
Proceedings of Machine Learning Research 1–13, 2021 Full Paper – MIDL 2021

A regularization term for slide correlation reduction in whole
slide image analysis with deep learning

Hongrun Zhang 1 hongrun.zhang@liverpool.ac.uk

Yanda Meng 1 yanda.meng@liverpool.ac.uk

Xuesheng Qian 4 xuesheng.qian@intellicloud.ai

Xiaoyun Yang 5 xyang@remarkholdings.com

Sarah E.Coupland∗ 2,3 s.e.coupland@liverpool.ac.uk

Yalin Zheng∗ 1 yalin.zheng@liverpool.ac.uk
1 Department of Eye and Vision Science, University of Liverpool, Liverpool, UK
2 Liverpool Ocular Oncology Research Group, University of Liverpool, Liverpool, UK
3 Liverpool Clinical Laboratories, Liverpool University Hospitals NHS Foundation Trust, Liverpool,

UK
4 Chinese Academy of Sciences (CAS) IntelliCloud Technology Co., Ltd., Shanghai, China
5 Remark Holdings, London, UK

Abstract

To develop deep learning-based models for automatic analysis of histopathology whole slide
images (WSIs), the atomic entities to be directly processed are often the smaller patches
cropped from WSIs as it is not always possible to feed a whole WSI to a model given its
enormous size. However, a trained model tends to relate the slide-specific characteristics
to diagnosis results because a large number of patches cropped from the same WSI will
share common slide features and thus have strong correlations between them, resulting in
deteriorated generalization capability of the trained model. Current approaches to alle-
viate this issue include data pre-processing (stain normalization or color augmentation)
and adversarial learning, both of which introduce extra complications in computations.
Alternatively, we propose to reduce the impact of this issue by introducing a new regu-
larization term to the standard loss function to reduce the correlation of the patches from
the same WSI. It is intuitive and easy-to-implement and introduces comparably smaller
computation overhead compared to existing approaches. Experimental results prove that
the proposed regularization term is able to enhance the generalization capability of learn-
ing models and consequently to achieve better performance. The code is available in:
https://github.com/hrzhang1123/SlideCorrelationReduction.
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1. Introduction

There has been an increasing interest in using pathological whole slide images (WSIs)
in the field of digital pathology (Litjens et al., 2016; Bandi et al., 2018; Zanjani et al.,
2018). However, WSIs are characterized by their tremendously large sizes ranging from
10k×10k pixels to even 100k×100k pixels. Given this, when applying a deep learning-based
algorithm for the automatic analysis of histopathology WSIs, the atomic entities to be
directly processed are smaller cropped patches (Hou et al., 2016), and usually up to 1000s
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of patches can be obtained from just a single WSI. In contrast to the size, the number of
WSIs available to train a learning-based model is often comparably small (e.g. < 50 in
many cases). Meanwhile, patches from the same slide share significant features in terms of
appearances or morphologies (Figure.1). The accumulative effort of these factors renders a
significant issue that a learning-based model tends to link the diagnosis to the slide-specific
features that are not diagnostically relevant. This situation will lead to severe over-fitting
and undermine the model’s capability of generalization, especially when the number of slides
for training is small.

Three commonly-used approaches exist to relieve the negative effect of this issue: stain-
ing normalization (Magee et al., 2009; Macenko et al., 2009), color augmentation (Tellez
et al., 2019), and slide domain adversarial (SDA) (Lafarge et al., 2017; Ganin et al., 2016).
Both staining normalization and augmentation serve as pre-processing steps either to unify
the staining appearances of patches from different slides, or to introduce varieties of color in
patches as a data augmentation approach. These two methods require a comparably large
amount of time to pre-process an image before feeding it into a model. SDA is implemented
by adversarial training to extract the features of a patch that are agnostic to the slide where
the patch is from. However, SDA requires extra network architectures and consequently
needs more computational resources.

In this paper, we propose a new alternative approach to directly reduce the correlations
of high-level representations of patches from the same slide. It is intuitive and can be
implemented by just introducing a regularization term to standard loss functions during
training. Compared with the above three approaches, it requires no extra cost in pre-
processing of images and introduces no extra network modules. In addition, since there is
only one hyper-parameter in the proposed regularization term to be fine-tuned, it is easier to
search for the optimal configuration. In summary, the contributions of this paper are (1) a
new regularization term to directly reduce correlations between patches from the same slide,
in order to alleviate over-fitting and enhance generalization capability of learning models;
and (2) proven performance demonstrated by an empirical validation on a WSI dataset of
uveal melanoma.

In what follows, we refer to slide correlation reduction (SCR) to the method trained
with the proposed regularization term.

(a) (b) (c) (d) (e) (f ) (g) (h)

Figure 1: Eight pairs of patches from eight H&E slides of uveal melanoma.
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2. Dataset and Method

2.1. Dataset Description

The proposed method is verified with a task to predict the nuclear BAP1 (nBAP1 ) immuno-
histochemical expression (positive or negative) of a section of a uveal melanoma (Zhang
et al., 2020) on the basis of haematoxylin-and-eosin (H&E) stained slides only. Uveal
melanoma (UM) is the most common primary intraocular malignancy in adults, and a high
proportion of patients develop metastases to the liver, which is unfortunately incurable at
present. Should the metastases be detected early, the UM patients can undergo liver surgery
to prolong survival (Gomez et al., 2014; Marshall et al., 2013). A mutated BAP1 gene is
strongly associated with highly metastatic UM. Whilst this mutation can be determined
using genetic analyses, immunohistology can be applied as a surrogate marker, whereby
strong nuclear protein staining indicates that the BAP1 gene is intact, and loss of nuclear
staining is related to mutant BAP1 (Kalirai et al., 2014; Farquhar et al., 2018).

This task is a specific case of a group of applications that aim to predict gene expression
and mutations on the basis of histopathology slides using deep learning, which is an ongoing
and booming field in recent years (Chen et al., 2020; Schmauch et al., 2020; Sun et al.,
2019; Coudray et al., 2018), and they share similar problem contexts and corresponding
methodologies. Gene mutations usually result in the same alterations in cellular morphology
across the tissue region, which would imply that all the patches extracted from a WSI are
usually assigned with the same label. In such a case, the over-fitting issue tends to be more
server, given a large number of patches from the same slide that share similar features and
have the same patch label.

In total, 184 cases of enucleated eyes were taken from pathology archives of the Royal
Liverpool University Hospital, with each case including one tumour-representative slide
being scanned at 40× magnification. We randomly selected 140 slides (66 BAP1 positive
and 74 BAP1 negative) as the training set and 44 slides (16 BAP1 positive and 28 BAP1
negative cases) as the test set. For each slide, patches of 1024×1024 pixels were tiled from
the tumor regions, and the nBAP1 status of each patch was labeled by the corresponding
slide nBAP1 status. In total there were 99,778 patches for training and 30,693 patches for
testing.

In the Appendix, we have provided the validation results on the Camelyon16 (Bejnordi
et al., 2017) dataset with the task to detect lymph node metastases in women with breast
cancer.

2.2. Correlations between patches from the same slide

As shown in Figure.1, patches from the same slide have high similarities in terms of appear-
ance and morphology.

We conducted two experiments on the 140 slides for the empirical demonstration of
highly correlations between patches cropped from the same slide. The patches cropped
from the 140 slides were split into training set and validation set in two different ways. In
the first experiment, we mixed the patches from different slides and randomly split them
into training set and validation set; therefore patches from the same slide could exist in both
training and validation set. Figure.2.(a) shows the performance of training and validation
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over 10 epochs in terms of area under curve (AUC). For the second experiment, we split
the dataset at the slide-level to avoid information leakage as of the first experiment. That
is, all the patches from a slide were either in the training set or validation set, but would
not co-exist in both sets. Figure.2.(b) illustrates the training and validation performances.
We can see from Figure.2 that when splitting patches from the same slide into training set
and validation set randomly, the performances on the validation set were synchronized with
those on the training set over epochs and could achieve high AUC values (Figure.2.(a)).
In contrast, when all patches from a slide exist only on one set, the performances on the
validation set were significantly worse than that on the training set. These two figures imply
the strong correlations of patches from the same slide and the shared features were learnt
by the trained model as the diagnostic features.
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Figure 2: Area under curve values on training set and validation set over 10 training epochs.
(a). Patches from different slides are randomly split into training set and vali-
dation set. (b). All the patches from a slide exist only either on training set or
validation set. ResNet-18 is used.

2.3. The regularization term for slide correlation reduction

Consider N patches extracted from different slides as a batch. The ith patch is denoted as
ai (i = 1, 2, ..., N) with its slide index si that indicates the patch is from slide si. If patch ai
and patch aj are from the same slide, then si = sj . A vector feature fi ∈ RD×1 serves as the
feature representation of patch ai extracted through a convolutional neural network, and D
is the dimension of the vector. The extracted features can be used for various downstream
tasks. For the task considered specifically in this paper to predict the nBAP1 status of
uveal melanoma, the extracted features are fed into a classifier that generates prediction
that indicates the probabilities of the corresponding patch to be BAP1 positive and BAP1
negative, denoted as pi ∈ [0, 1]2. The loss function to train the network within the scope of
the batch is formulated as,

L =
1

N

N∑
i

C(pi, li), (1)
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where li is the ground-truth label for patch i and C is a criterion function that measures the
distance of prediction pi to the ground-truth label li. Cross-entropy is the most common
criterion function for classification applications.

The contribution of this paper is a regularization term added to the L, which quantifies
the correlations of patches from the same slide,

L =
1

N

N∑
i

C(pi, li) + βLcr(F̂ , s) (2)

where β is a positive weight, F̂ ∈ RD×N is the matrix that stacks the normalized feature
vectors in the batch, i.e., the ith column in F̂ is f̂i = N (fi), with N being the operation
that normalizes the values of the element in fi to be between -1 and 1. And s ∈ RN is the
vector that contains the slide indice information, i.e., the ith element of s is si. The specific
formation of the proposed regularization term is formulated as,

Lcr(F̂ , s) =
1

D

∑
0<i<j≤N

f̂T
i f̂j I(i, j)

=
1

D

∑
0<i<j≤N

uT
i F̂

T F̂ uj I(i, j)

(3)

where ui ∈ RN×1 is the one-hot vector with the ith element being one and the rest all being
zero. T is the matrix transpose operation. I(i, j) is the indicator function,

I(i, j) =

{
1, if si = sj (i.e., from the same slide)

0, otherwise
(4)

Equation (3) can be simplified into a matrix operation form as,

Lcr(F̂ , s) =
1

D
S
(
F̂ T F̂ �M

)
, (5)

where S is the operation that sums up all the elements in a matrix, � is the element-wise
product, and M ∈ RN×N is an upper-triangular matrix with the element of ith row and jth
(i<j) column being defined as

Mi,j =

{
1, if si = sj

0, otherwise
(6)

The F̂ T F̂ is exactly the Gramian matrix (Horn and Johnson, 2012), in which the value of
the element of ith row and jth column being the correlation of f̂i and f̂j , with a higher value
suggesting the corresponding pair of features are more correlated. M serves to select the
target correlation values in F̂ T F̂ .

2.4. Interpretation

The two terms in Equation (2) work in an adversarial way in some sense. On the one
hand, minimizing the first term results in searching for the subspaces of feature that are
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diagnostically discriminative. However, the learnt subspaces inevitably incorporate the
feature spaces related to specific slides that are not diagnostically relevant and consequently
not informative to discriminate the category. Therefore it hampers a model being trained to
be more generalized. The situation is even worse if the number of slides is particularly small.
On the other hand, the proposed regularization term (the second term in Equation (2)) aims
to drive the learnt features away from the subspace characterized by each individual slide.
Note that the subspace of an individual slide feature also overlaps with diagnostic subspace,
thus a proper weight β is required to function the trade-off.

(a) Without SCR. ResNet-
18

(b) Without SCR. ResNet-
50

(c) With SCR. ResNet-18 (d) With SCR. Resnet-50

Figure 3: t-SNE distribution of the learnt features of patches from 10 slides, with and
without slide correlation reduction (SCR), respectively. For each slide 100 patches
are considered, and the same color refers to patches from the same slide. Features
closed to each other in the 2-dimensional space are merged to a larger ellipsoid.

3. Experiments

3.1. Configurations

Five deep learning architectures were utilized as the backbone feature extractors in the
experiments, namely ResNet-18, ResNet-50 (He et al., 2016), DenseNet-121 (Huang et al.,
2017), AlexNet (Krizhevsky et al., 2012) and VGG-16 (Simonyan and Zisserman, 2014),
and all were pre-trained with ImageNet dataset (Deng et al., 2009).

Patches were split into training set and test set based on slides. All the patches were
resized to 256×256 pixels, and random rotation was adopted as the data augmentation
approach during the training process. Each model was trained for 10 epochs with an initial
learning rate of 5e − 4 and then 1e − 4 after epoch 5. Stochastic gradient descent (SGD)
was used as the optimizer with a weight decay of 1e − 4. The slide-level performances are
reported which were obtained from the mean values of predictions of all patches in a slide.
Each performance value was the mean value of the results of 5 independent experiments.
The β was set to be 0.2. For all the experiments 0.5 was adopted as the threshold to
compute the performance metrics except for AUC.

3.2. Performance

Table.1 presents the results of the proposed method in comparison of the baseline (no SDA
nor SCR applied), SDA (Lafarge et al., 2017) and the proposed SCR by using different
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backbone architectures as the feature extractors. For the most informative performance
metric AUC, the proposed method is significantly superior to the baseline and SDA with
all the backbone architectures, and with large margins in most cases and can up to 8%
(ResNet-50). For all the other performance metrics, the proposed method is the best or
closed to the best.

In Table.2, stain normalization (SN) and color jitter (CJ) were utilized as the additive
pre-processing approaches to the baseline method, SDA, and the proposed SCR, respec-
tively. CJ served in a way as data augmentation and was implemented by multiplying the
values of brightness, contrast, saturation, and hue of an image with a random coefficient.
The random coefficient was drawn each time between 0.8 and 1.2 with uniform probability.
For the baseline method, the results show the CJ works better than SN. When combined
CJ with the proposed SCR, the performance can further be improved, since except for the
baseline method using DenseNet-121 (0.955 vs 0.947), the proposed method dominates the
other two in AUC. In particular, when using VGG-16 as the backbone, the proposed method
with CJ achieves the highest AUC values of all (0.968).

Network Method Accuracy Recall Specificity F1 AUC

Baseline 0.6490.011 0.8750.001 0.5210.017 0.6450.007 0.7760.015

Resnet18 SDA 0.6000.027 0.8120.001 0.4780.042 0.5960.016 0.7720.015

SCR 0.6220.031 0.8870.024 0.4710.057 0.6310.017 0.8340.002

Baseline 0.5190.007 0.9550.028 0.2700.026 0.5910.005 0.8010.021

Resnet50 SDA 0.5450.038 0.5740.025 0.5280.052 0.4790.028 0.6500.018

SCR 0.5840.031 0.9370.001 0.3820.049 0.6210.018 0.8890.003

Baseline 0.8130.029 0.8870.053 0.7710.069 0.7760.021 0.8890.004

AlexNet SDA 0.8950.018 0.8990.030 0.8920.039 0.8620.018 0.9160.001

SCR 0.7950.062 0.9120.050 0.7280.120 0.7690.049 0.9200.006

Baseline 0.8360.009 0.7370.025 0.8920.001 0.7660.016 0.8800.005

DenseNet121 SDA 0.8590.026 0.8120.068 0.8850.014 0.8060.043 0.8810.003

SCR 0.8220.017 0.8870.025 0.7850.039 0.7840.012 0.9180.005

Baseline 0.6950.027 0.8750.001 0.5920.042 0.6760.019 0.8910.007

VGG16 SDA 0.6720.030 0.750.001 0.6280.048 0.6250.021 0.8090.002

SCR 0.6950.018 0.9370.001 0.5570.028 0.6910.012 0.8930.010

Table 1: Performance of the baseline method, slide domain adversarial (SDA) and the pro-
posed regularization term of slide correlation reduction (SCR). The subscripts are
the standard deviation values. The best AUC values are in bold.

3.3. Feature distribution

Figure.2.4 presents the feature distributions obtained by mapping the high-dimensional
features to 2-dimensional using t-SNE (Van der Maaten and Hinton, 2008). As can be seen,
when without using SCR for training, the learnt features of the patches from the same slide
have smaller inter-distances in the feature space, and tend to cluster with each other. Such
clustering is more significant with larger networks such as ResNet-50 since it has higher
learning capability. This phenomenon suggests the slide-specific features are inevitably
encoded in the learnt presentations of the patches. In contrast, with the proposed SCR, the
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learnt features of the patches from the same slide distribute more evenly over the feature
space, and present weaker spatial clues to infer they are from the same slide. It implies
the slide-specific features among the same slide patches have been deprived from the learnt
features to some extent.

Network Method Accuracy Recall Specificity F1 AUC

Baseline+SN 0.8500.011 0.7740.030 0.8920.001 0.7890.018 0.8900.002

Resnet18 Baseline+CJ 0.8730.016 0.8920.028 0.8620.012 0.83670.021 0.9270.002

SDA+CJ 0.8990.011 0.9370.001 0.8780.017 0.8720.012 0.93340.002

SCR+CJ 0.8890.022 0.9280.021 0.8670.031 0.8590.026 0.9510.005

Baseline+SN 0.8540.023 0.8000.025 0.8850.026 0.8000.029 0.8990.006

Resnet50 Baseline+CJ 0.7770.009 0.9370.002 0.6850.014 0.7530.007 0.9360.005

SDA+CJ 0.8090.018 0.8620.025 0.7780.034 0.7660.016 0.9190.008

SCR+CJ 0.8450.017 0.9370.001 0.7920.026 0.8150.016 0.9530.002

Baseline+SN 0.8310.023 0.8000.072 0.8500.014 0.7740.040 0.8870.004

AlexNet Baseline+CJ 0.8500.011 0.8120.001 0.8710.017 0.7970.012 0.9110.003

SDA+CJ 0.7990.030 0.8750.001 0.7570.047 0.7610.027 0.9150.003

SCR+CJ 0.8590.022 0.8750.039 0.8500.052 0.8190.019 0.9320.002

Baseline+SN 0.7680.009 0.6000.030 0.8640.014 0.6520.018 0.8770.002

DenseNet121 Baseline+CJ 0.8360.009 0.8620.025 0.8210.001 0.7920.014 0.9550.003

SDA+CJ 0.8360.009 0.8750.001 0.8140.014 0.7950.008 0.9290.002

SCR+CJ 0.8630.014 0.8500.030 0.8710.017 0.8190.019 0.9470.004

Baseline+SN 0.7950.020 0.6120.061 0.8990.014 0.6830.041 0.8700.007

VGG16 Baseline+CJ 0.7450.037 0.7620.027 0.7350.059 0.6850.031 0.8630.010

SDA+CJ 0.7770.033 0.81250.055 0.7570.057 0.7260.034 0.8740.017

SCR+CJ 0.8720.011 0.8370.030 0.8920.001 0.8260.017 0.9680.003

Table 2: Performance of the baseline method, slide domain adversarial (SDA) and the pro-
posed slide correlation reduction (SCR), with stain normalization (SN) and color
jitter (CJ) serving as the extra pre-precossing methods. The subscripts are the
standard deviation values. The best AUC values are in bold.

4. Conclusion

In this paper, we propose an intuitive and easy-to-implement regularization term to be
added to the standard loss function, in order to reduce the correlation of patches from the
same slide, and in turn to increase the generalization capability of deep learning models. We
have applied this new approach for the analysis of histopathology WSIs for the prediction
of nBAP1 status. Indeed, it offers improved performance compared to existing approaches.
It is compatible and effective for a variety of existing network architectures. This SCR is
expected to be extendable to wider applications when the correlation is of concern.
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Appendix A. Ablation Study

We selected the cases with SCR and with color jitter as the pre-processing, which achieved
the best performance of all (see Table.2 in the main paper), to explore how performances
vary with different values of β in Eq.(2). Figure.(4) shows the performances have peaks
around β = 0.2 and slightly decrease with the increase of β. However, for a wide range
values of β better performances can be achieved than the one without SCR regularization
term (β = 0).

To further demonstrate it is exactly the reduction in slide correlation functions that
improves the generalization capability of a deep learning model, we conducted experiments
that instead of reducing slide correlations, enhanced slide correlations, simply by reversing
the plus sign to minus sign in Equation.(2). Figure.(3) presents the corresponding AUC
values, which shows by enhancing slide correlations (denoted as SCE) the performances are
significantly worse than by reducing slide correlations, and in some cases, it even has lower
AUC values than the baseline.
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Figure 4: Performances of slide correlation reduc-
tion using VGG16 with different values
of β.

Method Baseline SCE SCR

ResNet18 0.776 0.788 0.834
ResNet50 0.801 0.803 0.889
AlexNet 0.889 0.852 0.92

DenseNet121 0.88 0.885 0.918
VGG16 0.891 0.841 0.893

Table 3: AUC values of the baseline, slide
correlation enhance (SCE) and
slide correlation reduction (SCR)
methods, respectively.

Appendix B. Comparisons of the AUC values on training set and test set

Table.4 presents the AUC values on the training set and test set, respectively. Without
using SCR, the baseline method can achieve extremely high values of AUC on the training
set, which are significantly better than those with SCR. In contrast, the performances on the
test set of the baseline method are inferior to those with SCR. It demonstrates that when
trained with the proposed SCR, the issue of over-fitting can be alleviated to some extent,
and consequently the trained model is able to obtain higher generalization capability.

Appendix C. Validation on CAMELYON16 dataset

The Camelyon16 dataset (Bejnordi et al., 2017) contains 270 WSIs (160 normal and 110
tumor) for training, and 130 WSIs for testing (81 normal and 49 tumor). We followed (Li
and Ping, 2018) to use the first 140 normal slides and the first 100 tumor slides for training,
and the remaining slides for validation. 50,000 patches were extracted from the normal
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without SCR with SCR

Method Training Test Training Test

ResNet18 0.981 0.927 0.956 0.951
ResNet50 0.995 0.936 0.981 0.953
AlexNet 0.962 0.911 0.937 0.932

DenseNet121 0.993 0.955 0.977 0.947
VGG16 0.992 0.863 0.986 0.968

Table 4: AUC values on the training set and test set with and without the slide correlation
reduction (SCR) method. Both are with color jitter for pre-processing.

and tumor slides in the training set, respectively (In total 100000 patches for training).
From the validation set, 10000 normal patches and 10,000 tumor patches were extracted for
validation. All the patches were from the 40X magnification and with the size of 256 x 256
pixels. Random cropping to 224 x 224 pixels and random rotation/flipping were utilized as
the data augmentations. The networks were trained for 15 epochs with a constant learning
rate of 0.001. For more details please refer to the released code. Table.5 presents the patch-
level AUC values on the validation set. We can observe that the proposed SCR achieves
higher AUC values than the baseline method and the slide domain adversary (SDA) using
the two backbone networks (Resnet-18 and Resnet-50) with and without color jitter (CJ)
as the data augmentation.

Resnet18 Resnet18 (CJ) Resnet50 Resnet50 (CJ)

Baseline 0.9100.002 0.9220.003 0.9090.005 0.9260.003
SDA 0.9060.006 0.9230.002 0.9180.003 0.9290.003
SCR 0.9230.002 0.9340.001 0.9220.004 0.9310.002

Table 5: Patch-level AUC values of the baseline method, SDA and the proposed SCR on
the validation set of Camelyon16, respectively. CJ: color jitter.
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