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Abstract

Large Language Models (LLMs) have the ten-001
dency to hallucinate, i.e., to sporadically gen-002
erate false or fabricated information. This003
presents a major challenge, as hallucinations004
often appear highly convincing and users gen-005
erally lack the tools to detect them. Uncertainty006
quantification (UQ) provides a framework for007
assessing the reliability of model outputs, aid-008
ing in the identification of potential hallucina-009
tions. In this work, we introduce pre-trained010
UQ heads: supervised auxiliary modules for011
LLMs that substantially enhance their ability012
to capture uncertainty compared to unsuper-013
vised UQ methods. Their strong performance014
stems from the powerful Transformer architec-015
ture in their design and informative features de-016
rived from LLM attention maps. Experimental017
evaluation shows that these heads are highly ro-018
bust and achieve state-of-the-art performance in019
claim-level hallucination detection across both020
in-domain and out-of-domain prompts. More-021
over, these modules demonstrate strong gener-022
alization to languages they were not explicitly023
trained on. We pre-train a collection of UQ024
heads for popular LLM series, including Mis-025
tral, Llama, and Gemma 2. We publicly release026
both the code and the pre-trained heads.1027

1 Introduction028

Uncertainty quantification (UQ) (Gal and Ghahra-029

mani, 2016; Baan et al., 2023; Geng et al., 2024;030

Zhang et al., 2024a) has become an increasingly im-031

portant topic in natural language processing (NLP),032

particularly for addressing challenges with halluci-033

nations and low-quality outputs of large language034

models (LLMs) (Malinin and Gales, 2021; Kuhn035

et al., 2023; Fadeeva et al., 2024). UQ offers the036

potential to improve the safety and reliability of037

1https://anonymous.4open.science/r/
llm-uncertainty-head-24DD

LLM-based applications by flagging highly uncer- 038

tain generations. Such generations could be dis- 039

carded or marked as untrustworthy, thus reducing 040

the risk of misleading information reaching users 041

(Zhang et al., 2024a,b; Huang et al., 2024). 042

Current methods for detecting hallucinations and 043

low-quality text often rely on external knowledge 044

bases or additional LLMs (Manakul et al., 2023; 045

Min et al., 2023; Chen et al., 2023). While use- 046

ful, these approaches come with major drawbacks. 047

Knowledge sources are often incomplete, and us- 048

ing a larger model to censor a smaller one is both 049

computationally expensive and impractical. In- 050

stead, UQ assumes that LLMs naturally encode 051

information about their own limitations, and this 052

self-knowledge can be efficiently accessed to build 053

safer, more practical systems. 054

There are many existing UQ techniques for well- 055

defined tasks such as classification and regression 056

(Zhang et al., 2019; He et al., 2020; Xin et al., 057

2021; Wang et al., 2022; Vazhentsev et al., 2023; 058

He et al., 2024a). However, applying UQ to text 059

generation has unique challenges including (i) an 060

infinite number of possible generations, which com- 061

plicates the normalization of the uncertainty scores, 062

(ii) potentially multiple correct answers with dif- 063

ferent surface forms (Kuhn et al., 2023), (iii) need 064

to aggregate uncertainties across multiple interde- 065

pendent predictions corresponding to generated to- 066

kens (Zhang et al., 2023), (iv) generated tokens not 067

contributing to uncertainty equally, as some tokens 068

represent auxiliary words (Duan et al., 2024), and 069

(v) some sources of uncertainty being irrelevant 070

for hallucination detection (Fadeeva et al., 2024). 071

These challenges hinder the performance of clas- 072

sical unsupervised UQ techniques, and addressing 073

them explicitly in a single method is quite difficult. 074

Recently, researchers have proposed automating 075

the detection of these intricacies using machine 076

learning. A series of supervised methods for UQ 077

and hallucination detection has been proposed that 078
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Figure 1: The architecture of uncertainty quantification heads. The example represents a text generated using an
LLM, containing the hallucination 20 Grammy Awards highlighted in red.

learn the aforementioned intricacies from the an-079

notated data (Azaria and Mitchell, 2023; He et al.,080

2024b; Chuang et al., 2024).081

We continue this line of work by introducing pre-082

trained UQ heads: supervised auxiliary modules083

for LLMs that substantially enhance their ability to084

capture uncertainty compared to unsupervised UQ085

methods. Their strong performance stems from the086

powerful Transformer architecture in their design087

and informative features derived from LLM atten-088

tion maps. These heads do not require re-training089

of the entire LLM and do not alter its outputs. De-090

spite their high performance, these methods main-091

tain a relatively small memory and computational092

footprint, ensuring practical usability.093

Experimental evaluation shows that our uncer-094

tainty heads are highly robust and achieve state-095

of-the-art performance in claim-level hallucination096

detection across both in-domain and out-of-domain097

prompts, outperforming other supervised and un-098

supervised techniques. Moreover, these modules099

demonstrate strong generalization to languages100

they were not explicitly trained on.101

Training uncertainty quantification heads re-102

quires annotated hallucinations in LLM outputs.103

For constructing training data, we created an auto-104

matic pipeline for annotation of hallucinations of105

LLM outputs, which allows us to scale our exper-106

iments and to pre-train uncertainty heads for vari-107

ous LLMs. We release a collection of pre-trained108

UQ heads for popular open-source instruction-109

following LLMs, including Llama series (Dubey 110

et al., 2024), Gemma 2 (Team et al., 2023), and 111

Mistral-v0.2 (Jiang et al., 2023a). 112

The contributions of this work are as follows: 113

• We design a pre-trained uncertainty quantifi- 114

cation head: a supplementary module for an 115

LLM that yields substantially better perfor- 116

mance for claim-level hallucination detection 117

than classical unsupervised UQ methods and 118

state-of-the-art supervised techniques. 119

• We conduct a vast empirical investigation and 120

find that uncertainty heads show good general- 121

ization across various domains and languages. 122

We also compare various feature sets used for 123

building supervised UQ modules. 124

• We build and release a collection of pre- 125

trained uncertainty quantification heads for 126

popular series of open-source instruction- 127

tuned LLMs: Llama, Gemma 2, Mistral. 128

These modules could be seamlessly integrated 129

into text generation code and be used as off- 130

the-shelf hallucination detection tools. 131

2 Related Work 132

Unsupervised methods. UQ for LLMs has re- 133

cently emerged as a prominent topic in NLP. This 134

area has experienced a surge of work, with early ef- 135

forts focusing on unsupervised techniques such as 136

information-based approaches (Kuhn et al., 2023), 137

density-based scores (Vazhentsev et al., 2022), self- 138

consistency methods (Lin et al., 2023; Zhang et al., 139
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2024a), and verbalized (reflexive) strategies (Tian140

et al., 2023). While unsupervised approaches have141

shown some potential, they still fall short of of-142

fering a strong solution to the problem of LLM143

hallucinations (Vashurin et al., 2024).144

Supervised methods. Recently, researchers have145

started exploring supervised UQ methods that lever-146

age the internal states of LLMs during generation147

as features (Azaria and Mitchell, 2023; Slobod-148

kin et al., 2023; Su et al., 2024; CH-Wang et al.,149

2024; He et al., 2024b). These methods achieve150

substantial performance gains over unsupervised151

approaches, especially for in-domain data.152

Azaria and Mitchell (2023) proposed one of the153

first methods of this kind called SAPLMA, where154

they trained a perceptron using activations from var-155

ious layers to detect when the LLM “agrees” with156

false statements. Slobodkin et al. (2023) trained157

a linear model on hidden states to detect question158

“answerability”, effectively identifying unanswer-159

able questions that typically lead to hallucinations.160

Factoscope (He et al., 2024b) implemented a161

Siamese model with a rich feature set that incorpo-162

rates activation maps, token ranks, and probabilities163

from unembedding matrices across layers. They re-164

ported performance improvements over SAPLMA165

within the training domain, but encountered chal-166

lenges with generalization to other domains.167

CH-Wang et al. (2024) trained simple linear and168

attention-based models (probes) for span-level hal-169

lucination detection, using manually annotated re-170

sponses from multiple LLMs. They also tried to171

use synthetically generated data but found the re-172

sults to be inferior to manual annotation, which173

limits the applicability of their approach.174

Lookbacklens (Chuang et al., 2024) introduces175

a feature set derived from LLM attention maps.176

They calculate the ratio of attention weights for177

newly generated tokens to those in the input prompt.178

The ratios, computed across all attention heads and179

layers, are used in a linear regression model to180

predict an uncertainty score.181

Limitations of Previous Methods. While all182

these works introduced a number of valuable ideas,183

they have notable limitations. Azaria and Mitchell184

(2023); Slobodkin et al. (2023); Su et al. (2024)185

focused on sequence-level methods and are not186

able to detect sub-sentence hallucinations. Many187

models, including Slobodkin et al. (2023); Azaria188

and Mitchell (2023); Chuang et al. (2024); Su189

et al. (2024) used non-contextualized architectures190

such as simple linear probes or multi-layer percep- 191

tron. Although He et al. (2024b) integrated a linear 192

model with an attention mechanism and CH-Wang 193

et al. (2024) used a contextualized model combin- 194

ing convolutions, ResNet, and GRU, these archi- 195

tectures are considered outdated and exhibit limi- 196

tations in quality or computational efficiency. The 197

features of the majority of models included only 198

hidden states across layers (Azaria and Mitchell, 199

2023; Slobodkin et al., 2023; CH-Wang et al., 2024; 200

Su et al., 2024), which limits their generalization. 201

Only He et al. (2024b) and Chuang et al. (2024) per- 202

formed more elaborate feature engineering. Finally, 203

synthetic data that is leveraged through enforced de- 204

coding is used in some work (Azaria and Mitchell, 205

2023; Slobodkin et al., 2023). Compared to the 206

native outputs generated by LLMs, such data may 207

introduce additional biases and adversely affect the 208

performance of hallucination detectors. 209

In contrast, here we aim to build uncertainty 210

quantification heads for subsentence hallucination 211

detection: on the level of atomic claims that lever- 212

age all the strengths of the aforementioned work 213

and address their limitations: (i) instead of over- 214

simple or outdated architectures, we build our so- 215

lution on the powerful Transformer architecture, 216

(ii) we investigate the importance of various fea- 217

tures for hallucination detection, finding that the 218

most informative features are derived from atten- 219

tion maps of LLMs, and (iii) we build an automatic 220

pipeline for generating training data using the na- 221

tive LLM responses. This pipeline allows us to 222

build training data at a larger scale and pre-train 223

UQ heads for a range of popular LLMs. 224

3 Uncertainty Quantification Head 225

Consider the LLM P (ti | x, t<i) with L layers 226

receiving a prompt x of length n and generating 227

tokens y = {t1, t2, ..., tT }. We also have a set of 228

atomic claims C = {c1, c2, ..., cK}, each represent- 229

ing a mapping to a subset of tokens in the output. 230

Atomic claims, for example, can be extracted by 231

another light-weight model. In this work, we for- 232

malize the claim-level uncertainty quantification 233

task as building a function U(ci|x, y) ∈ [0, 1] that 234

determines whether the claim ci ∈ C is a hallucina- 235

tion. A large value of U(ci|x, y) indicates a higher 236

likelihood that the claim ci is a hallucination. 237

Constructing a robust supervised hallucination 238

detector, like any ML model, relies on a careful 239

architecture design, the availability of high-quality 240
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training data, and strategic feature selection. To241

build UQ heads, we combine a strong architec-242

tural solution based on self-attention with synthetic243

data based on native LLM outputs and a power-244

ful feature set that leverages successful ideas from245

previous work on supervised UQ methods.246

3.1 Background on Features for UQ and247

Hallucination Detection248

Hidden states have been shown to serve as indi-249

cators of hallucinations in several studies (Azaria250

and Mitchell, 2023; CH-Wang et al., 2024). Hidden251

states h(t) could be extracted from multiple layers252

of the LLM and aggregated, e.g., as a concatenation253

in a feature vector:254

Fhs(t) = h1(t) ◦ h1(t) ◦ ... ◦ hL(t). (1)255

Lookbacklens (LBLens) Chuang et al. (2024)
leverage features derived from the LLM’s attention
maps. The key idea is that when the model attends
to the prompt, it attempts to solve the task, whereas
attending to generated tokens causes it to disregard
the prompt, increasing the likelihood of halluci-
nation. The authors suggest using the so-called
lookback ratio – the ratio of aggregated attention
to tokens of the prompt and the generated tokens.
Consider each layer of the LLM contains Q atten-
tion heads, and q is an index of a head. Aq,l

context(ti)

and Aq,l
gen(ti) are the average attention weights to

the input x and to the previously generated output
t<i, respectively:

Aq,l
context(ti) =

1

n

n∑
j=1

αq,l
ti,xj

,

Aq,l
gen(ti) =

1

i− 1

i−1∑
j=n+1

αq,l
ti,tj

.

Here, αh,l
ti,tj

represents the softmax-weighted atten-256

tion score from token ti to token tj .257

Then the lookback ratio of the model head q and
the layer l for the token ti is defined as follows:

LRq,l(ti) =
Aq,l

context(ti)

Aq,l
context(ti) +Aq,l

gen(ti)
,

258
FLBLens(ti) = {LRq,l(ti)}Q,L

q,l . (2)259

Factoscope Min et al. (2023) in addition to260

model activations, introduced a set of features that261

leverage token probabilities, the similarity of to-262

ken embeddings across layers, and the evolution263

of token ranks across layers. Commonly, given 264

a token ti at the position i, the LLM outputs hid- 265

den states {hl(ti)}Ll=1, where the final hidden state 266

hL(ti) is passed through the unembedding ma- 267

trix E to predict logits. Factoscope applies E to 268

each LLM layer, obtaining a set of token proba- 269

bilities on specific layer l with the highest values: 270

pli = E (hl(ti)) . Then, it extracts the probabilities 271

of the top-m tokens from each layer l: 272

Ftop-tokens(ti) =
{
log pli(t) | t ∈ topm(pli)

}L

l=1
.

(3) 273

To analyze token evolution across layers, Fac- 274

toscope computes the cosine similarities between 275

embeddings of top tokens from adjacent layers ob- 276

tained by applying the unembedding matrix: 277

Sl(ti) = { cos(Ew1 , Ew2) |
w1 ∈ topm(pli), w2 ∈ topm(pl+1

i )}
278

279
Ftokens-sim(ti) = {Sl(ti)}L−1

l=1 . (4) 280

Finally, Factoscope tracks token rank evolution 281

across layers: Rl(ti) = rank[ti, pli], where rank 282

indicates the position of ti in the descending order 283

of pli values (top-ranked token receives 1). The 284

ranks are further normalized to the range [0, 1]: 285

Frank(ti) = {Rl(ti)
−1}Ll=1. (5) 286

3.2 Features for Pre-trained Uncertainty 287

Quantification Heads 288

We experimented with all the aforementioned types 289

of features and their combinations. However, we 290

found that all of them exhibited various limitations. 291

Hidden states encode a lot of domain-specific in- 292

formation, increasing the risk of overfitting. Facto- 293

scope features usually require substantial computa- 294

tional overhead and do not add much new informa- 295

tion compared to hidden states. Attention features 296

are quite powerful, but aggregation suggested in 297

Lookbacklens results in the loss of valuable infor- 298

mation. For our pre-trained uncertainty quantifica- 299

tion heads, we use two groups of features. 300

Attention maps of the LLM. Attention seems to 301

carry the key information about LLM uncertainty, 302

which might be due to various reasons, including 303

the fact that attention reflects the conditional de- 304

pendency between the generation steps. For each 305

token, we obtain the attention maps to k previous 306

tokens from each attention head and layer and flat- 307

ten them into a single feature vector: 308

Fatt = {αq,l
ti,ti−j

}n,k,Q,L
i,j,q,l . (6) 309
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When (i− j) is negative, we pad the feature vector310

with a zero placeholder. While considering many311

previous tokens that might explode the size of the312

feature space, we empirically found that the opti-313

mal value of k is typically very small: 2 ≤ k ≤ 5.314

We believe that this is due to the powerful con-315

textualized architecture of heads that leverages a316

transformer to automatically extract useful atten-317

tion patterns across the full generated sequence.318

Probability distributions of the LLM. Despite319

the fact that the probability distribution of an LLM320

might be misleading, it still carries useful informa-321

tion about the conditioned confidence of the LLM322

at the current step. This group of features consists323

of logarithms of the top-m token probabilities:324

Fprob(ti) = { logP (t | x, t<i) |
t ∈ topm(P (· | x, t<i))}.

(7)325

We concatenate all groups of features into a326

token-level feature vector: F (t) = Fatt(t)◦Fprob(t).327

Note that for the final feature set of uncertainty328

heads, we do not use features from the hidden states329

of the LLM layers: while they carry important in-330

formation, they are usually domain-dependent and331

have less potential for generalization.332

3.3 Architecture of Uncertainty333

Quantification Heads334

The architecture of the UQ head is depicted in Fig-335

ure 1. To make it versatile and powerful, we build336

it on a Transformer architecture. It consists of a fea-337

ture size reduction neural network with two fully338

connected (FC) layers, a multi-layer transformer339

encoder, and a two-layer classification neural net-340

work. For each component, we use GELU acti-341

vation functions and dropout regularization. To342

mark tokens as belonging to the claim being clas-343

sified, we introduce an embedding matrix. Each344

token, depending on whether it belongs to the clas-345

sified claim, receives a corresponding embedding346

that is summed up with the representation from the347

feature size reduction network. The resulting rep-348

resentations are fed into the transformer encoder.349

The outputs of the encoder are averaged and fed350

into the classifier. The UQ head is trained using a351

binary cross-entropy loss function. When we train352

heads, we freeze the “body” of the LLM, so that353

the LLM generations stay exactly the same.354

4 Pipeline for Training Data Generation 355

The training data generation pipeline is presented 356

in Figure 3 in the appendix. It starts with prompting 357

the LLM to produce responses for a list of ques- 358

tions such as Write a biography of person X or 359

Write the history of the city Y . We select relatively 360

famous named entities so the task is not very hard 361

for the model based on its parametric knowledge, 362

while at the same time, it is not trivial, so outputs 363

contain some hallucinated claims. We also do not 364

use synthetically-generated hallucinations, as they 365

introduce a bias between what the model actually 366

generates vs. the synthetic data. The prompts for 367

other domains can be found in Table 6. 368

We split the obtained responses into atomic 369

claims using GPT-4o with the prompts from 370

(Fadeeva et al., 2024; Vashurin et al., 2024). Each 371

claim is then automatically classified by GPT-4o 372

as supported, unsupported, or unknown. The last 373

category is intended for general claims, for which 374

estimating the veracity is meaningless. The claim 375

labeling process is two-staged: in the first stage, we 376

ask the model to provide an elaborated answer via 377

chain-of-thought (CoT), and in the second stage, 378

we ask it to summarize its answer into one word. 379

The performance of this two-stage labeling is sub- 380

stantially better than for one-stage labeling, due to 381

the well-known issue of lack of logical reasoning 382

in LLMs without CoT (Wei et al., 2022). 383

The pipeline allows to construct relatively large- 384

scale datasets annotated with claim-level hallucina- 385

tions for various LLMs that are weaker than GPT- 386

4o. Statistics about the training data used in our 387

experiments are presented in Table 5. 388

5 Experiments 389

5.1 Experimental Setup 390

For evaluation, we used the LM-Polygraph frame- 391

work (Fadeeva et al., 2023), which makes it easy to 392

evaluate UQ for LLMs in a consistent way. 393

Evaluation Datasets. We constructed eight test 394

sets of English questions designed to prompt LLMs 395

to generate texts across various domains: person 396

biographies, cities, movies, inventions, books, art- 397

works, landmarks, and events. Each test set con- 398

tains 100 questions, generated by prompting GPT- 399

4o and Claude-3-Opus to output 100 famous do- 400

main items, e.g., 100 famous landmarks. An exam- 401

ple structure of the prompts we used is presented 402
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Method
Test Sets Biographies

(in domain) Cities Movies Inventions Books Artworks Landmarks Events

Random 0.29 0.21 0.10 0.16 0.11 0.26 0.12 0.11
MCP 0.41 0.31 0.20 0.32 0.14 0.32 0.14 0.14
Perplexity 0.36 0.23 0.17 0.23 0.14 0.34 0.13 0.12
Mean Token Entropy 0.42 0.29 0.24 0.38 0.17 0.32 0.14 0.16
CCP 0.50 0.37 0.27 0.38 0.17 0.38 0.20 0.17

SAPLMA 0.54 0.43 0.27 0.35 0.29 0.53 0.35 0.24
Factoscope 0.61 0.47 0.34 0.42 0.32 0.49 0.28 0.26
Lookback lens 0.56 0.45 0.25 0.39 0.26 0.46 0.26 0.29
UHead (Ours) 0.63 0.45 0.39 0.48 0.36 0.53 0.30 0.30

Table 1: PR-AUC for various UQ methods for hallucination detection of the Mistral 7B Instruct v0.2 model on
English datasets. Biographies represent the in-domain dataset for supervised UQ methods.

Method
Test Sets Cities Movies Inventions Books Artworks Landmarks Events

UHead 0.45 0.39 0.48 0.36 0.53 0.30 0.30
UHead, bio + all - 1 0.49 0.42 0.49 0.39 0.55 0.31 0.35

Table 2: Introducing more diverse training data. UHead results are shown for two scenarios: when the UQ head is
trained solely on the English biographies dataset, and when it is trained on the biographies dataset along with all
other domains, excluding the test domain.

Method
Test Set Biographies

UHead (only hidden states) 57.3
UHead (att. + prob. + hs.) 57.7
UHead (Factoscope) 57.0
UHead (LookBack Lens) 60.9
UHead (att. + prob.) (Ours) 62.1

Table 3: PR-AUC scores for UQ heads trained with var-
ious feature sets on the Mistral 7B Instruct v0.2 model.
Performance was evaluated using the validation set of
the Biographies domain after hyperparameter tuning.

in Appendix B.1.2 The labels for the test sets are403

obtained in the same way as the training sets: we404

generate responses using the LLM, automatically405

split the responses into atomic claims, and label406

them using GPT-4o.407

To assess the cross-lingual generalizability of408

pre-trained UQ modules, we also conducted eval-409

uation on Russian and Chinese prompts from410

(Vashurin et al., 2024), and additionally created411

a similar test set with German prompts. Test sets412

for each language consist of 100 biography-related413

questions. The statistics about all test sets are pre-414

sented in Table 6.415

Metrics. In the main experiments, we measured416

the claim-level performance of detecting invalid417

claims. For this purpose, we used PR-AUC, where418

2All data used for training and testing is available at
<anonymized>

Method
Language English Russian Chinese German

Random 0.13 0.34 0.23 0.15
MCP 0.18 0.43 0.31 0.20
Perplexity 0.14 0.40 0.29 0.15
Mean Token Entropy 0.20 0.44 0.44 0.22
CCP 0.31 0.49 0.44 0.31

SAPLMA 0.34 0.51 0.33 0.39
Factoscope 0.35 0.53 0.35 0.38
UHead (Ours) 0.44 0.60 0.54 0.46

Table 4: Performance comparison of the UQ head on dif-
ferent languages using the Gemma 2 9b Instruct model
trained on English-only biographies data.

“unsupported” claims represent the positive class. 419

Models. We conducted our primary experiments 420

with Mistral 7b Instruct v0.2 (Jiang et al., 2023b) 421

and Gemma 2 9b Instruct (Team et al., 2023). 422

Training the uncertainty heads and hyper- 423

parameter optimization. We trained the uncer- 424

tainty heads using Adam with a linear learning rate 425

decay and warmup. We selected the values of the 426

hyper-parameters on the validation set of the bi- 427

ographies dataset using claim-level PR-AUC. We 428

observed that among the important general hyper- 429

parameters are the weight of the instances with 430

positive labels, the number of epochs, and the size 431

of the learning rate. The best values of the hyper- 432

parameters for each of the tested models are pre- 433

sented in Table 7 in Appendix C. 434
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Baselines. We compare our method to several un-435

supervised baselines: Maximum Claim Probability436

(an adaptation of Maximum Sequence Probabil-437

ity for claims), Mean Token Entropy, Perplexity,438

and Claim Conditioned Probability (CCP) (Fadeeva439

et al., 2024). Additionally, we evaluated against440

supervised methods, including SAPLMA, Facto-441

scope, and Lookbacklens. SAPLMA predicts442

token-level uncertainties using a 3-layer percep-443

tron, and the mean uncertainty is calculated over444

claim-related tokens during inference. Note that445

both Lookbacklens and Factoscope operate at the446

claim level. Lookbacklens uses a Logistic Regres-447

sion model trained on attention features. Our im-448

plementation of the Factoscope approach uses our449

Transformer-based architecture and the feature set450

that includes hidden states, top token embeddings451

with similarities, and token ranks. The values of452

the hyper-parameters we used for the baselines are453

given in Appendix C.454

5.2 Results455

Main results. Table 1 shows the performance456

of the unsupervised UQ techniques and the super-457

vised UQ methods trained on persons’ biographies458

for claim-level hallucination detection with Mis-459

tral 7B Instruct v0.2. For evaluating supervised460

methods, the domain biographies represents the461

in-domain test set and all other domains represent462

out-of-domain (OOD) test sets. Note that in this463

evaluation, both the questions and the LLM’s re-464

sponses across all domains are in English.465

Among the unsupervised techniques, uncertainty466

scores based on CCP yield the best performance,467

confidently outperforming other methods on bi-468

ographies, cities, artworks, and landmarks. Mean469

Token Entropy also achieves relatively good results470

on par with CCP on books, inventions, and events.471

Supervised UQ methods greatly outperform un-472

supervised techniques on the in-domain test set.473

Moreover, remarkably, all considered supervised474

methods demonstrate substantial generalization475

and the ability to perform well beyond the training476

domain of people’s biographies.477

Our uncertainty head (UHead) demonstrates the478

best results in both in-domain and out-of-domain479

evaluations. For in-domain evaluation, UHead out-480

performs the best-unsupervised method CCP by 13481

percentage points (pps) in terms of PR-AUC. The482

gap is also large for out-of-domain evaluation, e.g.,483

for books, UHead outperforms CCP by 19 pps, for484

artworks and movies by 15 pps, and for events by485

13 pps. Compared to supervised methods, UHead 486

surpasses the closest competitor, Factoscope, by 487

two pps for the in-domain evaluation. In OOD 488

evaluation, it also consistently outperforms other 489

supervised methods in most cases. 490

Analyzing other supervised methods, Facto- 491

scope demonstrates close performance in the in- 492

domain evaluation and even slightly outperforms 493

UHead for the cities domain by 2 pps. However, 494

for other OOD domains, UHead retains better per- 495

formance, outperforming Factoscope by up to 6 496

pps. We assume that the underperformance of the 497

Factoscope baseline compared to UHead lies in 498

the use of layer activations, which limits gener- 499

alization. Another module that relies on hidden 500

states is SAPLMA. In addition to the feature limi- 501

tations, it also has architectural limitations, which 502

further hurt its performance. Compared to UHead, 503

it is behind by 9 pps on in-domain evaluation. For 504

artworks and landmarks, SAPLMA shows good re- 505

sults, but for the majority of OOD test sets, it stays 506

behind Factoscope and UHead. Lookbacklens also 507

usually falls behind UHead and Factoscope; we 508

believe that its main problem is its weak linear 509

architecture. At the same time, we note that the 510

feature set suggested by Lookbacklens based on 511

attention is quite strong (see analysis of various 512

feature sets below). 513

Introducing more diverse training data for 514

UHead. Table 2 presents the results when we 515

train uncertainty heads on biographies plus the 516

data from all domains except one, which is used 517

for OOD evaluation. In this scenario, uncertainty 518

heads get access to bigger and more diverse train- 519

ing data. As we can see, for most of the domains, 520

this yields a substantial boost in performance. For 521

example, for events and cities, it gives 5 and 4 per- 522

centage points improvement, respectively. This is 523

quite substantial as it improves the relative perfor- 524

mance by around 10%. These results indicate that 525

expanding the training data and enhancing its di- 526

versity could further increase the UQ performance, 527

particularly in the OOD setting. 528

Analysis of feature sets. Table 3 presents the 529

comparison of various feature sets in combination 530

with the UHead architecture on the in-domain val- 531

idation set. For each feature set, we perform an 532

extensive hyper-parameter value search. We can 533

see that all feature sets that leverage hidden states 534

fall substantially behind attention-based features. 535

The analysis of the validation loss dynamics shows 536
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that this is probably due to quick overfitting. Mod-537

els that leverage hidden states start overfitting after538

1–3 epochs, while models that leverage attention539

might not overfit even after 10 epochs. We also540

note that Lookbacklens features combined with the541

UHead architecture provide strong performance.542

However, simple attention maps without feature543

engineering yield even better results.544

Cross-lingual generalization. Table 4 presents545

the results for Gemma 2 9b Instruct. In this experi-546

ment, we train UQ modules on the English person’s547

biographies as in the previous experiment, but548

we evaluate the performance on other languages.549

Surprisingly, UHead achieves strong cross-lingual550

generalization. For all OOD languages, UHead551

achieves substantial improvements over the best-552

unsupervised methods. For Chinese, UHead is bet-553

ter than MTE by 10 pps, for Russian, it is better554

than CCP by 16 pps, and for German by 20 pps. No-555

tably, other supervised methods also demonstrate556

some level of generalization but have substantially557

worse performance. Overall, these results show that558

uncertainty heads, even if they are pre-trained on559

English data, can be good off-the-shelf hallucina-560

tion detectors for LLM outputs in other languages.561

Computational efficiency. Next, we evaluated562

the computational overhead of various UQ methods.563

To ensure a fair comparison, we focused only on564

the time required to generate texts and to compute565

uncertainty scores, excluding the time spent on566

claim extraction. The results were obtained using567

a multi-domain dataset containing 800 texts and a568

total of 18,852 claims and Mistral 7B Instruct v0.2.569

Table 8 summarizes the results and provides the570

memory footprint of various methods. MCP and571

Perplexity incur no additional overhead, serving as572

baselines for comparison. The proposed UHead573

method introduces less than 10% overhead, only574

slightly higher than the best-unsupervised method575

CCP (8.6%). With around 20 million parameters,576

UHead has a minimal impact on GPU memory foot-577

print (80MB). Thus, UHead is a very lightweight578

addition to multi-billion-parameter LLMs and is579

practical for real-world deployment.580

6 Collection of Pre-trained Uncertainty581

Heads for Popular LLMs582

Finally, we pre-trained a collection of Uncertainty583

Quantification (UQ) Heads for a range of popular584

7B–9B parameter LLMs, including Mistral, vari-585

from transformers import AutoModelForCausalLM ,
AutoTokenizer

from luh import AutoUncertaintyHead ,
CausalLMWithUncertainty

llm = AutoModelForCausalLM.from_pretrained(
model_name)

tokenizer = AutoTokenizer.from_pretrained(
model_name)

uhead = AutoUncertaintyHead.from_pretrained(
uhead_name , base_model=llm)

llm_adapter = CausalLMWithUncertainty(model , uhead ,
tokenizer=tokenizer)

# tokenize text and prepare inputs ...
output = llm_adapter.generate(inputs)

Figure 2: Code example for using uncertainty heads.

ous versions of LLaMA, and Gemma 2. In addi- 586

tion to model-level UQ, we release token-level UQ 587

heads that can provide uncertainty scores directly 588

for tokens without explicit claim annotation, which 589

enables broader applicability across tasks. 590

Our UQ heads are designed for use as an off- 591

the-shelf tool for confidence estimation in LLMs. 592

They could be loaded from the hub using a proce- 593

dure that is similar to the “from_pretrained” API 594

in the Hugging Face Transformers library and in- 595

tegrated into the LLM generation procedure with 596

an adapter. A code example demonstrating how to 597

use the UQ heads is provided in Figure 2. Thus, 598

UQ heads could be integrated into third-party code 599

with minimal modifications, which makes them 600

an easy plug-and-play solution for researchers and 601

practitioners. 602

7 Conclusion and Future Work 603

We presented pre-trained UQ heads – supplemen- 604

tary supervised modules for LLMs that help to 605

capture their uncertainty much more effectively 606

than unsupervised UQ methods. We demonstrated 607

that they are quite robust and deliver state-of-the- 608

art results for both in-domain and out-of-domain 609

prompts. They also show remarkable generaliza- 610

tion to other languages. Inspired by their good 611

performance, we pre-trained a collection of UQ 612

heads for a series of popular LLMs, including Mis- 613

tral, Gemma 2, and LLama. We release the code 614

and the pre-trained uncertainty heads so they could 615

be used as off-the-shelf hallucination detectors for 616

other researchers and practitioners. 617

We see that the performance of UQ heads im- 618

proves with providing more training data from di- 619

verse domains. In future work, we plan to scale 620

up the training data and explore the limits of the 621

supervised approach to UQ. 622
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Limitations623

Our paper assumes a correlation between uncer-624

tainty and hallucinations. Uncertainty heads cannot625

solve the problem when LLMs are trained to pro-626

vide misinformation. In this situation, models are627

confident in their deceptive answers. Uncertainty628

heads cannot provide ideal annotation of hallucina-629

tions, as some LLMs do not have enough capacity630

to provide information about what they know and631

what they do not know. While we see generaliza-632

tion in uncertainty heads, we should acknowledge633

that, as with any other supervised method, they634

work best for “in-domain” data. The bias present635

in LLMs could also be transferred into uncertainty636

heads.637

Ethical Considerations638

Responsible Use In our work, we considered639

open-weight LLMs and datasets not aimed at harm-640

ful content. However, LLMs may generate poten-641

tially damaging texts for various groups of people.642

Uncertainty quantification techniques can help cre-643

ate more reliable use of neural networks. Moreover,644

they can be applied to detecting harmful genera-645

tions, but this is not our intention.646

Limited Applicability Moreover, despite that647

our proposed method demonstrates sizable perfor-648

mance improvements, it can still mistakenly high-649

light correct and not dangerous generated text with650

high uncertainty in some cases. Thus, as with other651

uncertainty quantification methods, it has limited652

applicability.653

Annotation Considerations We used GPT-4o654

for claim extraction and their annotation. This may655

introduce cultural, linguistic, or other biases into656

the data used to train the uncertainty heads.657
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A Training Data Generation Pipeline902
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Figure 3: The training data generation pipeline.

B Dataset Details903

B.1 Dataset Construction904

905

We used few-shot learning to better guide the LLM to generate the items for the desired domain. The906

structure of the prompts looks as follows:907

Continue the list of 100 most famous {domain items}:

1. <domain-item-1>

2. <domain-item-2>

3. <domain-item-3>

Example for the “cities” domain:908

Continue the list of 100 most famous cities:

1. Paris, France

2. Amsterdam, Netherlands

3. Osaka, Japan

For claim extraction and their annotation, we use GPT-4o with prompts from (Fadeeva et al., 2024).909

Overall expenses for LLM API calls are approximately $4000.910

12



B.2 Dataset Statistics 911

912

Table 5 presents the statistics of the datasets used for training and validation; Table 6 shows the statistics 913

of the datasets used for testing. 914

Model Dataset # of texts # of claims

Mistral 7b Instruct v0.2 biographies 3300 57,671
multi-domain 700 14,554

Gemma 2 9b Instruct biographies 3300 83,716

Table 5: Statistics about the training datasets used in our experiments.

Split # of prompts GPT-4 prompt used to generate questions Testing prompt # of claims
Mistral Gemma

persons 100 Tell me a list of 100 most famous persons. Tell me a bio of a <person> 2234 2857
cities 100 Tell me a list of 100 most famous cities. Tell me a history of a <city> 2128 2684
movies 100 Tell me a list of 100 most famous movies. Tell me about the movie <movie> and its cast. 2568 3121
inventions 100 Tell me a list of 100 most important inventions. Tell me about the invention of <invention> and its inventor. 2269 2626
books 100 Tell me a list of 100 most famous books. Tell me about the book <book> and its author. 2530 3070
artworks 100 Tell me a list of 100 most famous artworks. Tell me about the artwork <artwork> and its artist. 2464 2873
landmarks 100 Tell me a list of 100 most famous landmarks. Tell me about the landmark <landmark>. 2365 2566
events 100 Tell me a list of 100 most significant historical events. Tell me about <event> event. 2294 2665

Russian 100 — Расскажибиографию <person> — 3572
Chinese 100 — 介绍一下<person> — 2248
German 100 — Erzhlen Sie mir eine Biografie von <person> — 2815

Table 6: The statistics of the multi-domain test dataset and number of claims generated my Mistral 7B Instruct v0.2
and Gemma 2 9b Instruct models.

C Hyperparameters 915

Method Model Learning Rate Num. Epochs Weight Decay Dropout rate Hidden state layers Attention window size

SAPLMA
Gemma 2 9b Instruct 1e-4 10 0.1 0.1 [-1] –
Mistral 7b Instruct v0.2 1e-4 10 0.1 0.1 [-1] –

Lookbacklens
Gemma 2 9b Instruct 1e-2 13 0.1 0.1 – –
Mistral 7b Instruct v0.2 1e-2 13 0.1 0.1 – –

UHead (Factoscope)
Gemma 2 9b Instruct 2e-4 3 0.1 0.2 [-1] –
Mistral 7b Instruct v0.2 2e-4 3 0.1 0.2 [-1,-15] –

UHead
Gemma 2 9b Instruct 2e-4 6 0.1 0.05 – 2
Mistral 7b Instruct v0.2 1e-4 10 0.1 0.1 – 5

Table 7: Optimal hyperparameters for each method and model.

For each tested model, we selected hyperparameters by optimizing the PR-AUC metric on the validation 916

set of the “biographies” dataset. In training, we optimized the learning rate, warmup ratio, number of 917

epochs, and the weight of positive examples in the cross-entropy loss. For the model architecture, we 918

optimized the number of uncertainty layers, the number of heads, and the intermediate dimension. For 919

feature extraction, we optimized the number of layers used to obtain hidden states, token probabilities, 920

and attention weights, as well as the number of preceding tokens considered for attention. The optimal 921

hyperparameters are summarized in Table 7. The hyperparameter grid is the following: 922

Learning rate: [1e-5, 3e-5, 5e-5, 1e-4, 2e-4, 5e-4, 1e-2]; 923

Num. of epochs: {n ∈ N | 2 ≤ n ≤ 15}; 924

Hidden state layers: [[-1], [-1, -16], [-1, -15, -30]]; 925

Attention window size: [1, 2, 3, 4, 5, 10]; 926

Dropout rate: [0., 0.05, 0.1, 0.2]; 927

Weight decay: [0, 1e-2, 1e-1]. 928
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D Hardware and Computational Efficiency929

All experiments were conducted on 8 NVIDIA RTX 6000 Ada GPUs. On average, training a single model930

with hyperparameter search takes around 150 GPU hours.931

Method Computational Overhead GPU Memory Footprint, MB

MCP 0.0 % 0
Perplexity 0.0 % 0
Max Token Entropy 0.2 % 0
CCP 8.6 % 440
SAPLMA 4.7 % 5
Factoscope 122.1 % 70
UHead + Lookback Lens 18.4 % 55
Lookback Lens 17.0 % <1
UHead 9.4 % 80

Table 8: Computational overhead of UQ methods using the Mistral 7B Instruct v0.2 model. Overhead is measured
relative to the fastest method MCP.
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