A Head to Predict and a Head to Question:
Pre-trained Uncertainty Quantification Heads for
Hallucination Detection in LLM Outputs

Anonymous ACL submission

Abstract

Large Language Models (LLMs) have the ten-
dency to hallucinate, i.e., to sporadically gen-
erate false or fabricated information. This
presents a major challenge, as hallucinations
often appear highly convincing and users gen-
erally lack the tools to detect them. Uncertainty
quantification (UQ) provides a framework for
assessing the reliability of model outputs, aid-
ing in the identification of potential hallucina-
tions. In this work, we introduce pre-trained
UQ heads: supervised auxiliary modules for
LLMs that substantially enhance their ability
to capture uncertainty compared to unsuper-
vised UQ methods. Their strong performance
stems from the powerful Transformer architec-
ture in their design and informative features de-
rived from LLM attention maps. Experimental
evaluation shows that these heads are highly ro-
bust and achieve state-of-the-art performance in
claim-level hallucination detection across both
in-domain and out-of-domain prompts. More-
over, these modules demonstrate strong gener-
alization to languages they were not explicitly
trained on. We pre-train a collection of UQ
heads for popular LLM series, including Mis-
tral, Llama, and Gemma 2. We publicly release
both the code and the pre-trained heads.'

1 Introduction

Uncertainty quantification (UQ) (Gal and Ghahra-
mani, 2016; Baan et al., 2023; Geng et al., 2024;
Zhang et al., 2024a) has become an increasingly im-
portant topic in natural language processing (NLP),
particularly for addressing challenges with halluci-
nations and low-quality outputs of large language
models (LLMs) (Malinin and Gales, 2021; Kuhn
et al., 2023; Fadeeva et al., 2024). UQ offers the
potential to improve the safety and reliability of

1https://anonymous.4open.science/r/
11m-uncertainty-head-24DD

LLM-based applications by flagging highly uncer-
tain generations. Such generations could be dis-
carded or marked as untrustworthy, thus reducing
the risk of misleading information reaching users
(Zhang et al., 2024a,b; Huang et al., 2024).

Current methods for detecting hallucinations and
low-quality text often rely on external knowledge
bases or additional LLMs (Manakul et al., 2023;
Min et al., 2023; Chen et al., 2023). While use-
ful, these approaches come with major drawbacks.
Knowledge sources are often incomplete, and us-
ing a larger model to censor a smaller one is both
computationally expensive and impractical. In-
stead, UQ assumes that LLMs naturally encode
information about their own limitations, and this
self-knowledge can be efficiently accessed to build
safer, more practical systems.

There are many existing UQ techniques for well-
defined tasks such as classification and regression
(Zhang et al., 2019; He et al., 2020; Xin et al.,
2021; Wang et al., 2022; Vazhentsev et al., 2023;
He et al., 2024a). However, applying UQ to text
generation has unique challenges including (i) an
infinite number of possible generations, which com-
plicates the normalization of the uncertainty scores,
(ii) potentially multiple correct answers with dif-
ferent surface forms (Kuhn et al., 2023), (iii) need
to aggregate uncertainties across multiple interde-
pendent predictions corresponding to generated to-
kens (Zhang et al., 2023), (iv) generated tokens not
contributing to uncertainty equally, as some tokens
represent auxiliary words (Duan et al., 2024), and
(v) some sources of uncertainty being irrelevant
for hallucination detection (Fadeeva et al., 2024).
These challenges hinder the performance of clas-
sical unsupervised UQ techniques, and addressing
them explicitly in a single method is quite difficult.
Recently, researchers have proposed automating
the detection of these intricacies using machine
learning. A series of supervised methods for UQ
and hallucination detection has been proposed that
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Figure 1: The architecture of uncertainty quantification heads. The example represents a text generated using an
LLM, containing the hallucination 20 Grammy Awards highlighted in red.

learn the aforementioned intricacies from the an-
notated data (Azaria and Mitchell, 2023; He et al.,
2024b; Chuang et al., 2024).

We continue this line of work by introducing pre-
trained UQ heads: supervised auxiliary modules
for LLMs that substantially enhance their ability to
capture uncertainty compared to unsupervised UQ
methods. Their strong performance stems from the
powerful Transformer architecture in their design
and informative features derived from LLM atten-
tion maps. These heads do not require re-training
of the entire LLM and do not alter its outputs. De-
spite their high performance, these methods main-
tain a relatively small memory and computational
footprint, ensuring practical usability.

Experimental evaluation shows that our uncer-
tainty heads are highly robust and achieve state-
of-the-art performance in claim-level hallucination
detection across both in-domain and out-of-domain
prompts, outperforming other supervised and un-
supervised techniques. Moreover, these modules
demonstrate strong generalization to languages
they were not explicitly trained on.

Training uncertainty quantification heads re-
quires annotated hallucinations in LLM outputs.
For constructing training data, we created an auto-
matic pipeline for annotation of hallucinations of
LLM outputs, which allows us to scale our exper-
iments and to pre-train uncertainty heads for vari-
ous LLMs. We release a collection of pre-trained
UQ heads for popular open-source instruction-

following LLLMs, including Llama series (Dubey
et al., 2024), Gemma 2 (Team et al., 2023), and
Mistral-v0.2 (Jiang et al., 2023a).

The contributions of this work are as follows:

* We design a pre-trained uncertainty quantifi-
cation head: a supplementary module for an
LLM that yields substantially better perfor-
mance for claim-level hallucination detection
than classical unsupervised UQ methods and
state-of-the-art supervised techniques.

* We conduct a vast empirical investigation and
find that uncertainty heads show good general-
ization across various domains and languages.
We also compare various feature sets used for
building supervised UQ modules.

* We build and release a collection of pre-
trained uncertainty quantification heads for
popular series of open-source instruction-
tuned LLMs: Llama, Gemma 2, Mistral.
These modules could be seamlessly integrated
into text generation code and be used as off-
the-shelf hallucination detection tools.

2 Related Work

Unsupervised methods. UQ for LLMs has re-
cently emerged as a prominent topic in NLP. This
area has experienced a surge of work, with early ef-
forts focusing on unsupervised techniques such as
information-based approaches (Kuhn et al., 2023),
density-based scores (Vazhentsev et al., 2022), self-
consistency methods (Lin et al., 2023; Zhang et al.,



2024a), and verbalized (reflexive) strategies (Tian
et al., 2023). While unsupervised approaches have
shown some potential, they still fall short of of-
fering a strong solution to the problem of LLM
hallucinations (Vashurin et al., 2024).

Supervised methods. Recently, researchers have
started exploring supervised UQ methods that lever-
age the internal states of LLMs during generation
as features (Azaria and Mitchell, 2023; Slobod-
kin et al., 2023; Su et al., 2024; CH-Wang et al.,
2024; He et al., 2024b). These methods achieve
substantial performance gains over unsupervised
approaches, especially for in-domain data.

Azaria and Mitchell (2023) proposed one of the
first methods of this kind called SAPLMA, where
they trained a perceptron using activations from var-
ious layers to detect when the LLM “agrees” with
false statements. Slobodkin et al. (2023) trained
a linear model on hidden states to detect question
“answerability”, effectively identifying unanswer-
able questions that typically lead to hallucinations.

Factoscope (He et al., 2024b) implemented a
Siamese model with a rich feature set that incorpo-
rates activation maps, token ranks, and probabilities
from unembedding matrices across layers. They re-
ported performance improvements over SAPLMA
within the training domain, but encountered chal-
lenges with generalization to other domains.

CH-Wang et al. (2024) trained simple linear and
attention-based models (probes) for span-level hal-
lucination detection, using manually annotated re-
sponses from multiple LLMs. They also tried to
use synthetically generated data but found the re-
sults to be inferior to manual annotation, which
limits the applicability of their approach.

Lookbacklens (Chuang et al., 2024) introduces
a feature set derived from LLM attention maps.
They calculate the ratio of attention weights for
newly generated tokens to those in the input prompt.
The ratios, computed across all attention heads and
layers, are used in a linear regression model to
predict an uncertainty score.

Limitations of Previous Methods. While all
these works introduced a number of valuable ideas,
they have notable limitations. Azaria and Mitchell
(2023); Slobodkin et al. (2023); Su et al. (2024)
focused on sequence-level methods and are not
able to detect sub-sentence hallucinations. Many
models, including Slobodkin et al. (2023); Azaria
and Mitchell (2023); Chuang et al. (2024); Su
et al. (2024) used non-contextualized architectures

such as simple linear probes or multi-layer percep-
tron. Although He et al. (2024b) integrated a linear
model with an attention mechanism and CH-Wang
et al. (2024) used a contextualized model combin-
ing convolutions, ResNet, and GRU, these archi-
tectures are considered outdated and exhibit limi-
tations in quality or computational efficiency. The
features of the majority of models included only
hidden states across layers (Azaria and Mitchell,
2023; Slobodkin et al., 2023; CH-Wang et al., 2024;
Su et al., 2024), which limits their generalization.
Only He et al. (2024b) and Chuang et al. (2024) per-
formed more elaborate feature engineering. Finally,
synthetic data that is leveraged through enforced de-
coding is used in some work (Azaria and Mitchell,
2023; Slobodkin et al., 2023). Compared to the
native outputs generated by LL.Ms, such data may
introduce additional biases and adversely affect the
performance of hallucination detectors.

In contrast, here we aim to build uncertainty
quantification heads for subsentence hallucination
detection: on the level of atomic claims that lever-
age all the strengths of the aforementioned work
and address their limitations: (i) instead of over-
simple or outdated architectures, we build our so-
lution on the powerful Transformer architecture,
(ii) we investigate the importance of various fea-
tures for hallucination detection, finding that the
most informative features are derived from atten-
tion maps of LLMs, and (iif) we build an automatic
pipeline for generating training data using the na-
tive LLM responses. This pipeline allows us to
build training data at a larger scale and pre-train
UQ heads for a range of popular LLMs.

3 Uncertainty Quantification Head

Consider the LLM P(t; | x,t<;) with L layers
receiving a prompt x of length n and generating
tokens y = {t1,t2,...,t7}. We also have a set of
atomic claims C' = {cy, ca, ..., ¢k }, each represent-
ing a mapping to a subset of tokens in the output.
Atomic claims, for example, can be extracted by
another light-weight model. In this work, we for-
malize the claim-level uncertainty quantification
task as building a function U (¢;|z,y) € [0, 1] that
determines whether the claim ¢; € C'is a hallucina-
tion. A large value of U(¢;|x, y) indicates a higher
likelihood that the claim c¢; is a hallucination.
Constructing a robust supervised hallucination
detector, like any ML model, relies on a careful
architecture design, the availability of high-quality



training data, and strategic feature selection. To
build UQ heads, we combine a strong architec-
tural solution based on self-attention with synthetic
data based on native LLLM outputs and a power-
ful feature set that leverages successful ideas from
previous work on supervised UQ methods.

3.1 Background on Features for UQ and
Hallucination Detection

Hidden states have been shown to serve as indi-
cators of hallucinations in several studies (Azaria
and Mitchell, 2023; CH-Wang et al., 2024). Hidden
states h(t) could be extracted from multiple layers
of the LLM and aggregated, e.g., as a concatenation
in a feature vector:

Fhs(t) = hl(t) o hl(t) 0...0 hL(t). (D)

Lookbacklens (LBLens) Chuang et al. (2024)
leverage features derived from the LLM’s attention
maps. The key idea is that when the model attends
to the prompt, it attempts to solve the task, whereas
attending to generated tokens causes it to disregard
the prompt, increasing the likelihood of halluci-
nation. The authors suggest using the so-called
lookback ratio — the ratio of aggregated attention
to tokens of the prompt and the generated tokens.
Consider each layer of the LLLM contains () atten-
tion heads, and ¢ is an index of a head. Agolmext( ti)
and Agéln(ti) are the average attention weights to
the input = and to the previously generated output
t;, respectively:

n
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Here, afi ’ftj represents the softmax-weighted atten-
tion score from token ¢; to token ¢;.

Then the lookback ratio of the model head ¢ and
the layer [ for the token t; is defined as follows:

l
Agontext( )
Ag(’)ntext( ) + Agen( z)

FLBLens( ) - {LRq’ ( z)}giL (2)

Factoscope Min et al. (2023) in addition to
model activations, introduced a set of features that
leverage token probabilities, the similarity of to-
ken embeddings across layers, and the evolution

LR\ (t;) =

of token ranks across layers. Commonly, given
a token ¢; at the position %, the LLM outputs hid-
den states {h;(t;)}~_,, where the final hidden state
hi(t;) is passed through the unembedding ma-
trix E to predict logits. Factoscope applies E to
each LLM layer, obtaining a set of token proba-
bilities on specific layer [ with the highest values:
pt = E (h(t;)) . Then, it extracts the probabilities
of the top-m tokens from each layer {:

L
Eop tokens( Z) {lngz( ) | te topm(pé)}l_l :
3)
To analyze token evolution across layers, Fac-
toscope computes the cosine similarities between
embeddings of top tokens from adjacent layers ob-

tained by applying the unembedding matrix:
S (t;) = { cos(Euw,, Euw,) |
w1 € top,, (p}), wa € top,,, (Pt}
Frokens-sim(t) = {8 (t:) }/2"- @

Finally, Factoscope tracks token rank evolution
across layers: R!(t;) = rank[t;,p!], where rank
indicates the position of ¢; in the descending order
of pﬁ values (top-ranked token receives 1). The
ranks are further normalized to the range [0, 1]:

Frank( —{Rl( ) 1}le1- )

3.2 Features for Pre-trained Uncertainty
Quantification Heads

We experimented with all the aforementioned types
of features and their combinations. However, we
found that all of them exhibited various limitations.
Hidden states encode a lot of domain-specific in-
formation, increasing the risk of overfitting. Facto-
scope features usually require substantial computa-
tional overhead and do not add much new informa-
tion compared to hidden states. Attention features
are quite powerful, but aggregation suggested in
Lookbacklens results in the loss of valuable infor-
mation. For our pre-trained uncertainty quantifica-
tion heads, we use two groups of features.

Attention maps of the LLM. Attention seems to
carry the key information about LLM uncertainty,
which might be due to various reasons, including
the fact that attention reflects the conditional de-
pendency between the generation steps. For each
token, we obtain the attention maps to k previous
tokens from each attention head and layer and flat-
ten them into a single feature vector:

_ [l n,k,Q,L
Fae =084 }ijal (6)



When (i — j) is negative, we pad the feature vector
with a zero placeholder. While considering many
previous tokens that might explode the size of the
feature space, we empirically found that the opti-
mal value of k is typically very small: 2 < k < 5.
We believe that this is due to the powerful con-
textualized architecture of heads that leverages a
transformer to automatically extract useful atten-
tion patterns across the full generated sequence.

Probability distributions of the LLM. Despite
the fact that the probability distribution of an LLM
might be misleading, it still carries useful informa-
tion about the conditioned confidence of the LLM
at the current step. This group of features consists
of logarithms of the top-m token probabilities:

Fprob(ti) = {log P(t ‘ (E,t<i) |

7
t € top,,(P(- | x,t<i))}. )

We concatenate all groups of features into a
token-level feature vector: F'(t) = Fyu(t)oFpron(1).
Note that for the final feature set of uncertainty
heads, we do not use features from the hidden states
of the LLM layers: while they carry important in-
formation, they are usually domain-dependent and
have less potential for generalization.

3.3 Architecture of Uncertainty
Quantification Heads

The architecture of the UQ head is depicted in Fig-
ure 1. To make it versatile and powerful, we build
it on a Transformer architecture. It consists of a fea-
ture size reduction neural network with two fully
connected (FC) layers, a multi-layer transformer
encoder, and a two-layer classification neural net-
work. For each component, we use GELU acti-
vation functions and dropout regularization. To
mark tokens as belonging to the claim being clas-
sified, we introduce an embedding matrix. Each
token, depending on whether it belongs to the clas-
sified claim, receives a corresponding embedding
that is summed up with the representation from the
feature size reduction network. The resulting rep-
resentations are fed into the transformer encoder.
The outputs of the encoder are averaged and fed
into the classifier. The UQ head is trained using a
binary cross-entropy loss function. When we train
heads, we freeze the “body” of the LLM, so that
the LLM generations stay exactly the same.

4 Pipeline for Training Data Generation

The training data generation pipeline is presented
in Figure 3 in the appendix. It starts with prompting
the LLM to produce responses for a list of ques-
tions such as Write a biography of person X or
Write the history of the city Y. We select relatively
famous named entities so the task is not very hard
for the model based on its parametric knowledge,
while at the same time, it is not trivial, so outputs
contain some hallucinated claims. We also do not
use synthetically-generated hallucinations, as they
introduce a bias between what the model actually
generates vs. the synthetic data. The prompts for
other domains can be found in Table 6.

We split the obtained responses into atomic
claims using GPT-40 with the prompts from
(Fadeeva et al., 2024; Vashurin et al., 2024). Each
claim is then automatically classified by GPT-40
as supported, unsupported, or unknown. The last
category is intended for general claims, for which
estimating the veracity is meaningless. The claim
labeling process is two-staged: in the first stage, we
ask the model to provide an elaborated answer via
chain-of-thought (CoT), and in the second stage,
we ask it to summarize its answer into one word.
The performance of this two-stage labeling is sub-
stantially better than for one-stage labeling, due to
the well-known issue of lack of logical reasoning
in LLMs without CoT (Wei et al., 2022).

The pipeline allows to construct relatively large-
scale datasets annotated with claim-level hallucina-
tions for various LLMs that are weaker than GPT-
40. Statistics about the training data used in our
experiments are presented in Table 5.

S Experiments

5.1 Experimental Setup

For evaluation, we used the LM-Polygraph frame-
work (Fadeeva et al., 2023), which makes it easy to
evaluate UQ for LLMs in a consistent way.

Evaluation Datasets. We constructed eight test
sets of English questions designed to prompt LLMs
to generate texts across various domains: person
biographies, cities, movies, inventions, books, art-
works, landmarks, and events. Each test set con-
tains 100 questions, generated by prompting GPT-
40 and Claude-3-Opus to output 100 famous do-
main items, e.g., 100 famous landmarks. An exam-
ple structure of the prompts we used is presented



m B.lograph.l es Cities Movies Inventions Books Artworks Landmarks Events

ethod (in domain)
Random 0.29 0.21 0.10 0.16 0.11 0.26 0.12 0.11
MCP 0.41 0.31 0.20 0.32 0.14 0.32 0.14 0.14
Perplexity 0.36 0.23 0.17 0.23 0.14 0.34 0.13 0.12
Mean Token Entropy 0.42 0.29 0.24 0.38 0.17 0.32 0.14 0.16
CCP 0.50 0.37 0.27 0.38 0.17 0.38 0.20 0.17
SAPLMA 0.54 0.43 0.27 0.35 0.29 0.53 0.35 0.24
Factoscope 0.61 0.47 0.34 0.42 0.32 0.49 0.28 0.26
Lookback lens 0.56 0.45 0.25 0.39 0.26 0.46 0.26 0.29
UHead (Ours) 0.63 0.45 0.39 0.48 0.36 0.53 0.30 0.30

Table 1: PR-AUC for various UQ methods for hallucination detection of the Mistral 7B Instruct v0.2 model on
English datasets. Biographies represent the in-domain dataset for supervised UQ methods.

Test Sets Cities Movies Inventions Books Artworks Landmarks Events
Method

0.39

UHead 0.45
0.42

UHead, bio + all - 1 0.49

0.48
0.49

0.36
0.39

0.53
0.55

0.30
0.31

0.30
0.35

Table 2: Introducing more diverse training data. UHead results are shown for two scenarios: when the UQ head is
trained solely on the English biographies dataset, and when it is trained on the biographies dataset along with all

other domains, excluding the test domain.

M Biographies
UHead (only hidden states) 57.3
UHead (att. + prob. + hs.) 57.7
UHead (Factoscope) 57.0
UHead (LookBack Lens) 60.9
UHead (att. + prob.) (Ours) 62.1

Table 3: PR-AUC scores for UQ heads trained with var-
ious feature sets on the Mistral 7B Instruct v0.2 model.
Performance was evaluated using the validation set of
the Biographies domain after hyperparameter tuning.

in Appendix B.1.% The labels for the test sets are
obtained in the same way as the training sets: we
generate responses using the LLM, automatically
split the responses into atomic claims, and label
them using GPT-4o.

To assess the cross-lingual generalizability of
pre-trained UQ modules, we also conducted eval-
uvation on Russian and Chinese prompts from
(Vashurin et al., 2024), and additionally created
a similar test set with German prompts. Test sets
for each language consist of 100 biography-related
questions. The statistics about all test sets are pre-
sented in Table 6.

Metrics. In the main experiments, we measured
the claim-level performance of detecting invalid
claims. For this purpose, we used PR-AUC, where

2All data used for training and testing is available at
<anonymized>

Method Language English Russian Chinese German

Random 0.13 0.34 0.23 0.15
MCP 0.18 0.43 0.31 0.20
Perplexity 0.14 0.40 0.29 0.15
Mean Token Entropy 0.20 0.44 0.44 0.22
CCp 0.31 0.49 0.44 0.31
SAPLMA 0.34 0.51 0.33 0.39
Factoscope 0.35 0.53 0.35 0.38
UHead (Ours) 0.44 0.60 0.54 0.46

Table 4: Performance comparison of the UQ head on dif-
ferent languages using the Gemma 2 9b Instruct model
trained on English-only biographies data.

“unsupported” claims represent the positive class.

Models. We conducted our primary experiments
with Mistral 7b Instruct v0.2 (Jiang et al., 2023b)
and Gemma 2 9b Instruct (Team et al., 2023).

Training the uncertainty heads and hyper-
parameter optimization. We trained the uncer-
tainty heads using Adam with a linear learning rate
decay and warmup. We selected the values of the
hyper-parameters on the validation set of the bi-
ographies dataset using claim-level PR-AUC. We
observed that among the important general hyper-
parameters are the weight of the instances with
positive labels, the number of epochs, and the size
of the learning rate. The best values of the hyper-
parameters for each of the tested models are pre-
sented in Table 7 in Appendix C.



Baselines. We compare our method to several un-
supervised baselines: Maximum Claim Probability
(an adaptation of Maximum Sequence Probabil-
ity for claims), Mean Token Entropy, Perplexity,
and Claim Conditioned Probability (CCP) (Fadeeva
et al., 2024). Additionally, we evaluated against
supervised methods, including SAPLMA, Facto-
scope, and Lookbacklens. SAPLMA predicts
token-level uncertainties using a 3-layer percep-
tron, and the mean uncertainty is calculated over
claim-related tokens during inference. Note that
both Lookbacklens and Factoscope operate at the
claim level. Lookbacklens uses a Logistic Regres-
sion model trained on attention features. Our im-
plementation of the Factoscope approach uses our
Transformer-based architecture and the feature set
that includes hidden states, top token embeddings
with similarities, and token ranks. The values of
the hyper-parameters we used for the baselines are
given in Appendix C.

5.2 Results

Main results. Table 1 shows the performance
of the unsupervised UQ techniques and the super-
vised UQ methods trained on persons’ biographies
for claim-level hallucination detection with Mis-
tral 7B Instruct v0.2. For evaluating supervised
methods, the domain biographies represents the
in-domain test set and all other domains represent
out-of-domain (OOD) test sets. Note that in this
evaluation, both the questions and the LLM’s re-
sponses across all domains are in English.

Among the unsupervised techniques, uncertainty
scores based on CCP yield the best performance,
confidently outperforming other methods on bi-
ographies, cities, artworks, and landmarks. Mean
Token Entropy also achieves relatively good results
on par with CCP on books, inventions, and events.

Supervised UQ methods greatly outperform un-
supervised techniques on the in-domain test set.
Moreover, remarkably, all considered supervised
methods demonstrate substantial generalization
and the ability to perform well beyond the training
domain of people’s biographies.

Our uncertainty head (UHead) demonstrates the
best results in both in-domain and out-of-domain
evaluations. For in-domain evaluation, UHead out-
performs the best-unsupervised method CCP by 13
percentage points (pps) in terms of PR-AUC. The
gap is also large for out-of-domain evaluation, e.g.,
for books, UHead outperforms CCP by 19 pps, for
artworks and movies by 15 pps, and for events by

13 pps. Compared to supervised methods, UHead
surpasses the closest competitor, Factoscope, by
two pps for the in-domain evaluation. In OOD
evaluation, it also consistently outperforms other
supervised methods in most cases.

Analyzing other supervised methods, Facto-
scope demonstrates close performance in the in-
domain evaluation and even slightly outperforms
UHead for the cities domain by 2 pps. However,
for other OOD domains, UHead retains better per-
formance, outperforming Factoscope by up to 6
pps. We assume that the underperformance of the
Factoscope baseline compared to UHead lies in
the use of layer activations, which limits gener-
alization. Another module that relies on hidden
states is SAPLMA. In addition to the feature limi-
tations, it also has architectural limitations, which
further hurt its performance. Compared to UHead,
it is behind by 9 pps on in-domain evaluation. For
artworks and landmarks, SAPLMA shows good re-
sults, but for the majority of OOD test sets, it stays
behind Factoscope and UHead. Lookbacklens also
usually falls behind UHead and Factoscope; we
believe that its main problem is its weak linear
architecture. At the same time, we note that the
feature set suggested by Lookbacklens based on
attention is quite strong (see analysis of various
feature sets below).

Introducing more diverse training data for
UHead. Table 2 presents the results when we
train uncertainty heads on biographies plus the
data from all domains except one, which is used
for OOD evaluation. In this scenario, uncertainty
heads get access to bigger and more diverse train-
ing data. As we can see, for most of the domains,
this yields a substantial boost in performance. For
example, for events and cities, it gives 5 and 4 per-
centage points improvement, respectively. This is
quite substantial as it improves the relative perfor-
mance by around 10%. These results indicate that
expanding the training data and enhancing its di-
versity could further increase the UQ performance,
particularly in the OOD setting.

Analysis of feature sets. Table 3 presents the
comparison of various feature sets in combination
with the UHead architecture on the in-domain val-
idation set. For each feature set, we perform an
extensive hyper-parameter value search. We can
see that all feature sets that leverage hidden states
fall substantially behind attention-based features.
The analysis of the validation loss dynamics shows



that this is probably due to quick overfitting. Mod-
els that leverage hidden states start overfitting after
1-3 epochs, while models that leverage attention
might not overfit even after 10 epochs. We also
note that Lookbacklens features combined with the
UHead architecture provide strong performance.
However, simple attention maps without feature
engineering yield even better results.

Cross-lingual generalization. Table 4 presents
the results for Gemma 2 9b Instruct. In this experi-
ment, we train UQ modules on the English person’s
biographies as in the previous experiment, but
we evaluate the performance on other languages.
Surprisingly, UHead achieves strong cross-lingual
generalization. For all OOD languages, UHead
achieves substantial improvements over the best-
unsupervised methods. For Chinese, UHead is bet-
ter than MTE by 10 pps, for Russian, it is better
than CCP by 16 pps, and for German by 20 pps. No-
tably, other supervised methods also demonstrate
some level of generalization but have substantially
worse performance. Overall, these results show that
uncertainty heads, even if they are pre-trained on
English data, can be good off-the-shelf hallucina-
tion detectors for LLM outputs in other languages.

Computational efficiency. Next, we evaluated
the computational overhead of various UQ methods.
To ensure a fair comparison, we focused only on
the time required to generate texts and to compute
uncertainty scores, excluding the time spent on
claim extraction. The results were obtained using
a multi-domain dataset containing 800 texts and a
total of 18,852 claims and Mistral 7B Instruct v0.2.

Table 8 summarizes the results and provides the
memory footprint of various methods. MCP and
Perplexity incur no additional overhead, serving as
baselines for comparison. The proposed UHead
method introduces less than 10% overhead, only
slightly higher than the best-unsupervised method
CCP (8.6%). With around 20 million parameters,
UHead has a minimal impact on GPU memory foot-
print (80MB). Thus, UHead is a very lightweight
addition to multi-billion-parameter LL.Ms and is
practical for real-world deployment.

6 Collection of Pre-trained Uncertainty
Heads for Popular LLLMs

Finally, we pre-trained a collection of Uncertainty
Quantification (UQ) Heads for a range of popular
7B-9B parameter LLMs, including Mistral, vari-

from transformers import AutoModelForCausallM,
AutoTokenizer

from luh import AutoUncertaintyHead,
CausalLMWithUncertainty

1lm = AutoModelForCausallLM.from_pretrained(
model_name)

tokenizer = AutoTokenizer.from_pretrained(
model_name)

uhead = AutoUncertaintyHead.from_pretrained(
uhead_name, base_model=11lm)

1lm_adapter = CausallLMWithUncertainty(model, uhead,
tokenizer=tokenizer)

# tokenize text and prepare inputs ...
output = llm_adapter.generate(inputs)

Figure 2: Code example for using uncertainty heads.

ous versions of LLaMA, and Gemma 2. In addi-
tion to model-level UQ, we release token-level UQ
heads that can provide uncertainty scores directly
for tokens without explicit claim annotation, which
enables broader applicability across tasks.

Our UQ heads are designed for use as an off-
the-shelf tool for confidence estimation in LLMs.
They could be loaded from the hub using a proce-
dure that is similar to the “from_pretrained” API
in the Hugging Face Transformers library and in-
tegrated into the LLLM generation procedure with
an adapter. A code example demonstrating how to
use the UQ heads is provided in Figure 2. Thus,
UQ heads could be integrated into third-party code
with minimal modifications, which makes them
an easy plug-and-play solution for researchers and
practitioners.

7 Conclusion and Future Work

We presented pre-trained UQ heads — supplemen-
tary supervised modules for LLMs that help to
capture their uncertainty much more effectively
than unsupervised UQ methods. We demonstrated
that they are quite robust and deliver state-of-the-
art results for both in-domain and out-of-domain
prompts. They also show remarkable generaliza-
tion to other languages. Inspired by their good
performance, we pre-trained a collection of UQ
heads for a series of popular LLMs, including Mis-
tral, Gemma 2, and LLama. We release the code
and the pre-trained uncertainty heads so they could
be used as off-the-shelf hallucination detectors for
other researchers and practitioners.

We see that the performance of UQ heads im-
proves with providing more training data from di-
verse domains. In future work, we plan to scale
up the training data and explore the limits of the
supervised approach to UQ.




Limitations

Our paper assumes a correlation between uncer-
tainty and hallucinations. Uncertainty heads cannot
solve the problem when LL.Ms are trained to pro-
vide misinformation. In this situation, models are
confident in their deceptive answers. Uncertainty
heads cannot provide ideal annotation of hallucina-
tions, as some LL.Ms do not have enough capacity
to provide information about what they know and
what they do not know. While we see generaliza-
tion in uncertainty heads, we should acknowledge
that, as with any other supervised method, they
work best for “in-domain” data. The bias present
in LLMs could also be transferred into uncertainty
heads.

Ethical Considerations

Responsible Use In our work, we considered
open-weight LLMs and datasets not aimed at harm-
ful content. However, LLMs may generate poten-
tially damaging texts for various groups of people.
Uncertainty quantification techniques can help cre-
ate more reliable use of neural networks. Moreover,
they can be applied to detecting harmful genera-
tions, but this is not our intention.

Limited Applicability Moreover, despite that
our proposed method demonstrates sizable perfor-
mance improvements, it can still mistakenly high-
light correct and not dangerous generated text with
high uncertainty in some cases. Thus, as with other
uncertainty quantification methods, it has limited
applicability.

Annotation Considerations We used GPT-40
for claim extraction and their annotation. This may
introduce cultural, linguistic, or other biases into
the data used to train the uncertainty heads.
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A Training Data Generation Pipeline
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Figure 3: The training data generation pipeline.

B Dataset Details

B.1 Dataset Construction

We used few-shot learning to better guide the LLM to generate the items for the desired domain. The
structure of the prompts looks as follows:

Continue the list of 100 most famous {domain items}:
1. <domain-item-1>
2. <domain-item-2>

3. <domain-item-3>
Example for the “cities” domain:

Continue the list of 100 most famous cities:
1. Paris, France
2. Amsterdam, Netherlands

3. Osaka, Japan

For claim extraction and their annotation, we use GPT-40 with prompts from (Fadeeva et al., 2024).
Overall expenses for LLM API calls are approximately $4000.
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B.2 Dataset Statistics

Table 5 presents the statistics of the datasets used for training and validation; Table 6 shows the statistics
of the datasets used for testing.

Model | Dataset | #of texts | # of claims
. . biographies 3300 57,671

Mistral 7b Instruct v0.2 multi-domain 700 ‘ 14.554

Gemma 2 9b Instruct | biographies | 3300 | 83,716

Table 5: Statistics about the training datasets used in our experiments.

Split # of prompts | GPT-4 prompt used to generate questions Testing prompt # of claims
Mistral Gemma

persons 100 Tell me a list of 100 most famous persons. Tell me a bio of a <person> 2234 2857
cities 100 Tell me a list of 100 most famous cities. Tell me a history of a <city> 2128 2684
movies 100 Tell me a list of 100 most famous movies. Tell me about the movie <movie> and its cast. 2568 3121
inventions 100 Tell me a list of 100 most important inventions. Tell me about the invention of <invention> and its inventor. 2269 2626
books 100 Tell me a list of 100 most famous books. Tell me about the book <book> and its author. 2530 3070
artworks 100 Tell me a list of 100 most famous artworks. Tell me about the artwork <artwork> and its artist. 2464 2873
landmarks 100 Tell me a list of 100 most famous landmarks. Tell me about the landmark <landmark>. 2365 2566
events 100 Tell me a list of 100 most significant historical events. | Tell me about <event> event. 2294 2665
Russian 100 —_ Paccrkaxu 6umorpa duio <person> — 3572
Chinese 100 — 48— T <person> — 2248
German 100 — Erzhlen Sie mir eine Biografie von <person> — 2815

Table 6: The statistics of the multi-domain test dataset and number of claims generated my Mistral 7B Instruct v0.2
and Gemma 2 9b Instruct models.

C Hyperparameters

Method ‘ Model ‘ Learning Rate ‘ Num. Epochs ‘ Weight Decay ‘ Dropout rate ‘ Hidden state layers ‘ Attention window size
Gemma 2 9b Instruct le-4 10 0.1 0.1 [-1] -
SAPLMA Mistral 7b Instruct v0.2 ‘ le-4 ‘ 10 ‘ 0.1 ‘ 0.1 ‘ - ‘ -
Gemma 2 9b Instruct le-2 13 0.1 0.1 - -
Lookbacklens Mistral 7b Tnstruct v0.2 ‘ le-2 ‘ 13 ‘ 0.1 ‘ 0.1 ‘ - ‘ -
. e Gemma 2 9b Instruct 2e-4 3 0.1 0.2 [-1] -
UHead (Factoscope) | yr; a1 7b Instruct v0.2 ‘ 2e-4 ‘ 3 ‘ 0.1 ‘ 02 ‘ [-1,-15] ‘ -
UHead Gemma 2 9b Instruct 2e-4 6 0.1 0.05 - 2
Mistral 7b Instruct v0.2 le-4 10 0.1 0.1 - 5

Table 7: Optimal hyperparameters for each method and model.

For each tested model, we selected hyperparameters by optimizing the PR-AUC metric on the validation
set of the “biographies” dataset. In training, we optimized the learning rate, warmup ratio, number of
epochs, and the weight of positive examples in the cross-entropy loss. For the model architecture, we
optimized the number of uncertainty layers, the number of heads, and the intermediate dimension. For
feature extraction, we optimized the number of layers used to obtain hidden states, token probabilities,
and attention weights, as well as the number of preceding tokens considered for attention. The optimal
hyperparameters are summarized in Table 7. The hyperparameter grid is the following:

Learning rate: [1le-5, 3e-5, Se-5, le-4, 2e-4, Se-4, le-2];
Num. of epochs: {n € N |2 <n <15};

Hidden state layers: [[-1], [-1, -16], [-1, -15, -30]];
Attention window size: [1, 2, 3, 4, 5, 10];

Dropout rate: [0., 0.05, 0.1, 0.2];

Weight decay: [0, 1e-2, le-1].
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D Hardware and Computational Efficiency

All experiments were conducted on 8 NVIDIA RTX 6000 Ada GPUs. On average, training a single model
with hyperparameter search takes around 150 GPU hours.

Method | Computational Overhead | GPU Memory Footprint, MB
MCP 0.0 % 0

Perplexity 0.0 % 0

Max Token Entropy 0.2 % 0

CCp 8.6 % 440

SAPLMA 4.7 % 5

Factoscope 122.1 % 70

UHead + Lookback Lens 18.4 % 55

Lookback Lens 17.0 % <1

UHead 9.4 % 80

Table 8: Computational overhead of UQ methods using the Mistral 7B Instruct v0.2 model. Overhead is measured

relative to the fastest method MCP.
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