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VR-DiagNet: Medical Volumetric and Radiomic Diagnosis Networks
with Interpretable Clinician-like Optimizing Visual Inspection

Anonymous Authors

ABSTRACT
Interpretable and robust medical diagnoses are essential traits for
practicing clinicians. Most computer-augmented diagnostic systems
suffer from three major problems: non-interpretability, limited modal-
ity analysis, and narrow focus. Existing frameworks can either deal
with multimodality to some extent but suffer from non-interpretability
or partially interpretable but provide a limited modality and multifac-
eted capabilities. Our work aims to integrate all these aspects in one
complete framework to fully utilize the full spectrum of information
offered by multiple modalities and facets. We propose our solution
via our novel architecture VR-DiagNet, consisting of a planner and
a classifier, optimized iteratively and cohesively. VR-DiagNet simu-
lates the perceptual process of clinicians via the use of volumetric
imaging information integrated with radiomic features modality; at
the same time, it recreates human thought processes via a customized
Monte Carlo Tree Search (MCTS) which constructs a volume-tailored
experience tree to identify slices of interest (SoIs) in our multi-slice
perception space. We conducted extensive experiments across two di-
agnostic tasks comprising six public medical volumetric benchmark
datasets. Our findings showcase superior performance, as evidenced
by heightened accuracy and area under the curve (AUC) metrics,
reduced computational overhead, and expedited convergence while
conclusively illustrating the immense value of integrating volumetric
and radiomic modalities for our current problem setup.

CCS CONCEPTS
• Computing methodologies→ Planning under uncertainty.

KEYWORDS
Medical Volume Diagnosis, Multimodality, Radiomics, Unsuper-
vised Planning

1 INTRODUCTION
Accurate and robust diagnosis of diseases is a significant cornerstone
of medical practice. In recent years, along with the development of
computing power and algorithms, there has been increasing reliance
on these systems to augment the work of clinicians. However, several
problems with such systems hinder their continual integration into the
medical workflow, including non-interpretability, limited modality
analysis, and narrow focus. First, most diagnostic algorithms are
black-boxes and, hence, non-interpretable. This presents a severe

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM MM, 2024, Melbourne, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Organ Nodule AdrenalFracture VesselSynapse

Radiomics Features Extraction

Medical Volumetric Images

Visual Inspection

[Step 1]
Confidence: 60%

[Step 2]
Confidence: 75%

[Step 3]
Confidence: 83%

Radiomics
Feature
Extractor

Filters

Feature
Classes

GLRLM, Shape, 
GLCM, …

Cand. Cand. Iden. Cand.

Cand. Cand. Iden. Iden.

Iden. RuOu. Iden. Iden.

DM.

Wavelet, Square, 
Logarithm, …

Volumetric 
Image

Volumetric
Mask

Figure 1: This study endeavors to craft an interpretable diag-
nostic framework mirroring clinicians’ visual inspection process.
Leveraging radiomic and voxel features from different scales and
computational methodologies bolsters the robustness of diag-
nostic procedures. Orange curved arrows indicate the step-wise
formation of the decision path, while green right-angle arrows
indicate the final decision formation. Cand. denotes a potential
candidate, Iden. signifies an identified slice, RuOu. indicates a
ruled-out slice not considered in decision-making.

challenge for medical models because it renders their conclusions
opaque and their inference processes cryptic and unintelligible [21].
This is unacceptable for conventional medical practice, which places
high value on transparency in diagnosis and accountability of their
results; this is, in fact, the hallmark of many mission-critical systems.
In addition, most medically relevant learning models [32, 33] fail to
adequately consider the multiple modalities of clinical data. With the
increasing emphasis on personalized medicine [13] and its necessary
prerequisites on highly customized features, it has become apparent
that a single-modality approach towards healthcare has become
woefully insufficient. Finally, most current learning models deployed
can deal with a single [36] or, at most, a few aspects [37] of a medical
problem. This is a significant obstacle to comprehensive and accurate
diagnosis since, in most cases, medical conditions are complex
and multifaceted, requiring the consideration and consolidation of
disparate observations to reach the correct decision.

Recent advances in three-dimensional (3D) volumetric imaging
have enabled imaging results to present a multi-sliced view of any
medical condition, furnishing clinicians with a depth-rich source of
visual information. Despite the clear advantages of volumetricity,
most convolutional [25, 31, 35] and attention-based [11] frame-
works extract visual features at the dense voxel-level, constructing
a “global view” of the volume while overlooking its multifaceted
nature. In addition to volumetricity, multimodality has yet to be
comprehensively harnessed for increased diagnostic robustness and
accuracy. Although the idea of multimodality is expected in the
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medical scenario [1], very few works have attempted to leverage the
large and diverse informational content of imaging feature space,
or radiomics, for multimodal integration [20, 38]. With the advent
of high-precision imaging equipment, radiomics have emerged as
a novel imaging-based data characterization and feature identifica-
tion system that enables extracting image features, or phenotypes,
that comprehensively quantify the specifics of radiographic images.
These features have been shown to offer valuable insights into intra-
and inter-tumor heterogeneities [19]. Finally, interpretability [3] is
an active and essential area of research in machine learning, es-
pecially in the medicine use scenario [3]. Moreover, it is apparent
that interpretability and multimodal integration are often at odds
with one another since multimodality (and especially integration
thereof) often requires the design of a deep architecture, which is
usually not amenable to interpretation [17, 18]. In this sense, the
Monte Carlo Tree Search (MCTS) is a robust technique suitable for
interpretable decision process planning and has been applied in the
fields of Go[23], retrosynthetic planning[10], and games[15].

Having identified the critical bottlenecks in achieving interpretable,
multimodal-multifaceted integration, we propose merging several
essential paradigms to effectively unify these diverse yet crucial
concepts. We illustrate our approach by considering two significant
aspects of the problem: perceptual and inferential. At the perceptual
level, we solve the problem of lack of multifacetedness and mul-
timodality via the introduction of volumetrics and radiomics. Our
approach combines descriptive features from both sources to opti-
mize information extraction. Introducing our inference mechanism
solves the problem of determining which features are descriptive.
We have ensured that our inference logic is fully transparent and
interpretable, thus ensuring the logical clarity of our approach.

To this end, we propose VR-DiagNet, namely Volumetric and
Radiaomic Diagnosis Networks, which jointly incorporates volu-
metric imaging data and extracted radiomic features to encompass
the multimodal integration for the diagnosis capacity enhancement.
Moreover, the MCTS algorithm for identifiable inference processes
is leveraged as a planning module. Our model comprises two primary
multimodal constituents: the class-agnostic planner and the classi-
fier. The planner identifies SoIs with the highest informativeness,
enabling the alignment of the number of slices within each volume.
Subsequently, sequence-aware strategy encoding is built upon the
extracted slice-level local features and global radiomic features in
the classifier, transformed into final diagnosis decision-making. The
classifier has the same model structure as the planner, consisting
of the Neighbour-aware Hierarchical Slice encoding (NHS) module
for reading slice representation, the Sequence-aware Strategy En-
coding (SSE) module for encoding the decision sequence, and the
Decision Making (DM) layer that classifies the slice-level features
output from SSE. This comprehensive integration of multimodality,
multifacetness, and interpretability shows that our model improves
upon baselines. In summary, our contributions are as follows:

• By identifying and surmounting key obstacles such as non-
interpretability, narrow focus, and limited modality, we make
decisive steps toward rectifying some of the severe issues hinder-
ing the effective application of deep learning in medical diagnosis;
• We present a framework for achieving multifaceted, multimodal

medical diagnosis by designing the first learning framework, to the

best of our knowledge, that emphasizes the effective interaction
between radiomics and volumetric information, mediated by a
robust decision-making process;
• We present a novel architecture consisting of an interpretable plan-

ner and a multimodal, multifacetted classifier, which closely mim-
ics the inference strategies of human clinicians;
• We conduct extensive experiments, achieving state-of-the-art

(SOTA) results while quantitatively and visually validating the
effectiveness of integrating volumetric and radiomic features in
the current multimodal tasks.

2 RELATED WORK
To offer a thorough overview, we explore specific technologies closely
intertwined with this paper, including volumetric image diagnosis,
medical radiomics analysis, and MTCS-based planning.

Volumetric Image Diagnosis. Deep learning has emerged as
the dominant paradigm in medical image analysis (MIA) tasks in
recent years. Convolution-based applications for medical volumetric
images have adopted either 3D [25, 35] or 2.5D [31, 35] variants.
These approaches, necessitating dense encoding, entail heightened
computational costs and diminished data efficiency. Moreover, they
are susceptible to over-fitting in scenarios with limited sample sizes.
Contrarily, graph-based methodologies like GCN-CAP [14] and
GSDG [4] leverage sparse encoding, reorganizing volume slices,
effectively curbing computational complexity. This reduction is
achieved by pre-extracting slice embeddings utilizing a frozen pre-
trained Convolutional Neural Network (CNN) backbone during
pre-processing. Although this approach significantly decreases input
data density, it potentially suffers from domain gap issues introduced
by out-of-domain pre-training. Jang et al. [11] propose a hybrid
approach that merges Transformers with 2D and 3D CNNs, wherein
the 3D CNN facilitates 3D representation learning while the 2D CNN
utilizes pre-training weights from ImageNet [5] for 2D representation
learning. However, the introduction of 3D models escalates the risk
of over-fitting. Despite their different focuses, all the works above
fail to utilize radiomic features, an under-utilized feature modality,
and address how to model the visual inspection process of clinicians.
Furthermore, techniques extending beyond raw imaging, such as
quantitative analysis and feature extraction within the radiomics
domain, need more emphasis in such endeavors despite their general
efficacy in elucidating clinical insights.

Medical Radiomics Analysis. Radiomics features, with scales
and calculation processes distinct from those of the imaging modal-
ity, complement the slice image modality and show promise in
identifying slice- or volume-based biomarkers of therapy response.
Reproducibility of radiomic features remains a challenge, addressed
by initiatives like the Image Biomarker Standardization Initiative
(IBSI) [41]. Tamal et al. [26] combine radiomics and machine learn-
ing for fast and accurate COVID-19 diagnosis from Chest X-ray
images. Despite its good performance, classical machine learning
remains dominant due to limited medical image samples and sparse
radiomic data. Tanaka et al. [27] introduce a deep learning-based
radiomics approach for early head and neck tumor regression pre-
diction, outperforming traditional radiomics and clinical factors.
However, its feature fusion stage precedes the machine learning
decision layer, posing challenges in establishing deep-level complex
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Figure 2: The proposed architecture. Panel (a) demonstrates the formulation of a volume-specific experience tree utilizing the planner,
depicted with three layers for clarity. The gray shadow represents the ancestral state of the state covered by the green shadow.
Additionally, three SoIs are identified as a visual inspection strategy and highlighted in orange. In panel (b), the classifier extracts
features from these SoIs and generates conditional predictions using an attention module with radiomic features and CLS embedding
as the hierarchical priori. The static radiomic features are grouped and refined by another attention module, as shown in (c). Panel
(d) showcases the design of the NHS module. Panel (e) presents the overall loss function used to train the classifier. “Att.” stands for
attention, “Lin.” a linear layer, “RFR.” radiomic feature refinement, “zpe” zero-centered position encoding and “⊕” element-wise
addition. The NHS module utilizes a ResNet-18 backbone [9].

correlations between the two modalities. Further exploration in multi-
modal tasks is warranted to elucidate radiomics’ underlying value. Ge
et al. [8] demonstrate the effectiveness of extracting complementary
radiomics features from diverse imaging modalities for identifying
and differentiating kidney diseases. Vanguri et al. [29] integrate and
analyze radiomic, pathological, and genomic features using machine
learning algorithms in treatment response prediction. Deep Learning
Radiomics (DLR) revolutionizes predictive modeling by extracting
deep features. Zheng et al. [38] design a parallel model structure with
ResNet-50 [9] base networks ingesting images of two modalities as
dual-modal inputs. DLR extracts deep features from images while
separating them from traditional radiomic features. Ning et al. [20]
extract radiomics and deep features from MRI modalities to quantify
global and local information using a kernel fusion-based SVM clas-
sifier for glioma grading. Our work aims to model the correlation
between classical radiomic and deep features, enabling intermodality
interaction and exploring inter-group interaction within radiomic
features to adapt to deep feature distribution.

MTCS-based Planning. The emulation of the visual inspection
process of clinicians is crucial for improving the interpretability of
the model and inspiring the planner to align volumes with varying
numbers of slices during the slice identification phase. Our method-
ology dissects volumetric images slice by slice, a tailored strategy
for handling volumetric data. Furthermore, we integrate concepts

reminiscent of tree-based planning algorithms, such as MCTS, as
observed in AlphaGo [23], and EG-MCTS [10], which addresses
retrosynthetic planning for drug compounds. Based on the tasks at
hand, we fill the gap in the works above. During the planning process,
we suggest an additional data modality to help construct a visual
inspection strategy similar to a clinician’s. We explore a hierarchical
priori design, consisting of volume-specific refined radiomic features
constructed over static raw radiomic features and a CLS embedding
within the Multi-Head Attention (MHA) mechanism [30]. The hier-
archical design is anticipated to enhance diagnosis robustness owing
to its multimodal and multigranular nature.

3 METHOD
3.1 Problem Statement
For accurate diagnostic purposes and by capturing the joint features
between volumetric and radiomic features, our proposed multi-
modal method, VR-DiagNet, introduces a novel approach to medical
image processing by integrating momentum planning (see §3.2)
and volumetric & radiomic (VR) learning (see §3.3). The dataset{
(X𝑖 , x𝑖,𝑅𝑎𝑑 , 𝑦𝑖 )

}𝑁𝐷

𝑖=1 comprises 𝑁𝐷 pairs of volume-radiomics-label.
Each X𝑖 consists of a sequence of 𝐷𝑖 gray-scale slices, with 𝐷𝑖 vary-
ing across volumes. x𝑖,𝑅𝑎𝑑 represents the radiomic feature vector,
and 𝑦𝑖 denotes the corresponding volume-level label. The method
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contains a planner f𝑃𝐿 and a 𝐶-class classifier f𝐶𝐿 , optimized alter-
nately over 𝑁𝑅𝑜 rounds. An overview of our method is illustrated in
Figure 2.

3.2 Class-agnostic Momentum Planning
First, we introduce the planner, the first constituent in our method. To
mimic human-like visual inspection akin to clinicians, we propose
a computationally feasible planning methodology. In each round
𝑟 ∈ [1, . . . , 𝑁𝑅𝑜 ], the planner constructs a volume-specific experience
tree T (𝑟 )X𝑖 comprising 𝐿 layers (excluding the root node). This tree is
built using voxels and radiomic features extracted fromX𝑖 and x𝑖,𝑅𝑎𝑑 ,
enabling the selection of the most informative SoIs in a class-agnostic
manner. This class-agnostic approach employs information metrics
to determine the most task-relevant slices, eliminating the need for
class labels and enabling generalization to any classification task.
We formalize this process as a MDP characterized by (S,A𝑠 , P𝑎,R):
(1) S represents the state space. Each slice X𝑖, 𝑗 functions as a

tree node. A state 𝑠 is constituted by a ordered node sequence
[X𝑖,𝑅𝐴,X𝑖,[𝑡 (1),...,𝑡 (𝑙 ) ] ], where 𝑡 (·) ∈ [1, . . . , 𝐷𝑖 ], and 1 ≤ 𝑙 ≤ 𝐿.
We adopt a visual inspection strategy as a state 𝑠 in the rest of
the paper. The node X𝑖,𝑅𝐴 is a refined radiomic features learned
from frozen and grouped sample-specific radiomic features
x𝑖,𝑅𝑎𝑑 (see Eq. 3). The refinement aims to enhance radiomic
complementarity to deep features. Details regarding radiomics
feature extraction from volumes are elaborated in §4.3.1 and
§4.3.2.

(2) A𝑠 = X𝑖 \ 𝑠 denotes candidate actions conditional on strategy
𝑠. An action 𝑎 ∈ A𝑠 selects a previously unvisited slice in
𝑠 and append it to the current strategy, assuming conditional
independence regarding task-specific incremental information.

(3) P𝑎 represents the transition function space. In our deterministic
game setting, 𝑃𝑎 (𝑠𝑃 , 𝑠) = 1 (𝑃𝑎 (𝑠𝑃 , 𝑠) ∈ P𝑎), indicating the
transition probability from parent strategy 𝑠𝑃 to child strategy 𝑠

by taking action 𝑎.
(4) R denotes the reward space. 𝑅(𝑠) ∈ R defines the average

informativeness of strategy 𝑠, calculated using a value network
consisting of SSE and DM modules (details in §3.3) based on
normalized incremental informativeness (NII).

𝑁𝐼𝐼 (𝑠) =
{
𝑁𝑆𝐸 (𝑠) , if len (𝑠) = 1
𝑁𝑀𝐼 (𝑠) , otherwise (1)

For a strategy with only one slice, NII is measured using a
normalized negative variant of Shannon Entropy [22], 𝑁𝑆𝐸 (𝑠) =(
log𝐶 +∑𝐶

𝑐=1 p𝑠,𝑐 log
(
p𝑠,𝑐 + 𝜖

) )
/log𝐶, serving as a certainty

metric. p𝑠 ∈ [0, 1]𝐶 is the conditional probability distribu-
tion of the last slice in strategy 𝑠. For other strategies, NII is
calculated using normalized mutual information: 𝑁𝑀𝐼 (𝑠) =
(H𝑃 − H)/

√
H𝑃H , where H and H𝑃 are Shannon Entropy

values for the strategy 𝑠 and its ancestor, respectively. This
calculation also relies on conditional probability distributions.

We employ MCTS to solve the MDP above iteratively. The planner
starts from the refined radiomics node and consists of four stages in
each MCTS iteration:
(1) Selection of the next slice: Starting from the strategy 𝑠𝑃 , we

iteratively select and append the next slice to construct a new

Algorithm 1 Pseudo-code for Strategy Reward Evaluation in MCTS
1: Input: Current visual inspection strategy 𝑠, action space A𝑠 .
2: Output: Reward 𝑅(𝑠).
3: while len(𝑠) < 𝐿 and HasChild(𝑠) do
4: wA𝑠 ← NII(A𝑠 ) ⊲ Eq. 1
5: X𝑖,𝑡 (len(𝑠 )+1) ←WeightedSample(A𝑠 ,weights = wA𝑠 )
6: 𝑠 ← 𝑠 ∪ X𝑖,𝑡 (len(𝑠 )+1)
7: end while
8: return 𝑅(𝑠)

strategy 𝑠 using the Upper Confidence Bound (UCB) strategy [2],
until reaching a leaf node or the maximum depth.

𝑈𝐶𝐵1 (𝑠) = 𝑉 (𝑠) /𝑁 (𝑠)︸        ︷︷        ︸
𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑇𝑒𝑟𝑚

+𝑐
√︃
𝑙𝑜𝑔𝑁

(
𝑠𝑃

)
/𝑁 (𝑠)︸                 ︷︷                 ︸

𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑇𝑒𝑟𝑚

(2)

Here, 𝑉 (𝑠) tracks the accumulated 𝑅(𝑠), while 𝑁 (𝑠) counts
the exploration times of strategy 𝑠. The coefficient 𝑐 balances
exploration versus exploitation.

(2) Expansion of the visual inspection strategy. If 𝑁 (𝑠) ≠ 0,
proceed to the next stage; otherwise, expand the experience tree
by selecting an action 𝑎 that leads to an unvisited slice with the
highest NII and append it to form the following strategy.

(3) Evaluation of strategy reward. Simulate on strategy 𝑠 to obtain
reward 𝑅(𝑠). Termination occurs when the path depth reaches 𝐿
or a leaf node is reached. This stage is depicted in Alg. 1.

(4) Metadata update of experience tree. Update metadata of all
ancestor strategies 𝑠𝑃 throughout the path: 𝑁 (𝑠𝑃 ) ← 𝑁 (𝑠𝑃 ) + 1
and 𝑉 (𝑠𝑃 ) ← 𝑉 (𝑠𝑃 ) + 𝑅(𝑠).

By leveraging slice informativeness informed by NII, the search
direction of the planner aligns with the optimization direction of the
classifier. Nonetheless, the extensive state space often necessitates
the integration of MCTS with additional techniques to enhance
efficiency and convergence [24]. The specific techniques we have
employed are enumerated below.

Efficiency optimization. We employ the following strategies to
enhance efficiency: 1) We adopt a layer-wise search strategy instead
of exhaustively identifying all 𝐿 SoIs in consecutive MCTS iterations.
Precisely, after every 𝑁𝑀𝑐 iterations, we pinpoint one child slice
with the highest UCB score for the current initial slice. This selected
child slice is the subsequent initial slice for the next 𝑁𝑀𝑐 iterations.
Consequently, the iterative process involves 𝐿×𝑁𝑀𝑐 MCTS iterations
for each volume in each round. 2) We project backbone embeddings of
the SoIs into a low-dimensional feature space to reduce computational
overhead. 3) We perform pre-computation of shared and parallelizable
parts over SoIs within each volume on GPUs to alleviate the workload
on CPUs.

Momentum planner. To ensure the stability of inter-round search
directions, we propose a momentum-based initialization of 𝑁 (𝑠)
and 𝑉 (𝑠): 𝑁 (·) (𝑟 )𝑠𝑡𝑎𝑟𝑡 = 𝑚 × 𝑁 (·) (𝑟−1)

𝑒𝑛𝑑
,𝑉 (·) (𝑟 )𝑠𝑡𝑎𝑟𝑡 = 𝑚 × 𝑉 (·) (𝑟−1)

𝑒𝑛𝑑
,

starting from the 3-rd round, where 𝑚 ∈ [0, 1] is the momentum
factor.



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

VR-DiagNet: Medical Volumetric and Radiomic Diagnosis Networks with Interpretable Clinician-like Optimizing Visual Inspection ACM MM, 2024, Melbourne, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Cold start. At the beginning of the training, the planner does not
adapt to medical images. Thus, we default to selecting the central 𝐿
slices from each volume and shuffling them to create ordered SoIs
for warm-up training.

Thus far, the proposed planner yields a fine-grained knowledge se-
quence, denoted as I𝑖 = [X𝑖,[𝑡 (1),...,𝑡 (𝐿) ] ], emulating a clinician-like
visual inspection strategy, derived from X𝑖 . This sequence facilitates
volume-level label assignment to identified SoIs. Furthermore, it is
worth noting that by maintaining a consistent number of tree layers
across volumes, the planner can achieve alignment regarding the
number of SoIs across volumes of varying lengths.

3.3 Strategy-driven VR Learning
We partition the classifier into three constituents: Neighbour-aware
Hierarchical Slice encoding (NHS) module, Sequence-aware Strategy
Encoding (SSE) module, and Decision Making (DM) layer. The
combination of SSE and DM is akin to the value network in Al-
phaGo [23], which can assess the informativeness of newly incoming
slices. We denote the complete classifier as f𝐶𝐿 = {fNHS, fSSE, fDM},
and its learning trajectory is directed by the supervised signal from
the volume-level annotation. Below, we first elucidate the refinement
of radiomic features and introduce the three modules.

Radiomic feature refinement. To align radiomic features with the
same scale as the deep features, within each volume, we reorganize
each raw radiomic features into corresponding groups, x𝑖,𝑅𝑎𝑑 ↦→
[g𝑘 ]𝐺𝑘=1, based on the radiomics taxonomy (see group names in
§4.3.1). Here, g𝑘 represents a subset of raw radiomic features, and𝐺
denotes the number of groups. Each feature vector is then projected
by a group-specific linear layer into the same feature space for
subsequent self-attention interaction. Finally, the interacted features
are mapped back and concatenated into the radiomics dimension:

x𝑖𝑛𝑡
𝑖,𝑅𝑎𝑑

= ∥𝐺
𝑘=1 Linear

𝑟
𝑘

(
MHA

(
Linear𝑝

𝑘
(g𝑘 )

))
(3)

where ∥ denotes the concatenation operation, Linear𝑝
𝑘

and Linear𝑟
𝑘

represent projection into uniform and back into raw radiomic feature
sub-space, respectively. The resulting features are connected to the
raw radiomic features by a shortcut implemented by a linear layer,
as shown in panel (c), Figure 2. Layer Normalization follows their
summation to obtain a refined radiomic feature vector m𝑖,𝑡 (0) :

m𝑖,𝑡 (0) = LayerNorm
(
x𝑖𝑛𝑡
𝑖,𝑅𝑎𝑑

⊕ Linear
(
x𝑖,𝑅𝑎𝑑

) )
(4)

⊕ indicates element-wise addition. Lastly, a linear layer is employed
to map m𝑖,𝑡 (0) to the deep-feature dimension.

Neighbour-aware hierarchical slice encoding. We observe that
neighboring slices offer moderate 3D information that is beneficial
for current 3D tasks. Hence, we introduce the notion XN(𝑛)

𝑖,𝑡 (𝑙 ) to
represent the neighbor-aware version of the original X𝑖,𝑡 (𝑙 ) , covering
𝑛 neighboring slices in total. Here, 𝑛 is an odd number; thus, addi-
tional ⌊𝑛/2⌋ slices before and after are concatenated with the target
slice. For each augmented SoI, using ResNet-18 [9] as an exam-
ple, a position-agnostic embedding e𝑖,𝑡 (𝑙 ) = fNHS (XN(𝑛)𝑖,𝑡 (𝑙 ) ) ∈ R

1024

is extracted from different encoder stages, specifically, the stem
layer and four residual blocks, each followed by global average
pooling. These embeddings are then concatenated to form a vector,

as shown in panel (d), Figure 2. Based on this, we compute an
embedding sequence e𝑖,· ∈ R𝐿×1024 by parallelly applying fNHS
on I𝑖 . These embeddings are projected into a low-dimensional fea-
ture space e𝑖,· = ReLU

(
LayerNorm

(
Linear

(
e𝑖,·

) ) )
∈ R𝐿×𝑟𝐶 for

computational efficiency, 𝑟 is scale coefficient.

Sequence-aware strategy encoding. We posit that the appearance
of the next informative SoI is contingent upon all its predecessor
SoIs within I𝑖 and delineate the conditional distribution of X𝑖,𝑡 (𝑙 ) as
follows:

𝑝

(
X𝑖,𝑡 (𝑙 )

)
= 𝑝

(
X𝑖,𝑡 (𝑙 ) | X𝑖,[𝑡 (1),· · · ,𝑡 (𝑙−1) ]

)
(5)

We utilize MHA equipped with the proposed m𝑖,𝑡 (0) (Eq. 4), CLS
embedding, dropout, and zero-centered position encoding zpe𝑖,𝑡 ( ·)
(details in §S.4, Supplementary Materials) to model this sequential
relationship. For the (sub-) sequences of SoIs, we first calculate the
updated conditional features m𝑖,𝑡 ( ·) ∈ R𝐿×𝑟𝐶 as follows:

m𝑖,𝑡 ( ·) = MHA
(
e𝑖,𝑡 ( ·) + zpe𝑖,𝑡 ( ·)

)
(6)

In this context, MHA is performed slice-by-slice to guarantee that
no descendant slice contributes to the computation of any ancestor
slices. Each input embedding for the MHA corresponds to a node
along the identified path within the experience tree.

Decision making. We employ a shared linear layer to obtain the
position-wise logits of all SoIs:

𝑙𝑜𝑔𝑖𝑡𝑠𝑖,𝑡 ( ·) = Linear
(
ReLU

(
m𝑖,𝑡 ( ·)

))
(7)

The volume-level prediction distribution ŷ𝑖 ∈ [0, 1]1×𝐶 is Softmax
(or Sigmoid for the binary classification setting) over the average of
all slice logits:

ŷ𝑖 = Softmax
(
Avg

(
𝑙𝑜𝑔𝑖𝑡𝑠𝑖,𝑡 ( ·)/𝜏, 𝑑𝑖𝑚 = 0

))
(8)

where 𝜏 represents temperature, however, for calculating the loss
function, we opt for the slice-level distribution, i.e., without Avg
above to get ŷ𝑖,𝑡 ( ·) ∈ [0, 1]𝐿×𝐶 .

Classification loss function. We formulate the likelihood of the
identified SoIs as a joint probability:

L𝑖 (𝜃 ) = L𝑖 (𝜃 ;I𝑖 ) =
𝐿∏
𝑙=1

ŷ𝑖,𝑡 (𝑙 ) (X𝑖,𝑡 (𝑙 ) |X𝑖,[𝑡 (1),· · · ,𝑡 (𝑙−1) ] ;𝜃 ) (9)

This likelihood is optimized by maximizing the log-likelihood, which
is equivalently represented by minimizing cross-entropy (CE):

L𝐶𝐿 = − lnL𝑖 (𝜃 ) =
1
𝐿

𝐿∑︁
𝑙=1

𝓁𝑙 =
1
𝐿

𝐿∑︁
𝑙=1

CE
(
ŷ𝑖,𝑡 (𝑙 ) , 𝑦𝑖

)
(10)

Penalty Term. The penalty term is crucial for aligning the search
direction of the planner with the optimization direction of the classi-
fier and incentivizing the discovery of the most informative SoIs. For
the 𝑙-th layer (𝑙 ≥ 2), we define the penalty score between a strategy
and its ancestor as:

𝜓𝑙 =

{ − NMI (𝑠 (𝑙)) , if NMI (𝑠 (𝑙)) < 0
0, otherwise (11)
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Here, 𝑠 (𝑙) represents a strategy corresponding to a 𝑙-layer tree path.
Subsequently, the total penalty is calculated as follows:

Ψ =
1

𝐿 − 1

𝐿∑︁
𝑙=2

𝜓𝑙 (12)

The final loss function, balanced by 𝜆, is then given by:

L = L𝐶𝐿 + 𝜆Ψ (13)

Training workflow. The planner and classifier optimization alter-
nate, mutually reinforcing, as shown in Alg. 2.

Algorithm 2 Pseudo-code for Alternating Optimization
1: Input: Number of rounds 𝑁𝑅𝑜 , number of volumes 𝑁𝐷 , number

of MCTS iterations to pinpoint one SoI 𝑁𝑀𝑐 , training epochs in
each round 𝑁𝐸𝑝 , depth of the experience tree 𝐿.

2: Output: Planner f𝑃𝐿 (;𝜃 ), classifier f𝐶𝐿 (;𝜃 )
3: Initialize f𝐶𝐿 with 𝜃 (0) ;
4: for 𝑟 ← 1 to 𝑁𝑅𝑜 do
5: 𝐷 (𝑟 ) ← {} ⊲ Data set for the current round.
6: for 𝑖 ← 1 to 𝑁𝐷 do
7: I (𝑟 )

𝑖
← f𝑃𝐿 (X𝑖 , x𝑖,𝑅𝑎𝑑 , 𝑁𝑀𝑐 , 𝐿;𝜃 (𝑟−1) ) ⊲ Build Exp-tree

and extract SoIs (§3.2).
8: 𝐷 (𝑟 ) ← 𝐷 (𝑟 ) ∪ (I (𝑟 )

𝑖
, x𝑖,𝑅𝑎𝑑 , 𝑦𝑖 )

9: end for
10: 𝜃 (𝑟 ) ← AdamW

(
f𝐶𝐿 (;𝜃 (𝑟−1) ), 𝐷 (𝑟 ) , 𝑁𝐸𝑝

)
⊲ Train classifier

(§3.3).
11: end for

4 EXPERIMENTS
4.1 Dataset and Pre-processing
The MedMNIST v2 dataset [35] offers a comprehensive benchmark
featuring volumetric representations illustrating lesions across six
distinct 3D diagnostic datasets with 9998 cases span modalities such
as MRI, CT, and electron microscopy. The benchmark encompasses
binary and multi-class classification tasks, with tensor dimensions of
28 × 28 × 28 voxels per volume. Each 28 × 28 matrix along the first
dimension is treated as a slice. We employ RandomResizedCrop()
for data augmentation during the training phase. Value normalization
is achieved using the z-score. These datasets are categorized into
two problem domains following medical standards:

(1) Task 1: anatomical structure and pathological condition analysis.
This stratification encompasses the classification of organ types
(Organ3D), neuronal synapses (Synapse3D), and lung nodules
(Nodule3D). They heavily rely on texture-based features for
accurate classification. Details in [35].

(2) Task 2: micro-structure classification. This stratification analyzes
fracture micro-structures (Fracture3D), intracranial aneurysms
(Vessel3D), and adrenal gland morphology (Adrenal3D). They
emphasize morphology-based characteristics, enabling the con-
struction of fine-grained masks over variable-length volumes.

Table 1: The classification of anatomical structures and patho-
logical conditions was performed using VR-DiagNet, compared
to approaches from various methodological families. Abbrevia-
tions include “Trans.” for Transformer and “IL.” for Incentive
Learning. Results for AUC (↑) and ACC (↑) are provided.

Family Method Organ3D Nodule3D Synapse3D
AUC ACC AUC ACC AUC ACC

CNN

2.5D𝑅18 [35] 0.977 0.788 0.838 0.835 0.634 0.696
3D𝑅18 [35] 0.996 0.907 0.863 0.844 0.820 0.745
ACS𝑅18 [34] 0.994 0.900 0.873 0.847 0.705 0.722
FRM𝑅18 [40] 0.996 0.922 0.869 0.853 0.837 0.755

Trans. 2.5d Trans. [40] 0.971 0.781 0.673 0.808 0.627 0.734

IL. C-Mixer [39] 0.995 0.912 0.915 0.860 0.866 0.820

Auto ML auto-sklearn [7] 0.977 0.814 0.914 0.874 0.631 0.730
AutoKeras [12] 0.979 0.804 0.844 0.834 0.538 0.724

Planning VR-DiagNet𝑅18 0.998 0.963 0.897 0.884 0.869 0.846

4.2 Settings
We delineate the shared hyper-parameters employed across all
datasets. Specifically, we fix 𝑁𝑅𝑜 = 10, 𝑁𝐸𝑝 = 20, 𝜆 = 0.1, and
set the batch size to 64. The neighboring size (𝑛) remains constant at
5 within N(𝑛). We adopt 𝑐 =

√
2 as the balancing factor for UCB

and employ AdamW [16] as the optimizer. For a comprehensive
overview of hyperparameter configurations, please consult Table S6,
Supplementary Materials. The NHS module employs a ResNet-18
backbone [9] for comparison with prevalent convolutional models re-
garding model size, convergence speed, and computation cost due to
the shared backbone. While our architecture could potentially utilize
other visual backbones such as ViT [6], it falls beyond the scope of
our current focus. Model selection hinges upon the validation set’s
accuracy (ACC) score. Each reported score reflects the average over
three runs to maintain consistency with [35].

4.3 Results
4.3.1 Anatomical Structure & Pathological Condition Analysis.
Extraction of coarse-grained radiomic features. During the feature
extraction phase, we utilize a cubic binary mask, the same as the
shape of the entire tensor, to capture 107 radiomic features per
volume. This extraction process is facilitated by the PyRadiomics
platform [28]. These features cover a broad spectrum, encompassing
18 first-order statistics, 16 3D shape-based descriptors, and various
matrices including the Gray Level Co-occurrence Matrix (GLCM)
comprising 24 features, Gray Level Run Length Matrix (GLRLM)
with 16 features, Gray Level Size Zone Matrix (GLSZM) with 16
features, Neighboring Gray Tone Difference Matrix (NGTDM) with
5 features, and Gray Level Dependence Matrix (GLDM) with 14
features. Subsequently, z-score normalization is applied to stan-
dardize the radiomic features across volumes. Given the disparate
contributions of different radiomic features to various tasks and
lesions and recognizing the limited descriptive capability of cubic
masks in delineating anatomical structures of interest, we adhere to
established medical research practices [26]. Specifically, we utilize
one-way ANOVA testing for each dataset to identify discrimina-
tive radiomic features exhibiting statistically significant differences
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(a) Round 1 (b) Round 2

(c) Round 3 (d) Round 4

Figure 3: Visualizing the planner’s search process on a volume
from Nodule3D across multiple rounds. Only the first four rounds
are shown out of ten, with SoI indices along the tree path indicated
in brackets. Complete results over ten rounds can be found in
Figure S9, Supplementary Materials.

(𝑝 < 0.05) among different classes. This analytical process results
in the following numbers of radiomic features for the respective
datasets: Nodule3D: 62, Organ3D: 90, Fracture3D: 84, Adrenal3D:
68, Vessel3D: 83, and Synapse3D: 82. We quantitatively compared
our proposed method’s efficacy against SOTA techniques. The out-
comes are summarized in Table 1. Our approach showcases either
SOTA performance or comparability across all datasets, spanning
diverse methodological families by attaining the highest average
ACC and securing the second position in terms of average AUC.

4.3.2 Micro-structure Classification. Extraction of fine-grained
radiomic features. Volumes from Fracture3D, Adrenal3D, and Ves-
sel3D datasets possess a distinct pure black background. This char-
acteristic enables the creation of a fine-grained mask instead of the
coarse-grained cubic mask in §4.3.1. We intuitively argue that such
a fine-grained mask could enhance the discriminability of extracted
radiomic features and deep features derived from a multimodal model.
Utilizing the PyRadiomics on the fine-grained binary mask and volu-
metric images, we obtained the following counts of radiomic features:
Fracture3D: 85, Adrenal3D: 39, Vessel3D: 40. In contrast to task 1,
this task accentuates the morphological characterization of the lesion.
In addition to masking out background voxels for radiomic features,
the exclusion of black slices results in volumes of variable-length.
The datasets of such characteristics can be used to demonstrate
our method’s capability to process volumes of varying lengths. We
benchmark our approach with and without variable-length volumes
against the SOTA, as illustrated in Table 2. The elimination of black
slices (the last row) restricts the search space, resulting in higher
efficiency in lesion retrieval, thereby enhancing diagnostic accuracy
relative to searching within 28 slices (penultimate row).

4.3.3 Influence of Radiomic Features in Multimodal Contexts.
We proceeded to conduct experiments involving various designs of
priori embeddings and present the results in Table 3. These results
unequivocally demonstrate an enhancement in model performance
attributable to integrating radiomic features, thereby validating their
utility in such tasks. The CLS embedding can be conceptualized as a

Table 2: VR-DiagNet was evaluated against SOTA methods using
three datasets for micro-structure analysis, comprising samples
with a black background and distinct morphological structures.
The superscript ∗ indicates training on variable-length volumes
excluding black slices, limiting candidate slice search.

Family Method Fracture3D (3) Adrenal3D (2) Vessel3D (2)
AUC ACC AUC ACC AUC ACC

CNN

2.5D𝑅18 [35] 0.587 0.451 0.718 0.772 0.748 0.846
3D𝑅18 [35] 0.712 0.508 0.827 0.721 0.874 0.877
ACS𝑅18 [34] 0.714 0.497 0.839 0.754 0.930 0.928
FRM𝑅18 [40] 0.588 0.433 0.870 0.819 0.931 0.918

Trans. 2.5d Trans. [40] 0.583 0.402 0.657 0.768 0.598 0.887

IL C-Mixer [39] 0.729 0.660 0.969 0.801 0.932 0.940

Auto ML auto-sklearn [7] 0.628 0.453 0.828 0.802 0.910 0.915
AutoKeras [12] 0.642 0.458 0.804 0.705 0.773 0.894

Planning VR-DiagNet𝑅18 0.673 0.527 0.854 0.805 0.946 0.940
VR-DiagNet∗

𝑅18 0.708 0.561 0.868 0.828 0.950 0.953

Table 3: Different implementations of priori embeddings were
tested, and the averaged AUC (↑) and ACC (↑) were reported over
six datasets. Two key implementations were examined. Volume-
level: trainable refinement over static radiomic features. Task-
level: a dataset-level trainable CLS embedding.

Methods Volume-level Task-level AUC ACC

Naïve CLS embedding [30] × √
0.853 0.818

VR-DiagNet (Ours)
√ × 0.867 0.821√ √

0.870 0.826

task-level trainable priori, as analyzed in Related Works (§2), and
the refined radiomic features function as a volume-level trainable
priori. We employed a hierarchical priori design comprising both
types of priori embeddings in subsequent experiments.

4.3.4 Visualization. The normalized feature strength maps of ra-
diomic features before and after refinement across six datasets are
presented in Figure S2 to S7, Supplementary Materials. Notably,
it is evident that our adopted multimodal clinician-like diagnostic
approach altered the distribution weights of features. Given our
primary focus on computer algorithm design, we refrained from delv-
ing deeper into the associations between distinct radiomic features
and various tissues or diseases, a pursuit commonly undertaken in
clinical research. Instead, we treated the refined radiomic features
post-feature selection as a collective feature vector. We hope these
insights will benefit clinical research endeavors.

We illustrate samples from two datasets: one with a black back-
ground, as illustrated in Figure 4, and the other lacking such back-
ground, as demonstrated in Figure 3. The planner gradually empha-
sizes the identification of the most informative SoIs as the learning
iterates. Furthermore, these delineated SoIs stimulate clinicians’
visual inspection process, thus bolstering the interpretability of the
deep learning model. Figure S8 to S13, Supplementary Materials
provides comprehensive visualizations across six datasets.

4.3.5 Ablation Study. We assume that the radiomic features possess
an inherently “high-level” character, as they demarcate the 3D lesion
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Figure 4: Visualization of the planner’s search process on a
volume from Adrenal3D over the first four rounds is presented.
Please refer to Figure S11 in the Supplementary Materials for
the complete results over ten rounds.

Table 4: The choice of types of radiomic features. ACC (↑) across
six datasets are reported.

Fea. Type Org. Nod. Fra. Adr. Ves. Syn. Avg.

Static 0.944 0.884 0.549 0.818 0.943 0.819 0.826
Refined 0.958 0.865 0.577 0.809 0.937 0.836 0.830

Table 5: Comparison of diagnostic performances after radiomic
feature extraction across six datasets using different mask gran-
ularities. AUC (↑) and ACC (↑) are reported.

Granularity Fracture3D Adrenal3D Vessel3D Average
AUC ACC AUC ACC AUC ACC AUC ACC

Coarse-grained 0.690 0.540 0.860 0.818 0.915 0.915 0.822 0.758
Fine-grained 0.718 0.549 0.846 0.818 0.953 0.942 0.839 0.770

of interest from a comprehensive 3D standpoint, typically integrated
directly into traditional machine learning classifiers. Consequently,
they may not be optimally conducive to deep learning models. We
scrutinize this assumption by contrasting static raw radiomic features
with trainable refined radiomic features, as delineated in Table 4.
The findings suggest that each feature type possesses unique merits
across different datasets, with the static scheme yielding a marginally
higher average ACC. Nevertheless, we have opted for the trainable
design approach to delve deeper into the influence of multimodal
deep models on radiomic features.

From the perspective of varying granularity of masks used in
extracting radiomic features, Table 5 examines the discriminability
of deep features when incorporating radiomic features of different
granularity as the second modality. It is observed that the utilization
of fine-grained masks leads to enhanced macro-averaged ACC and
AUC metrics, highlighting the advantageous impact of finer masks.
Additionally, we present outcomes utilizing classical machine learn-
ing models, specifically an SVM classifier with an RBF kernel, a
methodology commonly adopted in medical research as elucidated

Table 6: Analysis of parameter count (↓) and training-time
FLOPS (↓) on a single volume across different methodologies.

Methods # Params (M) FLOPS (B)

3D𝑅18 [35] 33.15 106.42
2.5D𝑅18 [35] 11.17 35.64
ACS𝑅18 [34] 11.17 35.64

f𝐶𝐿 w/ 𝐿 = 6, 𝑟 = 8 (Organ3D) 11.36 16.46
f𝐶𝐿 w/ 𝐿 = 3, 𝑟 = 4 (Nodule3D) 11.18 13.71
f𝐶𝐿 w/ 𝐿 = 7, 𝑟 = 16 (Synapse3D) 11.20 19.19
f𝐶𝐿 w/ 𝐿 = 3, 𝑟 = 64 (Fracture3D) 11.72 8.24
f𝐶𝐿 w/ 𝐿 = 3, 𝑟 = 4 (Adrenal3D) 11.18 13.71
f𝐶𝐿 w/ 𝐿 = 3, 𝑟 = 8 (Vessel3D) 11.18 8.22

in [26]. The classification scores are presented in Table S7, Supple-
mentary Materials, provide insights into the discriminative capacity
of deep learning-refined radiomic features compared to their static
counterparts. Encouragingly, an overall performance enhancement
is observed, suggesting a potential medical research advancement.

We analyze the model size and computational overhead dur-
ing training, juxtaposing our classifier with competing approaches,
as detailed in Table 6. Specifically, we choose to compare with
R18+3D [35], R18+2.5D [35], and R18+ACS [34], as they employ
the same backbone architecture. Notably, ACS [34] distinguishes
itself by achieving comparable accuracy with reduced computa-
tional complexity compared to the naïve 3D scheme. Our analysis
reveals a significant reduction in floating-point operations per second
(FLOPS) in VR-DiagNet, attributable to the downsampling of slices,
thus alleviating computational burdens. In contrast, competitors
operate on all 28 slices, resulting in higher FLOPS. Remarkably,
our approach maintains a comparable model size to the 2.5D and
ACS counterparts. Moreover, we conduct a convergence analysis
by training R18+ACS [34] for 200 epochs to align with the total
epochs specified in our methodology. The results, as depicted in
Figure S1, Supplementary Materials, showcase our method’s superior
convergence characteristics across all six datasets.

More extensive ablation study results can be found in §S.3, Sup-
plementary Materials.

5 CONCLUSIONS
Modern medical automation needs to improve in several aspects:
the black-box nature of the learning models, the single-faceted
nature of their inference processes, and the limited ability to handle
multimodal information. Our approach, VR-DiagNet, pioneers a
model that integrates volumetric and radiomic features, from which
information is extracted via an interpretable reasoning framework.
This methodology consists of two crucial modules: a planner and a
classifier. By incorporating clinicians’ diagnostic reasoning into the
framework of MDP, the planner utilizes MCTS to extract annotated
SoIs, which serve as training data for the classifier. The introduction
of class-agnostic information metrics ensures coherent optimization
across both modules. We achieve SOTA performance in five of six
diagnostic datasets for addressing volumetric tasks in MIA. With
VR-DiagNet, we show that robust and accurate deep-learning models
for medical use are entirely feasible.
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