
TMA-Adaptive FP8 Grouped GEMM: Eliminating Padding Requirements in
Low-Precision Training and Inference on Hopper

Zhongling SU 1 Rong FU 1 Weihan CAO 1 Jianfei GAO 1 Minxi JIN 1 Zhilin PEI 1 Hui WANG 1

1 Shanghai Artificial Intelligence Laboratory, Shanghai, China

Abstract
Current FP8 grouped GEMM implementations
require padding each group to a fixed align-
ment (e.g., 128), incurring memory and compu-
tational overhead. We propose TMA-Adaptive
FP8 Grouped GEMM, which eliminates padding
by dynamically adapting to variable group di-
mensions via (1) a TMA descriptor pool with
log2(blockM ) preconfigured descriptors to han-
dle all residual row cases through dynamic run-
time selection and dual-phase load-store opera-
tions, achieving comprehensive coverage with
minimal overhead, and (2) TMA-alignment-aware
management to satisfy 16-byte global memory
alignment and 128-byte shared memory align-
ment. Experiments demonstrate 1.7% to 20.4%
speed up with up to 23.8% memory reduction
compared to padding operation plus state-of-the-
art FP8 grouped GEMM, while maintaining full
numerical equivalence for valid data. The source
code is publicly available at an anonymous repos-
itory: https://github.com/sukoncon/
TMA-Adaptive-FP8-Grouped-GEMM.

1. Introduction and Related Work
To accelerate computation and reduce memory consumption,
the exploration of low-precision computation has gained
momentum. In 2018, (Micikevicius et al., 2018) pioneered
the training of deep neural networks using half-precision
floating-point numbers. With subsequent hardware advance-
ments, lower precision techniques continued to evolve, as
demonstrated by (Mitchell et al., 2023) which proposed
SwitchBack - an int8 quantized linear layer for training.
The stability and computational efficiency of 8-bit train-
ing/inference for large models were ultimately validated by
(DeepSeek-AI, 2025).

Modern GPU architectures Hopper and beyond provide
support for FP8 tensor core. In fully utilize GPU capabilities,
various optimization techniques have been developed (Zhao
et al., 2025; Shah et al., 2024), including warp specialization,

Tensor Memory Accelerator (TMA) (NVIDIA, 2022-03-22),
and warp group matrix multiply-accumulate, collectively
maximizing memory bandwidth utilization and arithmetic
intensity for foundation model workloads.

These low-precision techniques find particularly important
applications in specialized architectures. Grouped General
Matrix Multiplication (Grouped GEMM) operations play
a critical role in Mixture-of-Experts (MoE) architectures,
where dynamic group sizes arise from variable sequence
lengths selected via top-k routing.

In Grouped GEMM computations, padding is essential due
to hardware constraints when handling variable dimensions
(e.g., dynamically routed sequence lengths in MOE). The
necessity arises from two fundamental architectural limi-
tations: First, the static configuration of TMA descriptors
during host initialization prevents dynamic adjustment to
varying row dimensions across different groups. Second,
the Hopper architecture’s TMA imposes strict alignment
requirements - 16-byte for global memory and 128-byte
for shared memory for multi-dimensional bulk tensor asyn-
chronous copies (NVIDIA Corporation, 2025).

In this work, we present TMA-Adaptive FP8 Grouped
GEMM, a hardware-compliant optimization framework for
FP8 matrix multiplication that eliminates padding overhead
while strictly satisfying TMA alignment constraints. Our
solution introduces two key innovations:

First, a TMA descriptor pool that predefines descriptors
for all possible residual rows (the remaining rows when
the group row count is divided by blockM), followed by
dynamic runtime descriptor selection and dual-phase load-
store operations. This approach achieves coverage of all
possible residual row cases with only log2(blockM ) pre-
configured descriptors.

Second, we propose an TMA-alignment-aware memory ac-
cess scheme that guarantees compliance through two mech-
anisms: over-fetching to maintain 16-byte global memory
alignment, and constraining blockN to multiples of 64 ele-
ments to ensure 128-byte shared memory alignment bound-
aries.

1

https://github.com/sukoncon/TMA-Adaptive-FP8-Grouped-GEMM
https://github.com/sukoncon/TMA-Adaptive-FP8-Grouped-GEMM


TMA-Adaptive FP8 Grouped GEMM

In the following sections, we first present our methodology
in Section 2, followed by experimental results and anal-
ysis in Section 3. Additional details are provided in the
Appendix.

2. Methodology
We present an optimization framework (Figure 1) featuring
two key innovations. In this section, we first introduce the
fundamental concepts of grouped GEMM, then provide de-
tailed descriptions of the two major innovations: dynamic
descriptor selection with two-phase load-store in Section 2.2
(corresponding to the yellow blocks in Figure 1) and TMA-
Alignment-Aware memory management in Section 2.3 (ad-
dressing the green blocks and blockN configuration in Fig-
ure 1).

2.1. Notation and Preliminaries for Grouped GEMM
Table 1. Key notation for grouped matrix multiplication

Symbol Description Dimensions

g Group index Scalar
Mg Variable row dimension of group g Scalar
N Output column dimension Scalar
K Hidden dimension Scalar
Ag Left matrix for group g RMg×K

Bg Right matrix for group g RK×N

Cg Output matrix for group g RMg×N

Sg
A Per-tile scale for Ag RMg×⌈K/128⌉

Sg
B Per-block scale for Bg R⌈K/128⌉×⌈N/128⌉

Table 1 summarizes the key notation used in Grouped
GEMM with specialized quantization schemes. Follow-
ing (DeepSeek-AI, 2025), we employ 1x128 tiled scaling
for A and 128x128 blocked scaling for B.

In the context of mixture-of-experts (MoE) architectures for
LLMs, the dimension Mg denotes the dynamically routed
sequence length assigned to expert group g. The static
parameters K (hidden dimension) and N (output dimension)
remain constant across all groups.

The CUDA kernel configurations blockM , blockN , and
blockK represent fixed tiling sizes for computational op-
timization.

Among all operands involved in Grouped GEMM, particu-
lar attention must be devoted to memory alignment when
loading Sg

A from global memory and loading Cg from
shared memory. A detailed analysis of memory alignment
is provided in Appendix A.

2.2. Dynamic Descriptor Selection with Two-Phase
Load-Store

Our primary technical contribution is a hardware-aware
TMA descriptor design that combines static configuration
compliance with dynamic runtime adaptation, featuring a

novel two-phase load-store mechanism for residual blocks
of output matrix.

The methodology comprises three stages:

Descriptor Pool Predefinition: During kernel initialization,
we construct a descriptor pool (see static configuration of
Figure 1) derived from the block dimension blockM :

Dpool =
{
[2i, blockN ]

∣∣ i ∈ N, 0 ≤ i ≤ ⌊log2(blockM )⌋
}

(1)

Runtime Selection: At runtime, for each group g with
residual rows resg = Mg mod blockM , we determine the
optimal descriptor:

Dg
opt = [2⌊log2(res

g)⌋, blockN ] (2)

Two-Phase Load-Store: The mechanism employs
two coordinated TMA operations: (a) Shared mem-
ory rows

[
0, 2⌊log2(res

g)⌋ − 1
]

to global memory rows[
Mg − resg,Mg − resg + 2⌊log2(res

g)⌋ − 1
]
, and (b)

Shared memory rows
[
resg − 2⌊log2(res

g)⌋, resg − 1
]

to
global memory rows

[
Mg − 2⌊log2(res

g)⌋,Mg − 1
]

This design implements a safe overlapping write strategy
by intentionally writing only a small portion of identical
data in the overlapping memory regions, ensuring that: (1)
preservation of all valid results, (2) strict boundary compli-
ance, (3) logarithmic descriptor scalability (⌊log2(blockM )⌋
TMAs for blockM residuals), and (4) two TMA operations
per residual block regardless of its size. See Appendix B for
details.

2.3. TMA-Alignment-Aware Memory Management

Section 2.2 demonstrates that the second TMA load oper-
ation starts at row resg − 2⌊log2(res

g)⌋, potentially causing
misalignment issues. To guarantee 128-byte alignment re-
gardless of the starting row position, we enforce blockN to
be a multiple of 64.

The per-row offset of 4⌈K/128⌉ bytes in global memory
for Sg

A may cause misalignment issues. We address this
misalignment through boundary-aligned prefetching, where
the starting address is adjusted to meet 16-byte alignment
requirements. The number of prefetched rows from previous
data rowg

prev is determined by:

min

{[
AddrgSA − 4rowg

prev

⌈
K

128

⌉]
mod 16 = 0

}
(3)

where AddrgSA denotes the base address of vector group
Sg
A and the coefficient 4 reflects float datatype storage.

Subsequent rows rowg
next = 16+blockM−rowg

prev complete
the prefetching window, with TMA descriptors configured

2



TMA-Adaptive FP8 Grouped GEMM

Figure 1. The framework of TMA-Adaptive FP8 Grouped GEMM. The left panel shows the static configuration featuring our proposed
TMA pool for C and block size constraint for N . The right panel illustrates the runtime computation within a warp group. Key innovations
are highlighted: (1) global memory prefetch for scaled blocks of matrix A (green), and (2) Dynamic Descriptor Selection with Two-Phase
Load-Store for residual elements in matrix C (yellow).

for [16 + blockM , ⌈K/128⌉] dimensions. Only the central
blockM rows (valid green block in Figure 1) participate in
computation.

3. Experiment
The experimental evaluation was performed on an NVIDIA
H800 GPU accelerated computing platform using PyTorch
2.6.0 and CUDA 12.6. Our baseline implementation in-
tegrates explicit input padding with DeepGEMM, which
currently represents the state-of-the-art high-performance
FP8 GEMM implementation, against which we compare
our optimized approach across three critical metrics: com-
putational acceleration, numerical equivalence, and memory
efficiency.

3.1. Experimental Setup

The parameter space was designed to reflect practi-
cal configurations in modern large language model ar-
chitectures, with tensor dimensions spanning N,K ∈
{3072, 4096, 5120, 6144, 7168, 8192}, group counts in
{4, 8, 16, 32}, and sequence lengths after top-k routing
M ∈ {8192, 16384, 32768, 65536} with each group dimen-
sion Mg being randomly generated (see Appendix C.1).

We implemented the padding operation for matrices A and
SA using a custom high-performance kernel written in Tri-
ton. This kernel achieves approximately 2000 GB/s DRAM
bandwidth (2173 GB/s maximum), ensuring the validity of
our comparative results against the baseline.

3.2. Performance Analysis

Figure 2 demonstrates computational acceleration ratios and
memory savings across configurations.

The acceleration (Figure 2a) ranges from 1.7% to 20.4%,
exhibiting a weak positive correlation with sequence length
M(r = 0.09) and group count (r = 0.096), while show-
ing a strong negative correlation with parameter N(r =
−0.899). The observed acceleration stems from eliminating
padding-induced memory transactions, while the dominant
anti-correlation with N reflects linear scaling of residual
write-back costs.

Memory savings ((b) in Figure 2) demonstrate strong in-
verse correlation with sequence length M accompanied by
near-linear scaling with group count, achieving maximum
observed savings of 23.8% when operating at M = 8192
with 32 groups. This fundamental relationship stems from
geometric padding characteristics in grouped tensor opera-
tions - smaller M values combined with higher group counts
yeild more padding data.

Numerical equivalence was verified through comparison of
these test cases after removing zero-padded elements from
baseline outputs, demonstrating bitwise identical results
between our method and baseline implementations. This
zero-error guarantee stems from our two-phase load and
store: the final write-back operation strictly preserves only
the valid data region.

4. Conclusion
This paper presents TMA-Adaptive FP8 Grouped GEMM,
a hardware-aligned solution that eliminates the requirement

3



TMA-Adaptive FP8 Grouped GEMM

Figure 2. Performance comparison between optimized and base-
line implementations showing (a) computational acceleration ratios
and (b) relative memory savings across varying M, N, K and group
counts.

for padding groups to fixed alignment multiples (e.g., 128
elements) in low-precision Grouped GEMM.

By resolving key hardware-alignment conflicts in variable-
length scenarios—specifically, static TMA descriptor limita-
tions and memory boundary misalignments—our approach
simultaneously enhances memory efficiency and computa-
tional throughput without degrading numerical accuracy.

Although our method constrains blockN to multiples of
64 (e.g., 64, 128, 192), these values represent optimal or
near-optimal configurations for the N dimension in practice.
Experimental validation demonstrates significant improve-
ments, including up to 23.8% reduction in memory alloca-
tion overhead and 1.7–20.4% end-to-end speedup compared
to state-of-the-art padding implementations, while numer-
ical verification confirms bitwise equivalence, preserving
accuracy.

By fundamentally eliminating padding operations, our so-
lution establishes an innovative paradigm for Grouped
GEMM, delivering superior computational efficiency with
reduced memory footprint and seamless plug-and-play com-
patibility for dynamic routing without kernel modifications
beyond Grouped GEMM.

Crucially, this work directly enhances Mixture of Experts
(MoE) Large Language Models: it accelerates inference
and training by minimizing latency and memory overhead
during dynamic expert routing, thereby facilitating scalable
high-performance MoE LLM deployments.

Acknowledgements
Project supported by Shanghai Municipal Science and Tech-
nology Major Project.

References
DeepSeek-AI. Deepseek-v3 technical report, 2025. URL
https://arxiv.org/abs/2412.19437.

Micikevicius, P., Narang, S., Alben, J., Diamos, G., Elsen,
E., Garcia, D., Ginsburg, B., Houston, M., Kuchaiev, O.,
Venkatesh, G., and Wu, H. Mixed precision training, 2018.
URL https://arxiv.org/abs/1710.03740.

Mitchell, W., Tim, D., Luke, Z., Ari, M., Ali, F., and Ludwig,
S. Stable and low-precision training for large-scale vision-
language models. In Oh, A., Naumann, T., Globerson, A.,
Saenko, K., Hardt, M., and Levine, S. (eds.), Advances in
Neural Information Processing Systems, volume 36, pp.
10271–10298. Curran Associates, Inc., 2023.

NVIDIA. Nvidia hopper architecture in-depth.
https://developer.nvidia.com/blog/
nvidia-hopper-architecture-in-depth/,
2022-03-22. Accessed: 2025-06-18.

NVIDIA Corporation. Cuda c++ programming guide,
2025. URL https://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html#
table-alignment-multi-dim-tma.

Shah, J., Bikshandi, G., Zhang, Y., Thakkar, V., Ramani, P.,
and Dao, T. Flashattention-3: Fast and accurate attention
with asynchrony and low-precision, 2024. URL https:
//arxiv.org/abs/2407.08608.

Zhao, C., Zhao, L., Li, J., and Xu, Z. Deepgemm:
clean and efficient fp8 gemm kernels with fine-grained
scaling. https://github.com/deepseek-ai/
DeepGEMM, 2025.

4

https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/1710.03740
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#table-alignment-multi-dim-tma
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#table-alignment-multi-dim-tma
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#table-alignment-multi-dim-tma
https://arxiv.org/abs/2407.08608
https://arxiv.org/abs/2407.08608
https://github.com/deepseek-ai/DeepGEMM
https://github.com/deepseek-ai/DeepGEMM


TMA-Adaptive FP8 Grouped GEMM

A. Alignment Analysis for Grouped GEMM Operands
Alignment analysis for Ag: The tensor Ag participates in Tensor Memory Access (TMA) operations for both global
memory loads and shared memory stores. In global memory, the per-row offset of Ag is K bytes, where K denotes the
hidden dimension size in Mixture-of-Experts (MoE) architectures. The common practice of setting Kmod16 = 0 in modern
LLM configurations (Deepseek, Mixtral, Llama) inherently satisfies the 16-byte global memory alignment requirement.

For shared memory access, we enforce 128-byte alignment during kernel initialization by allocating memory starting from
128-byte aligned addresses. This design makes the alignment condition independent of either the residual row size or blockK
parameter.

Alignment analysis for Bg: The alignment properties of Bg follow similar principles as Ag (detailed analysis omitted for
brevity).

Alignment analysis for Sg
A: The scale tensor Sg

A participates in TMA operations involving both global memory loading and
shared memory storing. In global memory, the per-row offset is 4⌈K/128⌉ bytes, which may potentially violate alignment
requirements. To address this challenge, we introduce an over-fetching technique described in Section 2.3. To ensure proper
alignment in shared memory, we predefine a 128-byte aligned starting address during kernel configuration.

Alignment analysis for Sg
B : The tensor Sg

B does not require TMA load operations since each warp group matrix multiply
operation typically needs only one or two elements for scaling.

Alignment analysis for Cg: The output tensor Cg participates in TMA operations for both shared memory loads and global
memory stores. In shared memory, the per-row offset is 2 · blockN bytes (where the coefficient 2 accounts for half-precision
data format). As shown in Section 2.2, the second phase of TMA begins at row resg − 2⌊log2(res

g)⌋, which may introduce
misalignment. To address this issue, we constrain blockN to be a multiple of 64, ensuring 128-byte alignment regardless of
the starting row. For global memory access, the per-row offset is 2N bytes. The common practice of setting 2Nmod16 = 0
in modern LLM architectures (Deepseek, Mixtral, Llama) inherently satisfies the 16-byte alignment requirement.

B. Example of TMA Runtime Selection and Two-Phase Load-Store

Figure 3. An illustration of TMA runtime selection and the two-phase load-store operation. The configuration uses Mg = 381 and
N = 128 for demonstration purposes.

Figure 3 demonstrates our method using group g with output matrix dimensions [Mg, N ] = [253, 128]. With block M =
128, the first 128 rows (white region) use standard TMA operations with descriptor [128, 128], while the residual resg = 125
rows (yellow) require our two-phase approach.

Following Section 2.2, we select the optimal descriptor Dg
opt = [64, 128] for the residual portion. The two-phase operation

proceeds as:

1) First Load-Store: Transfers rows 0-63 from shared memory to global rows 128-191 (red blocks).

2) Second Load-Store: Loads rows 61-124 from shared memory to global rows 189-252 (blue blocks). The 3-row overlap

5



TMA-Adaptive FP8 Grouped GEMM

ensures complete coverage while preventing out-of-bounds writes.

This strategy guarantees that:

• All 125 residual rows are properly stored

• No corruption occurs in adjacent memory regions

• The hardware’s static descriptor requirements are maintained

C. Details for experiment
C.1. Mg Generation

To generate the group dimension Mg, we employ a randomized algorithm that produces a list of groups G with elements
summing to M . The generation process consists of the following steps:

1. Initialize a zero vector v of length G

2. For each element vi in v, assign a random integer value uniformly distributed between 0 and 2⌊M/G⌋

3. Compute a scaling factor α = M/
∑G

i=1 vi and apply it to each element: vi ← ⌊αvi⌋

4. Adjust the last element vG to compensate for any residual difference: vG ← vG + (M −
∑G

i=1 vi)

This approach ensures that the generated group dimensions maintain the desired total sum M while introducing controlled
randomness in the distribution across groups. The scaling operation preserves the relative proportions of the initial random
assignments, and the final adjustment guarantees exact sum preservation.

C.2. Coefficient Matrices

Table 2. Coefficient matrix of M, N, K, groups and acceleration

M N K groups acceleration (%)

M 1.00 4.44× 10−16 7.75× 10−17 −3.43× 10−18 0.0959
N 4.44× 10−16 1.00 −2.50× 10−16 −4.85× 10−17 -0.8991
K 7.75× 10−17 −2.50× 10−16 1.00 −2.90× 10−17 -0.0274
groups −3.43× 10−18 −4.85× 10−17 −2.90× 10−17 1.00 0.1036
acceleration (%) 0.0959 -0.8991 -0.0274 0.1036 1.00

Table 3. Coefficient matrix of M, N, K, groups and memory saving

M N K groups memory saving (%)

M 1.00 4.44× 10−16 7.75× 10−17 −3.43× 10−18 -0.5460
N 4.44× 10−16 1.00 −2.50× 10−16 −4.85× 10−17 0.0051
K 7.75× 10−17 −2.50× 10−16 1.00 −2.90× 10−17 0.0036
groups −3.43× 10−18 −4.85× 10−17 −2.90× 10−17 1.00 0.6356
memory saving (%) -0.5460 0.0051 0.0036 0.6356 1.00

6


