Under review as submission to TMLR

Instruction-Level Weight Shaping: A Framework for Self-
Improving Al Agents

Anonymous authors
Paper under double-blind review

Abstract

Large language models (LLMs) excel at surface fluency yet remain structurally static af-
ter pre-training; new or evolving domain knowledge is typically bolted on via retrieval-
augmented generation (RAG) or parameter fine-tuning, but RAG often retrieves facts with-
out integrating them logically and adds latency, while fine-tuning is resource-intensive and
risks catastrophic forgetting. We propose Instruction-Level Weight Shaping (ILWS), which
treats curated system instructions as external, auditable pseudo-parameters updated post-
session via reflection and user feedback: after each session an LLM-driven Reflection Engine
inspects the conversation trace, diagnoses reasoning successes or failures, and proposes typed
deltas AK = (AS, AU, AT) over instructions, user preferences, and tools; each delta is
version-controlled, evaluated under a sliding-window analysis of 1-5 star ratings, automati-
cally repaired on first failure, and rolled back on repeated failure; and when the accumulated
edit budget crosses a threshold, the agent can optionally compile a rating-weighted synthetic
dataset and distil matured instruction-space gains into parameters. Empirically, ILWS
makes explicit the low-rank shaping implicitly induced by context in transformer blocks
and preserves governance while eliminating per-call retrieval: in a real-world e-commerce
platform proof of concept (PoC) called “L0 Support” with 1M-token context, a single opera-
tor using the reflection-driven knowledge accumulation achieved 4-5x gains in tickets/hour
and ~80% reduction in time per ticket, with first-shot resolution improving from ~20% to
~90%; when the matured instruction base was deployed to six additional operators without
further reflection updates, they reported comparable gains, suggesting that ILWS produces
transferable domain specialisation akin to fine-tuning but without parameter modification.
Because ILWS operates at the instruction layer, it generalises to dynamic domains (legal,
medical, engineering) requiring adaptive reasoning, tool creation, and low-latency deploy-
ment.

1 Introduction

This paper introduces Instruction-Level Weight Shaping (ILWS), a lightweight framework for continual self-
improvement in large language models (LLMs). In production systems, system instructions are treated as
authoritative directives. ILWS reinterprets these instructions not as fixed configuration, but as a mutable,
externalised memory channel, a low-cost, auditable surrogate for the model’s internal weights. Rather
than updating parameters through costly fine-tuning or repeatedly fetching context via retrieval-augmented
generation (RAG), ILWS uses a post-session reflection and feedback loop to produce knowledge deltas. These
fine-grained edits gradually evolve the system prompt to better capture a domain’s logic, tools, and user
expectations.

We contend that a large fraction of operational evolution can be handled by structured edits to the system
prompt itself, provided edits are (i) feedback-driven and quantitative, (ii) reversible under governance, and
(iii) recorded with code-like rigour. After each session, a stochastic Reflection Engine proposes a knowledge
delta AK; = (ASt, AU, ATy), which is trialled, score-gated (accepted only if a sliding-window rating im-
proves by at least T with significance «), possibly repaired, and either accepted into a versioned knowledge

Under review as submission to TMLR

state or rolled back. When the cumulative instruction budget exceeds a threshold, ILWS synthesises a rating-
weighted dataset and distils persistent instruction-space edits into model weights (cf. Optional distillation,

Eq.)

Formally, at turn ¢ the agent uses a frozen backbone fy and a composite knowledge state Ky = (S, Uy, Ty):
G = fo(ar, K), K1 = (S ® ASy, Uy & AU, Ty & ATy). (1)

Here, ® denotes applying the typed edit list to each component (insert/modify/delete). We show how
this operational loop provides an explicit, auditable analogue of implicit low-rank weight shaping induced
by prompts in transformer blocks (akin to low-rank adapters (LoRA) produced on-the-fly by prompts (Hu
et al.|, 2022} |Li et al, 2022))), and how it complements RAG and fine-tuning in practice.

Contributions.

e Formalise ILWS with typed deltas and governance. We cast structured prompt edits over K =

(S,U,T) as explicit, version-controlled surrogates for low-rank weight updates, with git-backed persistence
and rollback.

o Statistical gate with repair/rollback. We introduce a sliding-window, statistically grounded accep-
tance rule parameterised by (7,), admitting edits only if average ratings improve by at least T with
significance «, with one-shot repair and rollback on second failure.

e Theory link to implicit low-rank shaping. We articulate how instruction edits influence prompt-
conditioned activations to yield LoRA /IA3-like low-rank effects, providing an explicit, auditable analogue
of implicit updates induced by prompts.

e Production architecture with autonomous tool synthesis. We present a stochastic reflection loop,
sandboxed tool generation and integration, and operational guardrails (policy invariants, statistical change
detection on ratings).

o Empirical deployments and latency/cost profile. (i) Three-month SRE study with 2.4-5.0x
throughput gains and ~80% fewer audited hallucinations; (ii) E-commerce platform PoC "LO Support'
with 4-5x tickets/hour and ~80% time-per-ticket reduction. ILWS adds no per-call retrieval; RAG
incurred +300-600 ms median and up to +2000ms at the 95th percentile (p95) per turn in our measure-
ments.

2 Theoretical context and related work

Implicit low-rank updates from context. A transformer block comprising a contextual layer followed
by a multi-layer perceptron (MLP) can be viewed as applying an implicit rank-one update to the first
MLP layer, computed from the context tokens; iteratively consuming tokens yields an online gradient-like
dynamic over an effective weight matrix (Dherin et al.2025). ILWS makes such influences ezplicit by editing
instructions outside the network, preserving auditability and persistence.

Path-kernel view of trained models. Models trained by gradient descent are approximately kernel
machines whose predictions can be expressed via path kernels that integrate gradient similarities along the
optimization trajectory (Domingos, 2020). Under this view, retrieved or prompted examples act as non-
parametric supports. Selecting context that aligns with gradient-path features should improve reliability, a
perspective we exploit in our retrieval-free but instruction-grounded edits.

RAG and modular augmentation. RAG is effective but requires careful indexing, retrieval granularity,
reranking, compression, and adaptive triggering to avoid irrelevant or counterfactual context (Gao et al.
2024)). ILWS sidesteps per-call retrieval by baking vetted rules and patterns into instructions, while remaining
compatible with optional RAG when needed.

Under review as submission to TMLR

Self-improvement and reflection. Memory-augmented prompting (e.g., MemPrompt (Madaan et al.,
2022)), reflection-based retries (e.g., Reflexion (Shinn et al) [2023)), and active retrieval (e.g., Self-RAG,
FLARE (Asai et all 2023; Jiang et all 2023))) demonstrate gains from critique and adaptation. ILWS
unifies these ideas post-session, gating durable edits with human-centric scores and governance, and adding
autonomous tool synthesis.

LLM tool-use and modular retrieval. Orthogonal lines of work teach models to call tools (e.g., Tool-
former) and to interleave retrieval and generation (e.g., Demonstrate-Search-Predict, active retrieval) (Schick
et al., [2023; [Khattab et all 2022 Jiang et al. |2023; |Asai et al) 2023]). These systems improve evidence
acquisition at inference time, but typically do not persist successful reasoning as durable edits. ILWS is
complementary: it converts recurrent patterns into authoritative instructions and (optionally) new tools,
reducing online retrieval while preserving auditability.

3 Problem formulation

Let fy be a frozen LLM backbone. The agent maintains a knowledge state
Kt = (StvUtacrt)v (2)

where S; is the current instruction set, U; captures user learnings or preferences, and T is the registry of
callable tools. During inference the system prompt is constructed deterministically from K; and provided
to fp together with the user input x;; cf. Eq. . At session end the Reflection Engine emits a candidate
AKt = (AS,:, AUt, ATt)

Score-gated acceptance. Let r; € {1,...,5} be user ratings (5-point Likert). A candidate edit AK} is
provisionally deployed immediately and evaluated over the next Ny, interactions. Define sliding-window
means over Ny, interactions:

1 t+Nuywin—1

1=t

B 1 t—1 _
r = — E rs r —
prev NWin i—t_ N iy new N.

win win

We accept the provisional edit if
Tnew = 'Fprev +7 and p-Vahle < o, (4)

where the p-value comes from a one-sided Welch ¢-test by default (falling back to Mann—Whitney if normality
fails Shapiro-Wilk), and typical hyper-parameters are (7, «) = (0.05,0.05). Note that 7 = 0.05 corresponds
to one-twentieth of a star on a 5-point scale. Equivalently, the gate admits an edit only if it improves
the average rating by at least 7 with significance . On first failure we solicit a typed automatic repair
AK] = (AS], AU/, AT}); on a second consecutive failure we roll back to the last tagged good state. We
note that this gate is designed as an engineering safeguard for drift control, not as a formal hypothesis-
testing framework; the sliding-window approach does not account for temporal autocorrelation or multiple
testing across successive edits. In practice, the repair/rollback mechanism and optional human veto provide
additional robustness beyond the statistical signal.

Optional distillation. We track a running instruction-change budget

T

Br =3 (IASl + |AU]| + | AT,
i=1
where || - || is a simple size metric such as token count or edit length. When Br > M, we synthesise a

rating-weighted dataset Dgy,, = {(z, K, §,7)} and solve

-1
0* € arg néi/n Z w(z,y) Loe(for(x, K),y) (token-level cross-entropy), w(z,y) = ! € [0,1],
(2,K,y)€Dsyn
(5)

then redeploy fp« and reset Brp.

Under review as submission to TMLR

4 Instruction-Level Weight Shaping (ILWS)

Figure [1| (left-to-right) depicts the four phases.

4.1 Phase 1: Inference

Given (x4, K;), the agent returns §;, = fo(z;, K;) per Eq. (I). In our reference system, K;’s components
are versioned, serialised JSON fragments deterministically composed into the system prompt; the schema is
version-pinned so edits remain diff-friendly. The session stores a transcript, tool logs, and the rating r;.

4.2 Phase 2: Post-session reflection and update

A session-end hook or cron job invokes the Reflection Engine R with transcript, tool logs, and recent ratings.
R emits a typed delta

AK, = (AS;, AU,, AT})

expressed as calls into a self-modification API (appendInstruction, modifyInstruction, createTool,
deprecateTool, addUserPreference, ...) plus a structured rationale (YAML diagnostics, score deltas).
The candidate is applied immediately and evaluated over the next Ny, sessions under the score-gating

rule .

Autonomous tool synthesis. If AT; # @&, the Tool Manager compiles and unit-tests generated Python
in a sandbox (networkless, no egress; OCI/seccomp profile). On success, the tool signature is appended to
T, and a concise usage rubric is inserted into S to make the capability discoverable by the model; admins
may revert within a review window Af.

4.3 Phase 3: Persistence and governance

Accepted deltas are committed to an immutable git repository and tagged with a knowledge checkpoint;
admins act as observers and may optionally veto by triggering a one-click revert within a configurable review
window At. A dashboard exposes diffs, sliding-window metrics, gate decision traces (7, c, p-value), confidence
intervals, failure analyses, and one-click reverts. Human veto flags are recorded and fed back into subsequent
reflection prompts to prevent repeated proposals that were explicitly declined.

4.4 Phase 4: Long-term evolution

When the instruction token budget exceeds M, ILWS synthesises Dy and distils to weights via Eq. (5.
Fine-tuning runs offline; live traffic continues to hit the frozen fy. This collapses stable prompt-space edits
into parameters, freeing context for future growth and keeping the JSON prompt under a budget C' tokens
to avoid context-window bloat.

Under review as submission to TMLR

- System Instructions S¢

- User Preferences Ut

- Available Tools T

fo: (@, Ke) = G¢

- Review Diffs
- Reverts
- Manual Additions

{(TtaKt;ﬁtv"l)}thl

Tprev = average score before AKy

Tnew = average score after AKy

v

Did the average score
improve?
Tnew = Tprev + T

- Conversation Transcript
- User Feedback {ri}i—;

- Tools used

Repair Request

4

Proposes
Knowledge Update
AK; = {ASy, AU, AT}

N

- Update System Instructions
- Adjust User Preferences
- Create New Tool

D = Synthesize({(z¢, K¢, 74, 5t)}t = 17)

/ < FineTune(d, D)

Figure 1: ILWS data flow with four phases: inference, self-improvement, persistence/governance, and long-
term evolution (distillation). The right panel expands the reflection/score-gating/repair/rollback logic.

Under review as submission to TMLR

4.5 Algorithms

Algorithm 1 Session loop with ILWS

1: > Two-thread view: the gate/veto/distillation steps execute in a background evaluator once ratings for
t..t + Nyin—1 are observed. We evaluate one candidate at a time (can be extended to a queue).
Initialize Ko = (So, Up, Tp), instruction-change budget B + 0 > edit-budget [|AS||+[|AU||+||AT|
Initialize rating buffer; rprev +— 3 > neutral prior
Set window size Ny, and margins (7, «).
for session t =1,2,... do

Receive input x; produce §; = fo(xs, Ky); log transcript and tools; obtain rating r;; append 7, to
sliding-window rating buffer (last Ny).
7 if buffer length < Ny, then

A

8: K+ K, > state unchanged during warm-up
9: continue > warm-up: skip gating until buffer is full
10: end if

11: AK; < R(transcript, tools, buffer) > Reflection Engine uses r;—n,,, :t—1

12: Provisionally set Kttmp — (St @ ASy, Uy @ AU, T, @ ATy) > evaluate asynchronously (scheduled
task; does not block inference) over next Ny, sessions

13: Tprev = Tt—Nyinit—15 Tnew < Tt:t4Nyin—1 > rating windows

14: Tprev <— Mean(Tprev); Mnew < Mean(rnew)

15: p < WELCHTTEST("prev, Tnew) > one-sided; fallback Mann—Whitney; runs after window closes

16: if Phew > Tprev + 7 and p < a then

17: Kipq Kttmp; commit & tag in git; B < B + [|AS:|| + [|AU|| + ||ATy|.

18: > Admin may veto within review window At

19: if veto then

20: rollback to last tag; Kyy1 < Ky; B < B — (||ASy]| 4 | AU || + [[AT;) > revert commit if veto
arrives later

21: else

22: > no veto, budget check

23: if B> M then

24: Distill via Eq. ; deploy fg«; B+ 0

25: end if

26: end if

27: else

28: Request typed repair AK} = (AS), AU/, AT/) from R; re-evaluate once under the same acceptance
gate. > if repair is accepted, follow the success path above

29: If still failing, rollback to last tag; set K11 + Ki; > discard failed candidate

30: end if

31: end for

4.6 Safety guardrails

We separate implemented guardrails in the reference PoC from recommended hardening for production. The
gate in Eq. and the repair/rollback loop already constrain behavioural drift; below we focus on code and
data safety.

Implemented in the PoC.

e Version control and audit. All edits to instructions and tools are committed to git with timestamps;
JSON saves create on-disk backups; reflection prompts and outcomes are written to an audit log directory.

« Knowledge tagging and rollback. The feedback module can tag the current knowledge state and
revert to the last good tag under degradation, keeping a backup of the faulty state for review.

Under review as submission to TMLR

o Tool creation denylist. Generated tool code is scanned for a deny-list of dangerous strings (e.g., sudo,
chmod, curl, wget, eval() both in code and in file-like parameters before execution.

o Path isolation. Each tool executes with its working directory switched to a per-tool sandbox folder; file
helpers storeInDisk/loadFromDisk validate filenames to prevent path traversal and absolute paths.

Recommended for production.

e Static analysis, not regex alone. Parse generated code with an AST and enforce an allow-list of
modules (e.g., math, json); block imports such as os, subprocess, socket, requests, dynamic eval/exec,
and file I/O outside provided helpers.

o Runtime isolation. Run tools in a networkless, seccomp-filtered OCI container (with an AppArmor
profile) with resource limits (CPU, memory), execution timeouts, and capped output size.

e Unit-test gate. Require a minimal unit-test scaffold to pass before registering a tool; on failure, quar-
antine the tool and surface the failure diff in the dashboard.

e Secret and egress checks. Scan code and outputs for credential patterns and block environment access;
maintain an explicit policy for any outbound calls (default: none).

o Explicit approval rubrics for side-effects. For tools that mutate external state, insert an approval
rubric into S (what to confirm, with which fields) and require an explicit, structured user confirmation
step.

o« Edit scope and allowlists. Constrain AS to edit only within pre-declared sections
(global/product/tenant) and enforce allowlisted patterns for sensitive policies.

o Statistical change detection (optional). Lightweight EWMA/CUSUM on ratings can flag sudden
drops even if the gate passes; this remains a secondary signal to user ratings.

4.7 Framework versus reference implementation

ILWS is a framework: it governs durable behavioural knowledge via a typed state K = (S,U,T) and audited
edits AK = (AS, AU, AT). Edits are proposed post-session by a reflection process, screened by a statistically
grounded gate, repaired once on failure, rolled back on repeated failure, and periodically distilled when an
edit budget is exceeded. These steps are conceptual and agnostic to any specific rating signal, statistical
test, or sandbox.

To avoid conflating the framework with one instantiation, we adopt a minimal validity contract. A substitute
mechanism remains compliant if (i) the feedback signal (human or automated) is monotonically correlated
with task quality, (ii) the gate compares pre- and post-edit quality on at least Ny, samples and controls
family-wise Type I error at < «, and (iii) the execution sandbox enforces policy-governed network egress
(default-deny with explicit allowlists and audit logging), restricts file I/O to a declared workspace, and blocks
dynamic code execution unless explicitly whitelisted. Any mechanism satisfying these conditions can replace
the defaults without altering ILWS.

Our reference system meets this contract with pragmatic defaults: five-star user ratings; a sliding-window
one-sided Welch t-test gate with (7, a) and window size Nyin; a one-shot typed repair followed by rollback;
a deny-list sandbox; optional autonomous tool synthesis; and an edit-budget trigger for offline distillation.
These are defaults, not intrinsic to ILWS, and can be swapped for valid alternatives such as reward-model
scores, Bayesian or sequential tests, AST/OPA policy checks, or a seccomp-filtered OCI container.

Deployments may also inject ephemeral context at inference time (for example, server-resources, transaction
analyses, or per-ticket metadata). In the “L0 Support” prototype, such telemetry aids diagnosis but is not
persisted in K. Only rubrics, preferences, or tools that survive the gate become durable edits, preserving
auditability and simplifying multi-tenancy.

Under review as submission to TMLR

5 Why instruction edits behave like weight shaping

Let Tww = My o A denote a contextual layer A followed by an MLP with first-layer weight W and the
remaining network fp. For a token z with context C' (which includes instruction tokens S), [Dherin et al.
(2025)) show—empirically and via linearised analysis—that the output with C' can be approzimated by the
output without C' but with a rank-one perturbation AW/(C) applied to the first MLP layer (see their
derivations/experiments). Hence the map C' — AW(C) factors through the contextual representation

a(C) = A(z; C).

Consider a small edit 4.5 to the instruction tokens inside C. If a(C) is Lg-Lipschitz in S locally (measured in
the £5 norm of token-embedding differences), and the map @ : a — AW is smooth with local operator-norm
bound & := ||V, ®(a(C))llop near a(C), then

HAW(C’[S + S+65]) — AW(C’)HF = ||<I>(a(C’[S — S405))) — @(a(C))HF
K [|a(CLS = §+465]) — a(C)|; (6)

<
< kLg ||05]|2-

Thus, under these local smoothness assumptions, an edit 4.5 scales the induced update by at most KLg ||0.5]|2.
Small, structured edits to S therefore act as a controlled dial on the magnitude (via kLg) and direction
(through a(C)) of the effective low-rank update. This argument is local and qualitative: it relies on the rank-
one approximation and smoothness in a neighbourhood of the current context and does not claim weight-level
equivalence to fine-tuning. Because xLg upper-bounds the update magnitude, ILWS’s (7,) gate implicitly
limits effective weight drift. Large edits and cross-token interactions beyond this neighbourhood fall outside
the bound and are empirically screened by the gate.

We note that standard dot-product attention is not globally Lipschitz (Kim et al., 2021)); hence no uniform
bound can be guaranteed. Our argument is therefore local, and ILWS enforces stability operationally via its
(7, @) score-gate with repair/rollback, which screens out edits that would induce disproportionate drift.

The path-kernel view (Domingos, |2020)) complements this picture: path kernels interpret a trained network as
a linear model in an implicit kernel defined by gradient paths. Edits that steer a(C) toward features aligned
with those paths induce low-rank tweaks that better match the desired behaviour; ILWS operationalises this
by proposing instruction edits and accepting them only under the score-gated objective.

6 Experimental Evaluation

This section details a longitudinal, single-operator study of the ILWS framework embodied in a proof-of-
concept tool named "LO Support." The study was conducted within a live e-commerce platform Level 2/Tier-3
support engineering environment. All performance data reflects the real-world ticket resolution throughput
of the operator.

6.1 Experimental Setting and Baselines

The primary evaluation environment is high-stakes technical support on an e-commerce platform hosting over
10,000 merchants, where correctness, precision, and efficiency are paramount. The operator’s role involves
diagnosing and resolving complex performance and configuration issues.

We establish two key baselines:

i) Manual Throughput: The operator’s historical performance without any AT assistance. The estab-
lished average was 50 resolved tickets per month, working a standard full-time schedule. A high-effort
attempt to clear a backlog, yielded a maximum of 90 tickets in one month, demonstrating a practical
ceiling for manual work.

ii) RAG: An initial approach using Retrieval-Augmented Generation was tested and discarded. The RAG
configuration used OpenAl’s text-embedding-3-small embeddings with 400-token chunks and 100-

Under review as submission to TMLR

token overlap, indexing past tickets, runbooks, and platform documentation. While RAG could retrieve
documentation and configurations, it exhibited two critical failure modes: (i) chunk incompleteness—
the platform’s cluster architecture has site-specific variances that span multiple documents, and chunked
retrieval failed to capture these cross-document dependencies, leading to incomplete or contradictory
context; (ii) lack of authoritative integration—retrieved content was treated by the model as suggestive
rather than definitive, causing it to hedge or argue with accurate retrieved facts rather than reasoning
from them as ground truth. RAG also introduced significant per-message latency (800-2000ms) and
required multiple conversational turns to reach correct diagnoses that ILWS achieved in a single shot
once the instruction base matured. In the current production system, RAG is used only for optional,
non-authoritative context (e.g., retrieving similar past tickets for reference), while the core domain
knowledge resides in the instruction base.

6.2 Implementation Details

The “L0O Support” PoC was developed to handle the large and evolving knowledge base of the e-commerce
platform. Key implementation choices include:

¢ Model Selection: Google’s Gemini-2.5-pro (temperature 0.7) was used for both inference and the re-
flection engine, chosen primarily for its 1M-token context window which accommodated the growing
instruction base during the knowledge acquisition phase. The matured instruction base (~30k tokens)
was also tested successfully with Claude Sonnet 4, Sonnet 4.5, and Opus 4.5, all exhibiting comparable
specialised behaviour, suggesting that the accumulated knowledge transfers across frontier models.

e Context Window: The continuous accumulation of domain-specific instructions necessitated a model
with a 1 million token context window to hold the evolving system prompt during the knowledge acqui-
sition phase.

« No Distillation Applied: All results are pre-distillation; the optional distillation stage (Phase 4)
was never executed because performance remained excellent as the instruction base grew. Once the
model had internalised the core domain knowledge, the active base stabilised at ~30k tokens and is now
frozen, updated only when platform infrastructure changes. The observed gains are entirely attributable
to instruction-space edits, demonstrating that ILWS can produce fine-tuning-like specialisation without
parameter modification or the cost of distillation.

6.3 Quantitative Results

The introduction of the ILWS-powered tool resulted in a dramatic and sustained increase in operator through-
put and efficiency, even with reduced working hours. All calculations are based on an average of 22 working
days per month. The team’s standard workday is 7.5 hours; however, the primary operator worked reduced
hours (approximately 3-4 hours per day, mornings only) during the evaluation period to accommodate
concurrent research activities.

In the first month of deployment, the operator resolved 120 tickets while working only part-time (mornings,
~3—4 hours/day). This represents a 140% increase in total ticket volume compared to the 50-ticket full-
time baseline, achieved in roughly half the working hours. A subsequent three-week (15-day) sprint saw the
resolution of 100 tickets working only afternoons (~3-4 hours/day).

Throughput Analysis. To normalize these results, we analyze performance in terms of Tickets Per Hour
(TPH).

o Baseline TPH: 50 tickets / (7.5 hours/day x 22 days) ~ 0.30 TPH.
« ILWS TPH: Over a recent two-day period, the operator consistently resolved 13 tickets per day while
working an average of 6 hours. This yields a measured throughput of 13 tickets / 6 hours ~ 2.17 TPH.

This represents a throughput increase of over 7.2 x (2.17 / 0.30) compared to the manual baseline. The
productivity gains are summarized in Table [T}

Under review as submission to TMLR

Table 1: Performance Metrics

Metric Manual Baseline ILWS Performance Improvement Factor
Tickets / Month 50 (Full-time) 120 (Part-time, Month 1) 4.8x%

Tickets / Hour (TPH) ~0.30 ~2.17 (Recent average) ~T.2X

Hours / Ticket ~3.30 ~0.46 ~86% Reduction
First-Shot Success ~20% ~90% (Performance tickets) 4.5x
Projected Throughput 50 / month 2504 / month (Full-time) 5.0

6.4 Qualitative Analysis

Beyond raw throughput, ILWS demonstrated significant qualitative improvements in the diagnostic process.

Drastic Reduction in Hallucinations. Initially, without the domain-specialized instructions, the
model’s suggestions were helpful in only about 2 out of 10 zero-shot attempts, requiring multiple itera-
tions of prompting and correction. After the ILWS system matured its instruction set, its suggestions for
performance-related tickets were accurate enough to solve the issue in zero or one shot in 9 out of 10 cases.
First-shot success was measured operationally: a response was counted as successful if the model’s initial
recommendation led directly to ticket resolution without requiring follow-up clarification or correction from
the operator. This was validated both retrospectively against previously-solved tickets and prospectively on
new incoming tickets. In a recent month, 74 tickets were resolved with only 6 requiring follow-up questions
(~92% first-shot success), consistent with the ~90% rate observed during the maturation phase. This marks
a shift from ~20% to ~90% first-shot resolution rate for performance-related tickets, indicating a significant
reduction in model hallucination and an increase in reasoning precision.

A Case Study. A compelling example of the reflection mechanism occurred during a performance inves-
tigation. The model initially hypothesized that high memory consumption in ‘php-fpm*‘ workers was caused
by cron jobs. The operator provided a crucial correction:

"Cron jobs run on ‘php-cli‘, not ‘php-fpm* ‘php-fpm* serves web traffic from users, APIs,
or bots."

The post-session reflection engine processed this feedback and proposed an update to its system instructions,
adding the rule that ‘php-fpm‘ is exclusively for web traffic while ‘php-cli‘ handles background tasks like
crons. When a new session was started to simulate the same issue from scratch, the model, now equipped
with this new instruction, immediately and correctly identified the root cause as high request volume in its
first response.

System Maturation. Over the course of approximately 300 support sessions, the system underwent
80 distinct instruction updates. In the initial phases, the operator rolled back only around 25% of the
modifications suggested by the reflection engine, demonstrating a high degree of relevance and accuracy in
the system’s self-improvement proposals. As the instruction base matured, the reflection engine proposed
fewer deltas, eventually reaching periods of 10+ consecutive sessions with no new proposals, indicating
convergence to a stable knowledge state. This iterative process of refinement is directly responsible for the
observed increase in precision and speed.

Multi-Operator Deployment (Observational). After the instruction base reached maturity, it was
deployed in frozen form (no further reflection updates) to six additional operators on the same support
team. These operators did not contribute to the knowledge acquisition phase; they used the system purely
as consumers of the accumulated instruction state. All six operators reported comparable improvements
in first-shot resolution and investigation speed, with qualitative feedback such as: “I talk to the Al as
if I'm talking to a Senior that just understands everything about our system, and in most cases, it just
answers what I'm expecting in the first shot.” This observational evidence suggests that the gains are not

10

Under review as submission to TMLR

attributable to individual operator learning effects, but rather to transferable domain specialisation encoded
in the instruction base, behaviour consistent with what one would expect from a fine-tuned model, achieved
without parameter modification.

7 Discussion: ILWS vs. RAG vs. fine-tuning

Optimization view (brief). ILWS can be seen as a gradient-like supervisory optimisation in instruction
space: small edits AS are proposed and accepted only if a sliding-window rating objective improves (a
trust-region-like gate), with repair/rollback acting as a line search and early stopping. This bandit/RL
perspective complements the implicit low-rank view: instructions serve as persistent pseudo-weights shaping
behaviour, while true backpropagation applies only during the optional distillation stage. RAG is effective
for fast-changing, citable knowledge but adds latency and risks irrelevant context (Gao et al., [2024)). Fine-
tuning imprints stable competencies but is costly to run continuously. ILWS covers the operational middle:
authoritative instructions for last-mile rules, validated online and distilled offline. The link to implicit low-
rank shaping suggests edits as controlled, low-rank function tweaks rather than sprawling heuristics.

Table 2: Positioning summary.

Dimension ILWS RAG FT
Online latency low medium low
Update cadence per session per call offline
Auditability high medium medium
Drift control score-gated retriever-tuned data/process
Cost low medium high

Illustrative example: authority of system instructions. To clarify why instruction-level knowledge
behaves differently from retrieved context, consider a simple counterfactual rule. When the statement “Paris
is called Brasilia now” is provided as user context (analogous to retrieved RAG content), the model typically
challenges it using its pretrained world knowledge and requires explicit confirmation before reasoning from
it. When the same rule is placed in the system instructions, the model immediately reasons from it as
an authoritative premise (e.g., answering that the River Seine flows through “Brasilia, France”) without
hedging. This illustrates a core motivation for ILWS: retrieved context is treated as suggestive, whereas
system instructions function as axiomatic constraints that shape downstream reasoning.

8 Limitations and risks

ILWS assumes access to ratings that correlate with quality; noisy or gamed feedback can misguide edits.
Tool synthesis, if under-specified, can create unsafe actions; our sandbox and policy invariants reduce but
do not eliminate this risk. Finally, the theory-to-practice link is qualitative: while instruction edits influence
effective low-rank updates, quantifying alignment remains an open problem.

9 Conclusion

Instruction-Level Weight Shaping offers a lightweight, auditable path to continual improvement: treat system
instructions as dynamic surrogates for weight updates, gated by human feedback, governed like code, and
periodically distilled. Empirically, ILWS delivered multi-fold productivity gains and fewer hallucinations
without online retrieval or constant fine-tuning. The framework operationalizes emerging theory on in-
context weight shaping and connects it to practical agent engineering.

11

Under review as submission to TMLR

Broader Impact Statement

ILWS could democratize access to specialized Al capabilities by enabling domain adaptation without exten-
sive fine-tuning resources, with potential productivity gains in knowledge-intensive fields. The framework’s
emphasis on auditability, version control, and governance mechanisms provides transparency in Al system
evolution.

The autonomous nature of instruction modification raises concerns about system drift and unintended be-
havioural changes. The framework mitigates these risks through statistical gating, automatic rollback,
version control, comprehensive audit logging, and sandboxed tool execution with network isolation. We
recommend that deploying organizations maintain human oversight of critical modifications and conduct
regular audits of accumulated changes.

References

Akari Asai, Zexuan Wu, Yizhong Wang, Akshay Suresh, and Hannaneh Hajishirzi. Self-rag: Learning to
retrieve, generate, and critique through self-reflection, 2023.

Benoit Dherin, Michael Munn, Hanna Mazzawi, Michael Wunder, and Javier Gonzalvo. Learning without
training: The implicit dynamics of in-context learning, 2025.

Pedro Domingos. Every model learned by gradient descent is (approximately) a kernel machine, 2020.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Meng Wang,
and Haofen Wang. A survey on retrieval-augmented generation for large language models, 2024.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. Lora: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2022.

Zelin Jiang, Frank F. Xu, Luyu Gao, Zhuyun Dai, Yiming Yang, Jing (Jamie) Callan, and Graham Neubig.
Active retrieval augmented generation, 2023.

Omar Khattab, Keshav Santhanam, Xinlei D. Li, Daniel Hall, Percy Liang, Christopher D. Manning, and
Matei Zaharia. Demonstrate-search-predict: Composing retrieval and language models for knowledge-
intensive nlp, 2022.

Hyunjik Kim, George Papamakarios, and Andriy Mnih. The lipschitz constant of self-attention, 2021.

Xiang Lisa Li, Timothy Wang, and Behnam Neyshabur. IA?: Parameter-efficient transfer learning for nlp.
In NeurIPS, 2022.

Aman Madaan et al. Memory-augmented large language models are zero-shot learners, 2022.

Timo Schick, Joan Plepi, Anna Korhonen, Jane Dwivedi-Yu, Roberta Raileanu, Lei Shu, Jason Weston, and
Thomas Scialom. Toolformer: Language models can teach themselves to use tools, 2023.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion: Lan-
guage agents with verbal reinforcement learning, 2023.

12

	Introduction
	Theoretical context and related work
	Problem formulation
	Instruction-Level Weight Shaping (ILWS)
	Phase 1: Inference
	Phase 2: Post-session reflection and update
	Phase 3: Persistence and governance
	Phase 4: Long-term evolution
	Algorithms
	Safety guardrails
	Framework versus reference implementation

	Why instruction edits behave like weight shaping
	Experimental Evaluation
	Experimental Setting and Baselines
	Implementation Details
	Quantitative Results
	Qualitative Analysis

	Discussion: ILWS vs. RAG vs. fine-tuning
	Limitations and risks
	Conclusion

