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Abstract—Localizing objects is an essential capability for
robots to do tasks more autonomously. For instance, finding the
door and its handle to open it and navigate to the next room.
For scalability to open world settings, it is important to localize
objects which have not been seen before (zero-shot). For instance,
the door has a push bar, instead of the conventional handle.
Pretrained large language-vision object detection models, such as
GLIP, can localize a broad variety of object classes reasonably
well based on textual prompts and are ideal for zero-shot robotics.
We extend GLIP with contextual knowledge to diversify the
input prompts for better recall (pre-processing) and to filter
the candidate objects using relational information of objects in
context for better precision (post-processing). Diversification of
prompts is helpful to cover variations of the object (e.g., different
types of door handles). Spatial relations of objects are helpful to
verify object candidates (e.g., the handle is close to the door).
This verification is done by a neuro-symbolic program, endowed
with first-order logic to define the spatial relations. We show
that recall and precision of GLIP can be improved by leveraging
contextual knowledge and without retraining.

Index Terms—object localization, open world robotics,
language-vision model, prior knowledge

I. INTRODUCTION

Localizing objects is an essential capability for robots to do
tasks more autonomously. An example is a robot that needs to
explore a building. The robot should be able to find the door
and its handle in order to open it and to navigate to the next
room. A robot may have to look for a broad set of objects.
In an open world, the robot may even have to localize novel
objects, for which it was not trained specifically. It is however
not scalable to learn a new or extended model for every
new object of interest. Therefore, we consider the problem of
localizing novel objects in a zero-shot manner. We do so by
vision, i.e., object detection: producing bounding boxes with
a label for a given image. We leverage recent pretrained large
language-vision models that have a reasonable representation
of a broad set of object classes, such that they can also detect
novel classes [1]–[4]. We hypothesize that a large model such
as the zero-shot object detector GLIP [5] is able to detect such
objects in varying settings. GLIP has a very impressive zero-
shot performance. Indeed, various types of doors are detected
well by GLIP when prompting it for ‘door’. This holds even
for special cases of doors, such as an elevator door. However,
we find that GLIP does not generalize across similar object
classes. For instance, when prompting for ‘handle’, it does not
find a door’s push bar or knob. Hence the robot will not be able
to open the door, when using this simple prompting strategy.
To improve this, we use contextual knowledge to extend the
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prompt to a set of related relevant classes, e.g., ‘handle’ is
extended to ‘handle’, ‘push bar’, ‘knob’. The aim of this step
is to improve the recall of detecting objects, as we want the
robot to find as many relevant objects as possible.

The robot should also be efficient. To that end, we aim
to improve the precision. We hypothesize that the precision
can be increased by taking related objects in the context into
account. For instance, a handle is on the door, or very close to
it. These spatial relations can be used to further discriminate
within the candidate detections, to assess which one is most
likely the right one. GLIP can deal with composed prompts
[5], such as ‘the handle on the door’, for which it will output
a set of object boxes for both ‘the handle’ and ‘the door’.
Surprisingly, we find that both the precision and recall degrade
when querying GLIP for composed prompts. Therefore, we
take a different route to improve precision. We use contextual
knowledge to search for objects in context. We use prior
knowledge about spatial relations of objects, e.g., the handle
is close to the door. These relations are defined in terms of
first-order logic, with predicates about spatial constraints, such
as (but not limited to) proximity and relative location. The
object(s) of interest are assessed by probabilistic reasoning
about the candidate objects produced by GLIP. For probabilis-
tic reasoning, we consider neuro-symbolic programming [6]–
[9] because it can deal with uncertainty of object candidates,
for which we use the confidences from GLIP. We adopt a
framework that can make a trade-off between accuracy and
computational scalability [8]. This is necessary, given that
there can be many candidate objects in an image. We show
that the precision of candidate objects can be improved by this
neuro-symbolic reasoning over spatial constraints.

In summary, we provide a method that combines zero-shot
GLIP object detection with contextual knowledge, effectively
improving the recall by diversifying prompts and the precision
by taking spatial relations into account. We demonstrate this
on a large set of images, where we improve on object detection
metrics. Also, we provide illustrations of improvements and
remaining problems, showing its benefits and limitations for
object localization in open-world robotics.

II. RELATED WORK

Large progress has been achieved in language-vision tasks.
Language-vision models learn directly from huge datasets
of images with textual descriptions, which offers a broad
source of supervision [1]–[4]. They have shown great promise
to generalize beyond crisp classes and towards semantically
related classes. This so-called zero-shot capability is beneficial



Fig. 1: Zero-shot localization of objects based on a pretrained large language-vision model such as GLIP. We leverage prior
contextual knowledge to diversify prompts (better recall) and validate spatial relations (better precision).

for classifying images into a broad set of classes, even ones
that were not seen during training. Recently, these models
were extended with capabilities to localize objects in images
via co-attentions [10] and to segment parts of the scene
based on textual descriptions [11]. Recently a method was
proposed called GLIP [5], which for a textual prompt directly
provides bounding box estimates. Our interest is in localizing
objects. Therefore, we take GLIP as a starting point. Our first
contribution is to extend it with contextual knowledge to create
diverse prompts with related classes in order to improve the
recall of the found objects. To analyze objects in context,
knowledge about spatial relations can be leveraged. Connect-
ing knowledge representation [12] and reasoning mechanisms
with deep learning models [13] show great promise for reusing
knowledge, more efficient learning and higher-level reasoning
tasks [14]. Previous reasoning methods based on logic, such
as DeepProbLog [6], [9], [15], were limited in terms of
scalability when there were many possible hypotheses. A more
efficient variant of DeepProbLog was proposed [7]. Recently, a
framework was proposed that further improved the efficiency:
the neuro-symbolic programming framework called Scallop
[8]. Scallop is based on first-order logic and introduces a
tunable parameter k to specify the level of reasoning gran-
ularity. It restrains the validation of hypotheses by the top-
k proofs. This asymptotically reduces the computational cost
while providing relative accuracy guarantees. This is beneficial
for our purpose, as we expect many possible hypotheses
in complex environments with many objects and imperfect
observations. Our second contribution is to extend GLIP with
the ability to search for objects in context.

III. METHOD

We provide a method that adds contextual knowledge to a
language-vision object detection model; in this paper we use
GLIP [5] with zero-shot capabilities. Our focus is on providing
effective contextual knowledge at the input prompts (pre-

processing) and filtering of candidate objects (post-processing)
using relational information of objects in context. These are
implemented as two respective modules, see Figure 1 for an
outline of our method. The proposed modules are described
in the next two subsections. We illustrate the effect of each
module on the Doors images dataset for robotics [16] (illustra-
tions are shown in the Appendix in Figure 6). A more detailed
performance evaluation is presented in Section IV.

A. Diversifying Prompts (Better Recall)

Our first contribution is to diversify the set of prompts to
have a better coverage of the object(s) of interest, thereby
improving the recall. We use logic production rules based on
external knowledge, e.g.:

handle → {handle, push-bar, knob } (1)

This extends the set of objects that can open a door. This
improvement is implemented as a pre-processing step before
applying the object model. Figure 2 illustrates the effect of our
module. It shows a handle that is localized more accurately,
when prompting for ‘bar’ instead of ‘handle’. The improved
localization leads to an improved recall.

B. Spatial Relations (Better Precision)

Our second contribution is to take contextual knowledge
about spatial relations into account. For instance, the handle
is close to the door. For object candidates for door and
handle it can be verified whether they fulfill this spatial
relation. This verification is performed by a neuro-symbolic
program [8], which operates on the (often uncertain) object
candidates produced by GLIP. Each candidate object has a
confidence associated to its bounding box in the image. The
neuro-symbolic program takes first-order logic as contextual
input and verifies the candidates accordingly, taking their
confidences into account. The spatial relations are defined by



Fig. 2: Diversifying the prompts using contextual knowledge
improves the recall. On the left the groundtruth; on the right
the detections for searching for ‘handle’ (top) and searching
for handle’ with the additional prompt ‘bar’ (bottom).

symbolic predicates about e.g. proximity and relative location
of objects.

∃ d, h : object(d, door) ∧ object(h, handle) ∧
correct-size(d, h) ∧
correct-range-horizontal(d, h) ∧
correct-range-vertical(d, h)

(2)

This defines that the combination of a door and a handle
should be such that the handle has the correct size and at the
correct horizontal and vertical range with respect to the door,
which in turn are defined as:

correct-size(d, h) = max(1− surface(h)

surface(d)
, 0) (3)

correct-range-horizontal(d, h) =

max(1− hor-dist-from-side(h, d)

width(d)
, 0) (4)

correct-range-vertical(d, h) =

max(1− vert-dist-from-middle(h, d)

height(d)
, 0) (5)

to express respectively that the handle should be small
compared to the door, and that it should be close to the
horizontal side of the door and vertically close to the middle
of the door.

The neuro-symbolic program is implemented as a post-
processing step after the object model. It improves the preci-
sion by maintaining only the candidates that fulfill the desired
spatial relations.

Figure 3 illustrates the effect of this module: the confidence
for the handle is increased because it fulfills the spatial relation
that a handle should be close to the door. The improved
confidence for these objects in context leads to an improved
precision.

Fig. 3: Precision improves by verifying contextual knowledge
about spatial relations. Left: groundtruth location of the han-
dle. Right top: detection of the handle with highest confidence
when no spatial reasoning is applied. Right bottom: detection
of the handle with improved confidence after reasoning about
its relation relative to the door.

IV. EXPERIMENTS

We evaluate the performance of our method on a large set of
60 indoor images from the Doors dataset [16]. For examples
we refer to the Appendix, Figure 6. We evaluate GLIP as-
is [5] and with our proposed extensions. The standard metrics
are the mean average precision (mAP) and mean average recall
(mAR), for a minimum overlap between the groundtruth and
detected boxes. This overlap is measured by intersection-over-
union (IoU). Since the annotations of handles are sloppy, we
evaluate both at the standard IoU = 0.5 and also at IoU =
0.35 to compensate for misaligned annotations. We refer to
the Appendix, Figure 7 for examples that motivate that IoU =
0.35 is indeed sensible. Table I summarizes our findings. GLIP
as-is with a single prompt for each object class {door, handle},
cannot find all handles (0.810). A composed prompt such as
‘a handle on a door’ is able to find almost all handles (0.968)
and doors (0.969), but the precision is low for doors (0.528).
Our diversified set of prompts improves both the recall (0.969
→ 0.984) and the precision significantly (0.528 → 0.960), but
the precision for the handles is still low (0.511). This precision
is improved significantly by taking the spatial relations into
account (0.511 → 0.694), while only losing a small bit of
recall (0.968 → 0.921). In summary, the proposed extensions
on top of GLIP are effective.

Figure 8 (Appendix) shows examples of GLIP detections
without our modifications. Figures 4 and 9 (Appendix) show
examples where our method achieves a perfect result (mAP =
1). Interestingly, the cases are very different, showing broad
applicability. All cases have some clutter, yet the door and



TABLE I: Object Localization on the Door Images Dataset [16]

IoU ≥ 0.5 IoU ≥ 0.35
Doors Handles Doors Handles

GLIP prompting Spatial relations mAP mAR mAP mAR mAP mAR mAP mAR
single prompt for each class - 0.960 0.984 0.124 0.810 0.970 0.984 0.444 0.984
composed prompt of classes - 0.528 0.969 0.511 0.968 0.536 0.984 0.634 1.000
diversified prompt set (ours) - 0.960 0.984 0.511 0.968 0.970 0.984 0.634 1.000
diversified prompt set (ours) neuro-symbolic program (ours) 0.960 0.984 0.694 0.921 0.970 0.984 0.943 1.000

(a)

(b)

Fig. 4: Results of our method with maximum performance
(mAP = 1). Left: the groundtruth. Right: our detections.

handle are correctly found. Figure 5 shows examples where
our method performs worst (0.4 < mAP < 0.9). In Figure 5a, a
handle is detected on the person, but with a lower confidence.
The errors are that two handles are detected on the same
location and that the detection of one door is too large. In
Figure 5b, the large door on the left is erroneously detected
as two separate doors. A similar error is observed in Figure
5c for a zoomed image. In Figure 5d the bar on the side is
mistaken for a door handle.

V. CONCLUSIONS

We have proposed a method that adds contextual knowledge
to a pretrained large language-vision object detection model, to
improve precision and recall. We demonstrate that GLIP [5], a
popular and high-performance zero-shot pretrained model, can
be improved when adding contextual knowledge at the input
prompts (pre-processing) and filtering of candidate objects

(a)

(b)

(c)

(d)

Fig. 5: Results of our method with lowest performance (0.4
< mAP < 0.9).

by known spatial relations (post-processing). The former is
implemented as a set of logical production rules and the latter
as a neuro-symbolic program. We have demonstrated that the
pre-processing improves the recall of objects and the post-
processing improves the precision of found objects. Adding
this on top of large pretrained models is beneficial for object
localization in open-world robotics.
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APPENDIX

A. Illustrations

Figure 6 shows examples and their object annotations
(groundtruth) from the Doors dataset [16]. There is an in-
teresting variety of scenes with a range of doors and types of
handles.

Figure 7 shows examples from the Doors dataset [16] and
their overlap with the groundtruth. The examples have an
overlap measure of Intersection-over-Union (IoU) ≥ 0.35 but
< 0.5. It appears that the groundtruths are not always well
positioned. This motivates our choice to evaluate both on the
standard setting of IoU ≥ 0.5 as well as IoU ≥ 0.35.

Figure 8 shows examples of GLIP detections without our
refinements.

Figure 9 shows more examples where our method achieves
a perfect result (mAP = 1). Interestingly, the cases are very
different, showing broad applicability. All cases have some
clutter, yet the door and handle are correctly found.

B. Discussion and Limitations

• The neuro-symbolic program performs probabilistic rea-
soning. As input it takes a definition by first-order logic
(e.g., the handle should be close to the door and it should
be small relative to the door) and the raw object detections
(in our case, the GLIP model outputs for doors and
handles). The detections each consist of a label, box and
confidence score. The program validates the logic against
these detections, taking their respective confidences into
account. Dealing with noisy detections is a matter of
defining the right logic.

• The first-order logic rules are manually defined in ad-
vance. As a consequence, the full model may no longer be
open-vocabulary. One route for future work is to explore
if the rules can be automatically constructed for any
object categories, e.g., using a large knowledge graph,
or a pre-trained large language model that encode this
type of commonsense knowledge.

• For diversification of prompts, the method requires a
predefined list of concepts that are related to the objects
of interest. This knowledge currently comes from a hand-
crafted knowledge base. Another route for future work is
to explore whether such related concepts can be inferred
from an existing source, e.g., extracted from a knowledge
graph or large language model.

• The presented evaluation is limited to doors and handles,
in a relatively small dataset. In the near future, we will
experiment on more datasets and other objects of interest
to our robot applications.



Fig. 6: Illustrations of the doors dataset [16].

(a) (b)

Fig. 7: Overlap with the groundtruth: cases that have 0.35 ≤ IoU < 0.5.



Fig. 8: Examples of original GLIP detections with a confidence > 0.4.

(a) (b)

Fig. 9: Results of our method with maximum performance (mAP = 1). Left: the groundtruth. Right: our detections.


