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ABSTRACT

In recommender systems, selection bias arises from the users’ selective interactions
with items, which poses a widely-recognized challenge for unbiased evaluation
and learning for recommendation models. Recently, doubly robust and its variants
have been widely studied to achieve debiased learning of prediction models, which
enables unbiasedness when either imputed errors or learned propensities are accu-
rate. However, we find that previous studies achieve unbiasedness using the doubly
robust learning approaches are all based on deterministic error imputation model
and deterministic propensity model, and these approaches fail to be unbiased when
using probabilistic models to impute errors and learn propensities. To tackle this
problem, in this paper, we first derive the bias of doubly robust learning methods
and provide alternative unbiasedness conditions for probabilistic models. Then we
propose a novel balancing enhanced doubly robust joint learning approach, which
improves the accuracy of the imputed errors and leads to unbiased learning under
probabilistic error imputations and learned propensities. We further derive the gen-
eralization error bound when using the probabilistic models, and show that it can
be effectively controlled by the proposed learning approach. We conduct extensive
experiments on three real-world datasets, including a large-scale industrial dataset,
to demonstrate the effectiveness of the proposed method.

1 INTRODUCTION

In the era of information explosion, recommender system (RS) plays an increasingly important role in
e-commerce platforms, social media, news reading, and other places. However, due to the subjective
preferences of users and the data collection process itself, selection bias always exists in the collected
data (Pradel et al., 2012), which poses a widely-recognized challenge (De Myttenaere et al., 2014;
Marlin and Zemel, 2009). Ignoring selection bias makes RS difficult to provide quality and accurate
recommended content to users, thus hurting the users experience and reducing social benefits.

Many methods have been proposed to address selection bias. The error imputation based (EIB)
method (Chang et al., 2010; Marlin et al., 2007; Steck, 2010; 2013) utilizes imputation model to
impute the missing relevance. However, it is very difficult to obtain an accurate imputed value for
missing events due to the data sparsity and the covariate shift in practice (Dudík et al., 2011; Marlin
et al., 2007; Steck, 2013). The inverse propensity score (IPS) method uses inverse propensity to
reweight the observed events to achieve unbiasedness (Imbens and Rubin, 2015; Saito et al., 2020;
Schnabel et al., 2016). Nevertheless, the accurate propensities are difficult to be accurately estimated
and includes extremely small values, which brings a large variance to the IPS method to lead the poor
generalizatin performance (Rosenbaum and Rubin, 1983; Swaminathan and Joachims, 2015; Thomas
and Brunskill, 2016). The doubly robust (DR) method combines the error imputation model and the
propensity model (Wang et al., 2019; Saito, 2020; Wang et al., 2022; Oosterhuis, 2023), which is
unbiased if either the imputed errors or the learned propensities are accurate, which is also proved to
has smaller variance compared to the IPS method (Saito, 2020; Oosterhuis, 2022; Li et al., 2023c).

Despite the broad use of the error imputation model and the propensity model in the above methods,
we find that these methods are limited to deterministic error imputation model and deterministic
propensity model, which fails to be unbiased when using probabilistic models to impute errors and
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learn propensities. One of the most significant advantages of the probabilistic modeling technique
is that it provides a comprehensive understanding of the uncertainty associated with the imputed
errors and the learned propensities (Murphy, 2012). In this way, we can effectively determine how
confident the imputation and propensity models are and how accurate its prediction is (Ghahramani,
2015; Murphy, 2022). Therefore, it is essential to extend the previously widely adopted DR methods
to be compatible with probabilistic error imputation and propensity models.

To this end, in this paper, we first derive the bias of doubly robust learning methods and provide
alternative unbiasedness conditions for probabilistic error imputations and propensity estimations.
Then we propose a novel balancing enhanced doubly robust (BEDR) joint learning approach, which
improves the accuracy of the imputed errors and leads to unbiased learning under probabilistic error
imputations and learned propensities. We further derive the generalization error bound when using
the probabilistic models, and show that it can be effectively controlled by the proposed learning
approach. Extensive experiments are conducted on three real-world datasets, including a large-scale
industrial dataset, to demonstrate the effectiveness of the proposed method.

Our main contributions can be summarized as follows:

• To the best of our knowledge, this is the first paper that extends previous widely adopted DR
methods to be compatible with probabilistic error imputation and propensity models. We
show the bias of the DR estimator under probabilistic models has two terms: a covariance
term and a term measured the accuracy of learned propensities and imputed errors.

• In order to control the covariance term while obtaining accurate learned propensities and
imputed errors, we make subtle changes to the previous DR method and propose a simple
and effective BEDR method, which is unbiased under probabilistic models.

• Our theoretical analysis further shows that controlling the covariance term not only achieves
unbiased estimation but also reduces the generalization bound to enhance the prediction
performance under probabilistic learned propensities and imputed errors.

• We conduct extensive experiments on three real-world datasets, including a large industrial
dataset, to demonstrate the effectiveness of our proposed method.

2 RELATED WORK

There are various biases in the data collected from RS (Chen et al., 2020; Wu et al., 2022), which
have been of increasing concern in recent years (Ai et al., 2018; Saito and Nomura, 2022; Liu et al.,
2021; Zhang et al., 2021; Luo et al., 2021; Liu et al., 2022; Lin et al., 2023). Selection bias is one of
the most common bias in RS and a lot of research has been done aiming to eliminate this kind of
bias (Chen et al., 2021; Guo et al., 2021; Liu et al., 2020; Saito, 2020; Schnabel et al., 2016; Wang
et al., 2019). The error imputation based method (EIB) (Chang et al., 2010; Marlin et al., 2007;
Steck, 2010; 2013) first imputes pseudo-labels for missing events from the observed events, and then
combines the pseudo-labels with the observed events to train the prediction model (Dudík et al., 2011;
Marlin et al., 2007; Steck, 2013; Wu et al., 2022). An alternative way to eliminate selection bias
is to weight the inverse propensity score (IPS) on the observed data to eliminate bias (Imbens and
Rubin, 2015; Saito et al., 2020; Schnabel et al., 2016). However, IPS will suffer from a large variance
when the extreme values exist in the estimated propensities (Li et al., 2023c; Thomas and Brunskill,
2016). Doubly robust (DR) method improves the weakness of EIB and IPS methods and becomes
the mainstream model due to the weaker unbiasedness conditions and smaller variance than the IPS
method (Benkeser et al., 2017; Morgan and Winship, 2015; Luo et al., 2021; Li et al., 2023c; Saito,
2020; Wang et al., 2019). In particular, DR estimator is unbiased when either learned propensities
or imputed errors are accurate. Many augmented DR methods are developed to further enhance
the previous DR method performance by modifying the propensity model and imputation model
or the form of the DR estimator, such as MRDR (Guo et al., 2021), BRD-DR (Ding et al., 2022),
StableDR (Li et al., 2023c), TDR (Li et al., 2023b), DR-MSE (Dai et al., 2022), and DR-BIAS (Dai
et al., 2022). However, these approaches are limited to the using of deterministic error imputation
and propensity models, and fail to be unbiased when using probabilistic models to impute errors and
learn propensities. To the best of our knowledge, this is the first paper that extends previous widely
adopted DR methods to be compatible with probabilistic error imputation and propensity models.
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3 PRELIMINARIES

Suppose the user set U = {u1, u2, . . . , um} contains m users, the item set I = {i1, i2, . . . , in}
contains n items, and denote the set of all user-item pairs as D = U × I. Let R ∈ Rm×n be the
ground truth rating matrix of all user-item pairs, where ru,i is the rating of user u on item i. Let xu,i
be the feature of user u and item i, and r̂u,i = f(xu,i; θ) is the predicted rating by a prediction model,
θ is the corresponding parameter. Denote R̂ ∈ Rm×n be the matrix contains all the predicted ratings.
Let Om×n be the binary observation indicator matrix for all user-item pair, ou,i = 1 indicates the
rating of user u on item i is observed, otherwise missing ou,i = 0. The purpose of RS is to train a
prediction model to accurately predict all ratings. If all the ratings are observed, the prediction model
can be trained directly by minimizing the following ideal loss function:

Lideal(θ) =
1

|D|
∑

(u,i)∈D

eu,i,

where eu,i = L(r̂u,i, ru,i) is the loss between the predicted rating r̂u,i and the ground truth rating
ru,i and L(·, ·) is an arbitrary loss function. However, the ideal loss function is not available in most
cases because we can only observe partial biased data. To tackle this issue, many unbiased estimators
of the ideal loss have been proposed. For example, the EIB estimator imputes the missing eu,i with
the imputed errors êu,i as shown below:

EEIB(θ) =
1

|D|
∑

(u,i)∈D

ou,ieu,i + (1− ou,i)êu,i,

where êu,i = m(xu,i;ϕ) is the error imputation model for estimating eu,i using xu,i. In addition, the
IPS estimator uses inverse propensity to reweight the observed events, as shown below:

EIPS(θ) =
1

|D|
∑

(u,i)∈D

ou,ieu,i
p̂u,i

,

where p̂u,i = π(xu,i;ψ) is the propensity model for estimating pu,i := P(ou,i = 1 | xu,i). Moreover,
the DR estimator combines the p̂u,i and êu,i together, which is constructed as:

EDR(θ) =
1

|D|
∑

(u,i)∈D

[
êu,i +

ou,i(eu,i − êu,i)

p̂u,i

]
,

In below, we focus on the theoretical properties of the DR estimator, and start from the widely-known
conclusions of DR estimator under deterministic imputed errors and propensities.
Lemma 1 (Bias of DR Estimator under Deterministic Models (Wang et al., 2019)). Given imputed
errors êu,i and learned propensities p̂u,i > 0 for all user-item pairs, when considering only the
randomness of rating missing indicators, the bias of the DR estimator is

BiasO[EDR(θ)] =
1

|D|
∑

(u,i)∈D

{p̂u,i − pu,i} · {eu,i − êu,i}
p̂u,i

.

We find that either êu,i = eu,i or p̂u,i = pu,i is sufficient to eliminate bias under deterministic models,
which inspires the double robustness condition for the DR method.
Corollary 1 (Double Robustness under Deterministic Models (Wang et al., 2019)). The DR estimator
is unbiased when either imputed errors êu,i or learned propensities p̂u,i are accurate for all user-item
pairs, i.e., either êu,i = eu,i or p̂u,i = pu,i.

4 PROPOSED METHOD

4.1 MOTIVATION

The above lemma 1 shows the bias form of DR estimator under deterministic error imputation and
propensity models. However, such theoretical results no longer hold when using the probabilistic
models to impute the prediction errors and learn propensities. The following theorem shows the bias
form of the DR estimator under probabilistic error imputation and propensity models.
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Theorem 1 (Bias of DR Estimator under Probabilistic Models). Given probabilistic error imputation
model E(êu,i | xu,i) and probabilistic propensity model P(p̂u,i | xu,i), consider all variables are
random, then the bias of the DR estimator, namely Bias[EDR(θ)], is

Cov

(
p̂u,i − ou,i

p̂u,i
, eu,i − êu,i

)
︸ ︷︷ ︸

equals to 0 if independent

+E
[{

1− E
[
ou,i
p̂u,i

∣∣xu,i]} · {E[eu,i | xu,i]− E[êu,i | xu,i]}
]

︸ ︷︷ ︸
equals to 0 either E[ou,i/p̂u,i | xu,i] = 1 or E[êu,i − eu,i | xu,i] = 0

Corollary 2 (Double Robustness under Probabilistic Models). The DR estimator is unbiased when
both the following conditions hold:

(i) the covariance term vanishes, i.e., Cov((p̂u,i − ou,i)/p̂u,i, eu,i − êu,i) = 0;

(ii) either learned propensities satisfy E[ou,i/p̂u,i | xu,i] = 1, or imputed errors have the same
conditional expectation with true prediction errors E[êu,i | xu,i] = E[eu,i | xu,i].

Compared with the existing theoretical results as in lemma 1, it is intuitive that condition (ii) is
necessary to achieve unbiasedness, which directly extends the conditions of accurate imputed errors
and learned propensities in lemma 1 to the probabilistic form. However, it should be noted that the
condition (i) that covariance vanish is also needed for the unbiasedness under probabilistic models.
Therefore, it is necessary to modify the previous DR learning approaches to be compatible with
probabilistic error imputation and propensity models.

4.2 THE BALANCING ENHANCED DR ESTIMATOR

It is important to note that the true covariance is unknown due to the fact that the true distribution of
the data is unknown. However, we can use the empirical covariance over all user-item pairs as an
approximate of the true covariance. We first give the definition of empirical covariance.
Definition 1 (Empirical Covariance). The empirical expected conditional covariance between (p̂u,i−
ou,i)/p̂u,i and eu,i − êu,i is

Ĉov

(
p̂u,i − ou,i

p̂u,i
, eu,i − êu,i

)
=

1

|D|
∑

(u,i)∈D

p̂u,i − ou,i
p̂u,i

· (eu,i − êu,i).

A direct method to control the empirical covariance is to regard it as a regularization term. However,
since the data are partially observed, we cannot obtain the value of the empirical covariance on all
user-item pairs. In addition, doing so cannot guarantee the empirical covariance converges to exact
zero, and the large penalty term may hurt the prediction performance. Interestingly, we found that
the empirical covariance can be controlled with subtle changes to the DR estimator. Specifically, we
designed imputation balancing correction as follows:

ẽu,i = m(xu,i;ϕ) + ϵ(ou,i − π(xu,i;ψ)).

Motivated by targeted maximum likelihood estimation (van der Laan and Rose, 2011), we add a
correction term ϵ(ou,i − π(xu,i;ψ)) on êu,i, which has zero mean under accurate π(xu,i;ψ), thus
will not bring extra bias to the imputation model. We then learn ϕ and ϵ in ẽu,i by minimizing

(ϕ∗, ϵ∗) = argmin
ϕ,ϵ

LBale (ϕ, ϵ) =
1

|D|
∑

(u,i)∈D

ou,i(eu,i − ẽu,i)
2

p̂u,i
+ v∥ϕ∥2F ,

where ∥ · ∥2F is the Frobenius norm. This proposed loss has several desired properties. First, the
derivatives on the proposed loss with respect to ϵ is shown below:

∂

∂ϵ
LBale (ϕ, ϵ) =

2

|D|
∑

(u,i)∈O

p̂u,i − ou,i
p̂u,i

· (eu,i − êu,i).

It has the same form as the empirical covariance for user-item pairs with ou,i = 1, which means
that we can make the empirical covariance for observed user-item pairs to exact zero by minimizing
the LBale directly. Meanwhile, the gradient contains ϵ when taking the derivatives with respect to
ϕ, which indicates a well-learned ϵ can lead to a more accurate ϕ to further ensure unbiasedness.
Moreover, the unobserved empirical covariance can also be bounded by LBale using the concentration
inequality. The theorem 2 below formally shows the controllability of empirical covariance.
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Theorem 2 (Controllability of Empirical Covariance). The boosted imputation model trained by min-
imizing the balanced enhanced imputation loss is sufficient for controlling the empirical covariance.

(i) For user-item pairs with observed outcomes, the empirical covariance is 0. Formally, we have
∂

∂ϵ
LBale (ϕ, ϵ)

∣∣∣∣
ϵ=ϵ∗

= 0, which is equivalent to
1

|D|
∑

(u,i): ou,i=1

p̂u,i − ou,i
p̂u,i

· (eu,i − ẽu,i) = 0;

(ii) For user-item pairs with missing outcomes, suppose that p̂u,i ≥ Kψ and |eu,i − ẽu,i| ≤ Kϕ, then
with probability at least 1− η, we have

1

|D|
∑

(u,i): ou,i=0

p̂u,i − ou,i
p̂u,i

· (eu,i − ẽu,i) ≤ LBale (ϕ, ϵ)
1
2︸ ︷︷ ︸

proposed loss

+Kϕ ·

 1

|D|
∑
u,i∈D

∣∣∣∣1− E
[
ou,i
p̂u,i

∣∣xu,i]∣∣∣∣
 1

2

︸ ︷︷ ︸
empirical bias from probabilistic propensity model

+

[
Kϕ

(
1 +

1

Kψ

)(
2R(F) + (2Kϕ + 1)

√
2 log(4/η)

|D|

)] 1
2

︸ ︷︷ ︸
tail bound controlled by empirical Rademacher complexity and sample size

.

It should be noted that the proposed imputation balancing correction has no harm property. That is,
when the previous êu,i has already ensure the empirical covariance to zero, the ϵ will converge to
zero to degrade, as shown in the following remark 1.
Remark 1 (Relation to previous imputed errors). The learned coefficient ϵ∗ will converge to zero,
when the probabilistic imputation model êu,i has already lead to zero empirical covariance, making
ẽu,i degenerates to êu,i.

In addition, the remark 2 below shows that the proposed imputation balancing correction can not only
control the empirical covariance efficiently, but also be helpful for learning more accurate imputed
errors when the previous imputed errors are inaccurate.
Remark 2 (Bias reduction property). The proposed balancing enhanced imputation loss leads to
smaller bias of imputed errors ẽu,i, when êu,i are inaccurate. Formally,

min
ϕ,ϵ

LBale (ϕ, ϵ) =
1

|D|
∑

(u,i)∈D

ou,i(eu,i − ẽu,i)
2

p̂u,i
≤ min

ϕ
Le(ϕ) =

1

|D|
∑

(u,i)∈D

ou,i(eu,i − êu,i)
2

p̂u,i
.

Moreover, while reducing bias, the proposed method also reduces the variance compared to the
previous imputed errors under a moderate condition, as shown in the remark 3 below.
Remark 3 (Variance reduction property). The proposed balancing enhanced imputation loss leads to
smaller variance of imputed errors ẽu,i when the optimal ϵ∗ lies in a certain range. Formally, we have

V(ẽu,i) = V(êu,i + ϵ∗ · (ou,i − p̂u,i)) ≤ V(êu,i), if ϵ∗ ∈
[
0, 2 · Cov(êu,i, p̂u,i − ou,i)

V(p̂u,i − ou,i)

]
.

Finally, the proposed BEDR estimator is given as:

EBEDR(θ) =
1

|D|
∑

(u,i)∈D

[
ẽu,i +

ou,i(eu,i − ẽu,i)

p̂u,i

]
,

where ẽu,i = m(xu,i;ϕ) + ϵ(ou,i − π(xu,i;ψ)).

4.3 THE LEARNING ALGORITHM

We optimize the prediction model and the imputation model of the BEDR method by a widely used
joint learning framework (Wang et al., 2019), which alternatively optimize two model to achieve
unbiased learning. Specifically, we train the prediction model by minimizing the BEDR training loss:

LBEDR(θ) =
1

|D|
∑

(u,i)∈D

[
ẽu,i +

ou,i(eu,i − ẽu,i)

p̂u,i

]
+ v∥θ∥2F ,

Then we update the imputation model parameters and ϵ simultaneously by minimizing the LBale (ϕ, ϵ)
in Section 4.2. The parameters of the prediction and imputation model are updated alternatively via
minbatch stochastic gradient descent. We summarize the joint learning process in Algorithm 1.
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Algorithm 1: The Proposed Balancing Enhanced Doubly Robust Joint Learning
Input: observed ratings Ro and a pre-trained probabilistic propensity model π(xu,i;ψ).

1 while stopping criteria is not satisfied do
2 for number of steps for training the balancing enhanced imputation model do
3 Sample a batch of user-item pairs {(uj , ij)}Jj=1 from O;
4 Update ϕ by descending along the gradient ∇ϕLBale (ϕ, ϵ);
5 Update ϵ by descending along the gradient ∇ϵLBale (ϕ, ϵ);
6 end
7 for number of steps for training the debiased prediction model do
8 Sample a batch of user-item pairs {(uk, ik)}Kk=1 from D;
9 Update θ by descending along the gradient ∇θLBEDR(θ;ϕ, ψ);

10 end
11 end

4.4 THE GENERALIZATION BOUND

Next, we analyze the generalization error bound of the DR methods using the probabilistic models
for estimating eu,i and pu,i, and show that controlling empirical covariance leads to a tighter bound.

Definition 2 (Empirical Rademacher Complexity (Shalev-Shwartz and Ben-David, 2014)). Let F
be a family of prediction models mapping from x ∈ X to [a, b], and S = {xu,i | (u, i) ∈ D} a fixed
sample of size |D| with elements in X . Then, the empirical Rademacher complexity of F with respect
to the sample S is defined as:

R(F) = Eσ∼{−1,+1}|D| sup
fθ∈F

 1

|D|
∑

(u,i)∈D

σu,ieu,i

 ,
where σ = {σu,i : (u, i) ∈ D}, and σu,i are independent uniform random variables taking values in
{−1,+1}. The random variables σu,i are called Rademacher variables.

Theorem 3 (Generalization Bound under Probabilistic Models). Suppose that p̂u,i ≥ Kψ and
|eu,i − êu,i| ≤ Kϕ, then with probability at least 1− η, we have

Lideal(θ) ≤ LDR(θ) +
1

|D|
∑

(u,i)∈D

∣∣∣∣1− E
[
ou,i
p̂u,i

∣∣xu,i]∣∣∣∣ · ∣∣∣E[eu,i | xu,i]− E[êu,i | xu,i]
∣∣∣

︸ ︷︷ ︸
vanilla DR only controls the empirical DR loss, and empirical risks of imputation and propensity models

+

∣∣∣∣∣∣ 1

|D|
∑

(u,i)∈D

Cov

(
ou,i − p̂u,i

p̂u,i
, eu,i − êu,i

)∣∣∣∣∣∣︸ ︷︷ ︸
balancing enhanced DR further controls the independence

+

(
1 +

1

Kψ

)(
2R(F) +Kϕ

√
18 log(4/η)

|D|

)
︸ ︷︷ ︸

tail bound controlled by empirical Rademacher complexity and sample size

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Dataset and Preprocessing. To verify the effectiveness of the proposed method in the real-world
dataset, the dataset that contains both biased and unbiased data is required. Following the previous
studies (Saito, 2020; Wang et al., 2019; 2021; Chen et al., 2021), the following three widely used
real-world datasets are adopted to conduct our experiments: Coat 1 contains ratings from 290 users to
300 items. Each user rates 24 of the coats that are selected by themselves, which produce 6,960 biased
ratings in total. Meanwhile, each user is asked to rate 16 randomly picked items, which generates
4,640 unbiased ratings. Yahoo! R3 2 contains ratings from 15,400 users to 1,000 items. Each user

1https://www.cs.cornell.edu/~schnabts/mnar/
2http://webscope.sandbox.Music.com/
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Table 1: Mean and standard deviation of the MSE, AUC, Recall@5 and NDCG@5 on Coat and
Yahoo! R3 datasets. The best results are bolded, and the best baseline results are underlined. ∗ means
statistically significant (p-value ≤ 0.01) using the paired-t-test compared with the best baseline.

Coat Yahoo! R3

Method MSE ↓ AUC ↑ Recall@5 ↑ NDCG@5 ↑ MSE ↓ AUC ↑ Recall@5 ↑ NDCG@5 ↑
PMF 0.239±0.003 0.705±0.006 0.435±0.008 0.616±0.009 0.250±0.001 0.673±0.001 0.393±0.002 0.633±0.002

+ IPS 0.211±0.001 0.715±0.005 0.438±0.010 0.626±0.010 0.231±0.002 0.684±0.001 0.424±0.001 0.645±0.002

+ SNIPS 0.226±0.005 0.716±0.006 0.448±0.013 0.631±0.011 0.201±0.001 0.685±0.001 0.412±0.002 0.637±0.003

+ ASIPS 0.215±0.004 0.718±0.010 0.443±0.010 0.620±0.010 0.234±0.001 0.679±0.001 0.422±0.002 0.640±0.003

+ DR 0.238±0.003 0.728±0.013 0.440±0.017 0.636±0.019 0.208±0.001 0.686±0.003 0.421±0.002 0.657±0.002

+ DR-JL 0.210±0.001 0.735±0.008 0.444±0.005 0.630±0.004 0.218±0.001 0.686±0.002 0.428±0.003 0.650±0.003

+ CVIB 0.225±0.001 0.730±0.003 0.437±0.006 0.633±0.007 0.256±0.001 0.683±0.001 0.406±0.001 0.643±0.002

+ MRDR 0.211±0.002 0.732±0.006 0.449±0.004 0.636±0.006 0.217±0.001 0.686±0.002 0.432±0.002 0.654±0.002

+ DIB 0.242±0.001 0.737±0.003 0.446±0.008 0.643±0.009 0.248±0.001 0.687±0.001 0.425±0.001 0.640±0.002

+ DR-BIAS 0.210±0.003 0.727±0.004 0.451±0.010 0.633±0.009 0.216±0.001 0.686±0.001 0.430±0.001 0.653±0.002

+ DR-MSE 0.210±0.003 0.739±0.004 0.446±0.009 0.634±0.009 0.217±0.001 0.684±0.003 0.429±0.001 0.653±0.003

+ MR 0.211±0.002 0.731±0.004 0.452±0.005 0.644±0.010 0.247±0.002 0.690±0.003 0.409±0.003 0.647±0.003

+ TDR 0.221±0.003 0.719±0.006 0.446±0.009 0.630±0.010 0.225±0.001 0.687±0.002 0.430±0.004 0.661±0.002

+ TDR-JL 0.215±0.003 0.728±0.002 0.453±0.008 0.639±0.010 0.247±0.001 0.690±0.002 0.422±0.002 0.658±0.003

+ StableDR 0.209±0.002 0.737±0.004 0.451±0.008 0.640±0.009 0.232±0.001 0.689±0.001 0.430±0.003 0.659±0.002

+ BEDR-JL 0.207±0.002 0.759∗
±0.005 0.466∗

±0.006 0.663∗
±0.007 0.198∗

±0.002 0.692±0.002 0.436∗
±0.005 0.664∗

±0.003

rates several items to generate the 311,704 biased ratings. In addition, the first 5,400 users are asked
to rate 10 randomly picked items, which constitutes the 54,000 unbiased ratings. We binarize the
ratings to 0 for ratings less than 3, otherwise 1. In addition, we further use a fully exposed industrial
dataset KuaiRec (Gao et al., 2022) with 4,676,570 video watching ratio records from 1,411 users to
3,327 videos. For this dataset, we binarize the records to 0 for records less than 2, otherwise 1.

Baselines. In our experiments, we take the probabilistic matrix factorization (PMF) (Mnih and
Salakhutdinov, 2007) as the base model, and compare the proposed method with the information
bottleneck based methods: CVIB (Wang et al., 2020) and DIB (Liu et al., 2021), the propensity based
methods: IPS (Schnabel et al., 2016), SNIPS (Swaminathan and Joachims, 2015) and ASIPS (Saito,
2020), and the DR based methods: DR (Saito, 2020), DR-JL (Wang et al., 2019), MRDR (Guo et al.,
2021), DR-BIAS (Dai et al., 2022), DR-MSE (Dai et al., 2022), TDR (Li et al., 2023b), TDR-JL (Li
et al., 2023b), StableDR (Li et al., 2023c), and MR (Li et al., 2023a).

Experimental Protocols and Details. The following four metrics are used to measure the debi-
asing performance: MSE, AUC, Recall@K, NDCG@K, where we set K = 5 for Coat and Ya-
hoo! R3, while set K = 20 for KuaiRec. All the experiments are implemented on PyTorch3.
Adam is utilized as the optimizer for fast convergence in all experiments. We tune learning rate
in {0.001, 0.005, 0.01, 0.05, 0.1}, batch size in {128, 256, 512} for Coat and {1024, 2048, 4096}
for Yahoo! R3 and KuaiRec. In addition, a standard normal distribution is adopted for the prior
distribution of the user and item latent vector. Meanwhile, for the conditional distribution over the
observed ratings, we use normal distribution with mean zero and variance σ2, where σ2 is tuned in
{1e− 5, 5e− 5, 1e− 4, 5e− 4, 1e− 3, 5e− 3, 1e− 2}.

5.2 PERFORMANCE COMPARISON

Table 1 summarizes the debiasing performance of various methods on two real-world benchmark
datasets Coat and Yahoo! R3. First, most debiased methods outperform the base model PMF,
which shows the necessity for debiasing. Second, overall speaking, the information bottleneck based
methods perform slightly better than the propensity based methods, while DR based methods such as
TDR and StableDR demonstrate the most competitive performance. In addition, the proposed BEDR
method achieves the best performance in terms of all the evaluation metrics. This is attributed to the
proposed imputation balancing correction is able to effectively reduce the empirical covariance, which
leads to a more unbiased estimation of the ideal loss function and results in significant improvement
of debiasing performance. It empirically validates the effectiveness of the proposed method.

Table 3 reports the performance of various methods on a large scale industrial dataset KuaiRec.
we can find that compared to baseline method PMF, vanilla DR method obtains little improvement,

3For all experiments, we use the Tesla T4 GPU as the computational resource
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Table 2: Ablation study on Coat and Yahoo! R3 datasets with mean and standard deviation of the
empirical covariance (EC), AUC and NDCG@5. The best results are bolded, and ∗ means statistically
significant results (p-value ≤ 0.01) using the paired-t-test compared with the best baseline.

Ablation Coat Yahoo! R3

Method Joint learning EC control EC ↓ AUC ↑ NDCG@5 ↑ EC ↓ AUC ↑ NDCG@5 ↑
DR No No 2.135±0.127 0.728±0.013 0.636±0.019 8.249±0.426 0.686±0.003 0.657±0.002

DR-JL Yes No 1.567±0.109 0.735±0.008 0.630±0.004 5.688±0.295 0.686±0.002 0.650±0.003

TDR No Partial 1.415±0.072 0.719±0.006 0.630±0.010 1.707±0.078 0.687±0.002 0.661±0.002

TDR-JL Yes Partial 1.269±0.063 0.728±0.002 0.639±0.010 1.075±0.052 0.690±0.002 0.658±0.003

BEDR-R No Regularizer 2.048±0.116 0.728±0.006 0.633±0.007 5.379±0.272 0.686±0.002 0.658±0.003

BEDR-JL-R Yes Regularizer 1.468±0.105 0.736±0.004 0.634±0.006 4.681±0.231 0.687±0.002 0.656±0.002

BEDR No Boosting 0.388±0.085 0.738±0.004 0.645±0.006 0.584±0.083 0.690±0.002 0.662±0.002

BEDR-JL Yes Boosting 0.317±0.077 0.759∗
±0.005 0.663∗

±0.007 0.502±0.074 0.692∗±0.002 0.664∗
±0.003

while DR-JL method achieves more performance improvement by jointly training the prediction
model and the imputation model. The above two methods do not take the empirical covariance into
account, which leads to a bias estimation of the ideal loss function and thus harm the prediction
performance. Based on DR-JL method, our proposed BEDR-JL method modifies the imputation
model with a subtle correction term and achieves substantial improvement on debiasing performance.
This is because controlling the empirical covariance with the correction term provides a more accurate
imputed errors, which can greatly boost the prediction performance. It further validates the simplicity
and effectiveness of our proposed BEDR method.

Table 3: Performance comparison on KuaiRec dataset.
KuaiRec

Method MSE ↓ AUC ↑ Recall@20 ↑ NDCG@20 ↑
PMF 0.137±0.000 0.754±0.001 0.360±0.001 0.480±0.002

+ IPS 0.050±0.002 0.746±0.008 0.389±0.008 0.459±0.007

+ SNIPS 0.047±0.001 0.751±0.002 0.368±0.003 0.447±0.002

+ ASIPS 0.096±0.001 0.751±0.007 0.393±0.012 0.477±0.007

+ DR 0.046±0.001 0.744±0.006 0.383±0.011 0.480±0.011

+ DR-JL 0.046±0.001 0.762±0.004 0.393±0.006 0.463±0.009

+ CVIB 0.084±0.001 0.765±0.001 0.406±0.004 0.453±0.006

+ MRDR 0.046±0.001 0.767±0.004 0.403±0.006 0.472±0.008

+ DIB 0.045±0.000 0.768±0.001 0.411±0.001 0.480±0.001

+ DR-BIAS 0.045±0.001 0.765±0.005 0.398±0.007 0.468±0.011

+ DR-MSE 0.046±0.001 0.768±0.002 0.403±0.009 0.472±0.007

+ MR 0.118±0.001 0.769±0.002 0.388±0.007 0.483±0.007

+ TDR 0.134±0.001 0.767±0.002 0.383±0.003 0.488±0.003

+ TDR-JL 0.123±0.001 0.770±0.004 0.395±0.003 0.490±0.002

+ StableDR 0.115±0.001 0.773±0.002 0.389±0.002 0.489±0.002

+ BEDR-JL 0.048±0.002 0.779∗
±0.002 0.423∗

±0.006 0.496∗
±0.006

Table 4: Ablation study on KuaiRec dataset.
KuaiRec

Method EC ↓ AUC ↑ NDCG@20 ↑
DR 8.042±0.467 0.744±0.006 0.480±0.011

DR-JL 2.324±0.133 0.762±0.004 0.463±0.009

TDR 1.802±0.113 0.767±0.002 0.488±0.003

TDR-JL 1.028±0.088 0.770±0.004 0.490±0.002

BEDR-R 2.108±0.098 0.763±0.003 0.466±0.006

BEDR-JL-R 1.524±0.098 0.772±0.002 0.484±0.005

BEDR 1.111±0.092 0.776±0.002 0.492±0.004

BEDR-JL 0.955∗
±0.088 0.779∗

±0.002 0.496∗
±0.006

5.3 ABLATION STUDY

As mentioned in Section 4.2 and 4.4, the empirical covariance plays a crucial role in both unbiased
estimation and unbiased learning. To explore the relationship between the degree of empirical
covariance control and the performance, we conduct ablation study on all three datasets with empirical
covariance (EC), AUC, and NDCG@K as the evaluation metrics. We compare the proposed BEDR
method with DR and TDR methods, and we denote the method that directly regard the observed
empirical covariance as a regularization term as BEDR-R and BEDR-JL-R, respectively. DR method
has no control on empirical covariance at all, while TDR method can control the observed empirical
covariance by adding ou,i( 1

p̂u,i
− 1) as the correction term to the imputed errors. We fix a pretrained

imputation model for the methods without learning. The results are shown in Table 2 and Table 4.

Effects of Empirical Covariance Control. Compared to the baseline methods, methods that are able
to control empirical covariance have improved debiasing performance, which indicates the necessity
to control empirical covariance for debiasing. In addition, TDR method obtains some performance
improvement because it guarantees the control of empirical covariance for the observed outcomes.
Howerver, TDR method cannot control the empirical covariance for missing outcomes. Furthermore,
the proposed BEDR method achieves the most significant empirical covariance decreases and the most
competitive performance in AUC and NDCG@K. This empirically demonstrates that the reduction of
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Figure 1: Effects of learning rate of correction hyperparameter ϵ on EC and NDCG@K.

empirical covariance contributes to the prediction performance. Moreover, directly regard empirical
covariance as a regularizer fails to achieve the desired performance and is beaten by TDR method.
On one hand, it can only control the observed empirical covariance. On the other hand, it cannot
guarantee the observed empirical covariance to be exact zero.

Effects of Joint Learning. From Table 2 and Table 4, almost all methods with joint learning can
reduce the empirical covariance value and improve the debiasing performance, which is attributed to
joint learning can bridge the prediction model and the imputation model effectively to improve the
accuracy of predicted ratings and imputed errors. Overall, BEDR-JL method exhibits the optimal
performance on all three datasets. Nevertheless, the improvement on performance will be limited if
only apply the joint learning technique without controlling the empirical covariance. This further
illustrates the necessity of empirical covariance control.

5.4 SENSITIVITY ANALYSIS

As discussed in Section 4.2, the proposed BEDR method modifies the imputation model to control
the empirical covariance with a learnable parameter ϵ. Therefore, it is meaningful to explore the
relationship bewteen the learning rate of ϵ and the debiasing performance. Figure 1 shows the
AUC and NDCG@K performance under varying learning rate of ϵ on Yahoo! R3 and KuaiRec,
respectively. On one hand, as the learning rate increases, the empirical covariance value of the
proposed BEDR-JL method monotonically decreases and outperforms DR-JL, which demonstrates
the effectiveness of the proposed imputation balancing correction. On the other hand, it should be
noted that due to the no harm property, the bias reduction property and the variance reduction property
in Section 4.2, the proposed method outperforms DR-JL under varying learning rate. Finally, the
proposed method exhibits the optimal performance at a relatively moderate learning rate about 1e-4.

6 CONCLUSION

By noting that previous studies on debiasing have relied on the deterministic models for estimating
the prediction errors and propensities, i.e., only rating missing indicators are treated as random
variables. In this paper, we theoretically relax the requirement of the deterministic models and
consider the case of using probabilistic models, i.e., all variables including ratings, propensity and
imputation errors are random. When using the probabilistic models for estimating the prediction
errors and propensities, we demonstrate theoretically that controlling empirical covariates helps
reduce bias. We then propose a novel balancing enhanced doubly robust joint learning method to
achieve unbiasedness. The proposed method makes a subtle change based on the previous DR method
by adding a balancing correction term to the imputation model. Theoretical analysis shows that the
proposed method can lead to significant performance improvement by using the imputation balancing
correction to obtain the high quality imputed errors. In addition, extensive experiments are conducted
on three real-world datasets, including a large-scale industrial dataset, which verifies the effectiveness
of the proposed method for debiased recommendation. This article opens a new perspective on the
theory for debiasing recommendations under probabilistic models, and the proposed approach is
simple and effective. A possible shortcoming is that despite the favorable empirical performance
shown by joint training, theoretical guarantees are still lacking. We leave the theoretical guarantees
of training under probabilistic models as a generalization of unbiased estimation for future research.
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A PROOFS

Lemma 1 (Bias of DR Estimator under Deterministic Models (Wang et al., 2019)). Given imputed
errors êu,i and learned propensities p̂u,i > 0 for all user-item pairs, when considering only the
randomness of rating missing indicators, the bias of the DR estimator is

BiasO[EDR(θ)] =
1

|D|
∑

(u,i)∈D

{p̂u,i − pu,i} · {eu,i − êu,i}
p̂u,i

.

Proof of Lemma 1. The proof can be found in Lemma 3.1 of Wang et al. (2019). However, one should
note that, as stated in the proof, "the prediction and imputed errors are treated as constants when
taking the expectation, since ou,i does not result from any prediction or imputation models (Schnabel
et al., 2016)". The DR estimator in (Wang et al., 2019) is given as

EDR(θ) =
1

|D|
∑

(u,i)∈D

[
êu,i +

ou,i(eu,i − êu,i)

p̂u,i

]
.

By considering only the randomness on ou,i, we have

EO[EDR(θ)] = EO

[ 1

|D|
∑

(u,i)∈D

[
êu,i +

ou,i(eu,i − êu,i)

p̂u,i

]]
=

1

|D|
∑

(u,i)∈D

[
êu,i +

pu,i(eu,i − êu,i)

p̂u,i

]
.

By definition, the bias of the DR estimator is

BiasO[EDR(θ)] = Eideal(θ)− EO[EDR(θ)]

=
1

|D|
∑

(u,i)∈D

eu,i −
1

|D|
∑

(u,i)∈D

[
êu,i +

pu,i(eu,i − êu,i)

p̂u,i

]
=

1

|D|
∑

(u,i)∈D

{p̂u,i − pu,i} · {eu,i − êu,i}
p̂u,i

,

which yields the stated results.

Corollary 1 (Double Robustness under Deterministic Models (Wang et al., 2019)). The DR estimator
is unbiased when either imputed errors êu,i or learned propensities p̂u,i are accurate for all user-item
pairs, i.e., either êu,i = eu,i or p̂u,i = pu,i.

Proof of Corollary 1. The proof can be found at Corollary 3.1 in Appendix of (Wang et al., 2019).
However, one should note that, as stated in the proof, "the prediction and imputed errors are treated
as constants when taking the expectation, since ou,i does not result from any prediction or imputation
models (Schnabel et al., 2016)".

Let δu,i = eu,i− êu,i and ∆u,i =
p̂u,i−pu,i
p̂u,i

. On the hand, when imputed errors are accurate, we have
δu,i = 0 for (u, i) ∈ D. In such case, we can compute the bias of the DR estimator by

BiasO[EDR(θ)] =
1

|D|
∑
u,i∈D

∆u,iδu,i =
1

|D|
∑
u,i∈D

∆u,i · 0 = 0.

On the other hand, when the learned propensities are accurate, we have ∆u,i = 0 for (u, i) ∈ D. In
this case, we can compute the bias of the DR estimator by

Bias (EDR) =
1

|D|
∑
u,i∈D

∆u,iδu,i =
1

|D|
∑
u,i∈D

0 · δu,i = 0.

In both cases, the bias of the DR estimator is zero, which means that the expectation of the DR
estimator over all the possible instances of ou,i is exactly the same as the prediction inaccuracy. This
completes the proof.
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Theorem 1 (Bias of DR Estimator under Probabilistic Models). Given probabilistic error imputation
model P(êu,i | xu,i) and probabilistic propensity model P(p̂u,i | xu,i), consider all variables are
random, then the bias of the DR estimator, namely Bias[EDR(θ)], is

Cov

(
p̂u,i − ou,i

p̂u,i
, eu,i − êu,i

)
︸ ︷︷ ︸

equals to 0 if independent

+E
[{

1− E
[
ou,i
p̂u,i

∣∣xu,i]} · {E[eu,i | xu,i]− E[êu,i | xu,i]}
]

︸ ︷︷ ︸
equals to 0 either E[ou,i/p̂u,i | xu,i] = 1 or E[êu,i − eu,i | xu,i] = 0

Proof of Theorem 1. Instead of considering only the randomness of the rating missing indicator, in
the following, we treat all variables, including imputed errors and learned propensities, as random
variables. Formally, we have

Bias[EDR(θ)] = E[Eideal(θ)]− E[EDR(θ)] = E[eu,i]− E
[
eu,i +

{ou,i − p̂u,i} · {eu,i − êu,i}
p̂u,i

]
= E

[
E
[{

p̂u,i − ou,i
p̂u,i

}
{eu,i − êu,i} | xu,i

]]
(by the double expectation formula)

= E
[
E
[{

p̂u,i − ou,i
p̂u,i

− E
[ p̂u,i − ou,i

p̂u,i

]
+ E

[ p̂u,i − ou,i
p̂u,i

]}
{(eu,i − êu,i)− E[eu,i − êu,i] + E[eu,i − êu,i]} | xu,i

]]
= E

[
E
[{

p̂u,i − ou,i
p̂u,i

− E
[ p̂u,i − ou,i

p̂u,i

]}
{(eu,i − êu,i)− E[eu,i − êu,i]} | xu,i

]]
+ E

[{
1− E

[
ou,i
p̂u,i

∣∣xu,i]} · {E[eu,i | xu,i]− E[êu,i | xu,i]}
]

= Cov

(
p̂u,i − ou,i

p̂u,i
, eu,i − êu,i

)
+ E

[{
1− E

[
ou,i
p̂u,i

∣∣xu,i]} · {E[eu,i | xu,i]− E[êu,i | xu,i]}
]
,

which yields the stated results.

Corollary 2 (Double Robustness under Probabilistic Models). The DR estimator is unbiased when
both the following conditions hold:

(i) conditional independence condition holds, i.e., Cov((p̂u,i − ou,i)/p̂u,i, eu,i − êu,i) = 0;

(ii) either learned propensities satisfy E[ou,i/p̂u,i | xu,i] = 1, or imputed errors have the same
conditional expectation with true prediction errors E[êu,i | xu,i] = E[eu,i | xu,i].

Proof of Corollary 2. First, when condition (i) holds, i.e.,

Cov((p̂u,i − ou,i)/p̂u,i, eu,i − êu,i) = 0,

it follows from the results in Theorem 1 that

Bias[EDR(θ)] = E
[{

1− E
[
ou,i
p̂u,i

∣∣xu,i]} · {E[eu,i | xu,i]− E[êu,i | xu,i]}
]

On the hand, when the learned propensities satisfy E[ou,i/p̂u,i | xu,i] = 1. In such case, we can
compute the bias of the DR estimator by

Bias[EDR(θ)] = E [0 · {E[eu,i | xu,i]− E[êu,i | xu,i]}] = 0.

On the other hand, when imputed errors have the same conditional expectation with true prediction
errors, we have E[êu,i | xu,i] = E[eu,i | xu,i]. In this case, we can compute the bias of the DR
estimator by

Bias[EDR(θ)] = E
[{

1− E
[
ou,i
p̂u,i

∣∣xu,i]} · 0
]
= 0.

In both cases, the bias of the DR estimator is zero, which completes the proof.
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Definition 1 (Empirical Covariance). The empirical expected conditional covariance between
(p̂u,i − ou,i)/p̂u,i and eu,i − êu,i is

Ĉov

(
p̂u,i − ou,i

p̂u,i
, eu,i − êu,i

)
=

1

|D|
∑

(u,i)∈D

p̂u,i − ou,i
p̂u,i

· (eu,i − êu,i).

Definition 2 (Empirical Rademacher Complexity (Shalev-Shwartz and Ben-David, 2014)). Let F
be a family of prediction models mapping from x ∈ X to [a, b], and S = {xu,i | (u, i) ∈ D} a fixed
sample of size |D| with elements in X . Then, the empirical Rademacher complexity of F with respect
to the sample S is defined as:

R(F) = Eσ∼{−1,+1}|D| sup
fθ∈F

 1

|D|
∑

(u,i)∈D

σu,ieu,i

 ,
where σ = {σu,i : (u, i) ∈ D}, and σu,i are independent uniform random variables taking values in
{−1,+1}. The random variables σu,i are called Rademacher variables.

Lemma 2 (Rademacher Comparison Lemma (Shalev-Shwartz and Ben-David, 2014)). Let F be a
family of real-valued functions on z ∈ Z to [a, b], and S = {xu,i | (u, i) ∈ D} a fixed sample of size
|D| with elements in X . Then

E
S∼P|D|

[
sup
f∈F

 E
z∼P

[f(z)]− 1

|D|
∑

(u,i)∈D

f (zu,i)

] ≤ 2 E
S∼P|D|

Eσ∼{−1,+1}|D| sup
f∈F

 1

|D|
∑

(u,i)∈D

σu,if (zu,i)

 ,
where σ = {σu,i : (u, i) ∈ D}, and σu,i are independent uniform random variables taking values in
{−1,+1}. The random variables σu,i are called Rademacher variables.

Proof of Lemma 2. The proof can be found in Lemma 26.2 of (Shalev-Shwartz and Ben-David,
2014).

Lemma 3 (McDiarmid’s Inequality (Shalev-Shwartz and Ben-David, 2014)). Let V be some set and
let f : V m → R be a function of m variables such that for some c > 0, for all i ∈ [m] and for all
x1, . . . , xm, x

′
i ∈ V we have

|f (x1, . . . , xm)− f (x1, . . . , xi−1, x
′
i, xi+1, . . . , xm)| ≤ c

Let X1, . . . , Xm be m independent random variables taking values in V . Then, with probability of at
least 1− δ we have

|f (X1, . . . , Xm)− E [f (X1, . . . , Xm)]| ≤ c

√
log

(
2

δ

)
m/2

Proof of Lemma 3. The proof can be found in Lemma 26.4 of (Shalev-Shwartz and Ben-David,
2014).

Lemma 4 (Rademacher Calculus (Shalev-Shwartz and Ben-David, 2014)). For any A ⊂ Rm, scalar
c ∈ R, and vector a0 ∈ Rm, we have

R ({ca+ a0 : a ∈ A}) ≤ |c|R(A).

Proof of Lemma 4. The proof can be found in Lemma 26.6 of (Shalev-Shwartz and Ben-David,
2014).

Theorem 2 (Controllability of Empirical Covariance). The boosted imputation model trained
by minimizing the balanced enhanced imputation loss is sufficient for controlling the empirical
covariance.
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(i) For user-item pairs with observed outcomes, the empirical covariance is 0. Formally, we have

∂

∂ϵ
LBale (ϕ, ϵ)

∣∣∣∣
ϵ=ϵ∗

= 0, which is equivalent to
1

|D|
∑

(u,i): ou,i=1

p̂u,i − ou,i
p̂u,i

· (eu,i − ẽu,i) = 0;

(ii) For user-item pairs with missing outcomes, suppose that p̂u,i ≥ Kψ and |eu,i − êu,i| ≤ Kϕ, then
with probability at least 1− η, we have

1

|D|
∑

(u,i): ou,i=0

p̂u,i − ou,i
p̂u,i

· (eu,i − ẽu,i) ≤ LBale (ϕ, ϵ)
1
2︸ ︷︷ ︸

proposed loss

+Kϕ ·

 1

|D|
∑
u,i∈D

∣∣∣∣1− E
[
ou,i
p̂u,i

∣∣xu,i]∣∣∣∣
 1

2

︸ ︷︷ ︸
empirical bias from probabilistic propensity model

+

[
Kϕ

(
1 +

1

Kψ

)(
2R(F) +Kϕ

√
18 log(4/η)

|D|

)] 1
2

︸ ︷︷ ︸
tail bound controlled by empirical Rademacher complexity and sample size

Proof. For the proof of Theorem 2(i), first recap that the proposed boosted imputation model is

ẽu,i = m(xu,i;ϕ) + ϵ(ou,i − π(xu,i;ψ)),

and the proposed balancing enhanced loss function for training the boosted imputation model is

(ϕ∗, ϵ∗) = argmin
ϕ,ϵ

LBale (ϕ, ϵ) =
1

|D|
∑

(u,i)∈D

ou,i(eu,i − ẽu,i)
2

p̂u,i
.

By taking the partial derivative with respective to ϵ of the above formula and setting it to zero, we
have

∂

∂ϵ
LBale (ϕ, ϵ)

∣∣∣∣
ϵ=ϵ∗

= 0, which is equivalent to
1

|D|
∑

(u,i): ou,i=1

p̂u,i − ou,i
p̂u,i

· (eu,i − ẽu,i) = 0,

which proves the empirical convariance on the observed outcomes is 0.

For the proof of Theorem 2(ii), by noting that

1

|D|
∑

(u,i): ou,i=0

p̂u,i − ou,i
p̂u,i

·(eu,i−ẽu,i) =
1

|D|
∑

(u,i): ou,i=0

(eu,i−ẽu,i) ≤

 1

|D|
∑

(u,i)∈D

(eu,i − ẽu,i)
2

 1
2

,

we now focus on bounding the last term of the above equation with the least probability.
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Suppose that p̂u,i ≥ Kψ and |eu,i − ẽu,i| ≤ Kϕ, then

1

|D|
∑

(u,i)∈D

(eu,i − ẽu,i)
2 =

1

|D|
∑

(u,i)∈D

ou,i(eu,i − ẽu,i)
2

p̂u,i
+

1

|D|
∑

(u,i)∈D

(eu,i − ẽu,i)
2

− E

 1

|D|
∑

(u,i)∈D

ou,i(eu,i − ẽu,i)
2

p̂u,i

+ E

 1

|D|
∑

(u,i)∈D

ou,i(eu,i − ẽu,i)
2

p̂u,i

− 1

|D|
∑

(u,i)∈D

ou,i(eu,i − ẽu,i)
2

p̂u,i

≤ 1

|D|
∑

(u,i)∈D

ou,i(eu,i − ẽu,i)
2

p̂u,i
+

∣∣∣∣∣∣ 1

|D|
∑

(u,i)∈D

(eu,i − ẽu,i)
2 − E

 1

|D|
∑

(u,i)∈D

ou,i(eu,i − ẽu,i)
2

p̂u,i

∣∣∣∣∣∣
+

E

 1

|D|
∑

(u,i)∈D

ou,i(eu,i − ẽu,i)
2

p̂u,i

− 1

|D|
∑

(u,i)∈D

ou,i(eu,i − ẽu,i)
2

p̂u,i


≤ LBale (ϕ, ϵ) +K2

ϕ ·

∣∣∣∣∣∣E
 1

|D|
∑

(u,i)∈D

1− ou,i
p̂u,i

∣∣∣∣∣∣
+ sup
fθ∈F

E

 1

|D|
∑

(u,i)∈D

ou,i(eu,i − ẽu,i)
2

p̂u,i

− 1

|D|
∑

(u,i)∈D

ou,i(eu,i − ẽu,i)
2

p̂u,i

 .

For simplicity, we denote the last term in the above formula as

B(F) = sup
fθ∈F

E

 1

|D|
∑

(u,i)∈D

ou,i(eu,i − ẽu,i)
2

p̂u,i

− 1

|D|
∑

(u,i)∈D

ou,i(eu,i − ẽu,i)
2

p̂u,i

 ,

we then aim to bound B(F) in the following.

Note that

B(F) = E
S∼P|D|

[B(F)] +

{
B(F)− E

S∼P|D|
[B(F)]

}
,

where the first term is E
S∼P|D|

[B(F)], and by Lemma 2 we have

E
S∼P|D|

[B(F)] ≤ 2 E
S∼P|D|

Eσ∼{−1,+1}|D| sup
fθ∈F

 1

|D|
∑

(u,i)∈D

σu,i
ou,i(eu,i − ẽu,i)

2

p̂u,i

 .
By the assumptions that p̂u,i ≥ Kψ and |eu,i − ẽu,i| ≤ Kϕ, we have

E
S∼P|D|

[B(F)] ≤ 2Kϕ

(
1 +

1

Kψ

)
E

S∼P|D|
Eσ∼{−1,+1}|D| sup

fθ∈F

 1

|D|
∑

(u,i)∈D

σu,i(eu,i − ẽu,i)


= 2Kϕ

(
1 +

1

Kψ

)
E

S∼P|D|
{R(F)},

where the last equation is directly from Lemma 4, and R(F) is the empirical Rademacher complexity

R(F) = Eσ∼{−1,+1}|D| sup
fθ∈F

 1

|D|
∑

(u,i)∈D

σu,ieu,i

 ,
where σ = {σu,i : (u, i) ∈ D}, and σu,i are independent uniform random variables taking values in
{−1,+1}. The random variables σu,i are called Rademacher variables.

By applying McDiarmid’s inequality in Lemma 3, and let c = 2Kϕ
|D| , with probability at least 1− η

2 ,∣∣∣∣R(F)− E
S∼P|D|

{R(F)}
∣∣∣∣ ≤ 2Kϕ

√
log(4/η)

2|D|
= Kϕ

√
2 log(4/η)

|D|
.

17



Under review as a conference paper at ICLR 2024

For the rest term B(F)− E
S∼P|D|

[B(F)], by applying McDiarmid’s inequality in Lemma 3 and the

assumptions that p̂u,i ≥ Kψ and |eu,i − ẽu,i| ≤ Kϕ, let c =
2K2

ϕ

(
1+ 1

Kψ

)
|D| , then with probability at

least 1− η
2 ,∣∣∣∣B(F)− E

S∼P|D|
[B(F)]

∣∣∣∣ ≤ 2K2
ϕ

(
1 +

1

Kψ

)√
log(4/η)

2|D|
= K2

ϕ

(
1 +

1

Kψ

)√
2 log(4/η)

|D|
.

We now bound B(F) combining the above results. Formally, we have

B(F) = E
S∼P|D|

[B(F)] +

{
B(F)− E

S∼P|D|
[B(F)]

}
≤ 2Kϕ

(
1 +

1

Kψ

)
E

S∼P|D|
{R(F)}+

{
B(F)− E

S∼P|D|
[B(F)]

}
.

With probability at least 1− η, we have

B(F) ≤ 2Kϕ

(
1 +

1

Kψ

)(
R(F) +Kϕ

√
2 log(4/η)

|D|

)
+K2

ϕ

(
1 +

1

Kψ

)√
2 log(4/η)

|D|

= Kϕ

(
1 +

1

Kψ

)(
2R(F) +Kϕ

√
18 log(4/η)

|D|

)
.

We now bound the empirical convariance on the missing outcomes combining the above results.
Formally, we have

1

|D|
∑

(u,i): ou,i=0

p̂u,i − ou,i
p̂u,i

· (eu,i − ẽu,i) ≤

 1

|D|
∑

(u,i)∈D

(eu,i − ẽu,i)
2

 1
2

≤

LBale (ϕ, ϵ) +
K2
ϕ

|D|
∑
u,i∈D

∣∣∣∣1− E
[
ou,i
p̂u,i

∣∣xu,i]∣∣∣∣+Kϕ

(
1 +

1

Kψ

)(
2R(F) +Kϕ

√
18 log(4/η)

|D|

) 1
2

≤ LBale (ϕ, ϵ)
1
2 +Kϕ ·

 1

|D|
∑
u,i∈D

∣∣∣∣1− E
[
ou,i
p̂u,i

∣∣xu,i]∣∣∣∣
 1

2

+

[
Kϕ

(
1 +

1

Kψ

)(
2R(F) +Kϕ

√
18 log(4/η)

|D|

)] 1
2

,

which yields the stated results.

Remark 1 (Relation to previous imputed errors). The learned coefficient ϵ∗ will converge to zero,
when the probabilistic imputation model êu,i has already lead to zero empirical covariance, making
ẽu,i degenerates to êu,i.

Proof of Remark 1. Note that the coefficient ϵ∗ is solved by minimizing
1

|D|
∑

(u,i)∈D

ou,i(eu,i − êu,i − ϵ(ou,i − p̂u,i))
2

p̂u,i
.

Taking the first derivative of the above loss with respect to ϵ and setting it to zero yields∑
(u,i)∈D

ou,i
p̂u,i

·
{
eu,i − êu,i − ϵ(ou,i − p̂u,i)

}
· (ou,i − p̂u,i) = 0,

which implies that ∑
(u,i)∈D

ou,i
p̂u,i

· {eu,i − ẽu,i} · (ou,i − p̂u,i) = 0,

from which implies the uniqueness of ϵ. Formally, if êu,i already satisfies zero empirical convariance
on the observed outcomes, then ϵ = 0 is a solution of the above equation. Let ϵ̂ is another solution of
the above equation. Since the solution of equation is unique, then ϵ̂ will converges to 0.
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Remark 2 (Bias reduction property). The proposed balancing enhanced imputation loss leads to
smaller bias of imputed errors ẽu,i, when êu,i are inaccurate. Formally,

min
ϕ,ϵ

LBale (ϕ, ϵ) =
1

|D|
∑

(u,i)∈D

ou,i(eu,i − ẽu,i)
2

p̂u,i
≤ min

ϕ
Le(ϕ) =

1

|D|
∑

(u,i)∈D

ou,i(eu,i − êu,i)
2

p̂u,i
.

Proof of Remark 2. The result holds directly by noting that

min
ϕ,ϵ

LBale (ϕ, ϵ) ≤ min
ϕ

LBale (ϕ, ϵ = 0) = min
ϕ

Le(ϕ) =
1

|D|
∑

(u,i)∈D

ou,i(eu,i − êu,i)
2

p̂u,i
.

Remark 3 (Variance reduction property). The proposed balancing enhanced imputation loss leads to
smaller variance of imputed errors ẽu,i when the optimal ϵ∗ lies in a certain range. Formally, we have

V(ẽu,i) = V(êu,i + ϵ∗ · (ou,i − p̂u,i)) ≤ V(êu,i), if ϵ∗ ∈
[
0, 2 · Cov(êu,i, p̂u,i − ou,i)

V(p̂u,i − ou,i)

]
.

Proof of Remark 3. The result holds directly by first noting that

V(ẽu,i) = V(êu,i)− 2ϵ∗ Cov(êu,i, p̂u,i − ou,i) + (ϵ∗)2V(ou,i − p̂u,i),

which serves as quadratic function with respect to ϵ∗. By taking the partial derivative with respective
to ϵ∗ of the above formula and setting it to zero, the optimal ϵ∗ with the minimal variance is given as

ϵ∗ =
Cov(êu,i, p̂u,i − ou,i)

V(p̂u,i − ou,i)
.

Therefore, by exploiting the symmetry of the quadratic function, we have

V(ẽu,i) = V(êu,i + ϵ∗ · (ou,i − p̂u,i)) ≤ V(êu,i), if ϵ∗ ∈
[
0, 2 · Cov(êu,i, p̂u,i − ou,i)

V(p̂u,i − ou,i)

]
.

Theorem 3 (Generalization Bound under Probabilistic Models). Suppose that p̂u,i ≥ Kψ and
min{êu,i, |eu,i − êu,i|} ≤ Kϕ, then with probability at least 1− η, we have

Lideal(θ) ≤ LDR(θ) +
1

|D|
∑

(u,i)∈D

∣∣∣∣1− E
[
ou,i
p̂u,i

∣∣xu,i]∣∣∣∣ · ∣∣∣E[eu,i | xu,i]− E[êu,i | xu,i]
∣∣∣

︸ ︷︷ ︸
vanilla DR only controls the empirical DR loss, and empirical risks of imputation and propensity models

+

∣∣∣∣∣∣ 1

|D|
∑

(u,i)∈D

Cov

(
ou,i − p̂u,i

p̂u,i
, eu,i − êu,i

)∣∣∣∣∣∣︸ ︷︷ ︸
balancing enhanced DR further controls the independence

+

(
1 +

1

Kψ

)(
2R(F) +Kϕ

√
18 log(4/η)

|D|

)
︸ ︷︷ ︸

tail bound controlled by empirical Rademacher complexity and sample size

Proof of Theorem 3. First we decompose the ideal loss as follows.

Lideal(θ) = LDR(θ) + (Lideal(θ)− E[LDR(θ)]) + (E[LDR(θ)]− LDR(θ))
= LDR(θ) + Bias[LDR(θ)] + (E[LDR(θ)]− LDR(θ))
≤ LDR(θ) + |Bias[LDR(θ)]|

+ sup
fθ∈F

E

 1

|D|
∑

(u,i)∈D

êu,i +
ou,i(eu,i − êu,i)

p̂u,i

− 1

|D|
∑

(u,i)∈D

êu,i −
ou,i(eu,i − êu,i)

p̂u,i

 .
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For simplicity, we denote the last term in the above formula as

B(F) = sup
fθ∈F

E

 1

|D|
∑

(u,i)∈D

êu,i +
ou,i(eu,i − êu,i)

p̂u,i

− 1

|D|
∑

(u,i)∈D

êu,i −
ou,i(eu,i − êu,i)

p̂u,i

 ,

we then aim to bound B(F) in the following.

Note that

B(F) = E
S∼P|D|

[B(F)] +

{
B(F)− E

S∼P|D|
[B(F)]

}
,

where the first term is E
S∼P|D|

[B(F)], and by Lemma 2 we have

E
S∼P|D|

[B(F)] ≤ 2 E
S∼P|D|

Eσ∼{−1,+1}|D| sup
fθ∈F

 1

|D|
∑

(u,i)∈D

σu,iêu,i +
σu,iou,i(eu,i − êu,i)

p̂u,i

 .
By the assumptions that p̂u,i ≥ Kψ and min{êu,i, |eu,i − êu,i|} ≤ Kϕ, we have

E
S∼P|D|

[B(F)] ≤ 2 E
S∼P|D|

Eσ∼{−1,+1}|D| sup
fθ∈F

 1

|D|
∑

(u,i)∈D

σu,iou,i(eu,i − êu,i)

p̂u,i


≤ 2

(
1 +

1

Kψ

)
E

S∼P|D|
{R(F)},

where the first equation is from Lemma 4, and R(F) is the empirical Rademacher complexity

R(F) = Eσ∼{−1,+1}|D| sup
fθ∈F

 1

|D|
∑

(u,i)∈D

σu,ieu,i

 ,
where σ = {σu,i : (u, i) ∈ D}, and σu,i are independent uniform random variables taking values in
{−1,+1}. The random variables σu,i are called Rademacher variables.

By applying McDiarmid’s inequality in Lemma 3, and let c = 2Kϕ
|D| , with probability at least 1− η

2 ,∣∣∣∣R(F)− E
S∼P|D|

{R(F)}
∣∣∣∣ ≤ 2Kϕ

√
log(4/η)

2|D|
= Kϕ

√
2 log(4/η)

|D|
.

For the rest term B(F)− E
S∼P|D|

[B(F)], by applying McDiarmid’s inequality in Lemma 3 and the

assumptions that p̂u,i ≥ Kψ and min{êu,i, |eu,i − êu,i|} ≤ Kϕ, let c =
2Kϕ

(
1+ 1

Kψ

)
|D| , then with

probability at least 1− η
2 ,∣∣∣∣B(F)− E

S∼P|D|
[B(F)]

∣∣∣∣ ≤ 2Kϕ

(
1 +

1

Kψ

)√
log(4/η)

2|D|
= Kϕ

(
1 +

1

Kψ

)√
2 log(4/η)

|D|
.

We now bound B(F) combining the above results. Formally, we have

B(F) = E
S∼P|D|

[B(F)] +

{
B(F)− E

S∼P|D|
[B(F)]

}
≤ 2

(
1 +

1

Kψ

)
E

S∼P|D|
{R(F)}+

{
B(F)− E

S∼P|D|
[B(F)]

}
.

With probability at least 1− η, we have

B(F) ≤ 2

(
1 +

1

Kψ

)(
R(F) +Kϕ

√
2 log(4/η)

|D|

)
+Kϕ

(
1 +

1

Kψ

)√
2 log(4/η)

|D|

=

(
1 +

1

Kψ

)(
2R(F) +Kϕ

√
18 log(4/η)

|D|

)
.
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We now bound the ideal loss combining the above results. Formally, we have

Lideal(θ) ≤ LDR(θ) + |Bias[LDR(θ)]|+ B(F)

≤ LDR(θ) + |Bias[LDR(θ)]|+
(
1 +

1

Kψ

)(
2R(F) +Kϕ

√
18 log(4/η)

|D|

)
.

In Theorem 1, we have already prove that

|Bias[EDR(θ)]| =

∣∣∣∣∣∣ 1

|D|
∑

(u,i)∈D

Cov

(
p̂u,i − ou,i

p̂u,i
, eu,i − êu,i

)

+
1

|D|
∑

(u,i)∈D

[{
1− E

[
ou,i
p̂u,i

∣∣xu,i]} · {E[eu,i | xu,i]− E[êu,i | xu,i]}
]∣∣∣∣∣∣

≤

∣∣∣∣∣∣ 1

|D|
∑

(u,i)∈D

Cov

(
ou,i − p̂u,i

p̂u,i
, eu,i − êu,i

)∣∣∣∣∣∣
+

1

|D|
∑

(u,i)∈D

∣∣∣∣1− E
[
ou,i
p̂u,i

∣∣xu,i]∣∣∣∣ · ∣∣∣E[eu,i | xu,i]− E[êu,i | xu,i]
∣∣∣,

therefore with probability at least 1− η, we have

Lideal(θ) ≤ LDR(θ) +
1

|D|
∑

(u,i)∈D

∣∣∣∣1− E
[
ou,i
p̂u,i

∣∣xu,i]∣∣∣∣ · ∣∣∣E[eu,i | xu,i]− E[êu,i | xu,i]
∣∣∣

+

∣∣∣∣∣∣ 1

|D|
∑

(u,i)∈D

Cov

(
ou,i − p̂u,i

p̂u,i
, eu,i − êu,i

)∣∣∣∣∣∣+
(
1 +

1

Kψ

)(
2R(F) +Kϕ

√
18 log(4/η)

|D|

)
,

which yields the stated results.

21


	Introduction
	Related Work
	Preliminaries
	Proposed Method
	Motivation
	The Balancing Enhanced DR estimator
	The Learning Algorithm
	The Generalization Bound

	Experiments
	Experimental Setup
	Performance Comparison
	Ablation Study
	Sensitivity Analysis

	Conclusion
	Proofs

