 (Infinite number of singular points). Sup-
pose the source and target distributions q0 and q1 are de-
fined on R2 with q0 being H1 restricted to {0}×[−1, 1], and
q1 being (1/2)H1 restricted to {−1, 1} × [−1, 1], respec-
tively. Consider the (dynamic) optimal transport problem as
defined in Eq. (12) (or Eq. (13)). If the NODE (3) exactly
solves the problem, then all the points x(0) = (0, a), a ∈
[−1, 1] are singular points as shown in Fig. 6(a).

Remark 3.8. We note that Proposition 3.7 presents a
quintessential example often employed to demonstrate the
existence of a Monge minimizer, as detailed in(Villani,
2009). To achieve an optimal cost, one must split the mass
at (0, a) into two equal parts, and subsequently advance one

towards (−1, a) and the other towards (1, a). Although this
procedure does not yield a conventional map (or Monge
transport), one can approximate it via a discontinuous map
with finite singular points as shown in Fig. 6(b). In addition,
it is always possible to construct a better map (see Fig. 6(c))
by similarly incorporating additional singular points.

Remark 3.9. It is worth noting that the dimensionality of
the manifold corresponding to the singular points in Propo-
sition 3.7 is 1. Conversely, Propositions 3.1 and 3.5 are
characterized by a manifold dimensionality of 0. In higher-
dimensional cases, the singular points are encompassed
within a stratified union of manifolds with distinct dimen-
sions (Caffarelli, 1977; 1998; Figalli & Serra, 2019). To
eliminate these singularities, it is essential to ensure that
the cost functions, the spaces, and the probability measures
meet adequate regularity assumptions, but this is often not
the case when dealing with real-world data.

4. Switched Flow Matching
Inspired by the limitations of FM, we construct a new
class of continuous-time generative models, referred as to
Switched FM (SFM) which solves the transport problem be-
tween source and target distributions via switching multiple
ODEs, particularly eliminating the singularities encountered
in FM using a single ODE. The comparison of the FM and
SFM are summarized in Table 1.

Table 1. Properties for the ODE-based generative models, includ-
ing the FM, CFM, and our proposed SFM. Particularly, the SFM
can not only handle general source distributions, and optimal trans-
port flows (OT-SFM), but also employ multiple ODEs to eliminate
the singularity, allowing the intersection of trajectories from differ-
ent ODEs, and owning the relatively good regularity.

ODE model General source OT Mult. ODEs Intersection Regularity

FM ✗ ✗ ✗ ✗ ✗
I-CFM ✓ ✗ ✗ ✗ ✗
OT-CFM ✓ ✓ ✗ ✗ ✗

I-SFM ✓ ✗ ✓ ✓ ✓
OT-SFM ✓ ✓ ✓ ✓ ✓

4.1. Formulation

Consider the source (resp., target) distribution, denoted as
q0(x) (resp., q1(x)), which is modeled as a mixture of
conditional distributions q0(x|s) (resp., q1(x|s)) that vary
in response to a latent conditioning variable s, termed the
switching signal. Mathematically, this is expressed as:

qi(x) =

∫
qi(x|s)q◦(s)ds, i ∈ {0, 1}, (14)

where q◦(s) represents the distribution over the switching
signal. Correspondingly, the marginal probability path pt(x)
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Figure 3. Illustration of the (singular) OT map (a) and the (better) approximated OT maps (b) & (c) on the example in Proposition 3.7.

is modeled as a mixture of probability paths pt(x|s) of the
following form:

pt(x) =

∫
pt(x|s)q◦(s)ds, (15)

where pt(x|s) should satisfy the boundary conditions, i.e.,
p0(x|s) = q0(x|s) and p1(x|s) = q1(x|s), implying
p0(x) = q0(x) and p1(x) = q1(x). We assume that each
conditional probability path pt(x|s) arises from a corre-
sponding conditional vector field ut(x|s). Significantly,
our proposed SFM involves switching these ODEs rather
than relying on a single ODE in FM (6). The corresponding
sampling process is formalized as follows.
Proposition 4.1 (Switching ODEs). The marginal proba-
bility path pt(x) can be effectively sampled by switching
ODEs in the following three steps:

1. Sampling an ODE. Sampling a switching signal s from
the distribution q◦(s), resulting in the specified ODE
ut(x|s);

2. Sampling an initial state. Sampling an initial state x0

(resp., backward one x1) from the conditional distribu-
tion q0(x0|s) (resp., q1(x1|s));

3. Solving the IVP. Generating the corresponding con-
ditional probability path pt(x|s) by the vector field
ut(x|s) from the initial state x0 (resp., x1).

Remark 4.2. In this work, we are interested in the simple
switching mechanism where the q◦(s) and q0(x0|s) (resp.,
q1(x1|s)) are both easily sampled, which will be presented
in the Subsection 4.4. Additionally, these conditional vector
fields ut(x|s), in turn, collectively generate a marginal vec-
tor field, obtained by “marginalizing” over them as follows:

ut(x) :=

∫
ut(x|s)

pt(x|s)q◦(s)
pt(x)

ds, (16)

where pt(x) > 0 for all t and x. Crucially, as pointed out
in the existing studies (Lipman et al., 2022; Pooladian et al.,
2023; Tong et al., 2023a;b), the marginal vector field (16)
actually generates the marginal probability path (15). How-
ever, using a single ODE to solve the transportation problem
may inevitably encounter the singularity problem due to
the inherent (joint) heterogeneity of the source and/or target
distributions as discussed in the Section 3.

4.2. Training Objective

To mitigate the issue of singularity, our study aims to directly
approximate the conditional vector field ut(x|s) by the
learnable one vt(x;θ|s) using the following SFM objective:

LSFM(θ) = Et,q◦(s),pt(x|s)∥vt(x;θ|s)−ut(x|s)∥2. (17)

Simply put, the SFM loss (17) regresses the conditional
vector field ut(x|s) with a neural network vt(x;θ|s) via
consistently sharing the parameter vector θ across all switch-
ing signals s. Upon minimizing the SFM loss to zero, an
efficient sampling mechanism is enabled by the replacement
of ut(x|s) with vt(x;θ|s) as proposed in Proposition 4.1.

However, akin to the FM (6), the SFM objective (17) be-
comes intractable in the absence of prior knowledge re-
garding the appropriate forms of pt(x|s) and ut(x|s). To
address this issue, similar to the CFM (7), we further intro-
duce a latent variable z, and by marginalizing the condi-
tional probability paths over q(z|s), we have the marginal
probability path condition on s,

pt(x|s) =
∫

pt(x|z, s)q(z|s)dz. (18)

Akin to the marginal vector field (16), we can also obtain the
marginal vector field given s, i.e., ut(x|s), by marginalizing
over the conditional vector fields ut(x|z, s) in the following
sense,

ut(x|s) :=
∫

ut(x|z, s)
pt(x|z, s)q(z|s)

pt(x|s)
dz, (19)

where ut(x|z, s) is the conditional vector field that gener-
ates pt(x|z, s), yielding the following result.

Proposition 4.3. Given the switching signal s, the vector
field ut(x|s) in Eq. (19) generates the probability path
pt(x|s) in Eq. (18).

Similar to the CFM (7), we then consider the Switching
Conditional FM (SCFM) objective:

LSCFM(θ) = Et,q◦(s),q(z|s),pt(x|z,s)∥vt(x;θ|s)
− ut(x|z, s)∥2.

(20)
Then, we have the following result.
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Proposition 4.4. Assuming that pt(x|s) > 0 for all x ∈ Rd

and t ∈ [0, 1], then, up to a constant independent of θ,
LSCFM(θ) and LSFM(θ) are equal. Hence, ∇θLSCFM(θ) =
∇θLSFM(θ).

Remark 4.5. The above result is actually the same as stud-
ied in Lipman et al. (2022); Pooladian et al. (2023); Tong
et al. (2023a;b) if we consider the switching signal s is a
dumb variable, i.e., qi(x|s) = qi(x), i ∈ {0, 1}, q(z|s) =
q(z), ut(x|z, s) = ut(x|z), and vt(x;θ|s) = vt(x;θ).

The SCFM objective (20) is useful when the vector field
ut(x|s) is intractable but the conditional vector field
ut(x|z, s) is simple even in a closed form.

4.3. Coupling

As delineated in Eqs. (8)-(10), one can also choose q(z|s)
as an independent coupling condition on s, i.e.,

q(z|s) := q(x0,x1|s) = q0(x0|s)q1(x1|s), (21)

resulting in the linear interpolation x(t) and the constant
speed vector field condition on both z and s:

x(t) = (1− t)x0 + tx1, ut(x|z, s) = x1 − x0. (22)

In addition, another choice of q(z|s) is the optimal coupling
(Pooladian et al., 2023; Tong et al., 2023a;b) in terms of the
squared 2-Wasserstein distance condition on s, namely,

q(z|s) := q∗(x0,x1|s), (23)

where z represents a pair of points x0 and x1. Contrary
to independently sampling them from their conditional dis-
tributions (21), these points are jointly sampled in accor-
dance with the optimal coupling q∗(x0,x1|s) condition on
s. Here, we also use the simple vector field ut(x|z, s) as
defined in Eq. (22) in the SCFM objective (20). We then
propose the following result.

Proposition 4.6. Consider the optimal coupling
q∗(x0,x1|s) and the vector field ut(x|z, s) as de-
fined in Eq. (22), then the optimal vector field vt(x;θ|s) in
Eq. (20) solves the dynamic optimal transport problem (13)
(condition on s) between q0(x0|s) and q1(x1|s).
Remark 4.7. If we consider the switching signal s as a
dumb variable, then the above result is actually the same as
studied in Tong et al. (2023a;b). However, using a single
ODE to solve the dynamic optimal transport problem (13)
may not satisfy certain regularity assumptions. For example,
the support of a distribution needs to be connected, which
is often not the case in reality as discussed in the Section 3.
On the contrary, to eliminate the singularities, the SFM uses
multiple ODEs to solve it, which is conditionally or locally
optimal (see the next subsection).

In practice, this optimal coupling can be approximated by
addressing optimal transport problems within a given data
batch (Pooladian et al., 2023; Tong et al., 2023a;b). Specif-

ically, for each data batch
{
x
(k)
0

}m

k=1
∼ q0(x0|s) and{

x
(k)
1

}m

k=1
∼ q1(x1|s), the optimal transport problem (12)

condition on s for the discrete case can be exactly and ef-
ficiently resolved using standard solvers, such as the POT
(Flamary et al., 2021, Python Optimal Transport).

Here, we call these two methods independent SFM (I-SFM)
and optimal transport SFM (OT-SFM).

4.4. Switching Mechanism

Motivated by our observations and theories, we focus on
constructing a simple and efficient switching mechanism
such that the q◦(s) and q0(x0|s) (resp., q1(x1|s)) are both
easily sampled for the general source and target distributions.
One possible way is to employ the classic clustering meth-
ods to partition the empirical source (resp., target) dataset
X0 ∼ q0(x0) (resp., X1 ∼ q1(x1)) into K0 (resp., K1)
sets, i.e., X(1)

0 , ...,X
(K0)
0 (resp., X(1)

1 , ...,X
(K1)
1 ). In ad-

dition, we assign each set X(i)
0 (resp., X(j)

1 ) a label y(i)0

(resp., y(j)1 ) and its weight or mass ρ
(i)
0 = |X(i)

0 |/|X0|
(resp., ρ(j)1 = |X(j)

1 |/|X1|).
General setup. We then construct the switching mechanism
in the following manner:

1. s is a discrete variable, defined as s := (y0, y1) ∈{
(y

(i)
0 , y

(j)
1 )|i = 1, ...,K0, j = 1, ...,K1

}
;

2. q◦(s) := q◦(y0, y1) is a discrete (joint) distribution,
defined as a coupling matrix P , satisfying the conser-
vation of mass (K0 +K1 equality constraints),

K1∑
j=1

P (i, j) = ρ
(i)
0 ,

K0∑
i=1

P (i, j) = ρ
(j)
1 , (24)

where the element P (i, j) ≥ 0 describes the amount of
mass flowing from the bin i (or the set X(i)

0 ) towards
the bin j (or the set X(j)

1 );

3. q0(x0|s) (resp., q1(x1|s)) is an empirical data dis-
tribution available as finite samples, i.e., X(i)

0 (resp.,
X

(j)
1 ).

By choosing the different coupling matrix P , we induce the
different switching signal distributions q◦(s) = q◦(y0, y1).

Optimal transport setup. If P ∗ is the solution of the
discrete Kantorovich’s optimal transport problem, i.e.,

P ∗ = argmin
P

⟨C,P ⟩ :=
∑
i,j

C(i, j)P (i, j), (25)
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where C(i, j) is the cost of moving a single unit from bin i
to bin j, then P ∗ has the following property.

Proposition 4.8 (Extremal solutions (Peyré & Cuturi,
2019)). P ∗ cannot have more than K0 +K1 − 1 nonzero
entries, i.e., |{(y(i)0 , y

(j)
1 )|P ∗(i, j) > 0}| ≤ K0 +K1 − 1.

Remark 4.9. In practice, C(i, j) is simply assigned as ei-
ther a uniform constant or as a function representing the
appropriate distance between the sets X(i)

0 and X
(j)
1 . Fur-

thermore, according to Proposition 4.8, it is possible to re-
duce the number of states s = (y0, y1) from a higher-order
complexity of K0K1 to a linear complexity of K0+K1−1.

5. Related Works
Switched systems. Mathematically, switched systems are
hybrid dynamical systems that consist of a family of subsys-
tems and a rule that determines the switching between them
(Liberzon & Morse, 1999; Liberzon et al., 1999; Daafouz
et al., 2002; Liberzon, 2003). Typically, the rules can be
largely divided into state-dependent and time-dependent
switching. It should be pointed out that these switchings
occur during the evolution process of a system. In contrast,
as shown in Proposition 4.1, our switching mechanism in-
volves randomly sampling a system, and then keeping it
unchanged over time.

Conditional generation. Class-conditional generation is
a common and important task, whose goal is to generate a
sample that belongs to a specified class of the target distri-
butions via incorporating the class label into their models
(Van den Oord et al., 2016; Nguyen et al., 2017; Odena et al.,
2017; Ho et al., 2022). This can be regarded as a special
case of our framework by setting the switching signal as the
target label. Since there is a lot of literature on this topic
and our goal is to theoretically elucidate the limitations of
FM and to eliminate singularities raised by using a single
ODE, it is beyond the scope of this paper to have a complete
review of the existing literature.

6. Experiments
Synthetic datasets. Figure 4 shows the proposed I-SFM and
OT-SFM on transporting an 1-d Gaussian mixture (2-modes)
to another. It is observed that an appropriate switching rule
can eliminate the singularity raised from the heterogeneities
of source and target distributions, leading to better regularity.
In other words, when the data is sampled near the singularity
region, it is inevitable that both the I-SFM and OT-SFM
tend to perform poorly, but our framework is capable of
achieving relatively good results. In addition, OT-SFM
leads to a straighter flow than I-SFM.

Figure 5 shows the learned flows of the I-SFM and the
OT-SFM on the example of the infinite number of singular

points under the optimal coupling in Proposition 3.7.

CIFAR-10 dataset. Table 2 shows the image generation
results of our SFM variants on the CIFAR-10 dataset. In con-
trast with the existing generative models, we, here, consider
a general source distribution, a Gaussian mixture with two
modes, instead of a standard Gaussian distribution. There-
fore, we display the results of the I-CFM and OT-CFM as
the baselines. Crucially, it is observed that the I-CFM per-
forms poorly on this task due to the mode separation of the
source distribution, while it worked well for the standard
Gaussian distribution (Lipman et al., 2022; Liu et al., 2022;
Tong et al., 2023a;b). In addition, the I-SFM (one2ten) and
OT-SFM (one2ten) perform poorly as well, as they all treat
the support of the source distribution as one mode. Other
SFM variants that explicitly separate the two modes of the
source distribution, all perform well even better than the OT-
CFM. We note that the OT-SFM did not perform as well as
expected in comparison to the I-SFM. We attribute the rea-
son to the switching mechanism that has already alleviated
singularities induced by mode separation.

Table 2. FID results of CFM and SFM on the CIFAR-10 dataset.

NFE 6 8 10 20 40 Adap.

I-CFM (I-SFM, one2one) 144.52 130.49 122.44 106.11 99.19 94.55
OT-CFM (OT-SFM, one2one) 176.80 111.09 76.41 26.15 10.90 4.91

I-SFM (one2ten) 109.24 98.47 93.48 83.41 78.33 75.06
OT-SFM (one2ten) 122.74 104.19 93.04 73.47 63.94 59.72
I-SFM (two2one) 177.99 115.05 78.46 23.91 9.18 5.21
OT-SFM (two2one) 185.44 121.21 84.32 28.18 11.11 5.64
I-SFM (two2ten, mixed) 132.41 75.83 49.53 15.60 6.98 4.27
OT-SFM (two2ten, mixed) 133.27 76.31 49.69 15.50 7.24 4.39
I-SFM (two2ten, extremal) 128.55 75.11 50.12 17.14 8.39 4.22
OT-SFM (two2ten, extremal) 149.50 88.33 58.25 18.59 8.86 4.40

7. Conclusion
In this article, we highlighted and analyzed the limitations
of FM, where using a single ODE for generative modeling
may inevitably encounter the singularity problem due to
the inherent (joint) heterogeneity of the source and/or target
distributions. To eliminate singularities, we proposed SFM
via switching multiple ODEs, even allowing the intersection
of trajectories from distinct ODEs while it is impossible for
a single ODE. In addition, a simple and efficient switching
mechanism was constructed for effective training and infer-
ence. From an orthogonal perspective, our framework can
seamlessly integrate with the existing advanced techniques,
such as minibatch optimal transport, to further enhance the
straightness of each flow. We also demonstrated the excep-
tional efficacy of the proposed framework by using synthetic
and real-world datasets. We hope that our findings and pro-
posed framework can contribute to the advancement of the
field of generative modeling.
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Figure 4. Trajectories of the I-SFM and the OT-SFM on 2-d Gaussian mixtures under different coupling matrices P (from left to right).
Particularly, in the first column (“one2one” coupling), the I-SFM and the OT-SFM are the I-CFM and OT-CFM, respectively.
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Figure 5. The learned flows of the I-CFM (a) and the I-SFM
(one2two) (b) on the example in Proposition 3.7.
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Roadmap. The structure of the appendix is outlined as follows:

• Appendix A presents the existing theoretical results on ODEs and optimal transport.

• Appendix B presents the proofs of our theoretical results.

• Appendix C presents additional results and discussions from the perspectives of the methodology, algorithm, and
experiment.

• Appendix D presents the experimental details for all experiments conducted in the work.

A. Existing theoretical results
In this section, before presenting the proofs of our theoretical results in the main text as well as the additional results in the
appendix, we first review the existing theoretical results on ODEs.

Throughout the section, we consider the IVP:

dx(t)

dt
= ut(x), t ∈ [0, 1],

x(0) = x0,
(26)

where ut(x) : [0, 1]× Rd → Rd is a smooth vector field with a bounded Lipschitz constant L := ∥ut(x)∥Lip. Then, we
have the following existence and uniqueness theorem.

A.1. Properties of ODEs

Theorem A.1 (Global existence and uniqueness, (Ahmad & Ambrosetti, 2015)). Suppose that x ∈ Rd, t ∈ [0, 1], and
ut(x) is continuous and globally lipschitzian in Rd with respect to x, then the solution of (26) is unique and defined on all
t ∈ [0, 1].

Theorem A.2 (Non-intersecting trajectories, (Coddington et al., 1956; Younes, 2010; Dupont et al., 2019)). Let x̄(t) and
x̂(t) be two solutions of the ODE (26) with different initial conditions, i.e., x̄(0) ̸= x̂(0). then for all t ∈ (0, 1], x̄(t) ̸= x̂(t).
Informally, it states that ODE trajectories cannot intersect.

𝑡𝑡

𝑥𝑥
𝑥̅𝑥(𝑡𝑡)

�𝑥𝑥(𝑡𝑡)



𝑡𝑡

𝑥𝑥
𝑥̅𝑥(𝑡𝑡)

�𝑥𝑥(𝑡𝑡)


(a) (b)

Figure 6. Illustration of the non-intersecting trajectories of ODEs. (a) The two trajectories intersect each other, which is not feasible for
ODEs. (b) Any two trajectories cannot intersect each other at any time t.

Theorem A.3 (Gronwall’s inequality, (Howard, 1998; Dupont et al., 2019)). Let ut(x) : [0, 1]× Rd → Rd be a continuous
function and let x̄(t) and x̂(t) be two solutions of the ODE (26), satisfying the IVP:

dx̄(t)

dt
= ut[x̄(t)], t ∈ [0, 1], x̄(0) = x̄0,

dx̂(t)

dt
= ut[x̂(t)], t ∈ [0, 1], x̂(0) = x̂0,

(27)

Assume there is a constant L ≥ 0 such that

∥ut[x̄(t)]− ut[x̂(t)]∥ ≤ L∥x̄(t)− x̂(t)∥, (28)

Then for t ∈ [0, 1], we have
∥x̄(t)− x̂(t)∥ ≤ eLt∥x̄0 − x̂0∥. (29)

13
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Theorem A.4 (Homeomorphism, (Younes, 2010; Dupont et al., 2019)). Consider the flow map ϕt(x0) of the ODE (26).
Then, for all t ∈ [0, 1], ϕt(x0) is a homomorphism, i.e.,

1. ϕt is continuous;

2. ϕt is a bijection;

3. ϕ−1
t is continuous.

Remark A.5. More precisely, the flow map ϕt(x0) of the ODE (26) is a diffeomorphism (Younes, 2010), but we will not
use this stronger property in our proofs.

A.2. Properties of optimal transport

Theorem A.6 (Nondecreasing map, (Santambrogio, 2015)). Given q0, q1 ∈ P(R), suppose that q0 is atomless4. Then, there
exists a unique nondecreasing map Tmon : R → R such that (Tmon)#q0 = q1.
Lemma A.7 (Monotonic property, (Santambrogio, 2015)). Let γ ∈ Π(q0, q1) be a transport plan between two measures
q0, q1 ∈ P(R). Suppose that it satisfies the property,

(x0, x1), (x
′
0, x

′
1) ∈ Spt(γ),

x0 < x′
0 =⇒ x1 < x′

1.
(30)

Then, we have γ = γmon. In particular, there is a unique γ satisfying (30). Moreover, if q0 is atomless, then γ = γTmon
.

Theorem A.8 (Optimality of the monotone map, (Santambrogio, 2015)). Let h : R → R+ be a strictly convex function
and q0, q1 ∈ P(R) be probability measures. Consider the cost c(x0, x1) = h(x1 − x0) and suppose that the Kantorovich
problem (11) has a finite value. Then, it has a unique solution, which is given by γmon. In the case where q0 is atomless, this
optimal plan is induced by the map Tmon.
Theorem A.9 (Cyclical monotonicity, (Villani, 2009)). Let X ,Y be arbitrary sets, and c : X × Y → (−∞,+∞] be a
function. A subset Γ ⊆ X × Y is said to be c-cyclically monotone if, for any N ∈ N, and any family (x1,y1), ..., (xN ,yN )
of points in Γ, holds the inequality

N∑
i=1

c(xi,yi) ≤
N∑
i=1

c(xi,yi+1) (31)

(with the convention yN+1 = y1). A transport plan is said to be c-cyclically monotone if it is concentrated on a c-cyclically
monotone set.
Remark A.10. Informally, a c-cyclically monotone plan cannot be improved via perturbations. Consequently, it follows
intuitively that an optimal plan should adhere the c-cyclical monotonicity (Villani, 2009).
Theorem A.11 ((Villani, 2009)). Let (X , µ) and (Y, ν) be any two Polish probability spaces, let T be a continuous map
X → Y , and let π = (Id, T )#µ be the associated transport map. Then, for each x ∈ Spt(µ), the pair (x, T (x)) belongs
to the support of π.

B. Proofs
Proposition 3.1 (Heterogeneity in q0 or q1). Suppose the source distribution q0 is an 1-d uniform distribution q0 =
U(−2b, 2b) and the target distribution q1 is an 1-d uniform mixture (2-modes) q1 = 1

2U(−a− b,−a+ b)+ 1
2U(a− b, a+ b),

where a ≫ b ≥ 0. Consider the (dynamic) optimal transport problem as defined in Eq. (12) (or Eq. (13)).

1. If the NODE (3) exactly5 solves the problem, then x(0) = 0 is a singular point, i.e., where the flow map φ1(0;θ) :
x(0) = 0 → x(1) is not well-defined or discontinuous (with two directions to q1), as shown in Fig. 1(a).

2. If the NODE (3) approximately6 solves the problem, resulting in an approximated target distribution q′1, then there is a
neighborhood O of x(0) = x0 which is homeomorphically mapped to the open subset in target space connecting the
two modes, as shown in Fig. 1(b).

4For every x ∈ R, the probabilistic measure on this single point x is equal to zero.
5To be precise, q0 can be completely transported to q1 with the minimum of the squared 2-Wasserstein distance (13).
6A small fraction (ϵ ≪ 1) of the mass cannot be transferred from the source q0 to the target q1.
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3. If the two modes of q1 are far away from each other, i.e., a ≫ 1, then the flow map φ1[x0;θ] within a neighborhood O
as defined in the above-approximated NODE (the second bulletin) has a large Lipchitz constant.

Proof of Proposition 3.1. We routinely prove these three bulletins in the following.

1. If the NODE (3) exactly solves the optimal transport problem, then the flow map φ1(x0;θ) transports all mass from
the source to the target and simultaneously achieves the minimum squared 2-Wasserstein distance. By construction of
the source and target distributions, the support of the source distribution should be divided into two equal parts at the
point 0, and each part is transported to one of the two disconnected components of the target support. In addition, from
Lemma A.7 and Theorem A.8, the left (resp., right) part of the source support should be transported to the left part of
the target support and this optimal transport map should satisfy the monotonic property (30), as illustrated in Fig. 1(a).
Hence, the flow map φ1(0;θ) : x(0) = 0 → x(1) is not well-defined or discontinuous at the point 0.

2. If the NODE (3) approximately solves the problem, resulting in an approximated target distribution q′1, then there
exists a small fraction of the mass that cannot be transferred from the source to the target. More precisely, based on the
homeomorphism of the flow map φ1(x0;θ) (Theorem A.4), it should map the source connected support to another
connected set, thereby preserving connectedness. However, the support of the target distribution has two disconnected
components, implying that there is a neighborhood O of x(0) = x0 in the source support, which is homeomorphically
mapped to the open subset connecting these two modes.

3. If the two modes of q1 are far away from each other, i.e., a ≫ 1, then it implies that the flow map φ1(x0;θ) maps the
neighborhood O of x(0) = x0 to a large open subset connecting these two largely shifted modes, though the transported
mass can be still small (say ϵ ≪ 1). Hence, the flow map φ1(x0;θ) has a large Lipchitz constant L′, satisfying

∥φ1(x̄0;θ)− φ1(x̂0;θ)∥ ≤ L′∥x̄0 − x̂0∥. (32)

More precisely, the order of L′ is O(aϵ ). In addition, based on the Gronwall’s inequality (29), the Lipchitz constant L
of the vector field vt(x;θ) should satisfy that

∥φ1(x̄0;θ)− φ1(x̂0;θ)∥ ≤ eL∥x̄0 − x̂0∥, ∀ x̄0, x̂0 ∈ O, (33)

implying that the order of L is O(lnL′) = O
(
ln a

ϵ

)
. Therefore, when a ≫ 1, the flow map φ1[x0;θ] within a

neighborhood O has a large Lipchitz constant L of the order O
(
ln a

ϵ

)
.

The proof is complete.

Corollary 3.3. Given the discrete distributions q0 = δ0 and q1 = 1
2δ−a + 1

2δa, consider the optimal coupling q(x0 =
0, x1 = ±a) = 1

2 , then it cannot be solved by an ODE. Furthermore, the learned flow map φ1(0;θ) transfers the initial
Dirac mass to some point a′ in the open set (−a, a), i.e., q′1 = δa′ .

Proof of Corollary 3.3. Based on the optimal coupling q(x0 = 0, x1 = ±a) = 1
2 , the mass at the point 0 should be divided

into two halves, and one half is transported to −a, and the other half is transported to a. However, based on the existence
and uniqueness of ODEs’ solutions, the flow map induced by the ODE is a determined map that can only transport the mass
at the point 0 to some point a′ := φ1(0;θ). Now, we claim a′ ∈ (−a, a). The optimal coupling q(x0 = 0, x1 = ±a) = 1

2
shows the singularity at the point x(0) = 0 with two directions. Hence, in an average way by eliminating the downward
and upward components of these two directions, respectively, it leads to a horizon direction (between them) at the point
x(0) = 0. However, for any point belonging to the lines x(t) = ta or x(t) = −ta, t ∈ (0, 1], the direction of this point
is determined along the corresponding line. Moreover, by the Theorem A.2, the ideal learned solution φt(0;θ) is always
sandwiched between these two lines, as illustrated in Fig. 7. Therefore, the learned flow map φ1(0;θ) transfers the initial
Dirac mass to some point a′ in the open set (−a, a), i.e., q′1 = δa′ .

Proposition 3.5 (Heterogeneity in both q0 and q1). Suppose the source and target distributions q0 and q1 are two
different 1-d uniform mixtures (2-modes), respectively, i.e., q0 = 2

3U(−a − b,−a + b) + 1
3U(3a − b, 3a) and q1 =

1
3U(−3a,−3a+ b) + 2

3U(a− b, a+ b), where a ≫ b ≥ 0. Consider the (dynamic) optimal transport problem as defined in
Eq. (12) (or Eq. (13)). If the NODE (3) exactly solves the problem, then x(0) = −a (reps., x(1) = a) is a singular point as
shown in Fig. 2(a).
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Figure 7. Illustration of the sandwiched property of ODEs in Corollary 3.3.

Proof of Proposition 3.5. The proof is similar to the one of the Proposition 3.1. Different from the case Proposition 3.1,
here, the disconnectedness occurs in both the source distribution q0 and the target distributionq1, where each disconnected
component of their supports has a distinct mass. The optimal transport coupling should split both the large components in
the supports of the source and the target distributions into two equal parts, resulting in a total of three equal components,
respectively. Therefore, the ODE is thereby singular at the split points x(0) = −a and x(1) = a.

Proposition 3.7 (Infinite number of singular points). Suppose the source and target distributions q0 and q1 are defined
on R2 with q0 being H1 restricted to {0} × [−1, 1], and q1 being (1/2)H1 restricted to {−1, 1} × [−1, 1], respectively.
Consider the (dynamic) optimal transport problem as defined in Eq. (12) (or Eq. (13)). If the NODE (3) exactly solves the
problem, then all the points x(0) = (0, a), a ∈ [−1, 1] are singular points as shown in Fig. 6(a).

Proof of Proposition 3.7. Indeed, to exactly solve the optimal transport problem, each source point (0, a) has two expected
target points (−1, a) and (1, a), since both of them require the same unit cost for (0, a) to one of them. Therefore, the
optimal flow map φ1[(0, a);θ] : x(t = 0) = (0, a) → x(1) is not well-defined (with two directions to q1).

Proposition 4.1 (Switching ODEs). The marginal probability path pt(x) can be effectively sampled by switching ODEs in
the following three steps:

1. Sampling an ODE. Sampling a switching signal s from the distribution q◦(s), resulting in the specified ODE ut(x|s);

2. Sampling an initial state. Sampling an initial state x0 (resp., backward one x1) from the conditional distribution
q0(x0|s) (resp., q1(x1|s));

3. Solving the IVP. Generating the corresponding conditional probability path pt(x|s) by the vector field ut(x|s) from
the initial state x0 (resp., x1).

Proof of Proposition 4.1. Here, we aim to prove that the marginal probability path pt(x) can be equivalently sampled by
switching ODEs in the above three steps.

By construction, we introduce a latent conditioning variable s to represent the source (resp., target) distribution q0(x) (resp.,
q1(x)) as a mixture of conditional distributions q0(x|s) (resp., q1(x|s)), satisfying (also see Eq. (14))

qi(x) =

∫
qi(x|s)q◦(s)ds, i ∈ {0, 1}, (34)
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where q◦(s) is the distribution over the switching signal. In addition, we model the marginal probability path pt(x) as a
mixture of probability paths pt(x|s) (also see Eq. (15)),

pt(x) =

∫
pt(x|s)q◦(s)ds. (35)

where each conditional probability path pt(x|s) arises from a corresponding conditional vector field ut(x|s), i.e., satisfying
the continuity equation,

∂pt(x|s)
∂t

= −∇ · [pt(x|s)ut(x|s)] (36)

with the boundary conditions p0(x0|s) = q0(x0|s) and p1(x1|s) = q1(x0|s). Moreover, it holds the boundary marginal
source and target distributions, i.e.,

pi(x) =

∫
pi(x|s)q◦(s)ds

=

∫
qi(x|s)q◦(s)ds

= qi(x),

(37)

where i ∈ {0, 1}. Therefore, one can sample pt(x) through the above three steps.

Proposition 4.3. Given the switching signal s, the vector field ut(x|s) in Eq. (19) generates the probability path pt(x|s) in
Eq. (18).

Proof of Proposition 4.3. The proof is adapted from Lipman et al. (2022); Tong et al. (2023a;b).

Since ut(x|z, s) is the conditional vector field that generates pt(x|z, s), it means that given the switching signal s and the
latent variable z, ut(x|z, s) and pt(x|z, s) satisfy the continuity equation:

∂pt(x|z, s)
∂t

= −∇ · [pt(x|z, s)ut(x|z, s)]. (38)

Next, we check that given the switching signal s, pt(x|s) and ut(x|s) satisfy the continuity equation:

∂pt(x|s)
∂t

=
∂

∂t

∫
pt(x|z, s)q(z|s)dz

=

∫ [
∂

∂t
pt(x|z, s)

]
q(z|s)dz

= −
∫

{∇ · [pt(x|z, s)ut(x|z, s)]} q(z|s)dz

= −∇ ·
∫

pt(x|z, s)ut(x|z, s)q(z|s)dz

= −∇ ·
[
pt(x|s)

∫
ut(x|z, s)

pt(x|z, s)q(z|s)
pt(x|s)

dz

]
:= −∇ · [pt(x|s)ut(x|s)]

(39)

where we assume that the functions being integrated satisfy the regularity conditions for exchanging integration and
differentiation.

Proposition 4.4. Assuming that pt(x|s) > 0 for all x ∈ Rd and t ∈ [0, 1], then, up to a constant independent of θ,
LSCFM(θ) and LSFM(θ) are equal. Hence, ∇θLSCFM(θ) = ∇θLSFM(θ).

Proof of Proposition 4.4. The proof is adapted from Lipman et al. (2022); Tong et al. (2023a;b).

To ensure the existence of all integrals and to allow the changing of integration order (by Fubini’s Theorem), we assume that
q(x|s), pt(x|z, s) are decreasing to zero at sufficient speed as ∥x∥ → ∞ and that ut,vt,∇θvt are bounded. Since t and s
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are sampled from U(0, 1) and q◦(s), respectively, where both are independent of θ, in the following t and s are both fixed.
By the bilinearity of the Euclidean norm and since ut is independent of θ, we have

∇θEpt(x|s)∥vt(x;θ|s)− ut(x|s)∥2

=∇θEpt(x|s)
(
∥vt(x;θ|s)∥2 − 2 ⟨vt(x;θ|s),ut(x|s)⟩+ ∥ut(x|s)∥2

)
=∇θEpt(x|s)

(
∥vt(x;θ|s)∥2 − 2 ⟨vt(x;θ|s),ut(x|s)⟩

)
,

(40)

and
∇θEq(z|s),pt(x|z,s)∥vt(x;θ|s)− ut(x|z, s)∥2

=∇θEq(z|s),pt(x|z,s)
(
∥vt(x;θ|s)∥2 − 2 ⟨vt(x;θ|s),ut(x|z, s)⟩+ ∥ut(x|z, s)∥2

)
=∇θEq(z|s),pt(x|z,s)

(
∥vt(x;θ|s)∥2 − 2 ⟨vt(x;θ|s),ut(x|z, s)⟩

)
.

(41)

Next,
Ept(x|s)∥vt(x;θ|s)∥2

=

∫
∥vt(x;θ|s)∥2pt(x|s)dx

=

∫∫
∥vt(x;θ|s)∥2pt(x|z, s)q(z|s)dzdx

=Eq(z|s),pt(x|z,s)∥vt(x;θ|s)∥2.

(42)

Finally,

Ept(x|s) ⟨vt(x;θ|s),ut(x|s)⟩ =
∫ 〈

vt(x;θ|s),
∫
ut(x|z, s)pt(x|z, s)q(z|s)dz

pt(x|s)

〉
pt(x|s)dx

=

∫ 〈
vt(x;θ|s),

∫
ut(x|z, s)pt(x|z, s)q(z|s)dz

〉
dx

=

∫∫
⟨vt(x;θ|s),ut(x|z, s)⟩ pt(x|z, s)q(z|s)dzdx

= Eq(z|s),pt(x|z,s) ⟨vt(x;θ|s),ut(x|z, s)⟩ .

(43)

Therefore, Eq. (40) is always equal to Eq. (41) for any s and z, implying that ∇θLSCFM(θ) = ∇θLSFM(θ). The proof is
complete.

Proposition 4.6. Consider the optimal coupling q∗(x0,x1|s) and the vector field ut(x|z, s) as defined in Eq. (22), then
the optimal vector field vt(x;θ|s) in Eq. (20) solves the dynamic optimal transport problem (13) (condition on s) between
q0(x0|s) and q1(x1|s).

Proof of Proposition 4.6. Here, we assume that given the switching signal s, the source and target distributions condition on
s satisfy the regularity conditions such that by Brenier’s theorem (Brenier, 1991), there is a unique optimal Monge coupling
between q0(x0|s) and q1(x1|s).
Under the optimal coupling q∗(z|s) := q∗(x0,x1|s), it induces a unique optimal Monge transport map T (·|s), which can
be represented by the gradient of some convex function Φ(·|s), i.e.,

x1 = T (x0|s) = ∇Φ(x0|s), (44)

where x0 ∼ q0(x0|s) and x1 ∼ q1(x1|s). In addition, we can construct the conditional probability path or equivalently the
flow map as:

ϕt(x0|s) = x0 + t[T (x0|s)− x0], (45)

with the associated vector field:
ut(x|s) = T (x0|s)− x0. (46)

Therefore, the optimal vector field vt(x;θ|s) in Eq. (20) (i.e., equal to the above Eq. (46)), solves the dynamic optimal
transport problem (13) (condition on s) between q0(x0|s) and q1(x1|s).
Proposition 4.8 (Extremal solutions (Peyré & Cuturi, 2019)). P ∗ cannot have more than K0 +K1 − 1 nonzero entries, i.e.,
|{(y(i)0 , y

(j)
1 )|P ∗(i, j) > 0}| ≤ K0 +K1 − 1.
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Non-extremal                                Extremal 

(a)                                            (b) 

Figure 8. Illustration of the extremal property in Proposition 4.8.

Proof of Proposition 4.8. See Proposition 3.4 in (Peyré & Cuturi, 2019). The extremal property is illustrated in Fig. 8.

D′− D D′+

D′0

Figure 9. Illustration of the Caffarelli’s counterexample.

C. Additional results
Regularity. Here, we present a famous result from the study of optimal transport regularity. Specifically, Caffarelli (1992)
demonstrated that the optimal transport map can be discontinuous when the target measure is supported on a non-convex
domain. Therefore, the ideal flow map φ1[x(0);θ] induced by the optimal transport map is discontinuous as well. This is
formalized in the following result.

Proposition C.1 (Caffarelli’s counterexample). Suppose the source and target distributions q0 and q1 are defined on 2-d
disc D and dumbbell D′ (see Fig. 9, and both normalized to be a probability measure), respectively. Consider the (dynamic)
optimal transport problem as defined in Eq. (12) (or Eq. (13)). If the NODE (3) exactly solves the problem, then the flow
map φ1[x(0);θ] is discontinuous, as shown in Fig. 9.

Proof. For clarity and completeness, we mainly provide the idea of its proof, and more detailed proof can be found in
(Villani, 2009).

Here, the cost function c(x0, x1) is the Euclidean distance. Consider the upper regions of the ball D, the left half-ball D′
−,

and the right half-ball D′
+, respectively. Then, a large fraction (say 0.99) of the mass in D has to go to D′

− (if it lies on
the left) or to D′

+ (if it lies on the right). Due to the homomorphism of the flow map, it should preserve the topology of
the source support, i.e., the connectedness. Therefore, the map should transport the mass of a small subset in D into the
tube D′

0 connecting the left half-ball D′
− and the right half-ball D′

+. Moreover, there is some point x0 ∈ D such that the
corresponding target point x1, obtained by the transport map, is close to the left end of the tube D′

0.

In particular, without loss of generality, we assume that x1 − x0 has a large downward component. From the convergence
in probability, many of the neighbors x′

0 of x0 have to be transported to, say, D′
−, with nearly horizontal displacements

x′
1 − x′

0. If such an x′
0 is picked below x0, we shall have,

⟨x0 − x′
0,x1 − x′

1⟩ < 0, (47)

or equivalently,
|x0 − x1|2 + |x′

0 − x′
1|2 > |x0 − x′

1|2 + |x′
0 − x1|2. (48)
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If the flow map φ1[x(0);θ] is continuous, in view of Theorem A.11 this contradicts the c-cyclical monotonicity of
the optimal coupling. The conclusion is that when the tube D′

0 is “thin” enough, the optimal flow map φ1[x(0);θ] is
discontinuous.

Remark C.2. In the above Caffarelli’s counterexample, though the target space (i.e., the thin dumbbell) of q1 (extremely
smooth, constant) is connected but not convex, the optimal transport map can be discontinuous as well. Significantly, since
the (convex) source space and the (non-convex) target space have the same topology, one can naturally employ an ODE to
construct a dynamic transport map (not optimal) while preserving the topology over time.

Joint clustering. As shown in the Fig. 2(a), the source and target distributions both have two disconnected supports,
while the corresponding optimal transport coupling clearly leads to a joint partition with three joint clusters separated by
two singular points. Motivated by this observation, we employ the FM to achieve a joint clustering of the source and
target pair data points. Specifically, we first use the well-trained FM model vt(x;θ) to construct the pair (x0,x1) by
solving the IVP (3), where x(0) = x0 ∼ q0(x0) is the initial state and x(1) = x1 ∼ p1(x1) ≈ q1(x1) is the numerically
sampled final state. Then, one can use the classical clustering algorithms to partition the constructed pair datasets into K
sets, i.e., X(1), ...,X(K). Moreover, it partitions the both supports of the source and target distributions into K sets as
well, i.e., K0 = K1 = K, and we, without loss of generality, assume that the set X(i)

0 and the set X(i)
1 are paired with

equal mass ρ(i)0 = ρ
(i)
1 = ρ(i). Therefore, the coupling matrix P (as defined above) is a diagonal matrix of the explicit

form P = diag{ρ(1), ..., ρ(K)}. Here, we consider the ODE couplings induced by I-CFM and OT-CFM, and we call the
corresponding SFM the IC-SFM and the OTC-SFM, respectively. Notably, under the ODE couplings, it does not require
searching the optimal transport couplings within a data bach for the IC-SFM and the OTC-SFM.

As shown in Fig. 10, different from the transportation way illustrated in Fig. 4, both the IC-SFM and OTC-SFM can address
the singularity problem as well and transport each source data point to the target space in a determined way. However, the
identification of the singularity in high-dimensional situations, such as image datasets, is a challenging task, which is out of
the scope of this work. We therefore leave it as one of our future directions.

Time

x

Time P

0.4 0.0 0.0

0.0 0.2 0.0

0.0 0.0 0.4

Figure 10. Trajectories of the IC-SFM (left) and the OTC-SFM (middle) with 3 joint clusters, and the coupling matrix P (right).

Gaussian flow. In the original work of CFM (Tong et al., 2023a;b), they introduce a more general conditional probability
path, defined by:

pt(x|z) = N [x|(1− t)x0 + tx1, σ
2],

ut(x|z) = x1 − x0,
(49)

also referred as to the Gaussian flow, where the pair z := (x0,x1) is sampled from the Independent coupling or optimal
transport coupling, and σ is typically chosen as a small value, serving as a regularization for optimization. Notably, the CFM
mentioned in the main text can be regarded as a special case of Eq. (50), i.e., σ = 0 or equivalently pt(x|z) = δ(1−t)x0+tx1

(the Dirac mass). Naturally, we can generalize our SCFM framework in a similar way, yielding a more general conditional
probability path for SCFM:

pt(x|z, s) = N [x|(1− t)x0 + tx1, σ
2],

ut(x|z, s) = x1 − x0,
(50)

where the pair z := (x0,x1) is now sampled from the Independent coupling or optimal transport coupling condition on the
switching signal s, i.e., z ∼ q(z|s). Notably, we set σ = 0 for all experiments and leave the impact of different values of σ
on the experimental results for future study, which is out of scope in this work.

Switching coupling. For easy implementation of the switching coupling, we make use of the batch data to construct an
implicit switching signal distribution. Specifically, given batch data, we employ the following construction:
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1. Sample
{
x
(k)
0

}m

k=1
∼ q0(x0) and

{
x
(k)
1

}m

k=1
∼ q1(x1) with the corresponding label sets

{
y
(k)
0

}m

k=1
and

{
y
(k)
1

}m

k=1
,

respectively.

2. Construct the batch coupling matrix Pm ∈ Rm×m using the batch label data as follows:

Pm(i, j) =
P
(
y
(i)
0 , y

(j)
1

)
Count

(
y
(i)
0 , y

(j)
1

) , (51)

where P ∈ RK0×K1 is a predefined coupling matrix (see Eq. (24)), and Count
(
y
(i)
0 , y

(j)
1

)
represents the number of

the pair
(
y
(i)
0 , y

(j)
1

)
within the batch data,

3. Sample the switching signal s :=
(
y
(i)
0 , y

(j)
1

)
based on the coupling matrix Pm, and obtain the corresponding data

pair z(i,j) :=
(
x
(i)
0 ,x

(j)
1

)
, resulting in n samples, defined by:{(

x̂
(k)
0 , x̂

(k)
1 , ŷ

(k)
0 , ŷ

(k)
1

)}n

k=1
, (52)

where n need not match the batch size m, but for simplicity in our experiments we choose n = m,

4. (Optional for OT-SFM) Construct the joint distribution πbatch(z|s) induced by the optimal coupling in terms of the
Euclidean distance between data points of the pair ẑ(i,j) :=

(
x̂
(i)
0 , x̂

(j)
1

)
within the same switching signal data pair set{

(z, s)|s =
(
ŷ
(i)
0 , ŷ

(j)
1

)}
,

5. (Optional for OT-SFM) Sample from the joint distribution πbatch(z|s), yielding the samples{(
x̄
(k)
0 , x̄

(k)
1 , ȳ

(k)
0 , ȳ

(k)
1

)}l

k=1
, (53)

where l need not match the batch size m or n, but for simplicity in our experiments we choose l = n = m.

Proposition C.3. The joint distribution qm(s) := qm(y0, y1) induced by the batch coupling matrix Pm constructed in
the above Steps [1-3] has the same distribution q◦(s) := q◦(y0, y1) induced by the coupling matrix P , i.e., qm(y0, y1) =
q◦(y0, y1) = P (y0, y1).

Proof. For an arbitrary test function f(y0, y1), by construction of the batch coupling matrix Pm (see Eq. (51)), it holds

Eqm(y0,y1)f(y0, y1) =
∑
y0,y1

qm(y0, y1)f(y0, y1)

=
∑
y0,y1

∑
y
(i)
0 =y0,y

(j)
1 =y1

P
(
y
(i)
0 , y

(j)
1

)
Count

(
y
(i)
0 , y

(j)
1

)f(y0, y1)
=

∑
y0,y1

P (y0, y1) f(y0, y1)

= Eq◦(y0,y1)f(y0, y1).

(54)

The proof is complete.

Algorithms. For a better understanding of the proposed SFM, we provide the main pseudocode as shown in Algorithm 1
as well as the pseudocode for constructing the switching coupling as shown in Algorithm 2 with the optional module
for OT-SFM (see Algorithm 3). For inference, the pseudocode is displayed in Algorithm 4. The code is available at
https://github.com/zhuqunxi/switched-flow-matching.

Additional experimental results. The additional experimental results are summarized as follows.
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Algorithm 1 Switched Flow Matching

# Input: Data={x0,x1, y0, y1}, sampled from q0(x0) and q1(x1)
# Output: Model vt(x;θ|s) for the vector field given the switching signal s = (y0, y1)
Initialize Model # Model can be arbitrary neural network structure
Initialize OT # OT=True/False indicates whether OT-SFM is adopted
Initialize P # P is the predefined coupling matrix
for x0,x1, y0, y1 in Data: # Generate batch data

Optimizer.zero grad()
x0,x1, y0, y1 = Sample plan(x0, x1, y0, y1, P, OT) # Construct switching coupling
s = (y0, y1) # Switching signal
t = torch.rand(batchsize) # Randomly sample t ∈ [0,1]
Loss = { Model[(1-t)*x0 + t*x1, t, s] - (x1 - x0) }.pow(2).mean()
Loss.backward()
Optimizer.step()

return Model

Algorithm 2 Switching Coupling

def Sample plan(x0, x1, y0, y1, P, OT) # Construct switching coupling
# x0, x1: shape=(m, dim); y0, y1: shape=(m, )
m, K0, K1 = len(y0), P.shape[0], P.shape[1]
Pm(i, j) = P (y0[i], y1[j])/Count(y0[i], y1[j]) # Construct the batch coupling matrix
# Sample from batch coupling matrix (the following three lines)
choices = np.random.choice(m*m, p=Pm.flatten(), size=m)
index0, index1 = np.divmod(choices, m)
x0, x1, y0, y1 = x0[index0], x1[index1], y0[index0], y1[index1]
if not OT: # Return the sampled data for I-SFM

return x0, x1, y0, y1
# Sample from πbatch induced by OT-SFM (the following three lines)
Y pair = y0 * K1 + y1 # Construct the switching signal
M mask = Y pair[:, None] == Y pair[None, :] # Construct the mask matrix for

sampling the data within the same switching signal data pair set
index0, index1 = Sample plan with mask(x0, x1, M mask) # Sample from πbatch

return x0[index0], x1[index1], y0[index0], y1[index1]

• Figure 11: An experimental illustration of the limitations as pointed out in the bulletins 1 & 2 of Proposition 3.1 as
well as in the Corollary 3.3. Specifically, when the source data is near the singularity point, the corresponding flow is
“out of distribution”, i.e., transporting the source data to the target space but out of the target distribution (see the second
row of the Fig. 11). Particularly, when the source and target distributions degenerate into the Dirac masses (see the
right column of the Fig. 11), the CFM cannot solve the transport problem, since the flow map of the CFM is determined
due to the existence and uniqueness theorem. On the contrary, our proposed SFM can address these limitations.

• Figure 12: An experimental illustration of the limitations as pointed out in the bulletins 3 of Proposition 3.1. As the
gap between the two modes of target distribution increases, data near the singularity will be mapped to far data points.
In other words, the flow map’s output (or value) can vary rapidly with small changes in the source singular point,
signifying a large Lipchitz constant of the flow map or a worse generalization. In addition, this can present challenges
in terms of the numerical stability of the ODE solver. On the contrary, our proposed SFM does not have these issues.

• Table 3: An experimental illustration of the example of an infinite number of singular points in the Propositioin 3.7.
The learned flow maps of the CFM, including the I-CFM and the OT-CFM, cannot solve the transportation problem
due to the singularity, while our proposed SFM performs very well.

• Table 4: Generated target samples from the trained CFM and the SFM at t = 1 for different NFE on transporting the 2-d
Gaussian mixture (8 modes) to the checkerboard. It is observed that both the I-CFM and the OT-CFM face significant
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Algorithm 3 Sample from πbatch
def Sample plan with mask(x0, x1, M mask) # Sample from πbatch

# x0, x1: shape=(m, dim); M mask: shape=(m, m)
# The following lines are adapted from the source code https://github.com/

atong01/conditional-flow-matching/blob/main/torchcfm/optimal_transport.py
m = len(y0)
a, b = pot.unif(m), pot.unif(m) # Uniform weights for each sample
D = torch.cdist(x0, x1) ** 2 # Distance matrix
D = D + (1 - M mask) * 1e10 # Refined distance matrix by assigning large

values for miss match pairs
p = pot.emd(a, b, M.detach().cpu().numpy()) # Return the OT matrix
choices = np.random.choice(m*m, p=p, size=m) # Sample from the OT matrix
return np.divmod(choices, m)

Algorithm 4 Inference
# Input: Model, source Data={x0, y0}, and coupling matrix P
# Output: Generated samples
Samples = []
for x0, y0 in Data:

y1 = sampler(y0, P) # Sample y1 based on P and y0
s = (y0, y1) # Sampled switching signal
x1 = model.ODE solver(x0, s)
Samples.append(x1) # Generate a target sample via the ODE solver

return Samples

challenges in effectively learning the transportation flows. The SFM works well when using the adaptive step size
ODE solver, but the I-SFM performs much worse than the OT-SFM for small NFEs due to the straightness issue of the
learned flows.

• Table 5: Generated target samples from the trained CFM and the SFM at t = 1 for different training iterations on
transporting the 2-d Gaussian mixture (8 modes) to the checkerboard. Notably, the SFM demonstrates improved
efficiency in training and faster convergence compared to the CFM, owing to its superior regularity.

• Figure 13: True samples from the source distribution Gaussian mixture and the target distribution, i.e., the CIFAR-10
image dataset. Different from the existing works (Lipman et al., 2022; Liu et al., 2022; Pooladian et al., 2023; Tong
et al., 2023a;b), to illustrate the efficiency of our proposed SFM under the heterogeneity in both q0 and q1, we here
consider the Gaussian mixture with 2 modes as the source distribution instead of the standard Gaussian distribution.

• Table 6 (resp., Table 7): Generated target samples from the trained I-CFM (resp., OT-CFM) and the I-SFM (resp.,
OT-SFM) at t = 1 for different NFE on transporting the Gaussian mixture (2 modes) to the CIFAR-10 image dataset.
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D. Experimental details
It should be noted that our experimental implementations are heavily adapted from the open source code
https://github.com/atong01/conditional-flow-matching provided in Tong et al. (2023a;b). All our experiments were conducted
on a single 11GB GTX 1080 Ti GPU.

For the synthetic experiments, we provide the detailed setup for different datasets (see Table 8).

For the CIFAR-10 experiments, all methods used in our work were trained with the same setup as reported in Tong et al.
(2023a;b), only differences in the source distribution, the choice of probability path, and the switching mechanism for our
proposed SFM and its variants. More precisely, we apply the UNet with the following structures and training configurations:

• Adam optimizer with β1 = 0.9, β2 = 0.999, ϵ = 10−8, and no weight decay,

• channels = 128,

• depth = 2 ,

• channels multiple = [1, 2, 2, 2],

• heads = 4,

• heads channels = 64,

• attention resolution = 16,

• dropout = 0.1,

• batch size per gpu = 128, gpus = 1,

• learning rate = 2× 10−4,

• gradient clipping with norm = 1.0,

• exponential moving average weights with decay = 0.9999.

For sampling, we use the traditional Euler integration or the adaptive step size solver dopri5 from the torchdiffeq
package. We use a batch size of 500 for 100 total batches for computing the Fréchet Inception Distance (FID) through the
TensorFlow-GAN library https://github.com/tensorflow/gan.

Here, we provide the specific setup for the initial distribution of the CIFAR10 experiments, where x0 has a 50% chance
of being x0 = torch.randn(3, 32, 32)/4 + 0.5 and a 50% chance of being x0 = torch.randn(3, 32, 32)/4 − 0.5. The
coupling matrices P are set as

two2one :

(
0.5
0.5

)
,

one2ten :
(
0.1 0.1 · · · 0.1

)
,

two2ten, mixed :

(
0.05 0.05 · · · 0.05
0.05 0.05 · · · 0.05

)
,

two2ten, extremal :
(
0.1 0.1 0.1 0.1 0.1 0 0 0 0 0
0 0 0 0 0 0.1 0.1 0.1 0.1 0.1

)
.
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Figure 11. Linear interpolation of the source and target data (sampled from the unimodal and bimodal uniform distributions), and the
trajectories trained from two kinds of SFM, i.e., one2one (1 switching signal, equivalently CFM) and one2two (2 switching signals), via
shrinking the size of the supports (from the left column to the right column). In the right column, the supports of the source and target
distributions are both shrunk to a Dirac measure and a 2-mixture Dirac measure, respectively.
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Figure 12. Linear interpolation of the source and target data (sampled from the unimodal and bimodal uniform distributions), and the
trajectories trained from two kinds of SFM, i.e., one2one (1 switching signal, equivalently CFM) and one2two (2 switching signals), via
enlarging the distance of the two modes of the target distribution (from the left column to the right column).
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Table 3. Trajectories of the learned CFM and SFM via varying the number of function evaluations NFE on the example of infinite number
of singular points in the Propositioin 3.7.

Method NFE=1 NFE=2 NFE=5 NFE=Adaptive

I-CFM
or I-SFM
(one2one)

I-SFM
(one2two)

I-SFM
(two2two)

OT-CFM
or

OT-SFM
(one2one)

OT-SFM
(one2two)

OT-SFM
(two2two)
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Table 4. Generated target samples from the trained CFM and the SFM at t = 1 for different NFE on transporting the 2-d Gaussian mixture
(8 modes) to the checkerboard.

Method I-CFM or I-SFM (one2one) I-SFM (eight2eight) OT-CFM or OT-SFM (one2one) OT-SFM (eight2eight)

Source data

NFE=1

NFE=2

NFE=5

NFE=Adaptive

Target data
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Table 5. Generated target samples from the trained CFM and the SFM at t = 1 for different training iterations on transporting the 2-d
Gaussian mixture (8 modes) to the checkerboard.

Method I-CFM or I-SFM (one2one) I-SFM (eight2eight) OT-CFM or OT-SFM (one2one) OT-SFM (eight2eight)

Iteration=0.5k

Iteration=1k

Iteration=2.5k

Iteration=5k

Iteration=10k

Iteration=20k
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Figure 13. True samples from the source distribution (left, Gaussian mixture) and the target distribution (right, CIFAR-10 dataset).
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Table 6. Generated target samples from the trained I-CFM and the I-SFM at t = 1 for different NFE on transporting the Gaussian mixture
(2 modes) to the CIFAR-10 image dataset.

Method NFE=10 NFE=20 NFE=40 NFE=Adaptive

I-SFM
(one2one)

I-SFM
(one2ten)

I-SFM
(two2one)

I-SFM
(two2ten,
mixed)

I-SFM
(two2ten,
extremal)
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Table 7. Generated target samples from the trained OT-CFM and the OT-SFM at t = 1 for different NFE on transporting the Gaussian
mixture (2 modes) to the CIFAR-10 image dataset.

Method NFE=10 NFE=20 NFE=40 NFE=Adaptive

OT-SFM
(one2one)

OT-SFM
(one2ten)

OT-SFM
(two2one)

OT-SFM
(two2ten,
mixed)

OT-SFM
(two2ten,
extremal)
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Table 8. The detailed setup for different synthetic datasets.

Setup Dataset 1 Dataset 2 Dataset 3 Dataset 4

Data
Dimension 1 1 2 2

q0 Gaussian mixture (2 modes) Uniform distribution H1 Gaussian mixture (8 modes)
q1 Gaussian mixture (2 modes) Uniform mixture (2 modes) (1/2)H1 Checkerboard (8 squares)

Structure

Hidden layer 2 2 2 2
Hidden neuron 64 64 64 64

Activation SELU SELU SELU SELU
Time input True True True True

Switching signal input True (SFM) / False (CFM) True (SFM) / False (CFM) True (SFM) / False (CFM) True (SFM) / False (CFM)

Training

Batch size 256 256 256 256
Iteration 20k 20k 10k 20k

Optimizer Adam Adam Adam Adam
Learning rate 10−3 10−3 10−3 10−3

Inference ODE solver Euler/dopri5 Euler/dopri5 Euler/dopri5 Euler/dopri5

List Figures or tables Figs. 4 & 10 Figs. 11 & 12 Fig. 5 & Tab. 3 Tabs. 4 & 5
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