
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PRETRAINING IN ACTOR-CRITIC REINFORCEMENT
LEARNING FOR ROBOT LOCOMOTION

Anonymous authors
Paper under double-blind review

ABSTRACT

The pretraining-finetuning paradigm has facilitated numerous transformative ad-
vancements in artificial intelligence research in recent years. However, in the
domain of reinforcement learning (RL) for robot locomotion, individual skills are
often learned from scratch despite the high likelihood that some generalizable
knowledge is shared across all task-specific policies belonging to the same robot
embodiment. This work aims to define a paradigm for pretraining neural network
models that encapsulate such knowledge and can subsequently serve as a basis for
warm-starting the RL process in classic actor-critic algorithms, such as Proximal
Policy Optimization (PPO). We begin with a task-agnostic exploration-based data
collection algorithm to gather diverse, dynamic transition data, which is then used
to train a Proprioceptive Inverse Dynamics Model (PIDM) through supervised
learning. The pretrained weights are then loaded into both the actor and critic
networks to warm-start the policy optimization of actual tasks. We systematically
validated our proposed method with 9 distinct robot locomotion RL environments
comprising 3 different robot embodiments, showing significant benefits of this ini-
tialization strategy. Our proposed approach on average improves sample efficiency
by 36.9% and task performance by 7.3% compared to random initialization. We
further present key ablation studies and empirical analyses that shed light on the
mechanisms behind the effectiveness of this method.

1 INTRODUCTION

The pretraining-finetuning paradigm has enabled recent major breakthroughs in computer vision (He
et al., 2022; Lu et al., 2019) and natural language processing (Devlin et al., 2019), most notably in the
case of large language models (Touvron et al., 2023; Achiam et al., 2023). In the domain of robotics,
a similar methodology with pre-initialization and fine-tuning has been explored in several works
that integrate visual-language model (VLM) backbones for manipulation tasks (Brohan et al.; Black
et al., 2024; Team et al., 2024; 2025; Barreiros et al., 2025). However, these works only address
the pretraining of the vision or language backbones, which have well-studied benefits and strategies,
but do not endow robots with information about embodiment. While these imitation learning-based
approaches offer good generalization to different tasks, they suffer from low-frequency execution
and are primarily demonstrated on stable platforms and environments, rather than on dynamically
unstable robotic platforms or under substantial external disturbances.

In robot locomotion control, reinforcement learning (RL) with Proximal Policy Optimization (PPO)
Schulman et al. (2017) has been used to successfully achieve a wide range of robust and agile mo-
tions (Hwangbo et al., 2019; Miki et al., 2022; Hoeller et al., 2023; Rudin et al., 2025; Choi et al.,
2023; Zhang et al., 2025; Siekmann et al., 2021; Yang et al., 2023). However, skill acquisition is
slow and resource-intensive because RL is generally sample-inefficient and each new task is typi-
cally learned tabula rasa, even within the same embodiment. Looking back at model-based control
paradigms (Ferrolho et al., 2023; Sleiman et al., 2021; Bellicoso et al., 2019; Murphy et al., 2012),
for a specific robot embodiment, there is knowledge that is sharable across solutions to different
tasks, e.g., the joint kinematics and dynamics of the model. Motivated by this, we posit that warm-
starting RL training in actor-critic architectures by incorporating such embodiment-aware knowl-
edge into the initial model weights has the potential to improve policy performance and sample
efficiency.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Our proposed method consists of three stages: exploration-based data collection, pretraining, and
reinforcement learning. We first employ an exploration-based data collection strategy to system-
atically investigate states most likely to appear in the initial stages of the RL process, where the
robot learns fundamental concepts about its embodiment, including limb kinematics, dynamics, and
basic stability. With the collected data, we then train an embodiment-aware Proprioceptive Inverse
Dynamics Model (PIDM). Finally, by initializing the actor-critic structure with the weights of the
PIDM model, we provide the RL process with general knowledge from the initial stumbling stages
of the vanilla training process, thus facilitate training. Our pretrained weights do not contain task-
specific biases, but let them emerge naturally during RL training, as the entire network is updated in
an end-to-end fashion.

There are a large body of works on offline-to-online reinforcement learning (Ball et al., 2023; Hansen
et al., 2024; Nakamoto et al., 2023) that aim to bootstrap online RL performance by utilization of a
reward-labeled offline dataset. However, our method differ in the way that we aim to provide task-
agnostic weights initialization for all possible downstream tasks of that specific embodiment. The
unknownness and possible variation of downstream MDPs determine that it is impossible to include
task-specific reward signal in the pretraining dataset, thus making the methods that require the tar-
get MDP to be fully known and free to explore in advance infeasible. Another line of studies have
proposed the development of a skill repertoire for robots (Hoeller et al., 2023) or the pretraining of
low-level controllers with fine-grained skills (Peng et al., 2022; 2021) that can be used by high-level
controllers. Our perspective distinguish itself by the feature that we do not require a dataset compris-
ing expert-level skills or the retraining of the entire pipeline when adding a new skill. Furthermore,
in these works, the final performance heavily relies on the quality of the learned skills and their
relevance to the task at the fine-tuning stage, as they can not deviate significantly from behaviors in
the original dataset.

In contrast to aforementioned research, this work presents a method for smart network initialization
in the context of learning robot locomotion with PPO, which outperforms the commonly used ran-
dom initialization (He et al., 2015) across various tasks with the same embodiment. Our perspective
on the problem is novel as we propose a task-agnostic approach that focuses solely on encapsulating
embodiment-specific knowledge across tasks. It does not need reward signal of the task-specific
downstream MDPs to be present in the pretraining dataset, and serves as a user-friendly plug-in
that does not require modifications to the established paradigm of locomotion learning. We vali-
date this approach with a diverse locomotion skill set and multiple robot embodiments consisting of
two quadrupeds and one humanoid. Our approach improves performance by 7.3% and sample
efficiency by 36.9%. The main contributions are:

1. A paradigm of embodiment-specific weight initialization for RL in robot locomotion learn-
ing, that improves performance and sample efficiency in the training process.

2. The initialization obtained this way is task-agnostic, i.e., applicable to various downstream
Partially Observable Markov Decision Process (POMDP) formulations involving different
commands, observations, rewards, curricula and terrains, as long as the same robot embod-
iment is retained.

3. Extensive empirical validation of our proposed approach with various embodiments and
tasks showcases significant improvements in performance and sample efficiency.

2 RELATED WORKS

Pretraining representations in RL Although RL excels on well-specified tasks, its limited sam-
ple efficiency remains a key challenge (Jin et al., 2021), which can be improved with pretraining.
Xie et al. (2022) systematically summarized the efforts made to introduce the pretraining paradigm
into RL, covering perspectives such as exploration, skill discovery, data coverage maximization,
and representation learning. The works most related to this are those that pretrain representations
using an unlabeled (reward-free) offline dataset. Schwarzer et al. (2021) employ a combination of
latent dynamics modelling and unsupervised goal-conditioned RL to pretrain useful representations
that can be later fine-tuned to task-specific rewards. Allen et al. (2021) developed an approach to
learn Markovian abstract states by combining inverse model estimation and temporal contrastive
learning. Zheng et al. (2025) build a probabilistic model to predict which states an agent will visit
in the future using flow matching, but it also necessitates the use of its own RL update algorithm

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

and thus can not be used with existing prevalent RL algorithms. While all the previously mentioned
methods operate on unlabeled datasets as ours does, there are a few fundamental differences. Firstly,
we address a more complex set of robotic tasks, incorporating high nonlinearity, noisy observation
and massive domain randomization, as well as complex reward structures and environments, and
provide a demo supporting its sim-to-real transfer capability. Second, one single pretrained model
for an embodiment is shown to be successfully transferred to multiple downstream tasks with var-
ious formulations of commands and observation spaces. Finally, instead of trying to exhaustively
covering transitions that are possible in the environment during pretraining, we focus on bootstrap-
ping the initial learning steps of downstream RL utilizing similar data given the high-dimensionality
of robot locomotion tasks. That said, although driven by a similar aim, we find that none of these
works constitute directly comparable baselines to our approach.

Learning dynamics models via deep learning Long et al. (2025) surveyed works on learning
dynamics models from physical simulators, highlighting different model architectures and utiliza-
tion strategies. Lutter & Peters (2023) further categorize such models by their reliance on prior
knowledge, their degree of interpretability, and whether they enforce physical properties such as
energy conservation. To address the sim-to-sim or sim-to-real gap of a trained policy in simulation,
Christiano et al. (2016) propose computing what the simulation expects the resulting next state(s)
will be, and then relying on a deep-learned inverse dynamics model to deduce the optimal action.
This closely relates to our design of splitting the RL policy into a learned actor part and a pretrained
inverse dynamics model. Learning dynamics for legged locomotion is challenging due to high non-
linearities, sophisticated contact dynamics, and severe sensor noise from impacts. Levy et al. (2024)
propose a semi-structured dynamics model consisting of a known a priori Lagrangian equation and
an ensemble of learned external torque and noise estimators. Our approach makes no such assump-
tions, and we remain completely model-free. Xu et al. (2025) trained a neural simulator that is stable
and accurate over a thousand simulation steps, utilizing a lightweight GPT-2 (Radford et al., 2019)
architecture. In contrast, our architecture is significantly more compact and is also exposed to noise,
domain randomization, and partial observability of the environment.

Cross-task locomotion learning AMP (Peng et al., 2021) trains a policy that utilizes behaviors
contained in the motion dataset to achieve the task objective, by combining task-rewards with style-
rewards specified by an adversarial discriminator. ASE (Peng et al., 2022) pretrains a low-level
policy to map latent variables to behaviors depicted in the dataset, and later a task-specific high
level policy is trained to specify latent variable for directing the low-level policy to accomplish the
task goal. Yang et al. (2020) proposed multi-expert learning architecture (MELA), where they first
train a set of experts with distinct skills, and then introduce a gating network which synthesize a
weighted combination of experts and is finetuned jointly with the experts, resulting in an adaptive
policy. Rudin et al. (2025) distill multiple terrain-specific expert policies into a single foundation
policy via the DAgger(Ross et al., 2011) algorithm, which is then finetuned on a broader terrain set,
and can be further finetuned on unseen terrain of test. All of them assume access to representations
of high-utility skills, either in the form of a motion dataset or a set of expert task-specific policies.
Close relation is expected between the task at runtime and behaviors of the experts/dataset, e.g. task
at runtime can be solved by a combination of skills in those prior knowledge representations, or
task at runtime is some task with domain shift (e.g. locomotion on harder terrain). In our work, we
do not require access to expert skills directly related to the runtime task, but are interested in the
formulation of universal knowledge for locomotion which can facilitate the learning of a possibly
wide range of downstream tasks.

3 PRELIMINARIES

Motion control problems are typically represented as Partially Observable Markov Decision Pro-
cesses (POMDPs), where a policy π : O → A directly maps observations O to actions A and aims
to maximize the cumulative reward. The reward function R(st, at, st+1) encodes task objectives,
where st, st+1 ∈ S are the current and next state, respectively, and at ∈ A is the action taken at
timestep t. Specific to robot motion control tasks, the observation is often the conjunction of com-
mand C, proprioception X , exteroception Xe, and last action(s)A. Compositions of these spaces are
detailed in Appendix 7.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

In RL, a large family of actor-critic algorithms (Konda & Tsitsiklis, 1999) has been widely applied in
robotics, among which Proximal Policy Optimization (PPO) (Schulman et al., 2017) is particularly
prominent. These constitute an important class of RL algorithms that integrate policy optimization
with value function estimation. The actor updates the policy that selects actions, while the critic
estimates the value function of the current policy, thereby reducing variance and improving the
stability of learning.

Existing works on RL (Lee et al., 2020; Miki et al., 2022; Vollenweider et al., 2022; Arm et al.,
2024; Stolle et al., 2024; Portela et al., 2025; Sleiman et al., 2024) often parametrize both the actor
and critic networks with a simple Multi-Layer Perceptron (MLP) and initialize its weights randomly
(He et al., 2015). Due to the large variety of possible observation configurations, task and command
specifications, and the diverse number of layers and input dimensions, pretraining a single model
for all downstream tasks becomes impractical. We will address this by providing a modular network
architecture and a well-defined pretraining task.

4 METHODOLOGIES

4.1 PROBLEM FORMULATION

Drawing inspiration from model-based control (Ferrolho et al., 2023; Sleiman et al., 2021; Bellicoso
et al., 2019; Murphy et al., 2012), in robotics, the system’s target state st+1 is either known or usually
easier to derive from the task formulation than the action at necessary to get there. This is because
at is always dependent on the robot’s dynamics, which in RL is learned indirectly from experience
through the simulator.
Hypothesis 1 For robot motion control tasks, a neural-network parameterized policy π first formu-
lates the intended target state st+1 and afterwards the action at necessary to reach that state.

We empirically demonstrate evidence supporting this hypothesis in Section 5.2 and propose splitting
the vanilla MLP structure into multiple distinct blocks (see Figure 3). One of these blocks is our
proposed Proprioceptive Inverse Dynamics Model (PIDM), which we define as a mapping I(at |
xt−K:t+1, at−K:t−1), where xt ∈ ot denotes the proprioception at timestep t, at denotes the action
taken at timestep t, and K denotes the length of the history sequence.

4.2 OVERVIEW

Figure 1: Method overview: We (i) collect task-agnostic data using an exploration-driven policy,
(ii) to train a Proprioceptive Inverse Dynamics Model (PIDM) to capture embodiment-aware dy-
namics, and (iii) initialize the actor-critic networks in PPO to warm-start the RL process.

Our overall goal is to pretrain a PIDM model using supervised learning, which can later be in-
tegrated into the actor and critic networks of PPO. First, we collect proprioceptive transition data
(xt, at, xt+1) in a task-agnostic manner from the RL training process of an exploration policy (Sekar

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

et al., 2020). Important to note is that we solely collect transitions from the early stages of the RL
training, rather than from expert policy rollouts for a specific task(s). On the one hand, this design
ensures that the method does not rely on prior knowledge of the downstream tasks, nor on access to
a (near) expert policy.

On the other hand, the state distribution of randomly initialized policies for different tasks is very
similar (see Section 5.3). Therefore, the extracted knowledge should be widely generalizable. By
pretraining with this data, the model encapsulates knowledge equivalent to what it would learn in
the first iterations of RL (i.e., basic kinematics, dynamics, and stability), enabling it to specialize in
learning task-specific skills faster. We integrate the core parts of our pretrained PIDM with randomly
initialized outer layers to constitute the actor and critic networks in RL (see Figure 3). Due to the
lack of data capturing task-specific dynamics in the pretraining dataset, we allow the PIDM module
to be updated in conjunction with the added non-pretrained parts throughout the RL process.

4.3 EXPLORATION-BASED DATA COLLECTION

We employ an exploration-based data collection strategy, heavily inspired by previous works (Pathak
et al., 2019; Sekar et al., 2020; Curi et al., 2020; Nikolov et al., 2018; Chua et al., 2018), outlined
in Figure 2. We use it to obtain data samples that capture the jittery, exploratory behaviors com-
monly observed in the early stages of RL. In practice, an exploration policy is trained with PPO,
where the transitions from the on-policy rollouts are accumulated into a buffer. A probabilistic en-
semble of PIDM models is frequently retrained using a bootstrap approach, where data is sampled
with replacement from the buffer. The training of the exploration policy is primarily guided by the
disagreement in predictions in the ensemble, as a measure of epistemic uncertainty for the PIDM
inference. This incentivizes the policy to explore states where the accuracy of the PIDM can be
improved with more data. Using the prediction error from a single PIDM model as intrinsic reward
may seem probable and easier to implement at first sight. However, we find that its resulting policy
is prone to exploring only large-magnitude actions and high-frequency jittering, corresponding to
the aleatoric uncertainty of the model. Secondary rewards added include a minimal set of regulariz-
ing rewards to constrain unwanted behaviors (e.g., high action rates, torques, or joint velocities) that
are common to any task, as well as a term that rewards foot-air-time to encourage interaction with
the terrain. During data collection, we employ standard domain randomization techniques for RL
training (Miki et al., 2022; Lee et al., 2020; Kaidanov et al., 2024), such as varying the robot link
masses, the friction coefficients, and applying random forces.

Environment+Policy

Proprioception
Sequences

Intrinsic
Reward

Buffer

Retrain

PIDM
Ensemble

Figure 2: Diagram for exploration-
based data collection pipeline, show-
casing how the simulation collects
data, and is guided by the ensemble
of PIDM models that are periodically
retrained using the buffered data.

PIDM Backbone

Proprioception History Encoder Delta Encoder

Prediction Decoder

Action History Encoder

......

Intention
Encoder

Action Synthesizer

Figure 3: Proprioceptive Inverse Dynamics Model (PIDM) ar-
chitecture and its integration into the actor network. During
pretraining of the PIDM, the dashed red parts of the network
are included. However, when integrating into the actor-critic
structure, those are removed and replaced by the encoder and
decoder in purple.

4.4 PRETRAINING THE PROPRIOCEPTIVE INVERSE DYNAMICS MODEL

We parameterize the PIDM with an MLP-based modular architecture, as shown in Figure 3. The
model takes as input a history of actions at−K:t−1 and proprioceptive observations xt−K:t+1 of
length K. Both are passed through a dual-layer MLP encoder before being fed into the PIDM

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

backbone, which is a 4-layer MLP. During pretraining, we give the model a desired delta-state
∆x∗t+1 to achieve in the next time step. We then use an L1 loss to supervise the PIDM to output the
required action at to reach the target future state x∗t+1. The pretraining dataset is also augmented
with symmetry transformations, as defined by Mittal et al. (2024) or Byun & Perrault (2024), and
observation noise to improve robustness and increase sample diversity (see Appendix A.4).

The necessity of including a history of proprioception for PIDM is mainly due to the absense of
terrain information and contact state in proprioception, and the presence of noise and domain ran-
domization techniques in the training process (during both exploration-based data collection and
training of task-specific policies). Therefore, it would be inappropriate to fit the PIDM with only
one single frame of current proprioceptive state, due to the fact that one certain proprioception can be
observed in a range of actual full states in the POMDP. The action and proprioception histories can
provide indirect observability of contact states, the domain randomization variables during training
(e.g., mass and friction randomization), and of random forces being applied to the robot (Ji et al.,
2022; Portela et al., 2025). This knowledge is crucial for mastering the system’s dynamics. Mean-
while it is important to note that the PIDM model does not have access to privileged information.

4.5 WARM-STARTING REINFORCEMENT LEARNING

Integrating PIDM into actor-critic networks: The pretrained PIDM is integrated into both the ac-
tor and critic networks. As shown in Figure 3, for the actor, we first remove the Delta Encoder and
substitute it with a randomly initialized Intention Encoder that processes the complete task-specific
observation. The Intention Encoder now only needs to learn an embedding-based representation of
the task-specific delta target state ∆x∗t+1, which can be preprocessed by the pretrained PIDM Back-
bone. Meanwhile, the original output-layer (Prediction Decoder) is removed, and the concatenated
outputs of the PIDM Backbone and Intention Encoder are passed in to a randomly initialized Action
Synthesizer that synthesizes the final action at. PIDM is used in the critic via an almost identical
architecture, with the only difference that the Action Synthesizer in the actor is replaced with a Value
Synthesizer that outputs a scalar value estimation optimized with MSE loss.

The addition of the Intention Encoder is necessary to ensure dimension compatibility and enable
the training to steer the pretrained module. The task-specific observation ot can be anything and is
wholly independent of our proposed approach. We also empirically discovered that the inclusion of
the randomly initialized Action Synthesizer is crucial for stabilizing the training by ensuring that the
action distribution at the initial stage of RL is similar to that of the case with a randomly initialized
vanilla MLP. More specifically, the random initialization of the Action Synthesizer ensures near
unit-Gaussian action distribution at the beginning, thus avoiding extreme actions that would incur
significantly more failures or penalties. Moreover, a final advantage is that, in the event the PIDM is
not beneficial for the task, there is a bypass pathway in the structure that facilitates an easy fallback
to a classic randomly initialized MLP.

Intact RL setup: Except for the architectures of the actor and critic networks and the way the
weights are initialized, our method does not require any modifications to either the POMDP (reward,
curriculum design, observations, actions, and terminations) or to the PPO update rules, hyperparam-
eters. The task-dependent Intention Encoder and Action Synthesizer can adapt to any configuration
and dimension of the input and output. Therefore, the feasibility of handling arbitrary tasks is not
limited. Every parameter in the pretrained PIDM remains trainable during the RL process. In this
way, we allow task-specific dynamics to be learned during policy optimization, which eases the
burden of attempting to exhaustively cover all possible transitions in the pretraining dataset.

5 EXPERIMENTS

5.1 REINFORCEMENT LEARNING TASKS

We test our method on 9 RL environments with 3 distinct embodiments: a) 2 blind tasks (velocity-
tracking locomotion (Rudin et al., 2022) and pedipulation (Arm et al., 2024)) and 5 perceptive tasks
(parkour walk, climb up, climb down, crouch, and jump (Hoeller et al., 2023)) with ANYmal-D
(Hutter et al., 2016), b) velocity-tracking locomotion task with Unitree Go1 quadrupedal robot (de-
fault implementation in Mittal et al. (2025)), and c) velocity-tracking locomotion task with Unitree

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

G1 humanoid robot (default implementation in Mittal et al. (2025)). All training is performed in
Isaac Lab (Mittal et al., 2025).

Despite the diverse rewards, curricula and hyperparameters involved in the original implementations
in aforementioned works, the network architectures used are very similar: the actor and critic net-
works are both 4-layer MLPs. The compactness of the architectures can be attributed to the fact that
the trained policy networks are expected to be deployed on real mobile hardware and be reactive
at a high frequency (typically 50 ∼ 200 Hz). Our proposed architecture has approximately 4× the
number of parameters due to the inclusion of state history and the need to cover a larger initial state
space in pretraining, compared to task-specific policies that can immediately hyper-specialize.

5.2 DYNAMICS KNOWLEDGE PROBING IN VANILLA RL POLICY NETWORKS

Observation

Action

Linear+Activation

Linear+Activation

Linear+Activation

Linear+Activation

Rep (Layer 0)

Rep (Layer 1)

Rep (Layer 2)

Environment

Vanilla RL
(end-to-end)

Correlation
Analysis

ε

(a) Experiment setup diagram.

0.125 0.250 0.375 0.500 0.625 0.750 0.875 1.000
Training Progress (Fraction of Total Iterations)

0.6

0.8

1.0

1.2

1.4

1.6

De
gr

ee
s

Layer 0
Layer 1
Layer 2
Zero-Order Extrapolation Error
First-Order Extrapolation Error

(b) Errors of dynamics prediction based on represen-
tations from different layers, Pedipulation task.

Figure 4: Experiment to probe dynamics knowledge in vanilla policy networks. We analyze the
correlation between intermediate representations between layers and the future joint state qt+1. The
zero-order extrapolation in (b) is a reference of the accuracy of always predicting qt = qt+1. Shaded
areas indicate the standard deviation over 5 RL runs.

As a means of empirically studying our initial Hypothesis 1, we examine policy network model
checkpoints from some task-specific RL process. For each checkpoint, we collect a number of
observation-action pairs from the rollout distribution of the policy corresponding to that checkpoint.
We then execute the mean action and record the resulting change in joint angles ∆qt+1. Meanwhile,
we collect the intermediate representations from all three hidden layers, as illustrated in Figure 4a.

We investigate how well the network understands at a specific layer what the consequences of its
action will be by fitting a lightweight MLP to regress ∆qt+1 based on the tuple consisting of raw
observation and intermediate representation corresponding to that layer. The lower final prediction
error of a certain configuration indicate a better understanding.

Results of Pedipulation task is shown in Figure 4b, and results of Locomotion task is shown in Figure
8. In the vertical direction, the correlation between the future state diminishes as we progress deeper
into the network. This highlights the analogy of trained vanilla MLP policy networks to classic
control from Section 4.1, where the model first forms an intent on the target state and subsequently
computes the inverse dynamics to determine the required action. For more details on the experiment,
we refer the readers to Appendix A.2.

5.3 PRETRAINING THE PROPRIOCEPTIVE INVERSE DYNAMICS MODEL

In this subsection, we describe how to obtain a pretrained PIDM model and analyze both the dataset
distributions and the model’s accuracy, using ANYmal D as an example. We first analyze the quality
of the data collected using the exploration-based strategy outlined in Section 4.3. In addition to
the previously mentioned standard data augmentations (e.g., mass randomization, random noise,
symmetry), we collect data on either or both flat and basic rough terrain generated with Perlin noise
(Miki et al., 2022; Lee et al., 2020). In Figure 5a we plot samples of ANYmal D from the flat-
terrain environments along with samples from the learning process of Pedipulation and Locomotion

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Pedipulation (First 100 RL Iterations)
Velocity (First 100 RL Iterations)
Exploration-Based Data Collection (Flat)

(a) Training data projection

0.0 0.5 1.0 1.5 2.0
Action Magnitude (|at qt|, rad)

0

200

400

600

800

1000

Nu
m

. A
ct

io
n

Sa
m

pl
e

Exploration (Flat)
Exploration (Rough)

(b) Sample distribution

0.0 0.5 1.0 1.5 2.0
Action Magnitude (|at qt|, rad)

0.2

0.4

0.6

0.8

1.0

Ab
so

lu
te

 E
rro

r (
ra

d)

0

25

50

75

100

125

150

175

200

No
rm

al
ize

d
Er

ro
r (

%
)

(c) PIDM prediction accuracy

Figure 5: PIDM training and dataset analysis of ANYmal D: For the pretraining dataset we
visualize its (a) coverage (green) compared to the initial exploration stages in RL (red and blue)
using an UMAP projection and (b) the sample distribution of absolute action magnitudes |at − qt|
over different terrains. Finally, in (c) we show the resulting PIDM accuracy across the entire action
range as absolute joint errors |q̂t+1 − qt+1| and also normalized by the action magnitude.

tasks, which are trained solely on flat terrain. Using UMAP (McInnes et al., 2018), we project the
proprioceptive observations x for our collected dataset into 2D, and the observations from the first
100 iterations of RL training for pedipulation and locomotion. We can thus validate that we obtain
good coverage of, and beyond, the initial stages of the RL training process, which aligns with the
goals outlined in Section 4.2.

The PIDM is pretrained as described in Section 4.4. For each embodiment, we use a total of 5∼7
million samples for training and a similarly sized, disjoint validation set. For plotting purpose only,
we randomly select 1, 000 validation samples and consider only the 12 joint angles q of ANYmal
D. Figure 5b shows the distribution of the action magnitude, i.e. the magnitude in radians of the
commanded changes in joint angles. Figure 5c shows the final prediction accuracy of the trained
PIDM. We show both the absolute error and the normalized error, which is the error expressed as
a fraction of the action magnitude. It achieves a normalized error of around 40% ∼ 50%, with a
minimum error of ∼ 0.1 radians for small actions.

This indicates the considerable difficulty in training a PIDM with high accuracy, which we attribute
to the vast transition space, partial observability, and the lack of inductive bias in MLPs. For a
detailed discussion, see Appendix A.4. While accurate data-driven modeling of robot locomotion
may be achievable with models that are many orders of magnitude larger (Xu et al., 2025) than those
used here, actor and critic networks in motion-policy learning have traditionally been extremely
lightweight. Moreover, large models are known to make reinforcement learning substantially more
challenging (Ota et al., 2021; Li et al., 2023). As a result, significantly increasing model capacity
raises concerns about whether existing methods can still be applied without modification. For these
reasons, we choose to keep the model size to millions of parameters which is much closer to that
of the vanilla MLPs used in prior works. Although they may not seem too accurate for an inverse-
dynamics solving, we will demonstrate in the following subsection that a pretrained module of
such accuracy can already significantly enhance RL training. We further present a study of relation
between error level of PIDM and RL performance in Appendix A.8 to verify that a trend of positive
correlation between the accuracy of pretrained PIDM and resulted gain in RL performance can be
observed.

5.4 QUANTITATIVE EXPERIMENTS

In each experiment, we compare three methods: (i) the vanilla 4-layer MLP, (ii) our PIDM archi-
tecture with randomly initialized weights, and (iii) our PIDM architecture with pretrained weights.
The utility of our method (i.e. using pretrained weights) is indicated by the comparison between (ii)
and (iii). The performance of the vanilla 4-layer MLP is included only as a reference. Results are
averaged over five runs with different random seeds, except for some individual cases mentioned in
Appendix Table 8. To note is that we did not tune the learning parameters (learning rate, entropy
coefficient, etc.) of the tasks, which were chosen for optimal performance of the original vanilla

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Metric Method
ANYmal D Go1 G1

Avg.Loco- Pedipu- Parkour Climb Climb Crouch Jump Loco- Loco-
motion lation Walk Up Down motion motion

Final perf. (%, ↑) Vanilla MLP +0.5 +0.2 -0.8 0.0 +6.5 +1.8 +11.1 +0.6 -0.2 +2.2
increase PIDM (Pretrained) +10.1 +6.3 +0.7 0.0 +27.7 +1.8 +5.9 +3.6 +10.0 +7.3

Num. iters. (%, ↓) Vanilla MLP -28.7 +5.0 -18.7 +22.5 -11.4 -29.5 -53.0 +2.2 -46.7 -17.6
to converge PIDM (Pretrained) -33.1 -42.0 -35.3 -20.6 -43.2 -57.3 -49.3 -17.7 -34.0 -36.9

Table 1: Increase in performance (based on reward/curriculum progress) and sample efficiency
(number of iterations required to reach 90% of the maximum performance). Percentage values
are w.r.t. a randomly initialized PIDM model. Values are averaged across five runs with different
starting seeds. We also report the performance of the 4-layer vanilla MLP for reference.

0 500 1000 1500 2000 2500
Iteration Number

0

5

10

M
ea

n
Cu

rri
cu

lu
m

 P
ro

gr
es

s

Climb Down

0 500 1000 1500 2000 2500
Iteration Number

0

5

m
ea

n_
te

rra
in

_le
ve

l Climb Down

0 500 1000 1500 2000 2500
Iteration Number

0.0

2.5

5.0

M
ea

n
Re

wa
rd

Climb Down

Vanilla MLP PIDM (Random Init) PIDM (Pretrained)

0 200 400 600
Iteration Number

0

5

10

15

20

25

M
ea

n
Re

wa
rd

Locomotion

0 1000 2000 3000 4000
Iteration Number

0

25

50

75

100

125

M
ea

n
Re

wa
rd

Pedipulation

0 250 500 750 1000
Iteration Number

0

2

4

6

8

10

M
ea

n
Cu

rri
cu

lu
m

 P
ro

gr
es

s

Climb Up

0 500 1000 1500 2000 2500
Iteration Number

0

2

4

6

8

10

M
ea

n
Cu

rri
cu

lu
m

 P
ro

gr
es

s

Climb Down

Figure 6: Evolution of the main performance metric during training for Locomotion, Pedipulation,
Climb Up and Climb Down tasks with ANYmal D. The shaded areas denote standard deviations
across five seeds.

MLP. We merely used our architecture as a drop-in replacement. Therefore, it is possible that the
performance of the proposed method can be further improved with additional tuning of these hyper-
parameters, which would have happened if the problem design had used our proposed architecture
as a starting point.

We introduce two metrics to quantify the amount of difference in RL performance:

• Final performance increase expresses the percentage of change in the main performance
indicator of each method compared to that of the randomly initialized PIDM baseline.

• Number of iterations to converge is a measure of sample efficiency. This term represents
the percentage of change in the number of iterations required to reach 90% of the final
performance of the PIDM (Random Init) baseline in the main performance indicator.

The selection of the main performance indicator varies across tasks (for details, see Appendix A.6).
The results across all nine tasks are presented in Table 1. For some tasks, we also plot the evolution
of the main performance indicator during training in Figure 10. The PIDM architecture with random
weight initialization, PIDM (Random Init), generally lags behind the vanilla MLPs due to a larger
model size and input dimension (inclusion of history). However, with the proposed pretraining strat-
egy, PIDM (Pretrained) not only consistently outperforms PIDM (Random Init) in all metrics, but
also significantly surpasses the performance of the vanilla MLP in 7 out of 9 tasks. Matching the
performance of the MLP with our PIDM architecture is a secondary goal that could be potentially
achieved by exhaustive tuning of the model and proprioceptive input. The key takeaway is the com-
parison between the randomly initialized and pretrained architectures. Compared with the vanilla
MLP, PIDM (Pretrained) demonstrates an average improvement of 5.0% on final performance, and
18.8% on sample efficiency. When compared with PIDM (Random Init), the proposed PIDM (Pre-
trained) showcases an improvement of 7.3% on final performance, and enhances sample efficiency
by a margin of 36.9%. We also note that despite the PIDM never having experienced the complex
terrains used in the parkour task (see Figure 1), it quickly adapts to the new task-specific dynamics
during RL training.

5.5 ABLATIONS

We also perform 2 ablations with Climb Up and Climb Down tasks of ANYmal D, to motivate some
of our design choices. First, in Table 2 we analyze the initialization strategy of choosing to pretrain

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Metric Method
Anymal D

Climb Climb
Up Down

Final perf.
increase (%, ↑)

PIDM (Pretrained Actor Only) 0.0 +19.0
PIDM (Pretrained Critic Only) 0.0 +17.8

PIDM (Pretrained Both) 0.0 +27.7

Num. iters. to
converge (%, ↓)

PIDM (Pretrained Actor Only) -11.0 -37.9
PIDM (Pretrained Critic Only) +18.4 -28.2

PIDM (Pretrained Both) -20.6 -43.2

Table 2: Ablation on using pretrained weights to initialize
either the actor, critic, or both. Results are in comparison
to a fully randomly initialized PIDM architecture.

Metric Method
Anymal D

Climb Climb
Up Down

Final perf.
increase (%, ↑)

PIDM 0.0 +24.9(Pedipulation Data)

PIDM 0.0 +27.7(Exploration Data)

Num. iters. to
converge (%, ↓)

PIDM -10.1 -40.0(Pedipulation Data)

PIDM -20.6 -43.2(Exploration Data)

Table 3: Ablation on data source for
pretraining (exploration data versus data
from initial RL stages on pedipulation).

0 20 40 60 80 100
RL Iteration

0.000

0.002

0.004

0.006

W
ei

gh
t U

pd
at

e
Di

st
an

ce Intention Encoder
PIDM (Pretrained)
PIDM (Random Init)

0 20 40 60 80 100
RL Iteration

0.000

0.002

0.004

0.006
W

ei
gh

t U
pd

at
e

Di
st

an
ce PIDM Backend

PIDM (Pretrained)
PIDM (Random Init)

0 20 40 60 80 100
RL Iteration

0.000

0.002

0.004

W
ei

gh
t U

pd
at

e
Di

st
an

ce Action Synthesizer
PIDM (Pretrained)
PIDM (Random Init)

Figure 7: Network weight update magnitude comparison in the PIDM structured actor network
during ANYmal D pedipulation RL training. In each submodule, the update of each linear layer
weight is indicated by the mean absolute change per parameter, which is then averaged over all
layers.

either or both of the actor and critic networks. We note that only pretraining either the actor or critic
generally still improves mean performance, but at the cost of increased instability, underscored
by larger variation across runs (see Figure 12 in the Appendix). Second, we also ablate the data
source used to pretrain the PIDM. We compare using exploration-based data versus samples from
the initial stages of RL training a policy (in this case, pedipulation, as shown in Table 3. Notably,
both datasets significantly outperform random initialization. Our approach provides an extra margin
of improvement and theoretically adapts better to downstream tasks without overcomplicating the
pipeline, as pretraining is performed only once.

5.6 WEIGHT UPDATE MAGNITUDE

We compare the network weight update magnitudes between PIDM (Pretrained) and PIDM (Ran-
dom Init) during the first 100 iterations of RL in Figure 7. We find that not only does the model
exhibit smaller updates per iteration in the pretrained PIDM backbone, but this also results in smaller
updates in the randomly initialized upstream Intention Encoder and downstream Action Synthesizer.
This finding suggests that our pretrained weights lie closer to the desired local minimum and is
an indicator that the optimization process can properly leverage this fact. For more examples, see
Figure 15 in Appendix.

6 CONCLUSION

To summarize, we have presented a method for warm-starting the RL training process in actor-
critic algorithms, targeted for robotic motion control. Our proposed approach leverages a network
architecture based on a Proprioceptive Inverse Dynamics Model (PIDM) that is pretrained using
exploration-based data from a specific robot embodiment. Our modular architecture functions as a
drop-in replacement, without hyperparameter tuning, for any task on the pretrained robot embodi-
ment. We demonstrate on 9 diverse RL environments with 2 quadrupedal robots and 1 humanoid
robot that we can improve the final performance by 7.3%, and enhance sample efficiency by
36.9%. We also provide ablation studies to motivate our design choices and extensive empirical
insights into the inner workings of our method. Future work can focus on optimizing model design
to reduce the network size further and incorporating network architectures that are more adept at
working with time-series data.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

For reproducibility of our approach, we provide extensive implementation details in the Appendix.
Additionally, we have included the source code as part of the submission and intend to open-source
it as an extension for IsaacLab after publication, for the benefit of the robotics learning community.

ETHICS STATEMENT

Our method deals with Reinforcement Learning in simulation. While we do not foresee direct ethics
concerns, we acknowledge that our contribution targets advances in both robotics and learning. By
promoting GPU-intensive learning algorithms that also require realistic simulation environments and
making them more accessible, we contribute to CO2 emissions and the global climate crisis. In par-
allel, by contributing to advancements in robotics, we facilitate access to more advanced platforms
that have the potential to harm humanity. While robots can take over dangerous or monotonous
jobs, automation also contributes to jobs lost and economic change. Even more grim is the prospect
of using robots for warfare, where motion control and robustness across various terrains for legged
platforms are especially crucial factors in enabling such technologies. We promote the responsible
use of our work, and hope that it will not be used for harm.

LARGE LANGUAGE MODEL USE

Large language models (ChatGPT, Gemini) and other writing aids (e.g., Grammarly) are solely used
to polish and correct writing in individual sentences, and not to generate entire sections of text.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Cameron Allen, Neev Parikh, Omer Gottesman, and George Konidaris. Learning markov state ab-
stractions for deep reinforcement learning. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N.
Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), Advances in Neural Information
Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021,
NeurIPS 2021, December 6-14, 2021, virtual, pp. 8229–8241, 2021.

Philip Arm, Mayank Mittal, Hendrik Kolvenbach, and Marco Hutter. Pedipulate: Enabling Manip-
ulation Skills using a Quadruped Robot’s Leg, 2024.

Gregor Bachmann, Sotiris Anagnostidis, and Thomas Hofmann. Scaling mlps: A tale of inductive
bias. Advances in Neural Information Processing Systems, 36:60821–60840, 2023.

Philip J. Ball, Laura M. Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement
learning with offline data. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engel-
hardt, Sivan Sabato, and Jonathan Scarlett (eds.), International Conference on Machine Learning,
ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine
Learning Research, pp. 1577–1594. PMLR, 2023.

Jose Barreiros, Andrew Beaulieu, Aditya Bhat, Rick Cory, Eric Cousineau, Hongkai Dai, Ching-
Hsin Fang, Kunimatsu Hashimoto, Muhammad Zubair Irshad, Masha Itkina, et al. A care-
ful examination of large behavior models for multitask dexterous manipulation. arXiv preprint
arXiv:2507.05331, 2025.

C. Dario Bellicoso, Koen Krämer, Markus Stäuble, Dhionis Sako, Fabian Jenelten, Marko Bjelonic,
and Marco Hutter. Alma - articulated locomotion and manipulation for a torque-controllable
robot. pp. 8477–8483, 2019. doi: 10.1109/ICRA.2019.8794273.

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
Fusai, Lachy Groom, Karol Hausman, Brian Ichter, et al. pi 0: A vision-language-action flow
model for general robot control. arXiv preprint arXiv:2410.24164, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choro-
manski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, Pete Florence, Chuyuan Fu,
Montse Gonzalez Arenas, Keerthana Gopalakrishnan, Kehang Han, Karol Hausman, Alexander
Herzog, Jasmine Hsu, Brian Ichter, Alex Irpan, Nikhil Joshi, Ryan Julian, Dmitry Kalashnikov,
Yuheng Kuang, Isabel Leal, Lisa Lee, Tsang-Wei Edward Lee, Sergey Levine, Yao Lu, Hen-
ryk Michalewski, Igor Mordatch, Karl Pertsch, Kanishka Rao, Krista Reymann, Michael Ryoo,
Grecia Salazar, Pannag Sanketi, Pierre Sermanet, Jaspiar Singh, Anikait Singh, Radu Soricut,
Huong Tran, Vincent Vanhoucke, Quan Vuong, Ayzaan Wahid, Stefan Welker, Paul Wohlhart,
Jialin Wu, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and Brianna Zitkovich. RT-2:
Vision-Language-Action Models Transfer Web Knowledge to Robotic Control.

Ju-Seung Byun and Andrew Perrault. Symmetric reinforcement learning loss for robust learning on
diverse tasks and model scales. arXiv preprint arXiv:2405.17618, 2024.

Suyoung Choi, Gwanghyeon Ji, Jeongsoo Park, Hyeongjun Kim, Juhyeok Mun, {Jeong Hyun} Lee,
and Jemin Hwangbo. Learning quadrupedal locomotion on deformable terrain. Science Robotics,
8(74), January 2023. ISSN 2470-9476. doi: 10.1126/scirobotics.ade2256. Publisher Copyright:
© 2023 The Authors, some rights reserved.

Paul Christiano, Zain Shah, Igor Mordatch, Jonas Schneider, Trevor Blackwell, Joshua Tobin, Pieter
Abbeel, and Wojciech Zaremba. Transfer from Simulation to Real World through Learning Deep
Inverse Dynamics Model, 2016.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement
learning in a handful of trials using probabilistic dynamics models. In Samy Bengio, Hanna M.
Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett (eds.),
Advances in Neural Information Processing Systems 31: Annual Conference on Neural Infor-
mation Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pp.
4759–4770, 2018.

Sebastian Curi, Felix Berkenkamp, and Andreas Krause. Efficient model-based reinforcement learn-
ing through optimistic policy search and planning. Advances in Neural Information Processing
Systems, 33:14156–14170, 2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), pp. 4171–4186, Minneapolis, Minnesota, June 2019. Association for Compu-
tational Linguistics. doi: 10.18653/v1/N19-1423.

Henrique Ferrolho, Vladimir Ivan, Wolfgang Merkt, Ioannis Havoutis, and Sethu Vijayakumar.
Roloma: Robust loco-manipulation for quadruped robots with arms. Autonomous Robots, 47
(8):1463–1481, 2023.

Nicklas Hansen, Hao Su, and Xiaolong Wang. TD-MPC2: scalable, robust world models for contin-
uous control. In The Twelfth International Conference on Learning Representations, ICLR 2024,
Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked au-
toencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 16000–16009, 2022.

David Hoeller, Nikita Rudin, Dhionis Sako, and Marco Hutter. ANYmal Parkour: Learning Agile
Navigation for Quadrupedal Robots, 2023.

Marco Hutter, Christian Gehring, Dominic Jud, Andreas Lauber, C. Dario Bellicoso, Vassilios
Tsounis, Jemin Hwangbo, Karen Bodie, Peter Fankhauser, Michael Bloesch, Remo Diethelm,

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Samuel Bachmann, Amir Melzer, and Mark Hoepflinger. ANYmal - a highly mobile and dy-
namic quadrupedal robot. In 2016 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 38–44, 2016. doi: 10.1109/IROS.2016.7758092. ISSN: 2153-0866.

Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario Bellicoso, Vassilios Tsounis, Vladlen
Koltun, and Marco Hutter. Learning agile and dynamic motor skills for legged robots. ArXiv
preprint, abs/1901.08652, 2019.

Gwanghyeon Ji, Juhyeok Mun, Hyeongjun Kim, and Jemin Hwangbo. Concurrent training of a
control policy and a state estimator for dynamic and robust legged locomotion. IEEE Robotics
and Automation Letters, 7(2):4630–4637, 2022.

Chi Jin, Qinghua Liu, and Sobhan Miryoosefi. Bellman eluder dimension: New rich classes of rl
problems, and sample-efficient algorithms, 2021. URL https://arxiv.org/abs/2102.
00815.

Oleg Kaidanov, Firas Al-Hafez, Yusuf Suvari, Boris Belousov, and Jan Peters. The role of domain
randomization in training diffusion policies for whole-body humanoid control. arXiv preprint
arXiv:2411.01349, 2024.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Vijay Konda and John Tsitsiklis. Actor-critic algorithms. In S. Solla, T. Leen, and
K. Müller (eds.), Advances in Neural Information Processing Systems, volume 12. MIT Press,
1999. URL https://proceedings.neurips.cc/paper_files/paper/1999/
file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf.

Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and Marco Hutter. Learning
quadrupedal locomotion over challenging terrain. Science robotics, 5(47):eabc5986, 2020.

Jacob Levy, Tyler Westenbroek, and David Fridovich-Keil. Learning to Walk from Three Minutes
of Real-World Data with Semi-structured Dynamics Models, 2024.

Wenzhe Li, Hao Luo, Zichuan Lin, Chongjie Zhang, Zongqing Lu, and Deheng Ye. A survey on
transformers in reinforcement learning. arXiv preprint arXiv:2301.03044, 2023.

Xiaoxiao Long, Qingrui Zhao, Kaiwen Zhang, Zihao Zhang, Dingrui Wang, Yumeng Liu, Zhengjie
Shu, Yi Lu, Shouzheng Wang, Xinzhe Wei, Wei Li, Wei Yin, Yao Yao, Jia Pan, Qiu Shen, Ruigang
Yang, Xun Cao, and Qionghai Dai. A Survey: Learning Embodied Intelligence from Physical
Simulators and World Models, 2025.

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. Vilbert: Pretraining task-agnostic visiolin-
guistic representations for vision-and-language tasks. Advances in neural information processing
systems, 32, 2019.

Michael Lutter and Jan Peters. Combining physics and deep learning to learn continuous-time
dynamics models. The International Journal of Robotics Research, 42(3):83–107, 2023. doi:
10.1177/02783649231169492.

Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and
projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

Takahiro Miki, Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and Marco Hut-
ter. Learning robust perceptive locomotion for quadrupedal robots in the wild. ArXiv preprint,
abs/2201.08117, 2022.

Mayank Mittal, Nikita Rudin, Victor Klemm, Arthur Allshire, and Marco Hutter. Symmetry con-
siderations for learning task symmetric robot policies. In 2024 IEEE International Conference on
Robotics and Automation (ICRA), pp. 7433–7439. IEEE, 2024.

Mayank Mittal, Pascal Roth, James Tigue, Antoine Richard, Octi Zhang, Peter Du, Antonio Serrano-
Muñoz, Xinjie Yao, René Zurbrügg, Nikita Rudin, et al. Isaac lab: A gpu-accelerated simulation
framework for multi-modal robot learning. arXiv preprint arXiv:2511.04831, 2025.

13

https://arxiv.org/abs/2102.00815
https://arxiv.org/abs/2102.00815
https://proceedings.neurips.cc/paper_files/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Michael P. Murphy, Benjamin J. Stephens, Yeuhi Abe, and Alfred A. Rizzi. High degree-of-
freedom dynamic manipulation. In Defense, Security, and Sensing, 2012. URL https:
//api.semanticscholar.org/CorpusID:121683243.

Mitsuhiko Nakamoto, Simon Zhai, Anikait Singh, Max Sobol Mark, Yi Ma, Chelsea Finn, Aviral
Kumar, and Sergey Levine. Cal-ql: Calibrated offline RL pre-training for efficient online fine-
tuning. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey
Levine (eds.), Advances in Neural Information Processing Systems 36: Annual Conference on
Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December
10 - 16, 2023, 2023.

Nikolay Nikolov, Johannes Kirschner, Felix Berkenkamp, and Andreas Krause. Information-
directed exploration for deep reinforcement learning. arXiv preprint arXiv:1812.07544, 2018.

Kei Ota, Devesh K Jha, and Asako Kanezaki. Training larger networks for deep reinforcement
learning. arXiv preprint arXiv:2102.07920, 2021.

Deepak Pathak, Dhiraj Gandhi, and Abhinav Gupta. Self-supervised exploration via disagreement.
In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International
Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp.
5062–5071. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.press/v97/
pathak19a.html.

Xue Bin Peng, Ze Ma, Pieter Abbeel, Sergey Levine, and Angjoo Kanazawa. AMP: Adversarial
Motion Priors for Stylized Physics-Based Character Control. ArXiv preprint, abs/2104.02180,
2021.

Xue Bin Peng, Yunrong Guo, Lina Halper, Sergey Levine, and Sanja Fidler. ASE: large-scale
reusable adversarial skill embeddings for physically simulated characters. ACM Transactions on
Graphics, 41(4):1–17, 2022. ISSN 0730-0301, 1557-7368. doi: 10.1145/3528223.3530110.

Tifanny Portela, Andrei Cramariuc, Mayank Mittal, and Marco Hutter. Whole-body end-effector
pose tracking. In 2025 IEEE International Conference on Robotics and Automation (ICRA), pp.
11205–11211. IEEE, 2025.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In Proceedings of the fourteenth international con-
ference on artificial intelligence and statistics, pp. 627–635. JMLR Workshop and Conference
Proceedings, 2011.

Nikita Rudin, David Hoeller, Philipp Reist, and Marco Hutter. Learning to walk in minutes using
massively parallel deep reinforcement learning. In Conference on robot learning, pp. 91–100.
PMLR, 2022.

Nikita Rudin, Junzhe He, Joshua Aurand, and Marco Hutter. Parkour in the Wild: Learning a
General and Extensible Agile Locomotion Policy Using Multi-expert Distillation and RL Fine-
tuning, 2025.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Clemens Schwarke, Mayank Mittal, Nikita Rudin, David Hoeller, and Marco Hutter. Rsl-rl: A
learning library for robotics research. arXiv preprint arXiv:2509.10771, 2025.

Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand, Laurent Charlin,
R. Devon Hjelm, Philip Bachman, and Aaron C. Courville. Pretraining representations for data-
efficient reinforcement learning. In Advances in Neural Information Processing Systems 34: An-
nual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14,
2021, virtual, pp. 12686–12699, 2021.

14

https://api.semanticscholar.org/CorpusID:121683243
https://api.semanticscholar.org/CorpusID:121683243
https://proceedings.mlr.press/v97/pathak19a.html
https://proceedings.mlr.press/v97/pathak19a.html

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and Deepak Pathak.
Planning to explore via self-supervised world models. In International conference on machine
learning, pp. 8583–8592. PMLR, 2020.

Jonah Siekmann, Kevin Green, John Warila, Alan Fern, and Jonathan Hurst. Blind bipedal stair
traversal via sim-to-real reinforcement learning, 2021. URL https://arxiv.org/abs/
2105.08328.

Jean-Pierre Sleiman, Farbod Farshidian, Maria Vittoria Minniti, and Marco Hutter. A unified
mpc framework for whole-body dynamic locomotion and manipulation, 2021. URL https:
//arxiv.org/abs/2103.00946.

Jean-Pierre Sleiman, Mayank Mittal, and Marco Hutter. Guided Reinforcement Learning for Robust
Multi-Contact Loco-Manipulation, 2024.

Jonas Stolle, Philip Arm, Mayank Mittal, and Marco Hutter. Perceptive Pedipulation with Local
Obstacle Avoidance, 2024.

Gemini Robotics Team, Saminda Abeyruwan, Joshua Ainslie, Jean-Baptiste Alayrac, Montser-
rat Gonzalez Arenas, Travis Armstrong, Ashwin Balakrishna, Robert Baruch, Maria Bauza,
Michiel Blokzijl, et al. Gemini robotics: Bringing ai into the physical world. arXiv preprint
arXiv:2503.20020, 2025.

Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
Dasari, Joey Hejna, Tobias Kreiman, Charles Xu, et al. Octo: An open-source generalist robot
policy. arXiv preprint arXiv:2405.12213, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Eric Vollenweider, Marko Bjelonic, Victor Klemm, Nikita Rudin, Joonho Lee, and Marco Hut-
ter. Advanced skills through multiple adversarial motion priors in reinforcement learning. arXiv
preprint arXiv:2203.14912, 2022.

Zhihui Xie, Zichuan Lin, Junyou Li, Shuai Li, and Deheng Ye. Pretraining in Deep Reinforcement
Learning: A Survey, 2022.

Jie Xu, Eric Heiden, Iretiayo Akinola, Dieter Fox, Miles Macklin, and Yashraj Narang. Neural robot
dynamics. arXiv preprint arXiv:2508.15755, 2025.

Chuanyu Yang, Kai Yuan, Qiuguo Zhu, Wanming Yu, and Zhibin Li. Multi-expert learning of
adaptive legged locomotion. Science Robotics, 5(49):eabb2174, 2020. doi: 10.1126/scirobotics.
abb2174. Publisher: American Association for the Advancement of Science.

Ruihan Yang, Ge Yang, and Xiaolong Wang. Neural volumetric memory for visual locomotion
control, 2023. URL https://arxiv.org/abs/2304.01201.

Qiang Zhang, Gang Han, Jingkai Sun, Wen Zhao, Chenghao Sun, Jiahang Cao, Jiaxu Wang, Yijie
Guo, and Renjing Xu. Distillation-ppo: A novel two-stage reinforcement learning framework
for humanoid robot perceptive locomotion, 2025. URL https://arxiv.org/abs/2503.
08299.

Chongyi Zheng, Seohong Park, Sergey Levine, and Benjamin Eysenbach. Intention-Conditioned
Flow Occupancy Models, 2025.

15

https://arxiv.org/abs/2105.08328
https://arxiv.org/abs/2105.08328
https://arxiv.org/abs/2103.00946
https://arxiv.org/abs/2103.00946
https://arxiv.org/abs/2304.01201
https://arxiv.org/abs/2503.08299
https://arxiv.org/abs/2503.08299

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 PPO ALGORITHM

We use the RSL RL (Schwarke et al., 2025) implementation of PPO with adaptive learning rate and
symmetry augmentation in RL (Mittal et al., 2024) (only for parkour tasks). The pseudo code is
shown in Algorithm 1.

Notably, on top of the common understanding of PPO, this version has some additional implemen-
tation details:

• For general POMDP we are dealing with in robot motion control, the state st is approxi-
mated by observation ot.

• Policy πθ is a diagonal Gaussian distribution N
(
µθµ(st), σθσ

)
, where µθµ is a neural net-

work parameterized by θµ and produces action mean of each action dimension, and θσ is a
set of trainable parameters that control the standard deviation of every action dimension.

• All parameters are optimized by Adam (Kingma & Ba, 2014) optimizer, whose learning
rate is dynamically adjusted according to the Kullback–Leibler divergence calculated with
each minibatch (Algorithm 1 line 17∼20).

• When symmetry augmentation is active, new samples produced by symmetry augmentation
are added to every minibatch, and the update rule is adapted accordingly. For more details,
we refer the readers to Mittal et al. (2024).

A.2 DYNAMICS KNOWLEDGE PROBING DETAILS

The experiments were performed in Pedipulation (Figure 4b) and Locomotion (Figure 8) tasks, each
with 5 different seeds. Algorithm pseudocode is shown in Algorithm 2. Representation extraction
functions {fj}N−1

j=0 denotes the functions that extract intermediate representation from layer j of one
vanilla policy network, parameterized by the parameters of that policy network.

Collection by deterministic policy on state distribution tied to the stochastic policy Accord-
ing to the policy parameterization formulation described in Section A.1, the parameters of policy
network θµ does not describe action uncertainty, is thus not accountable for the consequence of
an action sampled stochastically from the distribution πθ(ot) = N

(
µθµ(st), σθσ

)
. Therefore, the

action-consequence pair needs to be collected by the deterministic policy at ← µθµ(ot). However,
the dynamics knowledge should be assessed on the distribution of the stochastic policy πθ(ot). In
practice we run sufficient steps with the stochastic policy πθ(ot) to make sure the states distribution
fit pπθ

(ot), and then execute mean action from deterministic policy by only one timestep and collect
the transition data into dataset. We repeat this preparation-collection loop until we have enough
data.

Lightweight MLP formulation The correlation analysis is performed by fitting a lightweight
MLP to regress the change in joint angles from the concatenation of some internal representation and
raw observations. The choice to concatenate raw observation to every intermediate representation is
to ensure that, the input to the lightweight MLP contains full information about current state at all
times. This makes sure that the differences between the final prediction errors are purely resulted
from the understanding of dynamics of intermediate representation, not from how much it contains
current state information.

Limited computation The computation of fitting the lightweight MLP is restricted in two ways:
1) limited width and depth of MLP, and 2) limited optimizer steps. This is due to the consideration
that if the size of the MLP and the computation are more than sufficient with respect to this task and
dataset, the network is then able to overfit the training set regardless of how strong the correlation is,
and thus produces low error with whichever input configuration. Therefore, we intentionally use a
lightweight MLP and a small amount of optimizer steps in all fitting runs. In practice, the trainable
lightweight MLP takes the form of a 2-layer MLP, with the only hidden layer’s dimension being 64
and activation function being ELU. The lightweight MLP is optimized by Adam with a learning rate
of 0.001 for 20 epochs on a training set of 11700 samples.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Algorithm 1 Proximal Policy Optimization (PPO) — RSL RL Version with adaptive learning rate

Require: parallel environments E
Require: initial policy (actor) network parameters θ0, value (critic) network parameters ϕ0
Require: clip param ϵ, discount γ, λ, ComputeGAE, OptimizerStep, ComputeSymmetryLoss
Require: simulation steps per iteration T , learning epochs per update K, minibatch number M
Require: initial learning rates α0, value loss coef cvf , entropy coef cent
Require: max grad norm gmax, desired KL per optimizer step δKL, learning rate adjustment ratio

ηα, max iterations N
1: Initialize E
2: θ ← θ0, ϕ← ϕ0, α← α0

3: for iter = 0, . . . , N − 1 do
4: for T = 0, . . . ,K − 1 do
5: Sample an action at from the action distribution

at ∼ πθ(at|st) = N
(
µθµ(st), σθσ

)
6: Step the environments (st+1, rt, donet)← E .step(at)
7: end for
8: Collect transitions into buffer

D ← {(st, at, rt, donet, log πθ(at|st), Vϕ(st))}T−1
t=0

9: Let Vϕ(sT) be bootstrap value (if step T is terminal set to 0, else evaluate Vϕ).
10: Compute advantages and returns:

{Ât}, {Rt} ← COMPUTEGAE({rt}, {Vϕ(st)}, Vϕ(sT), γ, λ)

11: Normalize advantages: Ât ←
Ât − Â

std(Â) + 10−8

12: θold ← θ
13: for epoch = 1, . . . ,K do
14: Shuffle D and split into M minibatches B
15: for each minibatch B do
16: For every sample (st, at, Rt, Ât, log πθold(at|st)) ∈ B compute:

log πθ(at|st), Vϕ(st) and entropyH(πθ(·|st))

17: DKL = 1
|B|

∑
st∈B log

(
σθσ

σθold
σ

+10−5

)
+

σθold
σ

2+(µθold
µ

(st)−µθµ (st))
2

2σθσ
2 − 1

2

18: if DKL > 2 · δKL then α← max(α/ηα, 1× 10−5)
19: else if DKL < 0.5 · δKL then α← min(α · ηα, 1× 10−2)
20: end if
21: ratio: rt(θ) = exp

(
log πθ(at|st)− log πθold(at|st)

)
22: clipped surrogate: s1 = rt(θ)Ât, s2 = clip(rt(θ), 1− ϵ, 1 + ϵ)Ât
23: policy loss (to minimize): LCLIP = − 1

|B|
∑
tmin(s1, s2)

24: value loss: LVF = 1
|B|

∑
t(Vϕ(st)−Rt)2

25: entropy bonus: S = 1
|B|

∑
tH(πθ(·|st))

26: full loss: L(θ, ϕ) = LCLIP + cvfLVF − centS
27: if use symmetry loss then L(θ, ϕ)← L(θ, ϕ) + ComputeSymmetryLoss(B, θ)
28: end if
29: Compute gradients ∇θL,∇ϕL
30: Clip gradients: ∥∇∥ ← min

(
1, gmax/∥∇∥

)
∇

31: Update parameters: θ, ϕ← OptimizerStep(θ, ϕ,∇L, α)
32: end for
33: end for
34: end for

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

0.125 0.250 0.375 0.500 0.625 0.750 0.875 1.000
Training Progress (Fraction of Total Iterations)

0.6

0.8

1.0

1.2

1.4

1.6

De
gr

ee
s

Layer 0
Layer 1
Layer 2
Zero-Order Extrapolation Error
First-Order Extrapolation Error

Figure 8: Errors of dynamics prediction based on representations from different layers, Locomotion
task.

Algorithm 2 Dynamics Knowledge Probing in Vanilla Policy Networks

Require: policy network models {θi}Mi=0, representation extraction functions {fj}Nj=1, required
dataset size N , simulation environment E , lightweight network g parameterized by ψ

1: for each i in 1, 2, ...,M do ▷ each policy network model under our investigation
2: θ ← θi,Di ← {}, t← 0
3: repeat
4: ot ∼ pπθ

(ot)
5: Get the mean action at ← µθµ(ot)
6: Step the environment ∆qt+1 ← E .step(at)
7: Di.append

(
(ot,∆qt+1)

)
8: t← t+ 1
9: until len(Di) ≥ N

10: for each j in 1, 2, ..., N do ▷ for latent representation extracted after each activation layer
11: f ← fj
12: Dli ← {(lt, ot) | lt = fθµ(ot), ot ∈ Di}
13: Initialize lightweight MLP gψ
14: Fit gψ optimizing following target

ψ⋆ = argmin
ψ

1

N

∑
lt∈Dl

i

∥gψ(lt, ot)−∆qt+1∥1

15: evaluate final error

ϵij =
1

N

∑
lt∈Dl

i

∥g⋆ψ(lt, ot)−∆qt+1∥1

16: end for
17: end for
18: return {ϵij}j=1,...,N

i=1,...,M

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A.3 EXPLORATION-BASED DATA COLLECTION IMPLEMENTATION DETAILS

The exploration is guided by both intrinsic reward and a set of extrinsic reward terms. We define
the intrinsic reward as the standard deviation of all predictions generated by each individual PIDM
model within the ensemble:

ât
j = Iξj (xt−K:t+1, at−K:t−1) (1)

¯̂at =

NI∑
i=1

ât
j (2)

σt =

√√√√ NI∑
i=1

(ât
j − ¯̂at)2 (3)

rit = min(cirσt, ri max) (4)

where {ξj}NI
j=1 denotesNI individual PIDM dynamics model in the ensemble, âtj denotes the action

inference by the j-th PIDM dynamics model, σt denotes the standard deviation of predictions, rit
indicates the intrinsic reward at timestep t, cir is the intrinsic reward scaling factor, and ri max is the
intrinsic reward clipping threshold. The two hyperparameters are tuned empirically, indicated in
Table 4. The set of extrinsic reward terms of ANYmal D are shown in Table 5. Extrinsic reward
terms of other two embodiments can be found in the supplementary code.

The data collection pipeline is outlined in Algorithm 3, and the bootstrap training of models in the
ensemble is described in Algorithm 4. Hyperparameters are listed in Table 4.

Algorithm 3 PIDM-Ensemble Exploration-based Data Collection

Require: policy network parameters θ, value network parameters ϕ, minimum required dataset size
ND, parallel environments ENE with NE sub-environments, PIDM architecture I , randomly
initialized PIDM weights ξ, maximum iteration number N , PIDM ensemble retrain interval k

1: Initialize E
2: D ← {}
3: for each i in 0, 1, 2, ..., N − 1 do ▷ PPO iterations
4: {st−K:t, at−K:t, r

e
t−K:t, xt−K:t} ← EnvironmentSteps(E , πθ)

▷ xt−K:t denotes noise-free observations, and ret−K:t denotes extrinsic rewards
5: D = D ∪ {xt−K:t}
6: if Size(D) ≥ ND then
7: if i mod k = 0 then
8: Dtrain ← RandomSplit(D) such that Size(Dtrain) = ND
9: {ξj}NI

j=1 ← TrainEnsemble({ξj}NI
j=1,Dtrain)

10: end if
11: rit−K:t ← GetIntrinsicReward(st−K:t, at−K:t, r

e
t−K:t, xt−K:t)

12: θ ← PPOUpdateActor(θ, st−K:t, at−K:t, r
e
t−K:t, r

i
t−K:t)

13: else
14: rit−K:t ← 0
15: end if
16: ϕ← PPOUpdateCritic(ϕ, st−K:t, r

e
t−K:t, r

i
t−K:t)

17: end for
18: return D

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Algorithm 4 TrainEnsemble Function

Input: PIDMerse dynamics model weigths {ξj}NI
j=1, PIDMerse dynamics training set Dtrain,

1: for each i in 1, 2, ..., NI do
2: DjTrain ← {}
3: N ← Size(DTrain)
4: for each n in 1, 2, ..., N do
5: DjTrain.Append

(
SampleUniform(DTrain)

)
▷ Sample with replacement

6: end for
7: ξj ← Train(ξj ,DjTrain, I) ▷ Normal supervised training
8: end for
9: return {ξj}NI

j=1

Item Values
Ensemble size 5
Max iterations 800
Retrain Interval 10
Retrain epochs 5
Intrinsic reward scaling factor cir 10
Intrinsic reward clipping threshold ri max 30

Table 4: Exploration-based data collection hyperparameters.

Term Equation Weight

feet air time
∑

foot 1first contact max (T, Tmax)
2 400

collision penalty 1collision −5.0
joint torques |τ |2 -2e-5
joint velocities |q̇|2 -5e-2
joint acceleration |q̈|2 -5e-6
action magnitude |at|2 -0.01
action smoothing |at−1 − at|2 -0.01
termination 1termination -80

Table 5: Extrinsic reward terms in exploration-based data collection for ANYmal-D.

A.4 PIDM AND PRETRAINING IMPLEMENTATION DETAILS

PIDM is of a modular architecture consists of multiple MLPs serving different purposes. Every sub-
module is implemented by an MLP. For Action History Encoder, Proprioception History Encoder,
Delta Encoder, and Intention Encoder, they encode single-timestep input of various modalities into
one embedding with a unified embedding dimension. The embeddings from various modalities and
timesteps are then concatenated and fed into the PIDM backend, which synthesize the inputs and
output an action embedding of embedding dimension. Action Decoder and Action Synthesizer de-
codes action signal from tensors of corresponding dimensions. The output of Action Decoder is
processed through a Sigmoid activation layer and renormalized to the range [−2.5rad, 2.5rad].

Pretrain is implemented via supervised training on the pretrain dataset. In the pretraining of ANYmal
D embodiment, two techniques are applied to enhance robustness of the model:

• Symmetry augmentation. To effectively leverage the symmetry property of ANYmal
robot we use, for each batch of training data in every epoch, we randomly divide the
batch into 4 minibatches with equal number of samples. Then, they respectively go 1)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Architecture Item Values

PIDM

Input history timesteps (K) 4
Action history encoder [128]
Proprioception history encoder [128]
Delta encoder [128]
Action decoder [128]
Embedding dimension 128
Backend [512, 256, 128]
Activation function ELU
Loss function L1 loss
Batch size 1024
Optimizer AdamW
Learning rate 1e-3
Training epochs 260

PIDM (RL-Blind) Intention encoder [128, 128, 128]
Action synthesizer [128, 128, 128]

PIDM (RL-Perceptive) Intention encoder [512, 256, 128]
Action synthesizer [512, 256, 128]

Table 6: PIDM architecture hyperparameters. The values enclosed in square brackets indicate the
number of layers and number of hidder units per layer in the corresponding MLP modules. PIDM
(RL-Blind) hyperparameter set is used in blind tasks (locomotion, pedipulation), while PIDM (RL-
Perceptive) hyperparameter set is used in perceptive tasks (parkour walk, crouch, jump, climb up,
climb down).

unchanged, 2) through x-axis symmetry transform, 3) through y-axis symmetry transform,
or 4) sequentially go through both x-axis and y-axis transforms.

• Noise addition. To increase the model’s resilience to perceptive noise, we add to every
batch of training data in every epoch the noise vector sampled from the noise distribution
identical to that in RL policy rollout. The scale of noise is identical across all tasks and can
be found in e.g. Rudin et al. (2022). Notably, delta-state ∆x∗t+1 and ground truth action
output label at remain uncorrupted at all times.

Training a highly accurate PIDM poses great challenge. The reasons are:

• Vast transition space. With joint states, base twist, gravity, contact states, and terrain
taken into consideration, the full state of a locomotion POMDP is notoriously large and
thus hinders precise modeling. Recent work (Xu et al., 2025) has demonstrated success
in learning a high-precision neural simulator using a lightweight GPT-2 model, which is
orders of magnitude larger than our PIDM.

• Partial observability. The PIDM only has access to noisy proprioceptive observation,
without any privileged information about randomized physical properties that are used to
facilitate sim-to-real transfer.

• Lack of inductive bias in MLP architectures might not make them the best-suited option
for analysing time-series data, despite their prevalent use in RL (Bachmann et al., 2023).

A.5 PIDM IMPLEMENTATION DETAILS

PIDM hyperparameters are also shown in Table 6.

A.6 QUANTITIVE EXPERIMENTS DETAILS

Original works are referred to as “vanilla MLP”, and references are listed in Section 5.1. Most
POMDP configurations and RL hyperparameters are kept the same with the original works to the
maximum possible, and details can be found in the corresponding references.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Group Members Tasks Models
Blind Perceptive Vanilla MLP PIDM

Proprioception

base linear velocity

✓ ✓
single

timestep
multiple
timesteps

base angular velocity
projected gravity vector

joint position
joint velocity

Exteroception height scan ✗ ✓ - -

Last action joint action ✓ ✓
single

timestep
multiple
timesteps

Command task specific command ✓ ✓ ✓ ✓

Table 7: Observation space configuration. “Blind” tasks: locomotion, pedipulation. “Perceptive”
tasks: parkour walk, climb up, climb down, crouch, and jump.

A.6.1 SUMMARY OF OBSERVATION SPACE, ACTION SPACE AND SIMULATION

Observation space. All possible components of observation space are listed in Table 7. To sum-
marize, there are 2 types of variation in the composition of observation space across all the runs: a)
for the blind tasks (locomotion, pedipulation), policies do not have access to exteroception (height
scans), while exteroception is included in the rest perceptive tasks. b) Vanilla MLPs do not have
access to history proprioceptions as in the original works, while the inputs to PIDM based models
contain history proprioceptions. The necessity of including a history of proprioception for PIDM is
mainly due to the absense of terrain information and contact state in proprioception, and the presence
of noise and domain randomization techniques in the training process (during both exploration-based
data collection and training of task-specific policies). Therefore, it would be inappropriate to fit the
PIDM with only one single frame of current proprioceptive state, due to the fact that one certain
proprioception can be observed in a range of actual full states in the POMDP. In addition, there is a
line of works (Ji et al., 2022; Portela et al., 2025) that suggest that proprioception history is infor-
mative and a number of useful values (e.g. foot height, contact probability, end effector force) can
be estimated from it.

Action space. The action space is the target joint position (relative to default joint positions) com-
mand that will be sent to actuator-nets (Hwangbo et al., 2019) of ANYDrive 4.0.

Simulation. All training is performed in Isaac Lab (Mittal et al., 2025) using 4,096 parallel envi-
ronments, each running 24 simulation steps per RL iteration, for a total of 98,304 environment steps
per iteration. Each environmental step corresponds to 5 ms in real time and is computed using 4
physics solver steps.

A.6.2 MODIFICATIONS

Following modifications are made to ensure easier and fair comparison.

Unified collision model. The collision model of ANYmal-D of all tasks is unified as that in the
main branch of Isaac Lab 2.2.

Pedipulation. We change the action space of Pedipulation task from relative joint action space to
absolute joint action space, to make it consistent with all other tasks. The curriculum (gradual expan-
sion of the space where command is sampled) is removed because it makes comparing rewards from
different stages/runs not appropriate. After removal of curriculum, the environment configuration is
static and identical to that of the maximum difficulty in curriculum in original work.

Parkour tasks.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Experiment Task Method Number of Failed
in 5 Runs

Quantitative Experiments
Walk PIDM (Random Init) 1
Crouch PIDM (Random Init) 1
Jump PIDM (Random Init) 3

Ablation (Actor-Critic) Climb Down PIDM (Pretrained
Actor only)

3

Ablation (Data Source) Climb Up PIDM (Pedipulation
Data)

2

Table 8: Failed runs. For those mentioned configurations, performance metrics are aggregated with
the remaining successful runs. Notably there is no entry of the mainly proposed method.

• Fixed-step curriculum events are removed from Climb Up and Jump, for that the curriculum
steps in these 2 tasks are extremely sensitive to the timing of trigger, which interferes with
the learning once the architecture of networks changes.

• Adaptive terrain difficulty curriculum is carried over from the original work, but instead of
initializing all parallel environments randomly at one difficulty level, they are all initialized
at the lowest difficulty level in our experiments. This is for cleaner plot and is checked to
have no visible impact on training dynamics, since almost all environments initialized with
random difficulty level fall back to the lowest difficulty after a couple of iterations.

• Symmetrical augmentation (Mittal et al., 2024) is carried over from the original work.
One critical observation is, adding symmetry loss does not significantly alter the training
dynamics of vanilla MLP, but considerably improve the stability of RL training of PIDM,
especially the randomly initialized variant. So in every experiments of every method, a
symmetry loss weighted by 0.2 is added. On top of this, due to the failure-prone nature of
learning highly dynamic skills, some configurations are still vulnerable to producing failed
runs. All configurations that did not succeed every of 5 independent runs are listed in Table
8.

A.6.3 PERFORMANCE INDICATOR

The choice of main performance indicator varies across tasks. Since the blind tasks (pedipulation,
locomotion) are completely curriculum-free, we directly use the mean reward as the performance
metric. However, since the adaptive (progress-based) terrain difficulty curriculum exist in all parkour
tasks, the mean reward curves can not be directly taken as performance metric of policies because
the evolving terrain difficulty. Therefore, we use the Curriculum Progress, indicated by the aver-
age of maximum terrain difficulty reached over all sub-environments as the way to assess learning
performance.

A.6.4 MORE REINFORCEMENT LEARNING TRAINING CURVES CORRESPONDING TO
PRESENTED QUANTITATIVE RESULTS

See Figure 9.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

0 500 1000 1500 2000 2500
Iteration Number

0

5

10

M
ea

n
Cu

rri
cu

lu
m

 P
ro

gr
es

s

Climb Down

0 500 1000 1500 2000 2500
Iteration Number

0

5

m
ea

n_
te

rra
in

_le
ve

l Climb Down

0 500 1000 1500 2000 2500
Iteration Number

0.0

2.5

5.0

M
ea

n
Re

wa
rd

Climb Down

Vanilla MLP PIDM (Random Init) PIDM (Pretrained)

0 500 1000 1500 2000
Iteration Number

0

2

4

6

8

10
M

ea
n

Cu
rri

cu
lu

m
 P

ro
gr

es
s

Parkour Walk

0 500 1000
Iteration Number

0

2

4

6

8

10

M
ea

n
Cu

rri
cu

lu
m

 P
ro

gr
es

s

Crouch

0 1000 2000 3000
Iteration Number

0

2

4

6

8

10

M
ea

n
Cu

rri
cu

lu
m

 P
ro

gr
es

s

Jump

Figure 9: Evolution of the main performance metric during training for Parkour Walk, Pedipulation,
Crouch and Jump tasks with ANYmal D. The shaded areas denote standard deviations across five
seeds.

0 500 1000 1500 2000 2500
Iteration Number

0

5

10

M
ea

n
Cu

rri
cu

lu
m

 P
ro

gr
es

s

Climb Down

0 500 1000 1500 2000 2500
Iteration Number

0

5

m
ea

n_
te

rra
in

_le
ve

l Climb Down

0 500 1000 1500 2000 2500
Iteration Number

0.0

2.5

5.0

M
ea

n
Re

wa
rd

Climb Down

Vanilla MLP PIDM (Random Init) PIDM (Pretrained)

0 100 200 300
Iteration Number

0

10

20

30

M
ea

n
Re

wa
rd

Go1 (Quadruped)

0 500 1000 1500
Iteration Number

10

0

10

20

30

M
ea

n
Re

wa
rd

G1 (Humanoid)

Figure 10: Evolution of the mean reward during learning velocity-tracking locomotion with Unitree
Go1 (quadruped) and Unitree G1 (humanoid). The shaded areas denote standard deviations across
five seeds.

A.7 MORE ABLATION EXPERIMENTS TRAINING CURVES

The evolution of the performance indicator corresponding to results of Table 2 is shown in Figure
11 and curves of Table 3 is presented in Figure 12. Individual unstable configurations are listed in
Table 8 as well.

0 500 1000 1500 2000 2500
Iteration Number

0

5

10

M
ea

n
Cu

rri
cu

lu
m

 P
ro

gr
es

s

Climb Down

0 500 1000 1500 2000 2500
Iteration Number

0

5

m
ea

n_
te

rra
in

_le
ve

l Climb Down

0 500 1000 1500 2000 2500
Iteration Number

0.0

2.5

5.0

M
ea

n
Re

wa
rd

Climb Down

PIDM (Pretrained Both)
PIDM (Pretrained Actor Only)

PIDM (Pretrained Critic Only)
PIDM (Random Init)

0 500 1000 1500 2000 2500
Iteration Number

0

2

4

6

8

10

M
ea

n
Cu

rri
cu

lu
m

 P
ro

gr
es

s

Climb Down

0 250 500 750 1000
Iteration Number

0

2

4

6

8

10

M
ea

n
Cu

rri
cu

lu
m

 P
ro

gr
es

s

Climb Up

Figure 11: Ablation results for pretraining the
actor vs. the critic components.

0 250 500 750 1000
Iteration Number

0

5

10

M
ea

n
Cu

rri
cu

lu
m

 P
ro

gr
es

s

Climb Up

0 250 500 750 1000
Iteration Number

0

5

m
ea

n_
te

rra
in

_le
ve

l Climb Up

0 250 500 750 1000
Iteration Number

0

5

10

M
ea

n
Re

wa
rd

Climb Up

PIDM (Exploration data)
PIDM (Random Init)

PIDM (Pedipulation data)

0 500 1000 1500 2000 2500
Iteration Number

0

2

4

6

8

10

M
ea

n
Cu

rri
cu

lu
m

 P
ro

gr
es

s

Climb Down

0 250 500 750 1000
Iteration Number

0

2

4

6

8

10

M
ea

n
Cu

rri
cu

lu
m

 P
ro

gr
es

s

Climb Up

Figure 12: Ablation results comparing different
sources of pretraining data.

A.8 STUDY OF RELATION BETWEEN ERROR LEVEL OF PIDM AND RL PERFORMANCE

To verify the positive correlation between the accuracy of pretrained PIDM and resulted gain in RL
performance, we study 3 PIDM model checkpoints from pretraining which respectively produces
normalized error level of 75%, 60%, and 40%, as shown in Figure 13. The checkpoint that produces
normalized error of 40% is the one that used to present the main quantitative results.

We benchmarked the 3 model checkpoints, along with the randomly initialized PIDM in the Climb
Down and Climb Up tasks and plotted the performance indicator curves in Figure 14. The results

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

0.0 0.5 1.0 1.5 2.0
Action Magnitude (|at qt|, rad)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Ab
so

lu
te

 E
rro

r (
ra

d)

0

25

50

75

100

125

150

175

200

No
rm

al
ize

d
Er

ro
r (

%
)

(a) 75%

0.0 0.5 1.0 1.5 2.0
Action Magnitude (|at qt|, rad)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Ab
so

lu
te

 E
rro

r (
ra

d)

0

25

50

75

100

125

150

175

200

No
rm

al
ize

d
Er

ro
r (

%
)

(b) 60%

0.0 0.5 1.0 1.5 2.0
Action Magnitude (|at qt|, rad)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Ab
so

lu
te

 E
rro

r (
ra

d)

0

25

50

75

100

125

150

175

200

No
rm

al
ize

d
Er

ro
r (

%
)

(c) 40%

Figure 13: PIDM error levels of the 3 checkpoints used to study the relation between PIDM error
and RL performance, indicated by absolute and normalized joint errors.

PIDM (min 40% Error)
PIDM (min 75% Error)

PIDM (min 60% Error)
PIDM (Random Init)

0 500 1000 1500 2000 2500
Iteration Number

0

2

4

6

8

10

M
ea

n
Cu

rri
cu

lu
m

 P
ro

gr
es

s

Climb Down

0 250 500 750 1000
Iteration Number

0

2

4

6

8

10

M
ea

n
Cu

rri
cu

lu
m

 P
ro

gr
es

s

Climb Up

Figure 14: Study of relation between error Level of PIDM and RL performance.

suggest that in both tasks PIDM of 40% performs the best among all variant, followed by the model
of 60% error. PIDM of 75% and randomly initialized PIDM are relatively underperforming the
other two. These results suggest that the more accurate PIDM tends to yield better performance in
downstream RL tasks. This finding might also hint that larger benefits are possible if higher accuracy
can be attained using larger model and more modern architectures to implement PIDM. We leave
this for future work.

A.9 WEIGHT UPDATE MAGNITUDE OBSERVATION

The average update magnitude of each individual parameter is firstly averaged within each linear
layer, producing a update magnitude metric for the layer. Then, the update magnitude of a submod-
ule is given by the mean update magnitude metric of all layers it contains. Plots are shown in Figure
15.

A.10 SIM-TO-REAL TRANSFER DEMONSTRATION

We have deployed the policy Locomotion on a real ANYmal D robot. The video is attached in the
supplementary material.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100
RL Iteration

0.000

0.001

0.002

0.003

0.004

0.005

0.006

W
ei

gh
t U

pd
at

e
Di

st
an

ce

Intention Encoder
PIDM (Pretrained)
PIDM (Random Init)

0 20 40 60 80 100
RL Iteration

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

W
ei

gh
t U

pd
at

e
Di

st
an

ce

PIDM Backbone
PIDM (Pretrained)
PIDM (Random Init)

0 20 40 60 80 100
RL Iteration

0.000

0.001

0.002

0.003

0.004

W
ei

gh
t U

pd
at

e
Di

st
an

ce

Action Synthesizer
PIDM (Pretrained)
PIDM (Random Init)

(a) Pedipulation, actor

0 20 40 60 80 100
RL Iteration

0.000

0.001

0.002

0.003

0.004

0.005

0.006

W
ei

gh
t U

pd
at

e
Di

st
an

ce

Intention Encoder
PIDM (Pretrained)
PIDM (Random Init)

0 20 40 60 80 100
RL Iteration

0.000

0.001

0.002

0.003

0.004

0.005

W
ei

gh
t U

pd
at

e
Di

st
an

ce

PIDM Backbone
PIDM (Pretrained)
PIDM (Random Init)

0 20 40 60 80 100
RL Iteration

0.000

0.001

0.002

0.003

0.004

0.005

W
ei

gh
t U

pd
at

e
Di

st
an

ce

Value Synthesizer
PIDM (Pretrained)
PIDM (Random Init)

(b) Pedipulation, critic

0 20 40 60 80 100
RL Iteration

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

W
ei

gh
t U

pd
at

e
Di

st
an

ce

Intention Encoder
PIDM (Pretrained)
PIDM (Random Init)

0 20 40 60 80 100
RL Iteration

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

W
ei

gh
t U

pd
at

e
Di

st
an

ce

PIDM Backbone
PIDM (Pretrained)
PIDM (Random Init)

0 20 40 60 80 100
RL Iteration

0.000

0.001

0.002

0.003

0.004

0.005

W
ei

gh
t U

pd
at

e
Di

st
an

ce

Action Synthesizer
PIDM (Pretrained)
PIDM (Random Init)

(c) Climb up, actor

0 20 40 60 80 100
RL Iteration

0.000

0.002

0.004

0.006

0.008

W
ei

gh
t U

pd
at

e
Di

st
an

ce

Intention Encoder
PIDM (Pretrained)
PIDM (Random Init)

0 20 40 60 80 100
RL Iteration

0.000

0.002

0.004

0.006

0.008

0.010

W
ei

gh
t U

pd
at

e
Di

st
an

ce

PIDM Backbone
PIDM (Pretrained)
PIDM (Random Init)

0 20 40 60 80 100
RL Iteration

0.000

0.001

0.002

0.003

0.004

W
ei

gh
t U

pd
at

e
Di

st
an

ce

Value Synthesizer
PIDM (Pretrained)
PIDM (Random Init)

(d) Climb up, critic

Figure 15: Network weight update magnitude comparison.

26

	Introduction
	Related Works
	Preliminaries
	Methodologies
	Problem formulation
	Overview
	Exploration-based data collection
	Pretraining the Proprioceptive Inverse Dynamics Model
	Warm-starting Reinforcement Learning

	Experiments
	Reinforcement Learning Tasks
	Dynamics Knowledge Probing in Vanilla RL Policy Networks
	Pretraining the Proprioceptive Inverse Dynamics Model
	Quantitative experiments
	Ablations
	Weight Update Magnitude

	Conclusion
	Appendix
	PPO Algorithm
	Dynamics Knowledge Probing Details
	Exploration-Based Data Collection Implementation Details
	PIDM and Pretraining Implementation Details
	PIDM Implementation Details
	Quantitive Experiments Details
	Summary of Observation Space, Action Space and Simulation
	Modifications
	Performance Indicator
	More Reinforcement Learning Training Curves Corresponding to Presented Quantitative Results

	More Ablation Experiments Training Curves
	Study of Relation between Error Level of PIDM and RL Performance
	Weight Update Magnitude Observation
	Sim-to-Real Transfer Demonstration

