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Abstract

We propose a novel framework (MAEV), de-001
signed to evaluate the performance of mul-002
timodal large language models (MM-LLMs)003
on complex, open-ended multimodal reason-004
ing tasks. Our approach mitigates the limita-005
tions in the conventional classification-based006
MM-LLM evaluation methods, providing a007
comprehensive analysis of free-form MM-008
LLM responses by leveraging state-of-the-art009
LLMs. To achieve this, we introduce two care-010
fully crafted evaluation datasets comprising011
2K ground-truth long-form responses to open-012
ended visual queries and detailed image de-013
scriptions. Our experimental results demon-014
strate the effectiveness of MAEV, as it closely015
aligns with human evaluation outcomes and of-016
fers a much-needed solution to complement the017
time-consuming manual assessment process.018
This framework has the potential to accelerate019
the development of cutting-edge MM-LLMs.020

1 Introduction021

Multimodal Large Language Models (MM-LLMs)022

(Alayrac et al., 2022; Awadalla et al., 2023; Zhu023

et al., 2023; Liu et al., 2023; Moon et al., 2023)024

have gained increasing popularity in recent years,025

due to their ability to reason over image and text026

queries, especially since the introduction of GPT4V.027

However, automatic evaluation of MM-LLMs is028

typically based on a limited set of VQA bench-029

mark datasets, which may not accurately reflect030

the model’s true performance. Recent studies have031

shown that there is a significant discrepancy be-032

tween classification-based automatic evaluation033

and human evaluation on real-world open-ended034

queries (Moon et al., 2023) – e.g. models that per-035

form similarly on short-form VQA tasks may fare036

much worse when evaluated by humans. This is037

because VQA benchmarks often consist of concise038

and simple answers, which do not capture the full039

range of a MM-LLM’s capabilities.040

Manual evaluation is time-consuming and costly,041

Figure 1: Comparison of different evaluation methods
for MM-LLMs. (1) Single-word answer questions (e.g.
VQAv2 (Antol et al., 2015)) and (2) multiple choice
questions (e.g. MMMU (Yue et al., 2023)) typically
concern evaluation of object- or attribute-level under-
standing, or are limited in the depth of questions by
their deterministic nature. In addition, due to their out-
put format, fluent MM-LLM responses often get penal-
ized unnecessarily. (3) Our proposed MAEV offers a
more comprehensive evaluation approach, enabling the
assessment of free-form and open-ended queries, and
providing fine-grained feedback on the detailed aspects
of long-form model responses.

which hinders the fast iteration and development 042

of MM-LLMs. To address this issue, we propose 043

a novel framework called Multimodal Automatic 044

Evaluation (MAEV), which is a model-agnostic 045

approach for evaluating MM-LLMs on challenging 046

multimodal reasoning tasks (Figure 5). Specifically, 047

we construct new gold standard datasets that con- 048

tain dense annotation of visual information, such 049

as ground-truth captions and assistant responses, to 050

enable automatic judgment of model responses us- 051

ing text-only LLMs as the evaluator. Note that this 052

dense annotation removes the dependency on a sec- 053

ondary multimodal model (with presumably simi- 054

lar visual understanding capabilities as the models 055

being evaluated), which defeats the purpose. We 056
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Figure 2: Illustration of the Evaluation flow of MAEV. The image caption serves as a proxy for the image and is fed
into the evaluator LLM instead of the image itself. Appropriate examples are sampled for each trial run, producing
evaluation evidences and appropriate scores.

then design a statistical framework to measure the057

performance of MM-LLMs reliably for each given058

task sample with varying few-shot prompts, and059

make a holistic evaluation of a given model.060

We conduct case studies comparing the perfor-061

mance of two MM-LLMs under development, us-062

ing both manual human evaluation and MAEV.063

Our results show that MAEV successfully tracks064

the human evaluation results on pointwise evalua-065

tion, demonstrating the feasibility of replacing or066

complementing manual evaluation with MAEV.067

2 Related Work068

LLM-Based Evaluation: Recent advancements069

in LLMs have opened new avenues for text evalu-070

ation, proposing alternatives to traditional human071

assessment methods. Studies such as Chiang and072

Lee (2023) have explored the potential of LLMs073

as substitutes for human evaluation in NLP tasks.074

They demonstrate a high degree of consistency be-075

tween LLM evaluations and expert human ratings,076

especially in complex tasks like open-ended story077

generation and adversarial attacks. Additionally,078

Zheng et al. (2023) extended the use of LLMs to the079

evaluation of conversational AI systems, introduc-080

ing benchmarks that showcase their effectiveness in081

aligning with human preferences while addressing082

inherent biases and limitations.083

Challenges and Advancements in LLM Evalua-084

tion: While the potential of LLMs as evaluators is085

evident, significant challenges and biases remain.086

Wang et al. (2023) brought to light the biases in087

LLM evaluations, particularly how response rank-088

ings can be influenced by the order of presenta-089

tion, emphasizing the need for mitigation strategies 090

and ethical considerations. In response, Kim et al. 091

(2023) introduced Prometheus, a fine-tuned LLM 092

showcasing its effectiveness as an evaluator with 093

capabilities comparable to GPT-4 and a strong cor- 094

relation with human evaluators, marking a signifi- 095

cant advancement in LLM evaluation. 096

Our work extends the previous line of LLM- 097

based automatic evaluation framework of text-only 098

benchmarks to the multimodal settings, with a new 099

set of multimodal evaluation datasets. 100

3 Methods 101

This study introduces a novel framework for eval- 102

uating MM-LLMs using (1) a text-based LLM as 103

the evaluator (Sec.3.1) on a (2) newly constructed 104

evaluation datasets with dense visual information 105

fully annotated (Sec.3.2). The primary focus of 106

this evaluation is to assess the accuracy of the MM- 107

LLM’s responses to queries that incorporate both 108

textual and visual inputs. 109

3.1 LLM as Evaluator Model 110

The evaluation model is conducted using an Evalu- 111

ator LLM that analyzes the outputs of MM-LLMs. 112

This process takes in the following inputs: 113

Text Query: questions provided to the MM-LLM. 114

Image Caption: A textual representation of the 115

image, serving as a surrogate for the actual image. 116

Ground Truth Answer: The correct response to 117

the query, used as a benchmark for accuracy. 118

MM-LLM Response: The actual response gener- 119

ated by the MM-LLM to the query. 120

2



The primary criterion for evaluation is to mea-121

sure the accuracy, specifically assessing if there are122

any hallucinations in the MM-LLM’s response as123

compared to the ground truth answer, or halluci-124

nations in recognizing the objects described in the125

image captions.126

3.2 Eval Data w/ Dense Visual Annotation127

A comprehensive and representative dataset is com-128

piled for this evaluation, encompassing various129

categories such as plants, text, sightseeing, and130

landmarks. The dataset is prepared through the131

following steps:132

Image Collection: Gathering a diverse set of im-133

ages from the specified categories.134

Caption Creation: Human annotators creating135

descriptive text captions for each image, effectively136

translating the visual content into text.137

Question and Answer Formulation: Annotators138

developing questions that a human observer might139

naturally ask about each image, along with the140

appropriate ground truth answers.141

3.3 Evaluation Procedure142

The evaluation procedure for the MM-LLM was143

designed as follows:144

Dataset Creation: The prepared dataset, includ-145

ing images, captions, questions, and ground truth146

answers, is employed for the evaluation.147

MM-LLM Response Generation: The MM-LLM148

is presented with each image and the corresponding149

question to generate a response.150

Evaluation Input: The Evaluator LLM receives151

the set of inputs - the question, image caption,152

ground truth answer, and MM-LLM response for153

each sample task.154

Scoring Methodology: Each response from the155

MM-LLM is scored based on its accuracy relative156

to the ground truth. A score of 0 indicates the157

presence of hallucination and a score of 2 indicates158

a correct response.159

Output: The output of the evaluation is first the160

evaluation evidence followed by the evaluation161

score. The evidence is vital to explain model be-162

haviour. Additionally, by providing the evidence163

first we take advantage of the auto-regressive nature164

of LLMs to provide a rational score.165

To improve the evaluator accuracy and robust-166

ness, we apply the following strategies167

Few-Shot Sampling: In our evaluation frame- 168

work, few-shot learning is employed to enhance 169

the MAEV evaluator accuracy. Each prompt is 170

supplemented with two examples, selected from 171

a larger pool of ten, to guide the MM-LLM’s re- 172

sponse. This approach acknowledges the context 173

length constraints in each evaluation. The choice 174

of examples is pivotal for a balanced assessment. 175

We select one example with a score of 0, showing 176

complete hallucination. Another example is chosen 177

with a score of 2, reflecting high accuracy. 178

Multi-Trial Aggregation: To account for the in- 179

herent variability in language model responses, we 180

utilize a multi-trial aggregation method. Each trial 181

samples a different pair of examples (scored 0 and 182

2) for prompting the MM-LLM. By aggregating 183

outcomes from multiple trials, we ensure a more 184

balanced and generalizable assessment, reducing 185

biases that may result from a single example set. 186

4 Experiments 187

4.1 Dataset 188

We employ two distinct types of image sources: 189

COCO Dataset: We sample 800 images from the 190

COCO dataset (Lin et al., 2014), and collect new 191

free-form question and answer annotations. COCO 192

is integral to our research for its diversity in scenes 193

and objects, along with comprehensive annotations. 194

It is particularly suitable for tasks involving object 195

detection and segmentation, offering a plethora of 196

everyday scenes for complex scene analysis. 197

Ego-centric Image Data: Complementing the 198

COCO dataset, we sample 1500 samples from an 199

Ego-centric image data source which provides a 200

unique, first-person perspective. This dataset is cru- 201

cial for understanding human-centric activities and 202

behaviors, offering an immersive insight into the 203

user’s daily visual experiences. 204

4.2 Evaluation Experiments 205

Case Study: We consider a case comparing two 206

different MM-LLMs (following the AnyMAL ar- 207

chitecture (Moon et al., 2023)), each trained with a 208

different base vision encoder (ViT-L vs. ViT-BigG 209

(Radford et al., 2021)). 210

We evaluate the performance of the Multimodal 211

Evaluator (MAEV) through two distinct tasks: 212

Task 1. Pointwise evaluation based on human 213

raters agreement: This task focuses on the evalu- 214

ation of single responses from the MM-LLM, com- 215
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Base
Evaluator

k-shot
Prompts

Ego Coco

F1 Acc. F1 Acc.

Llama2

k = 0 0.698 64.96% 0.709 68.52%
1 0.778 71.28% 0.720 61.18%
2 0.741 68.59% 0.724 63.59%

sampling 0.792 72.49% 0.730 64.85%

GPT4
0 0.756 67.24%

N/A1 0.735 65.17%
2 0.728 64.48%

sampling 0.846 76.92%

Table 1: Performance of different base Evaluator
LLMs as measured by agreement rate with human eval-
uation results, across k-shot prompts on a candidate
MM-LLM. Human annotators review the same data
point multiple times and the most common score out of
5 trials is chosen as ground truth. The MAEV evaluators
are then compared to this ground truth to measure accu-
racy and F1 score. MAEV with the sampling method
exhibits the highest correlation with human evaluation.

paring them to the established ground truth answers.216

The ground truth is determined by having human217

raters evaluate an MM-LLM’s response using the218

same rubric. We employ a multi-review system of219

5, meaning each data point is independently scored220

5 times by different human annotators. The most221

frequently given score is selected as the ground222

truth. With this ground truth as a reference, we223

then assess the Evaluator LLM’s capability to score224

a response, using Accuracy and F1 score as our225

evaluation metrics. This approach provides a com-226

prehensive analysis of how closely each response227

aligns with the anticipated result.228

Task 2. Pointwise evaluation for selecting dif-229

ferent (unseen) MM-LLM models: This task fo-230

cuses on a real-world scenario where multiple MM-231

LLM candidates under development are being com-232

pared. We compare the scores predicted by the233

MAEV evaluator and human raters to determine234

whether there is agreement on which model per-235

forms better. This method allows for understanding236

comparative performance of multiple MM-LLMs.237

4.3 Results238

Table 1 shows the task 1 performance on the two239

data sets – MAEV COCO and MAEV Ego.240

Shot sampling and Multi-trial aggregation im-241

prove the accuracy and robustness of evaluation:242

In all three instances of evaluation, sampling a va-243

riety of examples in the prompt shows the largest244

gains in performance. While increasing the number245

of examples in the context shows improvements,246

Model Description MAEV score Human score

Model A Base Model 57.3% 56.3%

Model B Larger vision encoder 58.3% 59.6%

Table 2: Case Study: Accuracy measurement (%) of
a candidate MM-LLM model as scored by humans
and MAEV, on the same test set. Accuracy as measured
by MAEV closely tracks the human-measured accuracy,
in both the absolute score (∆ < 1.5%) as well as their
relative ranks (Model B is better than Model A).

this can be encumbered by the maximum input 247

context length size of the models. 248

Additionally, in a multimodal setting, the range 249

of scenarios and inquiries presented to an image 250

can be diverse. Thus, providing a variety of ex- 251

amples and aggregating the scores over multiple 252

trials exposes the evaluator LLM to make a more 253

balanced and generalizable assessment as indicated 254

by the highest f1 scores in their task. 255

Rich text captions for images are important for 256

multimodal evaluation: While MAEV-COCO 257

comes with a diverse set of images and questions, 258

the image captions can be brief and succinct. Thus 259

leaving out crucial image details that might other- 260

wise help determine if the model is hallucinating an 261

object. To address this, we collected the MAEV- 262

Ego dataset with descriptive image captions and 263

informative reference answers, that are reflected in 264

its higher F1 and accuracy scores. 265

LLAMA2 performance is comparable to GPT4 266

for Multimodal evaluations: Unlike past studies 267

in text only evaluation, the results here indicate a 268

narrower gap between LLAMA2 and GPT in MM- 269

LLM evaluation. This could be potentially due 270

to the high quality reference answers and image 271

captions within MAEV-COCO and MAEV-Ego 272

that we provide as part of the evaluation dataset. 273

Consequently, the gaps in performance for both the 274

models is in the image capabilities that can’t be 275

proxied through image captions. 276

MAEV can be used for model selection: In Table 277

2, comparing two different MM-LLMs scored by 278

MAEV and human raters indicates agreement in 279

the higher performing models. The results here 280

show promise in using the framework and dataset 281

for model selection. 282

Conclusions. Our research makes significantly 283

advances in the evaluation of MM-LLMs. The 284

MAEV framework and the accompanying datasets 285

provide a robust tool for assessing the performance 286

of these models, with promising implications for 287

future model development and selection. 288
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5 Limitations289

While our research makes significant strides in the290

evaluation of multimodal large language models291

(MM-LLMs), it is not without its limitations, which292

we acknowledge as opportunities for future work.293

Dataset Size and Diversity: Although we develop294

two new datasets for MM-LLM evaluation, the size295

and diversity of these datasets may still be limited.296

Future work can focus on expanding these datasets,297

both in terms of volume and variety of data, to298

provide a more comprehensive evaluation of MM-299

LLMs.300

Model Performance: Our results indicate that the301

performance of the models is largely dependent on302

the quality of reference answers and image cap-303

tions. However, the performance gaps for both304

models are found in their image capabilities, which305

cannot be proxied through image captions. Future306

research can explore ways to improve the image307

capabilities of these models.308

Evaluation Framework: While our MAEV frame-309

work provides a robust tool for assessing the perfor-310

mance of MM-LLMs, it may not cover all possible311

aspects of model performance. Future work can312

aim to refine and expand the evaluation framework313

to include other important aspects of model perfor-314

mance.315

Generalizability: Our research is based on two316

specific MM-LLMs. While we believe our findings317

are applicable to other similar models, the gener-318

alizability of our results to all MM-LLMs is not319

guaranteed. Future studies can aim to validate our320

findings across a wider range of MM-LLMs.321

Human Evaluation: Our pointwise evaluation re-322

sults indicate agreement between MAEV and hu-323

man raters. However, human evaluation is inher-324

ently subjective and may not always be consistent.325

Future work can explore ways to improve the relia-326

bility and consistency of human evaluation.327

In conclusion, while our research has its limita-328

tions, we believe it provides a solid foundation for329

future work in the evaluation of MM-LLMs. We330

look forward to seeing how our work can be built331

upon and enhanced in future studies332

6 Ethics and Broader Impacts333

We hereby acknowledge that all of the co-authors334

of this work are aware of the provided ACL Code335

of Ethics and honor the code of conduct. We state336

the ethical considerations and the potential impact337

to the community as follows. 338

Dataset. Our main focus for human annotation is 339

on the captions and responses given in image and 340

text pairs, which are annotated by 20 workers with 341

linguistic expertise. We provide detailed guidance 342

and examples for the annotations and encourage 343

diversity among the annotators, without any re- 344

strictions on their background as long as they are 345

proficient in English and have domain expertise. 346

The data annotation and evaluation task was out- 347

sourced to a vendor specializing in NLP annota- 348

tions, where the annotators are full-time employ- 349

ees. The annotators were given clear instructions, 350

including a clear escalation path for reporting any 351

sensitive topics that may arise in the seed images. 352

Techniques. We evaluate the performance of our 353

constructed dataset using state-of-the-art pretrained 354

language models, and adapt them to fit our specific 355

tasks. Since our dataset is designed to predict the 356

accuracy of model responses, we do not expect it 357

to generate harmful outputs that could negatively 358

impact vulnerable groups. 359
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Hyperparameter Value Range Search Type Final value
Temperature [0, 1] Random Default API value
Top_p [0, 1] Random 0.2
Accuracy Score Threshold (0,2) Grid 1.25

Table 3: Hyperparameter Search Table

Figure 3: Prompt Template for the Evaluator LLM.
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Figure 4: Examples used in Shot Sampling and Multi Trial aggregation where the accuracy score is 0
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Figure 5: Examples used in Shot Sampling and Multi Trial aggregation where the accuracy score is 2
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