
PLUGIn-CS: A simple algorithm for compressive
sensing with generative prior

Babhru Joshi Xiaowei Li Yaniv Plan Özgür Yılmaz
Department of Mathematics

The University of British Columbia
{b.joshi, xli, yaniv, oyilmaz}@math.ubc.ca

Abstract

We consider the problem of recovering an unknown latent code vector under a
known generative model from compressive measurements. For a d-layer deep gen-
erative network G : Rn0 → Rnd with ReLU activation functions and compressive
measurement matrix Φ ∈ Rm×nd , let the observation be ΦG(x) + ε where ε is
noise. We introduce a simple novel algorithm, Partially Linearized Update for
Generative Inversion in Compressive Sensing (PLUGIn-CS), to estimate x (and
thus G(x)). We prove that, when sensing matrix and weights are Gaussian, if layer
widths ni & 5in0 and number of measurements m & 2dn0 (both up to log factors),
then the algorithm converges geometrically to a (small) neighbourhood of x with
high probability. Note the inequality on layer widths allows ni > ni+1 when i ≥ 1
and thus allows the network to have some contractive layers. After a sufficient
number of iterations, the estimation errors for both x and G(x) are at most in the
order of

√
4dn0/m‖ε‖. Numerical experiments on synthetic data and real data are

provided to validate our theoretical results and to illustrate that the algorithm can
effectively recover images from compressive measurements.

1 Introduction

We consider the inverse problem of recovering an unknown structured vector z∗ ∈ RN from a noisy
compressive observation y ∈ Rm of the form

y = Φz∗ + ε, (1)

where ε ∈ Rm is noise, Φ ∈ Rm×N is the compressive measurement matrix. Traditional approaches
for solving (1) often use priors on the signal z∗, for example, a sparsity prior with respect to a fixed
basis or dictionary [1, 2, 3]. An emerging viewpoint is to use a generative prior that assumes the
signal z∗ is in the range of a known deep generative model G : Rn0 → RN , i.e., z∗ = G(x∗) for
some x∗ ∈ Rn0 . We assume G has the form

G(x) = σ(Adσ(Ad−1 . . . σ(A1x) . . .)), (2)

where σ(·) = max(·, 0) is the ReLU activation function and Ai ∈ Rni×ni−1 is the weight matrix in
the i-th layer (and nd = N). One can then develop algorithms that can estimate the latent code vector
x∗ from ΦG(x∗) + ε, thus recovering G(x∗).

Recent advancements in training deep neural networks have shown that generative priors can ef-
fectively map low dimensional vectors to the space of natural image classes [4, 5, 6]. Learned
generative models can then be used as priors to solve various inverse problems including denoising
[7, 8], compressive sensing [9, 10, 11, 12, 13, 14], phase retrieval [15], blind deconvolution [16, 17],
low-rank matrix recovery [18] and have been shown to perform on par or outperform classical sparsity
based approaches for these inverse problems. For example, in [7] the authors empirically showed that

NeurIPS 2021 Workshop on Deep Learning and Inverse Problems, virtual.

an end-to-end approach for denoising using a neural network that maps noisy patches in an image to
noise-free ones achieves state-of-the-art performance and is on par with BM3D. Similarly, in [9] the
authors empirically showed that for compressive sensing using generative prior, optimization of the
empirical risk objective over the latent code space (of the generative prior) can recover a vector that
effectively estimates the uncompressed signal with 5-10 times less measurements compared to Lasso
in some cases.

Given that y equals ΦG(x∗), with possibly some additive noise, a standard way to estimate x∗ would
be to look for a minimizer of the program

min
x∈Rn0

‖y − ΦG(x)‖2. (3)

Unfortunately, this program is non-convex and to our knowledge there is no known efficient method
that can achieve its global minimum in general. On the other hand, in the case with random weight
matrices and sensing matrix, a line of papers showed that gradient-based algorithms can provably
avoid local minima with high probability [10, 12, 15]. In particular, [12] considers a model with
small noise, Gaussian measurement matrix Φ, and Gaussian weight matrices Ai which are highly
expansive at each layer. Under these conditions, the authors show that the latent code vector x∗ can
be accurately estimated if m & dn0 (up to log factors) using a gradient-based method that uses the
(sub-)gradient updates given by

xk+1 = xk − η(D1A1)ᵀ(D2A2)ᵀ · · · (DdAd)
ᵀΦᵀ

(
ΦG(xk)− y

)
, (4)

where xk is the k-th estimate, η ∈ R is step size, and Dj is a diagonal matrix with entries that are
either zero or one. Each Dj zeros out the inactive rows of Aj with respect to the estimate xk and so
it is a function of xk (and Ap for p < j). Thus, at each iteration all Dj need to be updated.

In this paper, we show that one can drop all Dj and still recover an accurate estimate of x∗. This
result follows from our previous work in the denoising case (Φ = Ind) [19], where we introduced
a novel algorithm called Partially Linearized Update for Generative Inversion (PLUGIn). For the
compressive sensing case, we propose the following iterative algorithm to estimate x∗:

xk+1 = xk − ηAᵀ
1A

ᵀ
2 · · ·A

ᵀ
dΦᵀ

(
ΦG(xk)− y

)
(PLUGIn-CS)

This algorithm was inspired by previous work showing that latent vectors for non-linear single-index
function can be approximately estimated by treating the function as linear [20, 21]. Similar to
[8, 9, 10, 12, 15, 17, 22], for theoretical analysis, we assume the weight matrices are Gaussian. To
show that the algorithm works more broadly, we conduct real data simulations. Applying the ideas in
[20, 21] one can show that for any fixed x0, the first iteration of PLUGIn-CS provides an unbiased
estimate of x∗ with η = 2d, which is generally not the case for the gradient descent estimates given
by (4). Additionally, each iteration of PLUGIn-CS maps the difference ΦG(xk) − y to the low
dimensional latent code space using a static matrix Aᵀ

1A
ᵀ
2 . . . A

ᵀ
dΦᵀ, which can be pre-multiplied and

reused in subsequent iterations.

Building upon the theory for PLUGIn [19], we show that the estimates provided by PLUGIn-CS
converge geometrically to a neighbourhood of x∗ (and also G(xk) to a neighbourhood of G(x∗)) with
high probability. This result holds with the following assumptions:

A1. Each Ai ∈ Rni×ni−1 has i.i.d. N (0, 1/ni) entries and {Ai}i≤d are independent.
A2. Layer widths (number of nodes in each layer) satisfy

ni ≥ C05in0 log

i−1∏
j=0

enj
n0

 , 1 ≤ i ≤ d (5)

for some (sufficiently large) absolute constant C0.
A3. The measurement matrix Φ ∈ Rm×nd has i.i.d. N (0, 1/m) entries (independent from

weight matrices) with

m ≥ c02dn0 log

 d∏
j=0

enj
n0

 (6)

for some absolute constant c0.

2

A4. The noise ε does not depend on {Ai}i≤d or Φ. (The noise may be deterministic or random.)

Note that A2 allows ni > ni+1 for i ≥ 1 and thus can provide theoretical guarantees even when
G has some contractive layers. Under these assumptions, PLUGIn-CS algorithm converges to a
neighbourhood of x∗ for a range of step sizes near 2d. Precisely, we have the following theorem.
Theorem 1. Let θ ∈ (0, 4

3) and let α = |1− θ|+ 1
2θ ∈ (0, 1). Let R be a positive number such that

‖x0 − x∗‖ ≤ R. Under assumptions A1-A4, the k-th estimate xk given by PLUGIn-CS with constant
step size η = θ2d satisfies

‖xk − x∗‖ ≤ αkR+
15θ

1− α
2d
√
n0/m‖ε‖, and

‖G(xk)− G(x∗)‖ ≤ 3αkR+
45θ

1− α
2d
√
n0/m‖ε‖

with probability at least 1− 2(k + 4)e−10n0 .

When θ = 1, Theorem 1 reduces to the following corollary.
Corollary 1. Let R be a positive number such that ‖x0 − x∗‖ ≤ R. Under assumptions A1-A4, the
k-th estimate xk given by PLUGIn-CS with constant step size η = 2d satisfies

‖xk − x∗‖ ≤ 2−kR+ 30 · 2d
√
n0/m‖ε‖, and

‖G(xk)− G(x∗)‖ ≤ 2−k(3R) + 90 · 2d
√
n0/m‖ε‖

with probability at least 1− 2(k + 4)e−10n0 .
Remark 1 (Contractive layers). In A2, (5) states a lower bound on ni with respect to the latent
code dimension n0 (up to log factors). While this bound strictly increases with layer depth i, it
is not necessary for ni to always increase with i (except in the first layer). For example, consider
ni = βC05dn0d(2d− i) where β is any fixed number such that βC0 ∈ N and β ≥ 4 + logC0. It is
easy to see n1 > n2 > · · · > nd, and we can also verify (see Appendix E) that such ni satisfy (5). In
this case, the network is contractive in each layer after the first, and Theorem 1 still applies.
Remark 2 (Initialization may depend on random weight matrices and sensing matrix). The results
of the theorem can still hold when x0 is chosen randomly, dependent on the weight matrices Ai. In
this case, suppose that ‖x0 − x∗‖ ≤ R with probability at least 1− δ. Then, the error bounds hold
with probability at least 1− 2(k + 4)e−10n0 − δ. This does not follow directly from the theorem as
stated (which fixes x0, then takes random weight matrices), but follows from the proof.
Remark 3 (Comparison to guarantees for gradient-based method). Here we compare our results
to the ones in [12], which uses (4) for iterations and considers a model with small noise, i.e.,
‖ε‖ . ‖x∗‖2

d422d/2
. They show that when the weight matrices and sensing matrix are Gaussian with

weight matrices sufficiently expansive at each layer, the iterates of the gradient-based method converge
to a neighborhood of the target signal x∗. After sufficiently many iterations N , the iterates converge
geometrically to a neighborhood of x∗ of radius at most on the order of 2d/2‖ε‖. This rate of
convergence takes the form (1 − C/2d), thus giving slower convergence for deeper nets. On the
other hand, we note that dependence on d is of relatively minor concern. Generative models usually
have small depth in practice, our MNIST experiments (below) work well with depth 3, and typical
applications use depth less than 8.

In comparison, Theorem 1 holds for any noise ε that does not depend on {Ai}i≤d or Φ. Under similar
randomness assumptions, the iterates of PLUGIn-CS converge to a neighborhood of the latent code
x∗ of radius at most on the order of 2d

√
n0/m‖ε‖. This result can hold for networks with contractive

layers and the rate of convergence is geometric starting at the initial iterate of PLUGIn-CS.

2 Numerical Experiments

In this section, we provide numerical experiments on synthetic data and MNIST images where the
oberservations follow the model in (1). All experiments were conducted using Google Colaboratory.

In the synthetic experiments, we let the generative prior be a 2-layer neural network G(z) =
σ(A2σ(A1x))), where the entries of weight matrix Ai ∈ Rni×ni−1 are sampled from N (0, 1/ni).

3

(a) Recovery error (b) Reconstruction error

(c) Empirical success probability (d) MNIST images

Figure 1: Comparison of performance of PLUGIn-CS with gradient descent (GD) is shown. Panels (a) and (b)
show the dependence of relative recovery error with noise level-to-signal level from 20 independent trials. Panel
(c) shows the empirical success probability versus the code dimension n0 for noiseless problems. Panel (d)
shows the result of recovering an image from compressive measurements. The top row corresponds to original
image. The second and third row are images recovered using PLUGIn-CS and gradient descent, respectively.

We sample the target latent code x∗ uniformly from Sn0−1, set the noise level as α ∈ R, and set the
noise to be αν where ν is sampled uniformly from Sn3−1. Then we set y = ΦG(x∗) + αν, where
the entries of the compressive measurement matrix Φ ∈ Rm×n2 are sampled from N (0, 1/m). We
run PLUGIn-CS and gradient descent each for 10,000 iterations or until the relative successive error
is less than 10−13, and set x̂ to be the output. We use a fixed step size of 3 and 10 for PLUGIn-CS
and gradient descent, respectively, with the gradient computed using PyTorch [23].

For the first experiment, we fix n0 = 10, n1 = 400, n2 = 300, m = 150, and sample the noise level
α uniformly in the interval [0, 1]. In figures 1a and 1b, the solid line corresponds to the performance
of PLUGIn-CS and the dotted line represents the performance of gradient descent. Figure 1a shows
the empirical dependence of the the relative recovery error ‖x̂−x∗‖/‖x∗‖ on the noise-to-signal ratio
given, given by α, from 20 independent trials. Similarly, figure 1b shows the empirical dependence of
the the relative reconstruction error ‖G(x̂)−G(x∗)‖/‖G(x∗)‖ from 20 independent trials. The figures
show that PLUGIn-CS can stably solve the compressive sensing problem (1) with a generative prior.
For the second experiment, we fix α = 0, n1 = 250, n2 = 700, m = 150, and sample the latent code
dimension n0 in the interval [1, 100]. In figures 1c, the solid line corresponds to the performance of
PLUGIn-CS and the dotted line represents the performance of gradient descent. Figure 1c shows the
empirical success probability from 20 independent trials.

We now empirically show that PLUGIn-CS can effectively recover MNIST images from compressive
measurements and compare its performance to gradient descent. We trained a VAE [24] using Adam
optimizer [25] with a learning rate of 0.001 and mini-batch size 100 on the MNIST dataset [26]. The
decoder network in the VAE is a fully connected network with parameters 20− 500− 500− 784.
The compressive sensing matrix Φ ∈ Rm×784 follows i.i.d N (0, 1/m) entries with m = 150 and
the observation y satisfies y = Φz∗, where z∗ is an image from the MNIST database. In all MNIST
experiments, we use a fixed step size of η = 1/γ for PLUGIn-CS, where γ is the product of the
operator norms of the weight matrices; for gradient descent, we use a fixed step size of 1000. Similar
to the synthetic experiment, we run PLUGIn-CS and gradient descent each for 10,000 iterations or
until the relative successive error is less than 10−13. In figure 1d, the images in the top row are the
observations, the images in the second row and third row are the recovered images corresponding to
PLUGIn-CS and gradient descent, respectively.

4

Acknowledgments and Disclosure of Funding

Y. Plan is partially supported by an NSERC Discovery Grant (GR009284), an NSERC Discovery Ac-
celerator Supplement (GR007657), and a Tier II Canada Research Chair in Data Science (GR009243).
O. Yılmaz is partially supported by an NSERC Discovery Grant (22R82411) and Pacific Institute for
the Mathematical Sciences (PIMS) CRG 33: High-Dimensional Data Analysis. B. Joshi is partially
supported by the Pacific Institute for the Mathematical Sciences (PIMS). (The research and findings
may not reflect those of the Institute.)

References
[1] D.L. Donoho. De-noising by soft-thresholding. IEEE Transactions on Information Theory, 41(3):613–627,

1995.

[2] M. Aharon, M. Elad, and A. Bruckstein. K-svd: An algorithm for designing overcomplete dictionaries for
sparse representation. IEEE Transactions on Signal Processing, 54(11):4311–4322, 2006.

[3] Michael Elad and Michal Aharon. Image denoising via sparse and redundant representations over learned
dictionaries. IEEE Transactions on Image Processing, 15(12):3736–3745, 2006.

[4] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of GANs for improved
quality, stability, and variation. In International Conference on Learning Representations, 2018.

[5] Hoo-Chang Shin, Neil A. Tenenholtz, Jameson K. Rogers, Christopher G. Schwarz, Matthew L. Senjem,
Jeffrey L. Gunter, Katherine P. Andriole, and Mark Michalski. Medical image synthesis for data aug-
mentation and anonymization using generative adversarial networks. In Ali Gooya, Orcun Goksel, Ipek
Oguz, and Ninon Burgos, editors, Simulation and Synthesis in Medical Imaging, pages 1–11, Cham, 2018.
Springer International Publishing.

[6] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adversarial
networks. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
4396–4405, 2019.

[7] Harold C. Burger, Christian J. Schuler, and Stefan Harmeling. Image denoising: Can plain neural networks
compete with bm3d? In 2012 IEEE Conference on Computer Vision and Pattern Recognition, pages
2392–2399, 2012.

[8] Reinhard Heckel, Wen Huang, Paul Hand, and Vladislav Voroninski. Rate-optimal denoising with deep
neural networks. Information and Inference: A Journal of the IMA, 06 2020. iaaa011.

[9] Ashish Bora, Ajil Jalal, Eric Price, and Alexandros G Dimakis. Compressed sensing using generative
models. In International Conference on Machine Learning, pages 537–546. PMLR, 2017.

[10] Paul Hand and Vladislav Voroninski. Global guarantees for enforcing deep generative priors by empirical
risk. CoRR, abs/1705.07576, 2017.

[11] Viraj Shah and Chinmay Hegde. Solving linear inverse problems using gan priors: An algorithm with
provable guarantees. In 2018 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 4609–4613, 2018.

[12] Wen Huang, Paul Hand, Reinhard Heckel, and V. Voroninski. A provably convergent scheme for com-
pressive sensing under random generative priors. Journal of Fourier Analysis and Applications, 27:1–34,
2018.

[13] Ganlin Song, Zhou Fan, and John Lafferty. Surfing: Iterative optimization over incrementally trained
deep networks. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc,
Emily B. Fox, and Roman Garnett, editors, Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada, pages 15008–15017, 2019.

[14] Fabian Latorre, Armin eftekhari, and Volkan Cevher. Fast and provable admm for learning with generative
priors. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

[15] Paul Hand, Oscar Leong, and Vladislav Voroninski. Phase retrieval under a generative prior. CoRR,
abs/1807.04261, 2018.

5

[16] Muhammad Asim, Fahad Shamshad, and Ali Ahmed. Solving bilinear inverse problems using deep
generative priors. CoRR, abs/1802.04073, 2018.

[17] Paul Hand and Babhru Joshi. Global guarantees for blind demodulation with generative priors. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

[18] Jorio Cocola, Paul Hand, and Vladislav Voroninski. No statistical-computational gap in spiked matrix
models with generative network priors. Entropy, 23(1), 2021.

[19] Babhru Joshi, Xiaowei Li, Yaniv Plan, and Ozgur Yilmaz. PLUGIn: A simple algorithm for inverting
generative models with recovery guarantees. In Thirty-Fifth Conference on Neural Information Processing
Systems, 2021.

[20] David R. Brillinger. A Generalized Linear Model With “Gaussian” Regressor Variables, pages 589–606.
Springer New York, New York, NY, 2012.

[21] Yaniv Plan and Roman Vershynin. The generalized lasso with non-linear observations. IEEE Transactions
on Information Theory, 62(3):1528–1537, 2016.

[22] Constantinos Daskalakis, Dhruv Rohatgi, and Manolis Zampetakis. Constant-expansion suffices for
compressed sensing with generative priors. CoRR, abs/2006.04237, 2020.

[23] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming
Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch. In NIPS-W,
2017.

[24] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In Yoshua Bengio and Yann
LeCun, editors, 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada,
April 14-16, 2014, Conference Track Proceedings, 2014.

[25] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio and
Yann LeCun, editors, 3rd International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[26] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11):2278–2324, 1998.

[27] Sjoerd Dirksen. Tail bounds via generic chaining. Electron. J. Probab., 20(53):1–29, 2015.

[28] Jiri Matousek. Lectures on discrete geometry, volume 212. Springer Science & Business Media, 2013.

[29] Simon Foucart and Holger Rauhut. A Mathematical Introduction to Compressive Sensing. Birkhäuser,
New York, NY, 2013.

[30] Roman Vershynin. High-Dimensional Probability: An Introduction with Applications in Data Science.
Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 2018.

[31] Michel Talagrand. The generic chaining: upper and lower bounds of stochastic processes. Springer
Science & Business Media, 2006.

6

Notations in proofs

For a positive integer n, let [n] = {1, 2, . . . , n}. For a vector x, let ‖x‖ be its Euclidean norm; for a
matrix A, let ‖A‖ be its operator norm; for a matrix A and a set T , let ‖A‖T := supx∈T \{0}

‖Ax‖
‖x‖ .

Let B(x, r) be the Euclidean ball of radius r centered at x and let Bn(0, r) be the Euclidean ball in
Rn with radius r, centered at origin. We use C and c to denote absolute constants (often c for small
ones and C for large ones) which may vary from line to line. We also use c0, C0, C1, etc., to denote
particular absolute constants, which do not change throughout the paper.

We use PAi to denote that the probability is taken only with respect to Ai. In neural network
G : Rn0 → Rnd , let Gi : Rn0 → Rni be the mapping that corresponds to the first i layers, i.e.
Gi(x) = σ(Ai . . . σ(A1x) . . .). For its weight matrices, let Ã0 = In0

and Ãi = AiAi−1 · · ·A1 for
i ∈ [d]. For x ∈ Rn0 , denote x0 = x and xi = Gi(x) for i ∈ [d]

A Proof Outline

Our proofs for PLUGIn-CS builds upon the proofs for PLUGIn [19]. Here we include all the
proofs for completeness, and note that many parts of these proofs are the same as in [19]. The
main differences are the parts dealing with sensing matrix Φ. In particular, we added Lemma 9 and
modified Lemma 5, Lemma 6 as well as Proof of Theorem 1 to incorporate Φ in the new proofs.

Below we give a sketch for the proof of Theorem 1. For simplicity, we will only focus on analyzing
one iteration of PLUGIn-CS with step size η = 2d. The complete proof can be found in Appendix D.

A Special Case

Let us first look at the special case where d = 1, ε = 0 and Φ = I . The analysis here highlights some
of the key ideas in our proofs, while its result Lemma 1 serves as a building block for proof in the
general case. In this special case, PLUGIn-CS with η = 2d reduces to

xk+1 = xk − 2Aᵀ
[
σ(Axk)− σ(Ax∗)

]
where σ = ReLU and A ∈ Rm×n is random with i.i.d. N

(
0, 1

m

)
entries.

In fact, the first iterate provides an unbiased estimate of x∗ when x0 does not depend on A. Indeed,
the rotation invariance property of the Gaussian distribution may be leveraged to show [20, 21], for
any fixed x,

EAᵀσ(Ax) = 1
2x. (7)

For completeness, we also include a proof for (7) in Appendix B, Lemma 2. Applying (7) to the first
iteration gives

Ex1 = x0 − 2EAᵀσ(Ax0) + 2EAᵀσ(Ax∗)

= x0 − x0 + x∗ = x∗

Thus, even the first iterate can be shown to be a good estimate by showing that x1 concentrates around
its mean. Further iterates are generally no longer unbiased estimators because they pick up complex
dependence on the random matrix A. We overcome this by developing a series of uniform deviation
inequalities, as below.

Let us suppose we have shown that, with high probability, ‖xk − x∗‖ ≤ r for some (small) constant
r > 0. Then we wish to show that ‖xk+1 − x∗‖ ≤ r/2 with high probability. Notice that

−(xk+1 − x∗) = 2Aᵀ
[
σ(Axk)− σ(Ax∗)

]
− (xk − x∗)

‖xk+1 − x∗‖ = sup
u∈Sn−1

2
〈
Au, σ(Axk)− σ(Ax∗)

〉
−
〈
u, xk − x∗

〉
= 2 sup

u∈Sn−1

Z(u, xk;x∗)

where
Z(u, v;x∗) := 〈Au, σ(Av)− σ(Ax∗)〉 − 1

2 〈u, v − x
∗〉 .

7

We wish to bound the supremum of random process Z(u, xk;x∗) over u ∈ Sn−1. However, this
process is challenging to analyze since xk depends on A when k ≥ 1. To alleviate this dependency,
we bound by the supremum of Z(u, v;x∗) over (u, v) ∈ T 0 := Bn(0, 1) × B(x∗, r) instead. It is
worth noting that Z(u, v;x∗) is centred, namely EZ(u, v;x∗) = 0 for any fixed (u, v). We now
arrive at the estimate

‖xk+1 − x∗‖ ≤ 2 sup
(u,v)∈T 0

Z(u, v;x∗) if ‖xk − x∗‖ ≤ r. (8)

The following Lemma 1 provides a bound on supT 0 Z(u, v;x∗). In fact, it is slightly more general
because we replaced T 0 with T1 × T2 (this replacement is helpful when studying the general case
d > 1). The complete proof of this lemma can be found in Appendix C. The proof idea is to first
establish that Z(u, v;x∗) has mixed (sub-Gaussian and sub-exponential) tail increments through
Bernstein’s inequality, and then apply the result from [27], which provides a general bound for the
supremum of random processes with mixed tail increments.
Lemma 1. Let σ = ReLU. Fix w ∈ Rn and let A ∈ Rm×n have i.i.d. N

(
0, 1

m

)
entries. Define

Z(u, v;w) := 〈Au, σ(Av)− σ(Aw)〉 − 1
2 〈u, v − w〉 .

Suppose T1, T2 are sets (not depending on A) such that

T1 = S1 ∩ Bn(0, α) and T2 = S2 ∩ B(w,αr)

for some q-dimensional (affine) subspaces S1,S2 ⊆ Rn and real numbers α, r > 0. Then for any
t ≥ 1,

sup
u∈T1
v∈T2

|Z(u, v;w)| ≤ C1α
2r

(√
q

m
+

q

m
+

√
t

m
+

t

m

)

with probability at least 1− e−t. Here C1 > 0 is an absolute constant.

We can apply Lemma 1 to estimate (8) (with S1 = S2 = Rn) and get, for example,

‖xk+1 − x∗‖ ≤ 2C1r
(√

n
m + n

m +
√

n
m + n

m

)
≤ 1

2r

with probability at least 1− e−n, provided that m ≥ (16C1)2n.

The General Case

Let us illustrate the proof idea with d = 2 (the extension to d > 2 is straightforward). Denote
xki = Gi(xk) and x∗i = Gi(x∗) for i = 1, 2. By adding and subtracting 2Aᵀ

1(xk1 − x∗1) and
22Aᵀ

1A
ᵀ
2(xk2 − x∗2), we can write PLUGIn-CS with η = 2d as

xk+1 − x∗ = xk − x∗ − 22Aᵀ
1A

ᵀ
2Φᵀ[ΦG(xk)− ΦG(x∗)− ε]

= (xk − x∗)− 2Aᵀ
1

(
σ(A1x

k)− σ(A1x
∗)
)

+ 2Aᵀ
1

[
(xk1 − x∗1)− 2Aᵀ

2

(
σ(A2x

k
1)− σ(A2x

∗
1)
)]

+ 22Aᵀ
1A

ᵀ
2 (I − ΦᵀΦ)

(
xk2 − x∗2

)
+ 22Aᵀ

1A
ᵀ
2Φᵀε.

Similar to the special case above, we can get

‖xk+1 − x∗‖ ≤ sup
u∈Sn0−1

2Z1(u, xk) + sup
u∈Sn0−1

22Z2(A1u, x
k
1) (9)

+ 22‖A2A1‖‖(I − ΦᵀΦ)(xk2 − x∗2)‖+ 22‖Aᵀ
1A

ᵀ
2Φᵀε‖

where (denote x∗0 = x∗)

Zj(u, v) :=
〈
Aju, σ(Ajv)− σ(Ajx

∗
j−1)

〉
− 1

2

〈
u, v − x∗j−1

〉
, j = 1, 2.

Also assume that ‖xk−x∗‖ ≤ r, it remains to bound each term on the right hand side of (9). The first
term can be bounded directly through Lemma 1 (with t = 10n0). The last term is also easy to bound

8

by the randomness ofAi (Appendix D, Lemma 6), in which case we have ‖Aᵀ
1A

ᵀ
2ε‖ ≤ 15

√
n0/m‖ε‖

with high probability.

For the second term, first notice that range(A1) is a n0-dimensional subspace in Rn1 . Using the ideas
from [9, 28], we can also show that range(G1) is contained in a union of N many n0-dimensional
(affine) subspaces, where N ≤ (en1/n0)n0 . Furthermore, let E be the event such that mappings
A1, A2A1,G1,G all have Lipschitz constants being at most 3, then we can show (Appendix D,
Lemma 8) that P(E) ≥ 1− 3e−10n0 . Also on event E (note that ‖A1‖ ≤ 3 and ‖xk1 − x∗1‖ ≤ 3r), we
have

A1Sn0−1 ⊆ range(A1) ∩ Bn1(0, 3) = S1 ∩ Bn1(0, 3) =: T1

xk1 ∈ range(G1) ∩ B(x∗1, 3r) ⊆ ∪j∈[N] (S1,j ∩ B(x∗1, 3r)) =: ∪j∈[N]T2,j

where S1 and S2,j are n0-dimensional (affine) subspaces. Applying Lemma 1 on each T1 × T2,j ,
followed by a union bound over j ∈ [N], we get (denote T2 = ∪j∈[N]T2,j)

sup
T1×T2

Z2(u, v) ≤ C1(9r)
(√

n0

n2
+ n0

n2
+
√

t
n2

+ t
n2

)
with probability (over A2 and conditioning on A1) at least 1 − Ne−t. By choosing t =
2n0 log(en1/n0), we obtain a high probability bound for supu∈Sn0−1 Z2(A1u, x

k
1).

For the third term, use the fact that ‖A2A1‖ ≤ 3 and ‖xk2 − x∗2‖ ≤ 3r on E , together with Lemma 9
we can obtain a high probability bound for ‖A2A1‖‖(I − ΦᵀΦ)(xk2 − x∗2)‖.
Finally, if C0 and c0 are sufficiently large, we can thus show from (9) that, with high probability,

‖xk+1 − x∗‖ ≤ 1

2

(
r + 30 · 22

√
n0/m‖ε‖

)
.

B Some Results on Gaussian Matrices

Here we state some results on Gaussian Matrices, which will be used in the proofs later.
Lemma 2 ([20, 21]). Let σ : R → R be a positively homogeneous activation function. Let
A ∈ Rm×n have i.i.d. N

(
0, 1

m

)
entries. Then for any x ∈ Rn,

EAᵀσ(Ax) = λx,

where λ := E g · σ(g) with g ∼ N (0, 1). In particular, λ = 1
2 when σ is ReLU.

Proof. Since σ is positively homogeneous, we can assume (without loss of generality) x ∈ Sn−1.
Denote by aᵀj the j-th row of A. Then

EAᵀσ(Ax) = E
m∑
j=1

σ(aᵀj x) aj = mEσ(aᵀ1x) a1 = Eσ(aᵀx) a

where a :=
√
ma1 ∼ N (0, In). Take an orthogonal matrix U such that Ux = ‖x‖e1 = e1 where

e1 = (1, 0, . . . , 0)ᵀ. Note that by rotation invariance for standard Gaussian, Ua and a have the same
distribution N (0, In), thus

Eσ(aᵀx) a = Eσ(aᵀUᵀe1)UᵀUa = Eσ(aᵀe1)Uᵀa = UᵀEσ(aᵀe1)a = λUᵀe1 = λx.

The following theorem is the concentration of (Gaussian) measure inequality for Lipschitz functions.
Here we only state a one-sided version, though it is more commonly stated with a two-sided one, i.e.,
P (|f(g)− Ef(g)| ≥ t) ≤ 2 exp

(
−t2/(2L2

f)
)

.

Theorem 2. Let f : Rn → R be a Lipschitz function with Lipschitz constant Lf . Let g ∈ Rn be a
random vector with independent N (0, 1) entries. Then, for all t > 0,

P (f(g)− Ef(g) ≥ t) ≤ exp

(
− t2

2L2
f

)
.

9

A proof of Theorem 2 can be found in [29, Chap. 8]. Based on this theorem, it is easy to prove the
following results.

Lemma 3. Let A ∈ Rm×n have i.i.d. N (0, 1) entries.

(a) For any fixed point s ∈ Rn, we have

P
(
‖As‖ ≥

√
m‖s‖+

√
t‖s‖

)
≤ e−t/2, ∀t > 0.

(b) For any fixed k-dimensional subspace S ⊆ Rn, we have

P
(
‖A‖S ≥

√
m+

√
k +
√
t
)
≤ e−t/2, ∀t > 0

and
P
(∣∣‖A‖S −√m∣∣ ≥ √k +

√
t
)
≤ 2e−t/2, ∀t > 0.

Proof. (a) Without loss of generality, assume ‖s‖ = 1. Then As ∼ N (0, Im) and by Jensen’s
inequality, E‖As‖ ≤

√
E‖As‖2 =

√
m. The result follows immediately from Theorem 2 (with

f(g) = ‖g‖ and g = As).

(b) Let U be an orthogonal matrix such that UᵀS = span{e1, . . . , ek} =: S0, then ‖A‖S = ‖AU‖S0 .
Also, since AU has the same distribution as A (by rotation invariance), we get

P
(
‖A‖S ≥

√
m+

√
k +
√
t
)

= P
(
‖A‖S0 ≥

√
m+

√
k +
√
t
)
.

Notice that ‖A‖S0 is the operator norm for a particular sub-matrix (obtained by taking first k-columns)
of A, so without loss of generality, we can assume k = n.

Let f(A) = ‖A‖. Since |f(A)− f(A′)| ≤ ‖A−A′‖F , f is 1-Lipschitz when viewed as a mapping
from Rmn to R. By Theorem 2,

P
(
f(A) ≥ Ef(A) +

√
t
)
≤ e−t/2, ∀t > 0.

The one-sided result follows since
√
m−

√
n ≤ E‖A‖ ≤

√
m+

√
n (see, e.g., [30, Section 7.3]).

The two-sided result follows by also considering f(A) = −‖A‖.

C Preliminaries and Proof for Lemma 1

Preliminaries

For α ≥ 1, the ψα-norm of a random variable X is defined as

‖X‖ψα := inf{t > 0 : E exp(|X|α/tα) ≤ 2}.

We say X is sub-Gaussian if ‖X‖ψ2
< ∞ and sub-exponential if ‖X‖ψ1

< ∞. The ψ2 and ψ1

norms are also called sub-Gaussian and sub-exponential norms respectively. Loosely speaking, a
sub-Gaussian (or a sub-exponential) random variable has tail dominated by the tail of a Gaussian (or
an exponential) random variable.

For independent, mean zero, sub-exponential random variables X1, . . . , Xm, their sum concentrates
around zero. In particular, the following Bernstein’s Inequality [30, Section 2.8] holds:

P

(∣∣∣ m∑
i=1

Xi

∣∣∣ ≥ t) ≤ 2 exp

[
−cmin

(
t2∑m

i=1 ‖Xi‖2ψ1

,
t

maxi ‖Xi‖ψ1

)]
.

The above inequality also suggests that
∑m
i=1Xi has a mixed tail, i.e., a tail consisting of both a

sub-Gaussian part and a sub-exponential part. In our proof, we will use the following result from
generic chaining for mixed tail processes.

10

Theorem 3 (Theorem 3.5 [27]). If (Xt)t∈T has a mixed tail with respect to metric pair (d1, d2), i.e.

P
(
|Xt −Xs| ≥

√
ud2(t, s) + ud1(t, s)

)
≤ 2e−u, ∀u ≥ 0.

Then there are constants c, C > 0 such that for any u ≥ 1,

P
(

sup
t∈T
|Xt −Xt0 | ≥ C(γ2(T, d2) + γ1(T, d1)) + c(

√
u∆d2(T) + u∆d1(T))

)
≤ e−u.

Here t0 is any fixed point in T , γα(T, d) is the γα-functional and ∆di is the diameter given by
∆di(T) = sups,t∈T di(s, t).

The γα-functional of (T, d) is defined as

γα(T, d) := inf
(Tn)

sup
t∈T

∞∑
n=0

2n/αd(t, Tn), (10)

where the infimum is taken with respect to all admissible sequences. A sequence (Tn)n≥0 of subsets
of T is called admissible if |T0| = 1 and |Tn| ≤ 22n for all n ≥ 1.

For our proof, we will use the following estimate on γα(T, d), which involves the generalized
Dudley’s integral [31, 27].

γα(T, d) ≤ C(α)

∫ ∆d(T)

0

(logN(T, d, ε))
1/α

dε, (11)

where C(α) is a constant depending only on α andN(T, d, ε) is the covering number, i.e., the smallest
number of balls (in metric d and with radius ε) needed to cover set T .

Proof for Lemma 1

We recall the statement of Lemma 1 below.
Lemma 1. Let σ = ReLU. Fix w ∈ Rn and let A ∈ Rm×n have i.i.d. N

(
0, 1

m

)
entries. Define

Z(u, v;w) := 〈Au, σ(Av)− σ(Aw)〉 − 1
2 〈u, v − w〉 .

Suppose T1, T2 are sets (not depending on A) such that

T1 = S1 ∩ Bn(0, α) and T2 = S2 ∩ B(w,αr)

for some q-dimensional (affine) subspaces S1,S2 ⊆ Rn and real numbers α, r > 0. Then for any
t ≥ 1,

sup
u∈T1
v∈T2

|Z(u, v;w)| ≤ C1α
2r

(√
q

m
+

q

m
+

√
t

m
+

t

m

)

with probability at least 1− e−t. Here C1 > 0 is an absolute constant.

Proof. First, we establish that Z(u, v;w) has a mixed tail.

Let aᵀi be the i-th row of A, then ai ∼ N (0, In/m). For u ∈ Bn(0, α) and v ∈ B(w,αr), define
random variables

Ziu,v := 〈ai, u〉 [σ(〈ai, v〉)− σ(〈ai, w〉)]− 1
2m 〈u, v − w〉 , i ∈ [m].

We have EZiu,v = 0 by Lemma 2, and

Zu,v :=

m∑
i=1

Ziu,v = 〈Au, σ(Av)− σ(Aw)〉 − 1
2 〈u, v − w〉 = Z(u, v;w).

For the increments of Ziu,v , we have

Ziu,v − Ziu′,v′ = 〈ai, u〉σ(aᵀi v)− 1
2m 〈u, v〉 − 〈ai, u

′〉σ(aᵀi v
′) + 1

2m 〈u
′, v′〉

− 〈ai, u− u′〉σ(aᵀi w) + 1
2m 〈u− u

′, w〉

11

= 〈ai, u〉σ(aᵀi v)− 1
2m 〈u, v〉 −

[
〈ai, u〉σ(aᵀi v

′)− 1
2m 〈u, v

′〉
]

+
[
〈ai, u〉σ(aᵀi v

′)− 1
2m 〈u, v

′〉
]
− 〈ai, u′〉σ(aᵀi v

′) + 1
2m 〈u

′, v′〉
− 〈ai, u− u′〉σ(aᵀi w) + 1

2m 〈u− u
′, w〉

= 〈ai, u〉 [σ(aᵀi v)− σ(aᵀi v
′)]− 1

2m 〈u, v − v
′〉

+ 〈ai, u− u′〉 [σ(aᵀi v
′)− σ(aᵀi w)]− 1

2m 〈u− u
′, v′ − w〉

We can estimate its sub-exponential norm from Lemma 4, which gives

‖Ziu,v − Ziu′,v′‖ψ1
≤ C2m

−1 (‖u‖‖v − v′‖+ ‖u− u′‖‖v′ − w‖)
≤ C2αm

−1 (r‖u− u′‖+ ‖v − v′‖) .

By Bernstein’s inequality,

P (|Zu,v − Zu′,v′ | ≥ t) ≤ 2 exp

(
−cmin

(
t2

d2
2

,
t

d1

))
where the metrics di are given by

d2
2 =

α2

m
(r‖u− u′‖+ ‖v − v′‖)2 and d1 =

α

m
(r‖u− u′‖+ ‖v − v′‖) .

Therefore (Zu,v)(u,v)∈T has a mixed tail with respect to the metric pair (Cd1, Cd2) for some absolute
constant C.

Next, we bound the supremum of Z(u, v;w). Without loss of generality, we will assume that q ≥ 1.
(In fact, if q = 0, then T1, T2 are either empty set or singleton, in which case the result is trivial or
follows directly from Bernstein’s inequality).

Denote T := T1 × T2 and define a metric d on T as

d ((u, v), (u′, v′)) := r‖u− u′‖+ ‖v − v′‖.

It is easy to see that d2 = α√
m
d and d1 = α

md. Also note that γi(T , td) = tγi(T , d) from definition
(10). We can assume that S1 is a subspace1, then Z0,v = 0 for v ∈ T2. Thus by Theorem 3, we have

sup
(u,v)∈T

|Zu,v| .
α√
m
γ2(T , d) +

α

m
γ1(T , d) +

√
t
4α2r√
m

+ t
4α2r

m

with probability at least 1− e−t. It remains to estimate γi(T , d).
From (11) we have

γi(T , d) ≤ C3

∫ ∆d(T)

0

(logN(T , d, ε))1/i
dε, i = 1, 2.

Let d`2 be the Euclidean metric. Note that one can always obtain a ε-covering on T (with metric d)
from the product set of a ε/2-covering on T1 (with metric rd`2) and a ε/2-covering on T2 (with metric
d`2). Moreover, note that T1 is contained in a q-dimensional ball of radius α and T2 is contained in a
q-dimensional ball of radius αr. Hence

N(T , d, ε) ≤ N (T1, rd`2 , ε/2) ·N (T2, d`2 , ε/2)

≤ N (αBq, rd`2 , ε/2) ·N (αrBq, d`2 , ε/2)

= N
(
Bq, d`2 ,

ε

2αr

)
·N
(
Bq, d`2 ,

ε

2αr

)
≤
(

1 +
4αr

ε

)2q

.

1If S1 is an affine subspace, let q′ = q + 1 and let S ′1 be the q′-dimensional subspace containing S1 (and

origin). One can proceed with S ′1 and q′ for the proof. Finally, notice that
√

q′

m
+ q′

m
≤ 2

(√
q
m

+ q
m

)
, so this

will give the same result with only a different absolute constant. (In fact, in our application of Lemma 1 for the
multi-layer proof, S1 is chosen as range(Ai · · ·A1), which is always a subspace.)

12

Here the last line uses estimate N(Bq, d`2 , ε) ≤
(
1 + 2

ε

)q
for the covering number of unit balls (see

e.g., [30, Section 4.2]).

Note the estimate2
∫ a

0
log
(

2a
x

)
dx = a(log 2 + 1) < 2a, we get

γ1(T , d) ≤ C3

∫ 4αr

0

2q log

(
1 +

4αr

ε

)
dε ≤ 2C3q

∫ 4αr

0

log

(
8αr

ε

)
dε ≤ 16C3αrq.

Also note the inequality
√

log(1 + x) <
√

2 log(1 + x) for x ≥ 1, we have

γ2(T , d) ≤ C3

∫ 4αr

0

√
2q log

1
2

(
1 +

4αr

ε

)
dε

≤ 2C3
√
q

∫ 4αr

0

log

(
1 +

4αr

ε

)
dε

≤ 2C3
√
q

∫ 4αr

0

log

(
8αr

ε

)
dε

≤ 16C3αr
√
q.

Therefore with probability at least 1− e−t,

sup
(u,v)∈T

|Zu,v| ≤ C1α
2r

(√
q

m
+

q

m
+

√
t

m
+

t

m

)
.

Lemma 4. Let σ = ReLU. For u, x, y ∈ Rn and g ∼ N (0, In), the (mean zero) random variable

Zg := 〈g, u〉 [σ(gᵀx)− σ(gᵀy)]− 1
2 〈u, x− y〉

has sub-exponential norm ‖Zg‖ψ1
≤ C2‖u‖‖x− y‖, where C2 is an absolute constant.

Proof. It is easy to see that Zg is mean zero from Lemma 2. Also from the following two properties
of ψ1, ψ2-norms (see [30, Section 2.7]):

‖X − EX‖ψ1
. ‖X‖ψ1

and ‖XY ‖ψ1
≤ ‖X‖ψ2

‖Y ‖ψ2
,

we have (note that σ is 1-Lipschitz)

‖Zg‖ψ1
. ‖ 〈g, u〉 ‖ψ2

‖σ(gᵀx)− σ(gᵀy)‖ψ2
. ‖ 〈g, u〉 ‖ψ2

‖ 〈g, x− y〉 ‖ψ2
.

The result follows by noting that ‖ 〈g, u〉 ‖ψ2
= ‖g1‖ψ2

‖u‖ where g1 ∼ N (0, 1).

D Proof for Theorem 1

Proof of Theorem 1. First we write

xk+1 − x∗ = θ
(
xk − x∗ − 2dÃᵀ

dΦᵀ[ΦG(xk)− y]
)

+ (1− θ)(xk − x∗).

For any fixed r > 0, using triangle inequality and Lemma 5 (with events Ei defined as in Lemma 5) we
can conclude that if ‖xk−x∗‖ ≤ r, then with probability at least 1−P(E1)−P(E2)−P(E3)−2e−10n0 ,

‖xk+1 − x∗‖ ≤ θ

2

(
r + 30 · 2d

√
n0

m
‖ε‖
)

+ |1− θ|r = α(r + βε) (12)

where

α =
θ

2
+ |1− θ|, β =

θ/2

|1− θ|+ θ/2
, ε = 30 · 2d

√
n0/m‖ε‖.

Now define a sequence {rk}k∈N such that rk+1 = α(rk + βε) and r0 = R. We can find its general
formula as follow:

rk+1 −
αβ

1− α
ε = α

(
rk −

αβ

1− α
ε

)
⇒ rk = αk

(
R− αβ

1− α
ε

)
+

αβ

1− α
ε.

2This comes from the indefinite integral
∫
log
(
a
x

)
dx = x log

(
a
x

)
+ x+ C.

13

Next, by induction on k (i.e., apply (12) with r = rk for k = 0, 1, 2, . . .) we get

‖xk − x∗‖ ≤ rk ≤ αkR+
αβ

1− α
ε, k ∈ N. (13)

Notice that the events E1, E2, E3 remain unchanged throughout iterations, so (13) holds with probabil-
ity at least 1− P(E1)− P(E2)− P(E3)− 2ke−10n0 .

Lastly, from Lemma 6, Lemma 8 and Lemma 9 we know P(Ei) ≤ 3e−10n0 for i = 1, 2 and
P(E3) ≤ 2e−10n0 . Also, ‖G(xk)− G(x∗)‖ ≤ 3‖xk − x∗‖ on Ec2 . This completes the proof.

Lemma 5. Fix r > 0 and assume assumptions A1-A4 hold. If ‖xk−x∗‖ ≤ r, then after one iteration
according to PLUGIn-CS with step size η = 2d, we have

‖xk+1 − x∗‖ ≤ 1

2

(
r + 30 · 2d

√
n0

m
‖ε‖
)

with probability at least 1− P(E1)− P(E2)− P(E3)− 2e−10n0 .
Here E1, E2, E3 are the events

E1 :=
{
‖Ãᵀ

dΦᵀε‖ > 15
√
n0/m‖ε‖

}
,

E2 :=
{

max(LÃi , LGi) > 3 for all i ∈ [d]
}

and

E3 :=
{
‖I − ΦᵀΦ‖R > 1

36·2d
}
,

where LGi and LÃi denote the Lipschitz constants of Gi, Ãi : Rn0 → Rni respectively, and

‖I − ΦᵀΦ‖R := sup
z∈R\{0}

‖(I−ΦᵀΦ)z‖
‖z‖

withR := range(G)− range(G) being the Minkowski sum of range(G) and −range(G).

Proof. For x ∈ Rn0 , denote x0 = x and xi = Gi(x) for i ∈ [d]. Then

xk+1 − x∗ = xk − x∗ − 2dÃᵀ
dΦᵀ[ΦG(xk)− ΦG(x∗)− ε]

= (xk0 − x∗0)− 2Ãᵀ
1(xk1 − x∗1)

+ 2Ãᵀ
1

[
(xk1 − x∗1)− 2Aᵀ

2(xk2 − x∗2)
]

+ . . .

+ 2d−1Ãᵀ
d−1

[
(xkd−1 − x∗d−1)− 2Aᵀ

d(xkd − x∗d)
]

+ 2dÃᵀ
d(I − ΦᵀΦ)(xkd − x∗d)

+ 2dÃᵀ
dΦᵀε

thus we can write

‖xk+1 − x∗‖ = sup
u∈Sn0−1

2
(〈
A1u, x

k
1 − x∗1

〉
− 1

2

〈
u, xk0 − x∗0

〉)
+ 22

(〈
A2Ã1u, x

k
2 − x∗2

〉
− 1

2

〈
Ã1u, x

k
1 − x∗1

〉)
+ . . .

+ 2d
(〈
AdÃd−1u, x

k
d − x∗d

〉
− 1

2

〈
Ãd−1u, x

k
d−1 − x∗d−1

〉)
− 2d

〈
Ãdu, (I − ΦᵀΦ)(xkd − x∗d)

〉
− 2d

〈
u, Ãᵀ

dΦᵀε
〉

≤ I + II + III,

where

I :=

d−1∑
i=0

2i+1 sup
u∈Sn0−1

Zi+1

(
Ãiu, x

k
i

)
,

14

II := 2d‖Ãd‖‖(I − ΦᵀΦ)(xkd − x∗d)‖,
III := 2d‖Ãᵀ

dΦᵀε‖
with

Zj(u, v) :=
〈
Aju, σ(Ajv)− σ(Ajx

∗
j−1)

〉
− 1

2

〈
u, v − x∗j−1

〉
, j ∈ [d].

We will estimate I, II and III as below.

bound for I

On event Ec2 , ∀i ∈ [d− 1] we have

ÃiSn0−1 ⊆ range(Ãi) ∩ Bni(0, 3) =: T i1 ,
xki ∈ range(Gi) ∩ B(x∗i , 3r) =: T i2 .

By Lemma 7, there are NGi many n0-dimensional affine subspaces {Si,j} such that

T i2 ⊆ ∪j∈[NGi]
T i2,j where T i2,j = Si,j ∩ B(x∗i , 3r) ⊆ Rni and NGi ≤ ψi :=

i∏
j=1

(
enj
n0

)n0

.

For i ∈ [d− 1], apply Lemma 1 on T i1 × T i2,j followed by a union bound over j ∈ [NGi], we get

sup
T i1×T i2

Zi+1(u, v) ≤ C1(9r)

(√
n0

ni+1
+

n0

ni+1
+

√
ti+1

ni+1
+
ti+1

ni+1

)
with probability (over Ai+1 and conditioning on {Aj}j∈[i]) at least 1− ψie−ti+1 .

Choose ti+1 = 2 logψi = 2n0

∑i
j=1 log(

enj
n0

), then we get

PAi+1

(
sup
T i1×T i2

Zi+1(u, v) ≤ 9C1r · 4

√
2 logψi
ni+1

)
≥ 1− e− logψi , ∀i ∈ [d− 1].

Also for i = 0, applying Lemma 1 on Bn0(0, 1)× B(x∗, r), we get

sup
u∈Bn0 (0,1)
v∈B(x∗,r)

Z1(u, v) ≤ C1r · 4
√

10n0

n1

with probability (over A1) at least 1− e−10n0 .

Therefore under assumption A2 (with C0 ≥ 160 · 1442C2
1), we have

d−1∑
i=0

2i+1 sup
u∈Sn0−1

Zi+1

(
Ãiu, x

k
i

)
≤ r

144
+

d−1∑
i=1

2i+1 · 36r

144

√
2

160 · 5i+1

=
r

144
+
r

4
· 1

10

d−1∑
i=1

(
2√
5

)i
<
r

4
· 1

10

∞∑
i=0

(
2√
5

)i
<
r

4

with probability at least 1− P(E2)− e−10n0 −
∑d−1
i=1 e

− logψi .

Also note that (assume C0 ≥ 160 · 1442)

logψi = n0

i∑
j=1

log

(
enj
n0

)
≥ n0i log(eC0) > 11n0i,

so
∑
i≥1 e

− logψi ≤ e−11n0

1−e−11n0
< e−10n0 .

15

bound for II

On event Ec2 ∩ Ec3 , we have ‖Ãd‖ ≤ 3 and

‖(I − ΦᵀΦ)(xkd − x∗d)‖ ≤
1

36 · 2d
‖xkd − x∗d‖ ≤

3r

36 · 2d
.

Thus II ≤ r/4.

bound for III

Note that on Ec1 ,
2d‖Ãᵀ

dΦᵀε‖ ≤ 15 · 2d
√
n0/m‖ε‖.

Lemma 6. Under assumptions A1-A4, we have

P
(
‖Aᵀ

1A
ᵀ
2 · · ·A

ᵀ
dΦᵀε‖ ≥ 15

√
n0

m
‖ε‖
)
≤ 3e−10n0 .

Proof. Denote Ad+1 = Φ and si = Aᵀ
i+1 · · ·A

ᵀ
d+1ε for i ∈ [d]. Also let sd+1 = ε and nd+1 = m.

For i ∈ [d+ 1], by Lemma 3(a) we have

PAi
(√
ni‖Aᵀ

i si‖ ≤
√
ni−1‖si‖+

√
ti‖si‖

)
≥ 1− e−ti/2, ∀ti > 0.

Choose t1 = 20n0 and tj = nj−1/4
j−1 for j > 1, we get

PA1

(
‖Aᵀ

1s1‖ ≤ (1 +
√

20)

√
n0

n1
‖s1‖

)
≥ 1− e−10n0 ,

PAi
(
‖Aᵀ

i si‖ ≤ (1 + 2−i+1)

√
ni−1

ni
‖si‖

)
≥ 1− e−ni−1/4

i

, i > 1.

Thus with probability at least 1− e−10n0 −
∑d+1
i=2 e

−ni−1/4
i

,

‖Aᵀ
1A

ᵀ
2 · · ·A

ᵀ
dΦᵀε‖ ≤

(
1 +
√

20
)√n0

n1
·
d+1∏
i=2

(
1 +

1

2i−1

)√
ni−1

ni

≤
(

1 +
√

20
)√n0

m
·
∞∏
i=1

(
1 +

1

2i

)
< 15

√
n0/m

where the last inequality uses estimate3 ∏∞
i=1

(
1 + 1

2i

)
≤ e and (1 +

√
20)e < 15.

It remains to show
∑d+1
i=2 e

−ni−1/4
i ≤ 2e−10n0 for the desired probability bound. Note that by

assumption A2 (assume C0 ≥ 40),

ni
4i+1

≥ 1

4
C0n0

i−1∑
j=0

log

(
enj
n0

)
≥ 10n0 i.

Hence
d+1∑
i=2

e−ni−1/4
i

≤
d+1∑
i=2

e−10n0(i−1) <

∞∑
i=1

e−10n0i =
e−10n0

1− e−10n0
< 2e−10n0 .

With ReLU (or positively homogeneous) activation functions, the range of neural network (in each
layer) is contained in a union of affine subspaces. The following lemma, which is based on ideas and
results in [9], gives a precise statement of this.

3For α > 0, estimate
∑∞
j=1 log

(
1 + α2−j

)
≤
∑∞
j=1 α2

−j = α holds, thus
∏∞
j=1

(
1 + α

2j

)
≤ eα.

16

Lemma 7. If minj∈[d]{nj} ≥ n0, then for i ∈ [d], range(Gi) is contained in a union of affine
subspaces. Precisely,

range(Gi) ⊆ ∪j∈[NGi]
Si,j where NGi ≤

i∏
j=1

(
enj
n0

)n0

.

Here each Si,j is some n0-dimensional affine subspace (which depends on {Al}l∈[i]) in Rni .

Proof. The theory on hyperplane arrangements [28, Chapter 6.1] tells us that n hyperplanes in Rk
(assume n ≥ k) partition the space Rk into at most

∑k
j=0

(
n
j

)
regions4.

Also for k ∈ [n],

k∑
j=0

(
n

j

)
≤

k∑
j=0

nj

j!
≤

k∑
j=0

kj

j!

(n
k

)j
≤
(n
k

)k ∞∑
j=0

kj

j!
=
(en
k

)k
.

So consider range(G1) = {σ(A1x) : x ∈ Rn0}. Denote by a1
j (j ∈ [n1]) the rows of A1 and let

H be the set of hyperplanes H := ∪j∈[n1]{x :
〈
a1
j , x
〉

= 0}. Then H partitions Rn0 into at most
(en1/n0)n0 regions. Note that σ is linear in each of these regions (thus the mapping G1 is linear
in each region), so range(G1) is contained in at most (en1/n0)n0 many n0-dimensional (affine)
subspace.

The result then follows by induction.

The following lemma shows that the network G in our model is Lipschitz with high probability. This
may be an interesting result on its own.

Lemma 8. For mappings Gi, Ãi : Rn0 → Rni , let LGi and LÃi be their Lipschitz constants
respectively. Under assumptions A1 and A2, we have

P
(
max{LÃi , LGi} ≤ 3 for all i ∈ [d]

)
≥ 1− 3e−10n0 .

Proof. Denote R̃0 = R0 = Rn0 and

Rj = range(Gj)− range(Gj), R̃j = Rj ∪ range(Ãj), j ∈ [d].

Note that Ãj is linear, so range(Ãj) is a subspace in Rni with dimension at most n0.

Since σ is 1-Lipschitz, we have

‖Gi(x)− Gi(x′)‖ = ‖σ(AiGi−1(x))− σ(AiGi−1(x′))‖
≤ ‖Ai (Gi−1(x)− Gi−1(x′)) ‖
≤ ‖Ai‖Ri−1

‖Gi−1(x)− Gi−1(x′)‖.

Hence

‖Gi(x)− Gi(x′)‖ ≤

(
i∏
l=1

‖Al‖R̃l−1

)
‖x− x′‖, ∀i ∈ [d].

Similarly,

‖Ãix− Ãix′‖ ≤

(
i∏
l=1

‖Al‖R̃l−1

)
‖x− x′‖, ∀i ∈ [d].

By Lemma 7, range(Gi) is contained in a union of NGi many n0-dimensional affine subspaces, so
Ri is contained in a union of at most N2

Gi many 2n0-dimensional affine subspaces. Since every

4Such regions are also called k-faces or k-cells. Relative to each of the n hyperplanes, all points inside a
region are on the same side.

17

2n0-dimensional affine subspaces in Rni is also contained in a (2n0 + 1)-dimensional subspace, we
can further write this as

R̃i = Ri ∪ range(Ãi) ⊆ ∪j∈[N2
Gi

+1]Si,j where NGi ≤ ψi :=

i∏
j=1

(
enj
n0

)n0

,

and each Si,j is a (2n0 + 1)-dimensional subspace in Rni .
Thus by Lemma 3(b) and union bound we have, for i ∈ [d− 1],

PAi+1

(√
ni+1‖Ai+1‖R̃i ≥

√
ni+1 +

√
2n0 + 1 +

√
ti
)
≤ (ψ2

i + 1)e−ti/2, ∀ti > 0.

Choose ti = 26 logψi = 26n0

∑i
j=1 log(

enj
n0

) > 2n0 + 1 we get

PAi+1

(
‖Ai+1‖R̃i ≥ 1 + 2

√
26 logψi
ni+1

)
≤ e−10 logψi .

Under assumption A2 (with C0 ≥ 22 · 26), this implies

PAi+1

(
‖Ai+1‖R̃i ≥ 1 +

1

2i+1

)
≤ e−10 logψi , i ∈ [d− 1].

Also by Lemma 3(b) with t = 20n0 and assumption A2 (assume C0 ≥ 22 · 26), we have

PA1

(
‖A1‖R̃0

≥ 1 +
1

2

)
≤ e−10n0 .

Therefore with probability at least 1− e−10n0 −
∑d−1
i=1 e

−10 logψi ,

∀i ∈ [d],

i∏
l=1

‖Al‖R̃l−1
≤

i∏
l=1

(
1 +

1

2l

)
≤
∞∏
l=1

(
1 +

1

2l

)
< 3.

Finally, note that logψi ≥ in0, so we have
∑d−1
i=1 e

−10 logψi ≤
∑∞
i=1 e

−10n0i < 2e−10n0 . This
completes the proof.

Lemma 9. LetR = range(G)− range(G). If minj∈[d]{nj} ≥ n0 and assumption A3 holds, then

PΦ

(
‖I − ΦᵀΦ‖R > 1

36·2d
)
≤ 2e−10n0 .

Proof. Let ψ =
∏d
j=1

(
enj
n0

)n0

. Similar to the proof in Lemma 8, we know thatR is contained in a

union of at most ψ2 many (2n0 + 1)-dimensional subspaces in Rnd .

From Lemma 3(b) and a union bound we get

PΦ

(
|‖Φ‖R − 1| ≥

√
2n0 + 1

m
+

√
t

m

)
≤ 2ψ2e−t/2.

By choosing t = 24n0

∑d
j=1 log(

enj
n0

) and noticing that ‖I − ΦᵀΦ‖R = |‖Φ‖R − 1|2, we have

PΦ

(
‖I − ΦᵀΦ‖R ≥ 4

t

m

)
≤ 2ψ2e−t/2 ≤ 2e−10n0 .

This completes the proof with c0 ≥ 96 · 36 in assumption A3.

E An Example of ni

Here we show if ni = βC05dn0d(2d − i) where β is any fixed number such that βC0 ∈ N and
β ≥ 4 + logC0, then ni satisfy (5).

18

In fact, note that 2 log d < d and log(2β) < β, we have

log

i−1∏
j=0

enj
n0

 = 1 +

i−1∑
j=1

log

(
enj
n0

)
≤ 1 + (d− 1) log

(
eβC05d · 2d2

)
= 1 + (d− 1)[d log 5 + 2 log d+ log(eC0)] + (d− 1) log(2β)

< 1 + d(d− 1)[log 5 + 1 + log(eC0)] + (d− 1)β

≤ β + d(d− 1)β + (d− 1)β

= βd2.

Since ni ≥ C05dn0(βd2), it is easy to see that ni satisfy (5).

Remark: A similar argument as above can also show that ni = βC05in0i
2 satisfy (5).

F Code Link

Codes for numerical experiments are available at https://github.com/babhrujoshi/PLUGIn.

19

	Introduction
	Numerical Experiments
	Proof Outline
	Some Results on Gaussian Matrices
	Preliminaries and Proof for lem:1layer
	Proof for thm:main-convergence
	An Example of ni
	Code Link

