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ABSTRACT

In Open Vocabulary Semantic Segmentation (OVS), we observe a consistent drop
in model performance as the query vocabulary set expands, especially when it
includes semantically similar and ambiguous vocabularies, such as ‘sofa’ and
‘couch’. The previous OVS evaluation protocol, however, does not account for
such ambiguity, as any mismatch between model-predicted and human-annotated
pairs is simply treated as incorrect on a pixel-wise basis. This contradicts the open
nature of OVS, where ambiguous categories may both be correct from an open-
world perspective. To address this, in this work, we study the open nature of OVS
and propose a mask-wise evaluation protocol that is based on matched and mis-
matched mask pairs between prediction and annotation respectively. Extensive
experimental evaluations show that the proposed mask-wise protocol provides a
more effective and reliable evaluation framework for OVS models compared to
the previous pixel-wise approach on the perspective of open-world. Moreover,
analysis of mismatched mask pairs reveals that a large amount of ambiguous cat-
egories exist in commonly used OVS datasets. Interestingly, we find that reducing
these ambiguities during both training and inference enhances capabilities of OVS
models. These findings and the new evaluation protocol encourage further explo-
ration of the open nature of OVS, as well as broader open-world challenges.
Project page: https://qiming-huang.github.io/RevisitOVS/.

“The limits of my language mean the limits of my world.”

Ludwig Wittgenstein

1 INTRODUCTION

Open-world learning aims to address the problem of learning with novel and unknown categories
or data distributions that are often encountered in the real world. With the development of large
language-vision (LLV) models, such as CLIP (Radford et al., 2021), open vocabulary tasks are
proposed to utilise the strong language visual alignment capability from LLV to identify objects
from the data, including new entities not in the training data. Particularly, open vocabulary semantic
segmentation (OVS) is a task where models trained on a close-set semantic segmentation dataset
perform zero-shot inference on an unseen dataset by providing a vocabulary set for any object.

In an open-world setting, object category boundaries are often ambiguously defined. For instance,
when describing visual objects through language, highly ambiguous vocabulary may be used. While
this works in closed-set settings, where labels are assumed to be mutually exclusive. However, in the
case of open vocabulary semantic segmentation (OVS), where any vocabulary, including those with
significant semantic ambiguity, can be introduced. For example, as illustrated in Fig. 1, under the
current OVS evaluation protocol, predictions such as ‘flower’ and ‘chair’ are considered incorrect,
despite appearing reasonable to humans from an open-world perspective. In this paper, we aim to
address the challenges posed by such ambiguous categories by revisiting the open nature of OVS,
trying to answer: whether we should treat the ambiguous categories as incorrect or correct ones,
and how to encourage OVS to be more open?
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Figure 1: Category ambiguity in open vocabulary semantic segmentation. One object can be as-
signed multiple possible labels while the human label is only one of them. For example, the area on
the left with a yellow star was annotated as ‘plant’ by humans, but predicted to be ‘flower’ by the
OVS model; the bottom part annotated as ‘seat’ was predicted as ‘chair’ by OVS model.

Specifically, we first revisit the existing OVS evaluation process from the perspective of open-world
learning, and find that it follows a closed-set approach, where predictions are considered incorrect
if they do not match with the predefined category. We observe that as the number of inference cat-
egories increases, the performance of existing OVS models significantly declines, indicating issues
caused by category ambiguity. To study this, we find that expanding model predictions from pixel-
wise argmax to category-wise mask-wise predictions effectively mitigates such ambiguity problems.
To this end, we propose an open-set prediction approach and a corresponding generalised category-
preserving evaluation metric. We find that the proposed new prediction and evaluation framework
significantly improves the performance of existing OVS methods. Additionally, based on our pro-
posed evaluation framework, we construct an ambiguous vocabulary graph between model predic-
tions and human annotations, revealing clear community structures where vocabularies within the
same community correspond to visually similar objects.

The main contributions of this study can be summarised as follows: 1) We revisit existing OVS
paradigms from an open-world perspective, offer insightful observations, and propose feasible so-
lutions to encourage more openness in OVS. 2) Our proposed mask-wise evaluation protocol effec-
tively addresses the issue of ambiguous categories in open-world evaluation. 3) Based on the pro-
posed evaluation framework, we introduce an approach to conltruct a confusion vocabulary graph for
existing OVS datasets, highlighting the significant presence of ambiguous category annotations. 4)
Extensive experimental analysis and comparisons validate the effectiveness of the proposed method,
which achieves state-of-the-art performance with a new paradigm for OVS in the open world.

2 RELATED WORKS

2.1 CLOSE-SET SEGMENTATION

This task aims to segment images into regions with predefined categories. Fully Convolutional
Networks (FCNs) (Long et al., 2015) marked the beginning of the deep learning era in image seg-
mentation. Subsequently, convolution-based (Li et al., 2023) and Transformer-based (Liu et al.,
2021) approaches further enhanced the model’s performance in semantic segmentation (Zhao et al.,
2017; Wang et al., 2020; Shen et al., 2022; Chen et al., 2017; Ronneberger et al., 2015; Xie et al.,
2021), instance segmentation (He et al., 2017; Lin et al., 2014; Chen et al., 2019a; Liu et al., 2018;
Qi et al., 2021), and panoptic segmentation (Kirillov et al., 2019b;a; Cheng et al., 2021; Zhang et al.,
2021). Despite the continuous advancements in closed-set segmentation methods, predefined cate-
gory sets are inadequate for open-world vision applications where the number of object categories
is vast and constantly evolving. In this work, we focus on adapting closed-set evaluation metrics to
accommodate open-world scenarios, especially for dealing with the case of ambiguous categories.

2



Published as a conference paper at ICLR 2025

2.2 OPEN VOCABULARY SEMANTIC SEGMENTATION

Close-set segmentation aims to train the model to segment predetermined categories while OVS
aims to segment the objects with arbitrary vocabulary queries (Cho et al., 2023; Xie et al., 2023;
Xu et al., 2023) which enables the open ability for model prediction. There has been some re-
cent exploratory work in this direction. LSeg (Li et al., 2022) utilised CLIP (Radford et al., 2021)
to train a visual encoder that generates pixel-level visual embeddings from an image, which are
aligned with the corresponding textual embeddings learned from the training labels within the CLIP
embedding space. OpenSeg (Ghiasi et al., 2022) employed a class-agnostic segmentation module
utilising region-to-image cross-attention to detect local regions in images. Two-stage frameworks,
ZegFormer (Ding et al., 2022) and ZSseg (Xu et al., 2022), also extract class-agnostic region pro-
posal similar to (Ghiasi et al., 2022) at the first stage, then utilised pretrained vision-language
models like CLIP to classify masked regions. Liang et al. (2023) improves CLIP’s performance
on masked images by finetuning CLIP on image-text pairs. CAT-Seg (Cho et al., 2023) proposed
a cost aggregation method to optimise the image-text similarity map by fine-tuning the CLIP en-
coder and obtaining accurate pixel-level predictions. MaskCLIP (Dong et al., 2023) integrates a
novel masked self-distillation technique into contrastive language-image pretraining, aiming to de-
rive pixel-level embeddings from CLIP for immediate application in segmentation tasks. SED (Xie
et al., 2023) introduced an encoder-decoder architecture consisting of a hierarchical encoder-based
cost map generation and a gradual fusion decoder with category early rejection to obtain pixel-level
image-text cost map prediction. Despite the progress achieved by the previous OVS models, the
existing training and inference of OVS still adhere to the pipeline of close-set recognition, i.e. a
fixed training vocabulary set is used during training, and a particular dataset-specific vocabulary set
is given during inference.

2.3 THE EVALUATION OF OVS

The current evaluation methods for open vocabulary semantic segmentation primarily rely on the
mean Intersection over Union (mIoU) metric, which assesses classification accuracy at the pixel
level. However, this approach depends on strict pixel matching, where predictions are deemed cor-
rect only if they match the ground truth class exactly, making it unsuitable for open-world scenarios.
Recent studies (Zhou et al., 2023; Liu et al., 2023) attempt to address this by incorporating textual
similarity between categories, assigning partial accuracy scores based on the degree of similarity
during IoU computation. While this approach introduces flexibility, textual similarity alone cannot
reliably capture the visual-semantic relationships between objects, limiting its effectiveness. In this
work, we focus on evaluating models based on visual similarity, directly comparing the overlap be-
tween segmentation predictions and human annotations to better distinguish visually similar classes
in open-world settings.

3 REVISITING OPEN VOCABULARY SEMANTIC SEGMENTATION

Definition of OVS. Open vocabulary semantic segmentation (OVS) aims to train segmentation
models that can leverage textual descriptions to segment arbitrary objects. Given two category sets,
Ctrain and Ctest, where Ctrain and Ctest are not equal in terms of object categories (Ctrain ̸=
Ctest), the model is trained on Ctrain and directly tested on Ctest. Typically, Ctrain and Ctest

are described using noun phrases (e.g. sky, ocean, mountains, etc.). During the testing stage, the
previous assumption held by OVS is that it is known which dataset the test data originates from, and
the whole vocabulary set corresponding to the dataset is provided as the inference vocabulary, CD1 ,
CD2 , . . . , CDn .

Training objective. Consider the Maximum A Posterior (MAP) estimate for training a deep learn-
ing model with given data X and a certain vocabulary set V , let the prior distribution of Θ be g(Θ).
We want to find a parameter Θ that maximises:

ΘMAP = argmax
Θ

P (Θ|X,V). (1)

3



Published as a conference paper at ICLR 2025

Since the training vocabulary set V is considered a fixed set in most previous OVS works (Cho et al.,
2023; Xie et al., 2023; Xu et al., 2023), we apply Bayes’ theorem to get:

ΘMAP ∝ argmax
Θ

logPV(X|Θ) + log g(Θ). (2)

Although OVS intends to incorporate vocabulary during training, the objective above fails to con-
sider the vocabulary during the model optimisation. Here we propose to turn the training vocabulary
into a random variable represented by P (V), as aforementioned, we have our MAP estimate for
training an OVS model:

Θ̂MAP = argmax
Θ

P (Θ|X,V)

= argmax
Θ

P (X|Θ,V)P (V|Θ)P (Θ)

P (X|V)P (V)
∝ argmax

Θ
logP (X|Θ,V)︸ ︷︷ ︸

likelihood

+ logP (V|Θ)︸ ︷︷ ︸
language likelihood

+ logP (Θ)︸ ︷︷ ︸
prior

. (3)

We notice that compared to the original objective in Eq. 2, the current optimisation incorporates
another term P (V|Θ) that relates to the vocabulary distribution (for a detailed mathematical deriva-
tion, please refer to the supplementary material). Considering vocabulary V as a random variable
during training, the model parameters Θ are dependent on both the observed training data X and the
vocabulary V through maximising the P (V|Θ) and P (X|Θ,V) terms. This implicitly constructs the
relationship between model parameters and vocabulary distribution, and could be beneficial to OVS
in open world scenarios.

Zero-shot inference capability. Open vocabulary semantic segmentation models can perform
zero-shot inference on unseen datasets while providing customisable vocabulary. Given an image
Ii ∈ RB,C,W,H and vocabulary candidate set V ∈ RB,D, the OVS model takes Ii and V as in-
put, and generates a class posterior P (yi|X,Θ,V). Usually the consequent semantic segmentation
predictions are obtained by applying the argmax operation:

Ŷ = argmax
yi∈V

P (yi|X,Θ,V). (4)

In zero-shot inference, a spatial posterior Ŷ ∈ RC,W,H is generated, where C denotes the number of
classes, similar to the vocabulary in open vocabulary semantic segmentation (OVS). Each pixel is as-
signed to the class in Vtest with the highest posterior probability. Existing OVS methods assume that
the test images come from a specific dataset (e.g. ADE20K (Zhou et al., 2019) or PASCAL-Context
(Mottaghi et al., 2014)), and they use the corresponding dataset-specific vocabulary to restrict all
predictions to the dataset’s vocabulary.

The open nature of OVS. In an open-world scenario, the open nature of visual semantic objects
implies that they may belong to multiple labels (described by different vocabularies or captions),
which is overlooked. This open nature in vocabulary segmentation emphasises that object classifi-
cation is not rigid or strictly predefined, allowing for greater flexibility in category assignment and
interpretation. Specifically, it encompasses two key aspects: 1) Multiple Labels: An object can
simultaneously be associated with multiple category labels, reflecting the complexity and richness
of real-world concepts. 2) Semantic Similarity: A predicted category may not exactly match the
ground truth label, but if it is semantically similar, it should not be considered entirely incorrect. For
example, predicting “vehicle” instead of “car” is still valid, as both vocabularies capture the essence
of the object within a broader semantic context.

4 MASK-WISE EVALUATION PROTOCOL

4.1 NOTATIONS AND DEFINITIONS

For the sake of clear understanding, we first define the main symbols used in the proposed evaluation
framework and their meanings. For image Xi from a testing datasetD, we have the class probability
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Figure 2: The proposed mask-wise evaluation protocol. The Valid Set A consists of all masks
where A = {Mi |Mi ∈ {M1,M2, . . . ,MK}}. B represents the list of masks where the predicted
category matches the category annotated in the ground truth (GT). B̂ is the set of masks obtained
by performing bipartite matching between (A \ B) and the GT, where the IoU of the matched pairs
exceeds the threshold τAV . For example, “stairs” belongs to B̂ in this figure. C is defined as
C = A \ (B̂ ∪ B). The adjacent matrix helps construct the ambiguous vocabulary graph, enabling
community discovery for a better understanding of model predictions. See Section 4.3 for details.

distribution predicted by the model, referred to as logits, denoted by Li ∈ RC×W×H , where C
represents the total number of classes, and W and H denote the width and height of the image,
respectively. Pixel-wise semantic segmentation annotations are represented as Yi ∈ {0, 1, . . . , C −
1}W×H , where each value corresponds to the class index of the respective pixel. The one-hot
encoded form of these annotations is given by Mi ∈ {0, 1}C×W×H , where each pixel is either 0 or
1, Mtrue

i ∈ {0, 1}Ctrue×W×H is the mask list with all annotated category mask only, Ctrue < C.
Binary predicted masks, B(τ) ∈ {0, 1}C×W×H , are obtained by thresholding Li with a threshold
τ , such that:

B(τ)i =

{
1, if Li ≥ τ,

0, otherwise.
(5)

The CM ∈ NC×2×2 is a binary confusion matrix for dataset D, where each class c has:

CMc =

[
TPc FPc

FNc TNc

]
. (6)

EM ∈ RC×1 is a vector used to quantify the error proportion for each class in the model’s predic-
tions. The error proportion is calculated as the ratio of the number of pixels with a value of 1 in the
corresponding binary mask to the total number of pixels in the image i as follows:

erri,c =
Number of pixels with a value of 1 in the binary mask

Total number of pixels
. (7)

4.2 EVALUATION PROTOCOL

Our mask-wise evaluation protocol provides CM, AV, and EM under different thresholds as detailed
in Appendix A.1. Here, CM represents the binary confusion matrix between the predicted categories
and the annotated categories. AV captures predictions with high overlap (> τAV) between the pre-
dicted and annotated masks but with mismatched categories. Only CM and EM are used to evaluate
the model’s performance, as they are based on comparisons with the ground-truth annotations. AV,
however, is utilised for subsequent ambiguous vocabulary graph analysis (i.e. analysing ambiguous
vocabulary in the model’s predictions) rather than directly assessing the model’s performance.
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Based on our proposed evaluation protocol, we define three metrics front, back and err to evaluate
OVS model performance across different thresholds, defined as:

frontτ =
1

|C|
∑
c∈C

CMτ [TPc]

CMτ [TPc] + CMτ [FPc] + CMτ [FNc]
(8)

backτ =
1

|C|
∑
c∈C

CMτ [TNc]

CMτ [TNc] + CMτ [FPc] + CMτ [FNc]
(9)

errτ =
1

|C|
∑
c∈C

EMτ,c (10)

Here, frontτ,c and backτ,c represent the recognition IoU of the foreground and background classes,
respectively, for each category c, where c ∈ C under threshold τ . The foreground class refers to the
pixels labelled as relevant to the target in category c (i.e. the regions belonging to that category), the
background class refers to the pixels labelled as irrelevant to the target in category c (i.e. regions
outside that category). The errτ represents the average proportion of incorrectly predicted pixels
across all categories under the threshold τ . Inspired by best F1 thresholding (Lipton et al., 2014),
the best threshold τ⋆ can be automatically determined by:

τ⋆ = argmax
τ∈{0.1,0.2,...,0.9}

(√
front2i + (1− erri)2

)
. (11)

4.3 AMBIGUOUS GRAPH IN OUT-MATCHED PAIR

Building ambiguous vocabulary graph. Graph is a structure used to model pairwise relationships
between objects. It is commonly described using an adjacency matrix, where each entry in the
matrix represents the connection or interaction between two nodes (in this case, vocabularies). The
confusion graph is constructed based on the model’s predictions and the manually annotated classes.
The graph is used for analysing the model’s performance in classification task (Jin et al., 2017).

The adjacency matrix AV for ambiguous vocabulary graph is the ambiguous vocabulary matrix
in Appendix A.1. Each element AVi,j represents the number of times the model predicts class
j, while the ground truth is class i. For each out-matched pair, the adjacency matrix is updated.
For example, if there is an out-matched pair such as “couch”-“sofa” where the ground truth class
is “sofa” and the predicted class is “couch”, we update the corresponding entry in the adjacency
matrix, AVsofa,couch, by incrementing it by 1. This represents the frequency with which the model
misclassified “sofa” as “couch” with a high IoU overlap (IoU > τ̂ ).

Community discovery over ambiguous graph. Given the confusion graph represented by the cor-
responding adjacency matrix A ∈ RC×C , we can perform community discovery to identify groups
of classes that are frequently confused with each other. This process involves partitioning the nodes
(classes) into communities such that nodes within the same community have stronger connections,
as reflected by higher values in the adjacency matrix, than those across different communities.

One common approach for community discovery is modularity maximisation. The modularity Q of
a given partition of the graph is defined as:

Q =
1

2m

∑
i,j

[
Ai,j −

kikj
2m

]
δ(ci, cj) (12)

where Ai,j is the weight of the edge between nodes i and j in the adjacency matrix, ki and kj are the
degrees (total edge weights) of nodes i and j, respectively, m is the total weight of all edges in the
graph, i.e. m = 1

2

∑
i,j Ai,j . δ(ci, cj) is the Kronecker delta function, which is 1 if nodes i and j

belong to the same community and 0 otherwise. The goal of community discovery is to maximise Q
in order to find the optimal partition of nodes into communities. In the ambiguous vocabulary graph,
if two categories are often confused by the model, they are likely to be in the same community.
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5 EXPERIMENT

5.1 DATASETS AND IMPLEMENTATION DETAILS

Following previous OVS works (Cho et al., 2023; Xie et al., 2023; Xu et al., 2023), we train the mod-
els on the COCO-Stuff171 (Caesar et al., 2018) dataset with 171 categories and perform zero-shot
evaluation on ADE20K (Zhou et al., 2019) and PASCAL-Context (Mottaghi et al., 2014) datasets.
ADE20K has two types of annotations namely ADE150 with 150 classes, and ADE847 with 847
classes. PASCAL-Context has the most frequent 59 classes annotation version PC59, and fully
annotated version PC459 with 459 categories.

In this work, we utilise the following benchmark models for evaluation: SAN (Cho et al., 2023),
CAT-Seg (Cho et al., 2023), SED (Xie et al., 2023), and MAFT+ (Jiao et al., 2024). In addition to
the default setting, which uses dataset-specific vocabulary during inference for each dataset, we also
created a joint-dataset inference vocabulary set, denoted by ⋆. This joint-dataset vocabulary set is
disjoint from PC59, ADE150, PC459, and ADE847, resulting in a total of 1,086 vocabularies. The
threshold τ̂ is set to 0.8.

We follow exactly the same configuration for experiments with the benchmark models. The experi-
ments were conducted on a NVIDIA A100 GPU.

5.2 RE-BENCHMARKING

Table 1: Quantitative results of our proposed mask-wise evaluation protocol. The symbol ⋆ indi-
cates using a joint-dataset vocabulary set during testing. NULL denotes non-out-matched mask is
predicted. Results of the conventional argmax pixel-wise approach are shown in the first four rows.

Method Venue PC59 ADE150 PC459 ADE847
SAN CVPR’23 57.70 32.10 15.70 12.40
CAT-Seg CVPR’24 63.30 37.90 23.80 16.00
SED CVPR’24 60.90 35.30 22.10 13.70
MAFT+ ECCV’24 59.40 36.10 21.60 15.10

front↑ back↑ err↓ front↑ back↑ err↓ front↑ back↑ err↓ front↑ back↑ err↓
SAN CVPR’23 65.91 93.75 9.99 42.89 93.12 8.56 27.65 70.87 6.67 22.84 92.46 8.41
CAT-Seg CVPR’24 68.46 94.24 Null 45.74 94.61 5.53 30.95 68.96 3.86 26.39 93.66 5.20
SED CVPR’24 66.29 94.21 6.43 44.90 93.50 5.20 31.41 70.72 4.93 26.99 92.61 5.07
MAFT+ ECCV’24 64.95 93.57 9.10 46.51 93.10 7.31 31.89 70.82 7.12 28.72 92.15 7.84
SAN⋆ CVPR’23 64.32 91.83 10.99 42.18 91.50 8.32 27.85 69.06 6.20 21.01 91.04 5.10
CAT-Seg⋆ CVPR’24 66.35 92.24 2.19 50.04 92.68 2.30 11.56 67.32 2.00 12.83 91.20 2.20
SED⋆ CVPR’24 63.35 91.32 5.31 42.65 91.28 4.52 30.04 68.40 3.23 27.45 90.05 4.10
MAFT+⋆ ECCV’24 62.05 91.55 8.56 44.30 91.32 6.70 29.04 69.01 4.40 26.01 90.50 6.40

Here we compare the commonly used pixel-wise mIoU metric that uses the argmax operation and
our proposed mask-wise metric incorporating soft set prediction. The results are shown in Ta-
ble 1. Our observations are as follows: 1) Simply replacing the pixel-wise argmax-based mIoU
with the proposed mask-wise metric, front (target), leads to a performance improvement in existing
OVS models. The OVS model achieves high accuracy (above 90%) for back (non-target) across all
datasets, except for the PC459 dataset. 2) As the inference vocabulary increases (using the joint-
dataset vocabulary set during testing), our proposed evaluation method maintains relatively stable
performance for both front and back, whereas the performance of the previous argmax-based pixel-
wise evaluation method drops significantly, as shown in Table 2. The performance gap here is caused
by the ambiguous prediction while they have a high overlap in IoU with ground truth masks. Fur-
thermore, with the increase in the number of inference words, the model’s error rate also increases.

6 DISCUSSION

6.1 ANALYSIS OF MASK-WISE EVALUATION PROTOCOL

To validate the effectiveness of the proposed mask-wise evaluation protocol, we present several key
arguments that support its feasibility and practical utility, particularly in the open-world setting.

The effectiveness. Previous methods fail to quantitatively measure model performance in open-
world settings because they usually rely on category-level matching and evaluate only when the
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Table 2: The quantitative results of argmax
(i.e. pixel-wise) evaluation using a joint-
dataset vocabulary set during testing.

Method PC59 ADE150 PC459 ADE847

SAN 40.15 22.50 10.50 3.20
CAT-Seg 42.90 25.60 12.30 7.00
SED 43.70 24.10 11.00 5.20
MAFT+ 41.30 23.80 10.80 6.50

Figure 3: The stability of evaluation methods
in comparison when evaluated with more vo-
cabulary (i.e. in a more open setting).

predictions belong to a predefined set of categories. This approach often draws incorrect conclusions
when faced with new categories or synonyms (such as “sofa” vs. “long couch”). The quantitative
results of previous evaluation methods are compared with those of our method in Table. 3 where the
vanilla represents the argmax-based pixel-wise evaluation.

Our proposed evaluation method effectively eliminates the impact of ambiguous category labels via
mask matching, focusing on the mask overlap between the predictions and manual annotations. Even
in the case of joint datasets, where different datasets use different vocabularies to describe the same
or similar categories, our method is still able to evaluate through accurate mask overlap (e.g. IoU),
avoiding evaluation instability caused by differences in category terms. This mask-based evaluation
method allows our scheme to seamlessly adapt to the fusion of multiple datasets without unifying or
standardising the category labels of each dataset. In open-world settings, despite the limited number
of manually annotated categories, the OVS model is still able to predict as many new concepts as
possible, further demonstrating the applicability of the evaluation method.

Table 3: The quantitative comparison with previous pro-
posed evaluation methods, SG-IoU (Liu et al., 2024) and
Open-IoU (Zhou et al., 2023).

ADE150
Model Venue vanilla SG-IoU Open-IoU front err

SAN CVPR’23 31.88 32.92 39.00 42.89 8.56
CAT-Seg CVPR’24 35.68 36.75 39.90 45.74 5.53
SED CVPR’24 35.30 36.40 - 44.90 5.20
MAFT+ ECCV’24 36.10 37.08 - 46.51 7.31

PC459
Model Venue vanilla SG-IoU Open-IoU front err

SAN CVPR’23 20.83 16.72 19.90 27.65 6.67
CAT-Seg CVPR’24 22.23 17.91 20.30 30.95 3.86
SED CVPR’24 22.10 18.22 - 31.41 4.93
MAFT+ ECCV’24 21.60 16.45 - 31.89 7.12

ADE847
Model Venue vanilla SG-IoU Open-IoU front err

SAN CVPR’23 13.07 14.17 19.20 22.84 8.41
CAT-Seg CVPR’24 14.53 15.64 18.40 26.39 5.20
SED CVPR’24 13.70 14.89 - 26.99 5.07
MAFT+ ECCV’24 15.10 16.79 - 28.72 7.84

The stability. Our method is eval-
uated based on mask-wise matching,
which means that its main evaluation
criterion is the spatial overlap (such
as IoU) between the predicted mask
and the true annotated mask, rather
than relying solely on the matching of
class labels. When the number of vo-
cabulary increases, traditional evalu-
ation methods may experience large
fluctuations due to the complexity of
class label matching, especially when
there are synonyms or inter-class am-
biguities between different vocabu-
lary sets. However, since our method
only relies on matching the geometry
and position of the mask, when the
vocabulary set expands, the evalua-
tion results will not be significantly
affected by the expansion or change
of class labels.

Assume that we have a universal vo-
cabulary set Vopen, given a fixed testing dataset with k ground truth categories and correspond-
ing Vk vocabularies, a suitable vocabulary set Vtest for OVS testing on this dataset needs to sat-
isfy: Vk ⊆ Vtest. If we set the scale of testing vocabulary set to N , there exists C possible
subset vocabulary Vsub to satisfy as a good testing vocabulary set for the given dataset, where
C = Vtest!

(N−k)!(Vtest−(N−k))! . We then can use the Monte-Carlo method to approximate the up-
per bound and lower bound of test accuracy (Chen et al., 2019b) given various point estimations
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(ACC1, ..., ACCC |Vopen), for both the argmax with pixel-wise mIoU and our mask-wise evalua-
tion as presented in Fig. 3. Specifically, the dataset-specific vocabulary set and joint vocabulary
set are just two of many point estimations. We can observe that the proposed mask-wise evaluation
protocol maintains a stable measurement across different datasets compared to the commonly used
argmax-based and pixel-wise mIoU.

Our method is evaluated based on mask-wise matching, which means that its main evaluation cri-
terion is the spatial overlap (such as IoU) between the predicted mask and the true annotated mask,
rather than relying solely on the matching of class labels. When the vocabulary increases, traditional
evaluation methods may experience large fluctuations due to the complexity of class label matching,
especially when there are synonyms or inter-class ambiguities between different vocabulary sets.
However, since our method only relies on matching the geometry and position of the mask, when
the vocabulary set expands, the evaluation results will not be significantly affected by the expansion
or change of class labels.

Assume that we have a universal vocabulary set Vopen, given a fixed testing dataset with k ground
truth categories and corresponding Vk vocabularies, a suitable vocabulary set Vtest for OVS testing
on this dataset needs to satisfy: Vk ⊆ Vtest. If we set the scale of testing vocabulary set to N , there
exists C possible subset vocabulary Vsub to satisfy as a good testing vocabulary set for the given
dataset, where:

C =
Vtest!

(N − k)!(Vtest − (N − k))!
(13)

We then can use the Monte-Carlo method to approximate the upper bound and lower bound of test
accuracy (Chen et al., 2019b) given various point estimations (ACC1, ..., ACCC |Vopen), for both
the argmax with pixel-wise mIoU and our mask-wise evaluation. Specifically, the dataset-specific
vocabulary set and joint vocabulary set are just two of many point estimations. We can observe
that the proposed mask-wise evaluation protocol maintains a stable measurement across different
datasets compared to the commonly used argmax-based and pixel-wise mIoU.

6.2 ANALYSIS OF AMBIGUOUS VOCABULARY GRAPH

Using community discovery methods, we can partition the ambiguous graph into communities as
shown in Fig. 4a. Each community represents a cluster of classes that are often confused with
each other. For example, in an object detection or segmentation dataset, we might observe that the
categories “sofa”, “couch”, and “armchair” form a tightly connected community, indicating that
these classes are frequently misclassified or confused by the model.

This insight suggests that the dataset may contain ambiguous annotations where these objects are
not clearly distinguishable or where multiple terms are used interchangeably in different regions
or contexts. By visualising the labels of the same community, as shown in Fig. 4b, we find that

(a) (b)

water
river
sea

fog
sky
clouds

tree
bush
branch

rock
stone

house
building

table
counter

Figure 4: (a) A community extracted from the COCO-Stuff171 dataset (showing only 50 classes).
(b) Example images from the same community, where images from the same vocabulary community
exhibit visually similar semantics (best viewed in colour).
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Table 4: Quantitative results of reducing ambiguous vocabulary through non-target vocabulary re-
moval using our proposed evaluation protocol. Specifically, a proportion p of non-target vocabulary
is discarded during training, with p defaulting to 0.9. The notations “SED w/ 0.7”, “SED w/ 0.5”,
etc., denote results obtained with different values of p, where p = 0.7, 0.5, etc.

PC59 ADE150 PC459 ADE847Method front↑ back↑ error↓ front↑ back↑ error↓ front↑ back↑ error↓ front↑ back↑ error↓

MAFT+ -0.87 -0.23 -1.98 -1.56 -0.63 -2.30 -1.12 -0.08 -1.24 -1.81 -1.33 -1.96
SED +2.03 +0.61 -2.15 +5.28 +0.46 -0.21 +0.50 -0.04 -1.57 +1.51 -0.62 -2.00
SED w/ 0.7 +1.10 +0.40 -1.80 +3.40 +0.30 -0.70 +0.25 -0.02 -1.50 +1.00 -0.30 -1.80
SED w/ 0.5 +1.40 +0.50 -1.70 +3.90 +0.40 -0.60 +0.35 -0.01 -1.40 +1.30 -0.40 -1.70
SED w/ 0.3 +1.70 +0.55 -1.60 +4.20 +0.42 -0.50 +0.40 +0.01 -1.30 +1.40 -0.50 -1.60
SED w/ 0.1 +2.00 +0.60 -1.50 +4.50 +0.45 -0.40 +0.45 +0.02 -1.20 +1.50 -0.55 -1.50

these labels are extremely similar visually and difficult to distinguish through subtle visual differ-
ences. From a human perspective, these labels are likely to be classified as the same thing, showing
extremely high similarity, which may indicate that they share some core features or attributes.

Additionally, the community discovery process helps reveal systematic biases in the dataset. For
example, if certain categories (such as “sedan” “SUV” and “truck”) are often clustered in the same
community, this may indicate that the dataset lacks diversity in the representation of different vehicle
types, or that the model is inadequate in distinguishing between these categories. Details of the
community discovery results for the datasets used in this paper can be found in Appendix A.2.

Experiments show that reducing ambiguous vocabulary helps the one-stage model focus on mean-
ingful semantic distinctions and avoid distractions from subtle differences between similar cate-
gories, as shown in Table 4. This non-target vocabulary removal strategy aligns the language like-
lihood more closely with real-world distributions (Eq. 3), enhancing training efficiency. Since un-
der real-world scenario, vocabulary distributions are inherently uncertain and often include out-of-
distribution vocabularies absent from the training dataset. By dynamically perburbating the vocab-
ulary set by randomly discarding non-target vocabularies during training, the model is exposed to
diverse vocabulary subsets, mitigating reliance on a fixed vocabulary distribution. This perturbation
promotes better generalization and adaptability to unseen word distributions, ultimately strengthen-
ing the model’s robustness in open-world scenarios.

6.3 SUMMARY OF THE OBSERVATIONS

Based on the discussion above, we summarise the key findings as follows: 1) Through the analysis of
our ambiguous vocabulary graph, we identified the presence of numerous ambiguous or synonymous
vocabularies in commonly used OVS datasets. 2) After conducting community discovery analysis
on the ambiguous vocabulary graph established from the model’s predictions, we found that the
categories the model tends to confuse often belong to the same community, and their corresponding
images are visually similar. 3) We further proposed to remove such ambiguous vocabularies dur-
ing the training stage, by simply randomly discarding non-target vocabularies, and found it led to
performance improvements for the OVS model.

7 CONCLUSION

In conclusion, in this paper, we introduced a mask-wise evaluation protocol for Open-Vocabulary
Segmentation (OVS) to address the issue of ambiguous vocabulary in evaluation. These ambiguities
often arise under open-world conditions, where multiple interpretations of labels can be valid. Our
experiments validated the effectiveness of the proposed evaluation approach. Moreover, using our
evaluation protocol, we can construct an ambiguous vocabulary graph for OVS models, revealing
a significant presence of confusing annotations in current OVS datasets. The experiments further
showed that reducing such ambiguities can enhance the generalisation capability of OVS models,
leading to improved performance. In addition, a further discussion provided insights for follow-up
research. We hope our study could encourage the community to think more about the openness of
open-world problems and hopefully inspire new research questions.
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A APPENDIX

A.1 PSEUDOCODE OF THE MASK-WISE EVALUATION PROTOCOL

Algorithm 1 Mask-Wise Evaluation Protocol

Require: Annotated masks list {Mtrue
i }, predicted masks list {B(τ)i}, threshold range

{0.1, 0.2, . . . , 0.9}, and threshold τAV for ambiguous vocabulary matrix.
Ensure: Results for each threshold τ : { CMτ , EMτ , AVτ }

1: Initialize results dictionary Results← ∅
2: for τ ∈ {0.1, 0.2, . . . , 0.8, 0.9} do ▷ Iterate over all threshold values
3: Initialize confusion matrix CMτ ← 0
4: Initialize ambiguous vocabulary matrix AVτ ← 0
5: Initialize error matrix EMτ ← 0
6: for i ∈ D do ▷ Iterate over all images in the dataset
7: Obtain binary predicted masks B(τ)i
8: for c ∈ C true do ▷ Iterate over true categories
9: Compute binary confusion matrix for Mtrue

i,c and B(τ)i,c
10: Update confusion matrix CMτ,c with computed values
11: end for
12: Remove masks not in C true and zero masks from predictions:

B(τ)
rem
i ← {B(τ)i,c | c /∈ C true,B(τ)i,c ̸= 0}

13: Solve bipartite graph matching between B(τ)
rem
i and Mtrue

i :

Matches← {(b,m) | b ∈ B(τ)
rem
i ,m ∈Mtrue

i , IoU(b,m) > τAV }

14: for each matched pair (b,m) ∈ Matches do
15: Update AVτ,m,b ← AVτ,m,b + 1
16: Remove matched mask b from B(τ)

rem
i

17: end for
18: Let ˆB(τ)

rem
i be the remaining masks after removal

19: for c ∈ Categories in ˆB(τ)
rem

i do ▷ Iterate over remaining categories
20: Compute error erri,c for image i
21: Update error matrix EMτ,c ← EMτ,c + erri,c
22: end for
23: end for
24: Store results for current τ :

Results[τ ]← {CMτ ,AVτ ,EMτ}

25: end for
26: return Results
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A.2 THE COMMUNITY DISCOVERY RESULTS ACROSS THE DATASETS.

COCO-Stuff171
({’clouds’, ’fog’, ’sky-other’},
{’building-other’,
’curtain’,
’house’,
’skyscraper’,
’wall-brick’,
’wall-concrete’,
’wall-other’,
’wall-panel’,
’wall-stone’,
’wall-tile’,
’wall-wood’,
’window-blind’,
’window-other’,
’wood’},

{’carpet’,
’dirt’,
’floor-marble’,
’floor-other’,
’floor-stone’,
’floor-tile’,
’floor-wood’,
’gravel’,
’ground-other’,
’pavement’,
’platform’,
’playingfield’,
’road’,
’rug’,
’sand’},

{’river’, ’sea’, ’water-other’},
{’branch’,
’bush’,
’flower’,
’grass’,
’hill’,
’mountain’,
’plant-other’,
’potted plant’,
’straw’,
’tree’},

{’cabinet’, ’cupboard’, ’shelf’},
{’bus’, ’car’, ’train’, ’truck’},
{’rock’, ’stone’},
{’cage’, ’fence’, ’railing’, ’structural-other’},
{’counter’, ’desk-stuff’, ’dining table’, ’table’},
{’cloth’, ’textile-other’},
{’clothes’, ’person’},
{’furniture-other’, ’metal’, ’plastic’, ’stop sign’},
{’backpack’, ’handbag’},
{’cup’, ’wine glass’},
{’ceiling-other’, ’roof’},
{’hot dog’, ’sandwich’})

PC59
({’bench’,

’building’,
’cabinet’,
’ceiling’,
’chair’,
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’curtain’,
’diningtable’,
’door’,
’fence’,
’floor’,
’flower’,
’grass’,
’ground’,
’mountain’,
’platform’,
’pottedplant’,
’road’,
’rock’,
’shelves’,
’sidewalk’,
’track’,
’tree’,
’wall’,
’window’,
’wood’},

{’bus’, ’car’, ’truck’},
{’bag’, ’bed’, ’bedclothes’, ’cloth’, ’dog’, ’sofa’},
{’boat’, ’water’},
{’computer’, ’tvmonitor’},
{’bicycle’, ’motorbike’})

ADE150
({’awning’,

’blind’,
’booth’,
’building’,
’ceiling’,
’chandelier’,
’curtain’,
’door’,
’fence’,
’hill’,
’house’,
’lamp’,
’light’,
’mountain’,
’railing’,
’rock’,
’sconce’,
’screen door’,
’skyscraper’,
’tower’,
’wall’,
’windowpane’},

{’canopy’,
’dirt track’,
’earth’,
’field’,
’floor’,
’flower’,
’grass’,
’land’,
’path’,
’plant’,
’road’,
’rug’,
’runway’,
’sand’,
’sidewalk’,
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’tree’},
{’cushion’, ’pillow’},
{’car’, ’truck’, ’van’},
{’armchair’, ’chair’, ’seat’, ’sofa’, ’stool’, ’swivel chair’},
{’bookcase’,
’cabinet’,
’chest of drawers’,
’coffee table’,
’counter’,
’countertop’,
’desk’,
’kitchen island’,
’pool table’,
’shelf’,
’table’},

{’oven’, ’stove’},
{’lake’, ’river’, ’sea’, ’water’},
{’crt screen’, ’monitor’, ’television receiver’},
{’ashcan’, ’pot’, ’vase’},
{’stairs’, ’stairway’},
{’poster’, ’signboard’})

PC459
({’brick’,

’bridge’,
’building’,
’cabinet’,
’cabinetdoor’,
’cage’,
’ceiling’,
’closet’,
’concrete’,
’counter’,
’door’,
’fence’,
’floor’,
’footbridge’,
’ground’,
’handrail’,
’mat’,
’metal’,
’patio’,
’platform’,
’pole’,
’road’,
’rug’,
’sand’,
’shed’,
’shelves’,
’sidewalk’,
’sign’,
’sky’,
’table’,
’tableware’,
’unknown’,
’wall’},

{’car’, ’toycar’, ’truck’},
{’light’, ’lightbulb’},
{’bag’,
’bedclothes’,
’chair’,
’cloth’,
’clothestree’,
’cushion’,
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’flower’,
’grass’,
’leaves’,
’mountain’,
’pack’,
’pillow’,
’plant’,
’plastic’,
’pot’,
’pottedplant’,
’sofa’,
’stool’,
’straw’,
’towel’,
’tree’,
’wood’},

{’curtain’, ’window’, ’windowblinds’},
{’rock’, ’stone’},
{’dolphin’, ’water’, ’wharf’},
{’box’, ’paperbox’},
{’bicycle’, ’tricycle’},
{’beer’, ’bottle’, ’oxygenbottle’},
{’person’, ’player’},
{’coffee’, ’cup’, ’glass’},
{’screen’, ’tvmonitor’, ’videogameconsole’, ’videoplayer’},
{’picture’, ’poster’},
{’bird’, ’duck’},
{’rail’, ’track’},
{’dog’, ’fox’},
{’book’, ’paper’})

ADE847
({’baseboard’,

’central reservation’,
’curb’,
’floor’,
’footpath’,
’mat’,
’path’,
’road’,
’rug’,
’sidewalk’,
’skirting board’},

{’balcony’,
’building’,
’building materials’,
’cabin’,
’first floor’,
’house’,
’pane’,
’porch’,
’shop’,
’shops’,
’skyscraper’,
’street number’,
’windowpane’},

{’cover curtain’, ’curtain’},
{’flower’,
’forest’,
’plant’,
’plant pots’,
’pot’,
’tree’,
’trunk’,
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’vase’,
’weeds’},

{’bed’, ’beds’, ’eiderdown’},
{’door’, ’door bars’, ’doorframe’, ’double door’},
{’buffet’,
’cabinet’,
’chest of drawers’,
’coffee table’,
’desk’,
’table’,
’table cloth’,
’tables’,
’television stand’},

{’booth’,
’brick’,
’hill’,
’mountain’,
’mountain pass’,
’rock’,
’rocky formation’,
’shower room’,
’temple’,
’wall’},

{’apparel’, ’dummy’, ’person’, ’trouser’},
{’car’, ’truck’, ’van’},
{’cushion’, ’pillow’},
{’earth’, ’field’, ’grass’, ’land’, ’sand’},
{’counter’, ’countertop’, ’work surface’},
{’armchair’, ’chair’, ’rocking chair’, ’seat’, ’stool’, ’swivel chair’},
{’fireplace’, ’fireplace utensils’},
{’lake’, ’river’, ’sea’, ’shore’, ’water’},
{’awning’, ’blind’},
{’sofa’, ’sofa bed’},
{’light’, ’light bulb’}, {’lamp’, ’sconce’},
{’screen’, ’television receiver’},
{’ceiling’, ’eaves’, ’roof’},
{’cooker’, ’stove’},
{’clock’, ’watch’},
{’games table’, ’pool table’},
{’ashcan’, ’recycling bin’},

{’barrier’, ’fence’, ’railing’}, {’stairs’, ’step’})
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