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ABSTRACT

We introduce FaceGPT, a self-supervised learning framework for large vision-
language models (VLMs) to reason about 3D human faces from images and text.
Typical 3D face analysis algorithms are specialized and lack semantic reasoning
capabilities. FaceGPT overcomes this limitation by embedding the parameters of
a 3D morphable face model (3DMM) into the token space of a VLM, enabling
the generation of 3D faces from both textual and visual inputs. FaceGPT is
trained as a model-based autoencoder in a self-supervised manner from in-the-wild
images. In particular, a dedicated face token is projected to 3DMM parameters
and then rendered as a 2D face image to guide the self-supervised learning process
through image-based reconstruction. Without relying on expensive 3D annotations,
FaceGPT learns to generate 3D faces based on visual or textual inputs, achieving
a competitive performance compared to methods that are specialized to each of
these tasks. Most importantly, FaceGPT is able to leverage the world knowledge in
VLMs to achieve semantic reasoning capabilities, allowing the model to perform
speculative generation of 3D faces purely from subtle textual prompts that do not
explicitly describe facial features. This opens a new way of generating 3D faces
from subtle descriptions of emotions or general everyday situations.

1 INTRODUCTION

In this work, we address the problem of reasoning about 3D human faces from images and text.
Related work on monocular 3D face reconstruction aims to estimate the parameters of a 3D morphable
model Blanz & Vetter (1999); Tewari et al. (2017); Deng et al. (2019b); Feng et al. (2021a); Li
et al. (2023) given 2D face images as input. However, these methods lack the capability to reason
about faces from text input. Unlike these systems, humans can vividly imagine and even draw faces
based solely on either face images or textual descriptions. Motivated by recent advances in large
vision-Language models (VLMs) Liu et al. (2023b); Zhu et al. (2023), we aim to explore a path
forward towards enabling VLMs to obtain an in-depth reasoning-based understanding of 3D faces.

To investigate this question, we present FaceGPT, a vision-language model with an intricate ability to
reason about 3D human faces from visual and textual input. We represent faces as 3D morphable
model (3DMM) parameters that include parameters for the 3D face shape, expression, albedo, and
scene illumination. Following related work on image segmentation Lai et al. (2024) and human pose
estimation Feng et al. (2024), we extend the original token space of the VLM by incorporating a new
<FACE> token that is decoded into 3DMM parameters using an MLP (Fig. 1). Thus, when combined
with a differentiable computer graphics renderer Ravi et al. (2020), the VLM model becomes capable
of synthesizing face images. This enables us to formulate FaceGPT within a model-based autoencoder
framework Tewari et al. (2017), and hence to train our model in a fully self-supervised manner from
in-the-wild images. To the best of our knowledge, this is the first work combining vision-language
model with an inverse graphics pipeline. During training, we freeze the visual encoder of the VLM
while training the MLP and the LLM using LoRA Hu et al. (2022). The model is trained with three
types of data: (1) In-the-wild face images for the self-supervised training of the <FACE> token
and 3DMM projection layers via inverse rendering. (2) Text-to-3DMM data for generating 3DMM
parameters from text that explicitly describes facial features. (3) Standard multi-modal instruction
tuning data to retain the general capability and quality of the VLM. We construct this dataset from a
set of face images by running an off-the-shelf self-supervised monocular face reconstruction method
Li et al. (2023) and by generating textual descriptions of the faces via the original VLM.
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Figure 1: We introduce FaceGPT, a large vision-language model that learns to produce 3D human
faces (in terms of 3DMM parameters) in a fully-self-supervised manner. When prompted with
face images and task-specific questions, FaceGPT can output a special <FACE> token of which the
corresponding feature embedding (red) can be decoded into 3DMM parameters, that encode the face
shape α, expression δ, the texture γ, the light ϕ and camera c parameters. When decoded with a
3DMM and differentiable renderer, this enables a fully self-supervised learning via inverse rendering.
FaceGPT is a general-purpose model that can produce: 3D human faces from text-only input (first
row), as well as from multi-modal input (second row). Moreover, FaceGPT is the first model capable
of speculative face generation (last row), all while retaining general chatting abilities.

We evaluate FaceGPT on a variety of tasks, including text-to-3DMM face generation, traditional 3D
face reconstruction, and general-purpose visual instruction following. We demonstrate that FaceGPT
becomes a general-purpose model that achieves competitive results when compared to specialized
methods in all those tasks. Most importantly, we show that FaceGPT is able to leverage the world
knowledge in VLMs to achieve semantic reasoning capabilities, allowing the model to perform
speculative generation of 3D faces purely from subtle textual prompts that do not explicitly describe
facial features, such as “the person is listening intently to a colleague sharing unexpected and critical
feedback” (Fig. 1). Hence, FaceGPT goes far beyond existing methods as it can translate implicit
descriptions of emotional states into 3D facial features, which requires a semantic understanding of (i)
how feelings like contemplation affect expressions and (ii) how these changes appear in realistic 3D
facial features. Beyond face analysis, we believe that the design principles underlying FaceGPT are
general and also suggest a pathway towards a self-supervised integration of the "world knowledge"
that VLMs derive from extensive textual data and the structured 3D representations of the visual
world via self-supervised learning through inverse rendering. In summary, our work makes the
following concrete contributions:

• A novel vision-language model (FaceGPT) for 3D face reasoning. We propose the
first approach to integrating 3D face understanding capabilities within a vision-language
model (VLM). FaceGPT leverages both visual and textual inputs to reason about 3D facial
geometry and appearance, bridging the gap between image-based 3D face reconstruction
and text-based facial description interpretation.

• Semantic reasoning for speculative 3D face generation. Unlike traditional methods
that rely on explicit visual or textual cues, FaceGPT demonstrates the ability to perform
speculative 3D face generation based on abstract or emotional descriptions.

• Competitive performance across multiple tasks. We evaluate FaceGPT across various
benchmarks, including 3D face reconstruction from images, text-to-3D face generation, and
visual instruction following. Our results show that FaceGPT performs competitively with
specialized 3D face reconstruction methods while maintaining the flexibility and reasoning
capabilities of a general-purpose vision-language model.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

The design principles of FaceGPT, specifically the integration of structured 3D representations
with the world knowledge encoded in VLMs, provide a general framework for learning 3D-aware
multimodal reasoning from in-the-wild 2D images in a self-supervised manner. Therefore, we believe
FaceGPT represents a significant step forward in the field of vision-language models.

2 RELATED WORKS

2.1 MONOCULAR MODEL-BASED FACE RECONSTRUCTION

Realistically reconstructing digital human faces has been a longstanding challenge in computer vision
and graphics due to their vast potential applications. Traditional methods primarily use parametric
3D Morphable Models (3DMM) Blanz & Vetter (1999); Paysan et al. (2009); Li et al. (2017) with
PCA for dimensionality reduction to simplify high-dimensional 3D face scans, serving as a 3D
prior for representing unique facial characteristics and providing precise control. Recently, deep
learning-based methods that map 2D images to 3D face models have gained popularity. Early
methods struggled with the need for extensive 3D facial scan data paired with 2D images, which
was labor-intensive and costly. This limitation was addressed with the introduction of model-based
face autoencoders (MoFA) Tewari et al. (2017) that enabled self-supervised 3D face reconstruction.
MoFA uses a differentiable rendering layer to minimize differences between input and rendered
images, enabling end-to-end learning without ground-truth 3D faces, leading to a number of effective
extensions in the self-supervised learning strategies Tewari et al. (2018b;a); Bas et al. (2017); Genova
et al. (2018); Daněček et al. (2022). RingNet Sanyal et al. (2019) and DECA Feng et al. (2021b)
use landmark-based training, predicting landmarks for input images and treating them as pseudo
ground truth, measuring the distance between 2D face landmarks and their projections on the 3DMM
surface. The FOCUS Li et al. (2023) framework jointly trains a face autoencoder and an outlier
segmentation network, which makes the method robust to outliers such as occlusion and make-up.
These advancements significantly improved monocular model-based face reconstruction, making
it more efficient and effective. However, these methods are highly specialized and lack a deep
understanding of the semantics of human faces or the ability to relate faces to language, limiting their
overall scope and effectiveness.

2.2 TEXT-TO-3D FACE GENERATION AND MANIPULATION

Text-to-3D face generation and manipulation methods aim to use textual information for creating and
editing 3D faces. Methods like Dreamface Zhang et al. (2023) and Describe3D Wu et al. (2023b)
generate text-conditioned texture maps to render 3D morphable models (3DMM). TG-3DFace Yu
et al. (2023) advances this by using tri-plane neural representations and extending the 3D-aware
GAN, EG3D Chan et al. (2022), for end-to-end text-conditioned generation. For text-guided 3D
face manipulation, methods like Latent3D Canfes et al. (2022) and ClipFace Aneja et al. (2023)
optimize intermediate layers with a CLIP-based loss to generate UV-texture maps or predict texture
and expression latent codes. These methods, however, rely on 3D scan data and to train new mappers
for each text instruction. Unlike these task-specific approaches, FaceGPT is a general-purpose model
that reasons about 3D human faces from images, text, or both by leveraging general visual knowledge.
Our model can interact with users through conversations, discussing facial features and providing
relevant responses, while also being capable of following general user instructions.

2.3 MULTIMODAL LARGE LANGUAGE MODELS

Large Language Models (LLMs) are rapidly transforming various fields Radford et al. (2019);
Brown et al. (2020); OpenAI (2024); OpenAI et al. (2024). While proprietary models like OpenAI’s
ChatGPT OpenAI (2024) and GPT-4 OpenAI et al. (2024) dominate the landscape, open-source
alternatives such as Vicuna Chiang et al. (2023), LLaMA Touvron et al. (2023), Alpaca Taori et al.
(2023), Mistral Jiang et al. (2023) and Qwen Bai et al. (2023) support research efforts. However,
LLMs mainly focus on generating text as output given text-only input. The integration of additional
modalities into LLMs represents an active area of research.

Multi-Modal Large Language Models (MM-LLMs) are emerging, extending LLMs’ capabilities be-
yond text to encompass a broader spectrum of modalities, including images, videos, and audio. In the
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Figure 2: Architecture of FaceGPT. Our model consists of a vision-language model, which includes a
vision encoder, a vision projection layer, and an LLM, along with a 3DMM projection layer, denoted
as σ, and the parametric Basel face model Blanz & Vetter (1999). During training, the σ projection
layer is optimized and the LLM is fine-tuned through LORA, while keeping other components frozen.
The training is guided through a self-supervised reconstruction loss using a differentiable renderer.

realm of image-text understanding, recent endeavors like LLaVA Liu et al. (2024) and MiniGPT-4 Zhu
et al. (2023) incorporate vision encoders to interpret images and align their features with language
embeddings using projection layers. Moreover, cutting-edge models such as PandaGPT Su et al.
(2023), ImageBind Girdhar et al. (2023), and NeXT-GPT Wu et al. (2023c) exhibit impressive versa-
tility in handling diverse modalities, aligning embeddings from text, images, audio, and video with
language as both input and output. To enhance LLM to natively output more modalities, approaches
like LISA Lai et al. (2024) connects LLaVA with a decoder to generate text and segmentation masks,
while ChatPose Feng et al. (2024) specializes in human pose information. However, these methods
typically rely on supervised learning.

Our aim is to develop a general-purpose vision-language model that is able to (1) generate 3D faces
from text or image inputs and (2) capable of connecting the world knowledge from the LLM with 3D
human faces to achieve semantic reasoning capabilites about faces in a self-supervised manner.

3 METHOD

In this work, our aim is to augment existing large Vision Language Models (VLMs) with the ability
of reasoning about 3D human faces without requiring manual human efforts. Inspired by established
model-based face reconstruction methods, we represent 3D human face with 3D Morphable Model
(3DMM) Blanz & Vetter (1999) parameters, representing the face shape, expression, albedo, illumi-
nation and pose. In particular, we introduce a <FACE> token into the language space of the LLM,
which is mapped into the 3DMM parameter space and subsequently rendered into a 2D image, hence
enabling self-supervised 3D facial reconstruction. Fig. 2 presents the whole pipeline of FaceGPT.

3.1 MODEL ARCHITECTURE

Representing Face in language space. Inspired from recent advancements in LMMs, we treat the
human face as a distinct modality and incorporate its representation into the language space of VLM.
Specifically, we extend the vocabulary of VLM to include a new token <FACE> that specifically
represents the human face. Given an input text prompt xtxt and/or input image ximg, the VLM f
predicts text responses:

ytxt = f(ximg,xtxt), (1)

where ytxt = [t1, . . . , tN ] is the output sequence of tokens with corresponding hidden states
[h1, . . . , hN ]. When xtxt contains a face generation instruction, the resulting output ytxt will
include a <FACE> token, facilitating further 3DMM predictions.

From <FACE> token to 3DMM. If one of the output tokens tn ∈ ytxt is our defined <FACE> token,
we can extract the hidden state as h<FACE> = hn ∈ R4096 and project it using an MLP σ into the
latent 3DMM parameters θ = σ(h<FACE>) = [α, δ, γ, ϕ, c] ∈ R257, i.e. the 3D face shape α ∈ R80,
facial expression parameters δ ∈ R64 and texture γ ∈ R80 of a 3DMM, as well as the spherical
harmonics illumination ϕ ∈ R27 and camera parameters c ∈ R6 of the scene. The 3D vertices and
triangles, as well as the color of the face mesh are then determined using the standard 3DMM model
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M(θ) as described in Tewari et al. (2017). Using an orthographic camera model the reconstructed
3D face mesh can be rendered into 2D space using a differentiable renderer Π, hence producing the
final reconstructed face image ŷrec. The process can be summarized as:

θ = σ(h<FACE>) (2a)
ŷrec = Π(M(θ)) (2b)

Note that the FaceGPT architecture can be seen as a new type of language-based autoencoder, with a
VLM as encoder and a computer graphics decoder that is based on the 3DMM.

3.2 SELF-SUPERVISED TRAINING

Our objective is to develop a VLM that is able to learn an enhanced comprehension of 3D human
faces in a self-supervised manner. Ultimately, the model should not only understand user instructions
reliably, but also to accurately reconstruct 3D faces from visual or text input. To accomplish this, we
have devised a self-supervised approach that incorporates 3DMM understanding into existing VLMs.
This method allows us to leverage face data without the need for costly 3DMM annotations. We also
construct a text-to-3DMM dataset in an unsupervised manner that supports this training paradigm,
enabling our model to learn these capabilities effectively and efficiently.

Self-supervised face reconstruction loss. To incorporate the 3DMM as a new modality into an
existing VLM, we add a new token <FACE> in the vocabulary of the LLM and fine-tune the language
modelling head. For fine-tuning the VLM without relying on manually annotated data, we introduce
a 2D self-supervised loss Lface, following established protocols of specialized face reconstruction
models Li et al. (2023):

Lface = λpixelLpixel + λperLperc + λLMLLM + λregLreg, (3)

Specifically, Lface incorporates the following components:

Reconstruction loss. Lpixel = ||A⊙ (ximg − ŷrec)||22 refers to the pixel-wise reconstruction loss
between reconstructed images ŷrec and the input images ximg. To avoid distortions when training
from in-the-wild data, a 2D skin mask A is estimated from the input images using a simple pre-trained
Gaussian mixture model for the skin color Deng et al. (2019b).

Perceptual loss. Lperc = sim(fperc(ximg), fperc(ŷrec)) estimates the cosine similarity between
the reconstructed image ŷrec and the input image ximg at the perceptual level using a pre-trained
feature extractor fperc.

Landmark loss. LLM = ||LMimg − LMrec||22 measures the L2 distance between the projected
2D landmarks of the estimated 3DMM LMrec and predicted 2D facial landmarks LMimg using an
off-the-shelf facial detector (Bulat & Tzimiropoulos, 2017).

Parameter regularization. Lreg = ||θ||22 regularizes the estimated 3DMM parameters towards the
mean value of the multi-variate Gaussian distribution of the 3DMM.

The weight parameters λface = [λpixel, λper, λLM , λreg] balance the respective losses, and we
set them as established in prior work Li et al. (2023).

Preserving the ability for natural conversations about faces. We noticed that VLM’s loose the ability
to conduct general conversations about faces when trained self-supervised face reconstruction loss,
and tend to always output 3DMM parameters when queried with a face image. To resolve this
problem, we generate a face conversation dataset with accurate textual face descriptions, by querying
the VLM with face images and conversations that include multiple questions about facial attributes.
During training, we mix task-specific instructions that explicitly ask for 3DMM parameters with
general conversational data to regularize the training and preserve the ability for general non-3DMM
related conversations about faces. In contrast to prior works (Lai et al., 2024; Feng et al., 2024)
which generally employ a simple static question-answer template that restrains the model from
providing diverse responses, our proposed strategy can effectively improve the instruction following
performance for general face conversations.

Self-supervised Text-to-3DMM loss. We aim to enable the VLM to perform semantic face under-
standing tasks, i.e. to predict faithful 3DMM parameters when only having textual input f(·, xtxt).
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While related works for 3D human pose estimation Delmas, Ginger and Weinzaepfel, Philippe and
Lucas, Thomas and Moreno-Noguer, Francesc and Rogez, Grégory (2022); Feng et al. (2024) rely on
human-written fine-grained language descriptions of 3D human meshes, we aim to achieve text-to-
3DMM generation without any human interaction. To achieve this, we introduce a self-supervised
text-based face reconstruction loss. In particular, we first query the VLM with the face images in the
training data and a question template that requests detailed face descriptions of a number of facial
attributes such as head shape, skin tone, or facial expressions . This results in a dataset with pairs of
face images and detailed textual descriptions about facial attributes. During training, we instruct the
VLM to estimate 3DMM parameters only from the available detailed face descriptions f(·, xtxt). As
we have the corresponding 2D image for each face description, we can re-use the self-supervised face
reconstruction loss Eq. (3) to train the model at the task of text-to-3DMM generation, avoiding the
need for any human-written annotation.

Text prediction loss. We also utilize the autoregressive objective Ltxt to guide the model to produce
correct text output, thereby preserving its general ability to follow user instructions:

Ltxt = CE(ŷtxt,ytxt), (4)

where ytxt is the ground truth text response and CE is the cross entropy loss.

Overall training Objective. Our overall training objective L integrates both text-based autoregressive
objective and a self-supervised loss for predicting 3DMM from either image or text input:

L = λtxtLtxt + λfaceLface (5)

where λtxt and λface are the weights for balancing the losses.

3.3 SEMANTIC REASONING ABOUT HUMAN FACES

After being trained as described in the previous section, FaceGPT becomes a general model that
can estimate 3D facial expressions from single images, create facial features based on detailed
descriptions, and participate in question-and-answer dialogues. Most remarkably, even without
directly training the model for linking 3D facial attributes to subtle phrases that do not directly
contain specific facial traits, our model shows a zero-shot ability to reason about human faces from
descriptions that contain emotions or general descriptions of everyday situations. This means the
model can combine reasoning and world knowledge with the 3D facial representation. Similar as in
ChatPose Feng et al. (2024), our aim is to highlight these emerging capabilities by introducing the
task of speculative face generation, which focuses on the model’s ability to reason about 3D human
faces from speculative queries.

Speculative Face Generation. In this task, rather than providing explicit facial descriptions that
directly detail the shape and texture of features, we pose speculative queries related to a person’s
emotional state or general everyday situations. The model is then tasked to infer a plausible 3D
face, based on the assumption that the person is experiencing the described situation or emotion.
For instance, a user might say, “Predict the face of a person who is excited about a surprise party.”
Answering such queries requires an understanding of broader concepts like “excitement” and the
ability to deduce the appropriate facial features, followed by generating the relevant 3D facial
parameters. To build an evaluation dataset, we draw from the CelebAText dataset Sun et al. (2021)
for facial descriptions. We then use GPT-4 to rephrase these descriptions into questions about the
emotions tied to each expression, resulting in a total of 444 responses, with 64 examples selected for
evaluation. These responses undergo manual review and corrections in order to remove any direct
descriptions of facial features. We further estimate the 3DMM face parameters of every test image
using a state-of-the-art face autoencoder Li et al. (2023), resulting in paired data with speculative
descriptions and corresponding 3D face parameters. More details can be found in supplementary.

4 EXPERIMENTS

4.1 TRAINING DATA

Text-to-Face Data. The text-to-face dataset comprises pairs of text descriptions and face
images, facilitating the development of mappings by VLM between textual descriptions and
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3DMM parameters of faces. During training, only text is taken as input and the correspond-
ing face images are only used for loss computation. Given the absence of publicly available
datasets linking text descriptions to 3D face meshes and existing VLMs like LLaVA present
powerful Visual Question Answering(VQA) ability, we rely on pre-trained VLMs to generate
textual descriptions for face images. We employ following templates to guide the learning
process in VLMs: "USER: {description}, can you give the 3DMM parameters
of this person. ASSISTANT: Sure, it is <FACE>.", where {description}
is the text description for faces. We utilize high-quality face images from CelebA-HQ (Karras et al.,
2018) and use LLaVA (Liu et al., 2023a) to produce explicit text descriptions for dataset construction.

Image-to-Face Data. Image-to-face reconstruction data is composed of only human face images. The
face images will be formatted with a template like "USER: <IMAGE> Can you give the
3DMM parameters of this person. ASSISTANT: Sure, it is <FACE>.".
To enhance the diversity and relevance of the conversations centered around human face images,
we also generate face-centric conversations for each face image. This approach enriches the
contextual understanding of the VLM concerning the newly introduced token <FACE>. We adopt
the CelebA-HQ trainset as the image to face reconstruction dataset.

Multimodal Instruction-Following Data. This data is general-purpose VQA data, and it is used to
preserve the VLM’s ability of understanding a user’s instructions. Following LLaVA v1.5, We use
LLaVA-v1.5-mix665k as multimodal instruction following data.

4.2 EXPERIMENTAL SETTINGS

Network Architecture. We build our model on Large Vision Language Model LLaVA-1.5-7B (Liu
et al., 2023a) with CLIP-ViT-L-336px as vision encoder and Vicuna v1.5 as the LLM backbone.
LoRA (Hu et al., 2022) is applied to efficiently fine-tune the VLM. An MLP head with GeLU
activations (Hendrycks & Gimpel, 2016) and channels [5120, 5120, 257] is appended to the last layer
of the VLM to predict the 3D human face parameters.

3D Face Model. We use the Basel Face Model (BFM) 2017 Gerig et al. (2018) as the 3D face model.
The face is parameterized as the semantic code vector θ = [α, δ, γ, ϕ, c] ∈ R257 in (Tewari et al.,
2017), which includes 3D shape parameters α ∈ R80, facial expression parameters δ ∈ R64, texture
of 3DMM γ ∈ R80, illumination ϕ ∈ R27 and camera parameters c ∈ R6.

LLaVa-Key baseline. As there are no VLM-based methods that can perform 3D face reconstruction,
we introduce the LLaVa-Key. The model is finetuned to predict facial landmarks in the format of pure
text given either images or textual description of human faces as input . For each input, gradient-based
optimization is applied to these predicted landmarks to fit the 3DMM using Eq. (3) to obtain a 3D face
reconstruction. It is important to note that LLaVa-Key employs test-time fine-tuning, making it an
inherently different baseline compared to all other feed-forward methods. Nevertheless, LLaVA-Key
is useful to show the effect of a directly using the token space of VLMs to encode 3D information.

Implementation Details. The training uses 8 NVIDIA 48G A40 GPUs. We utilize deepspeed (Rasley
et al., 2020) engine and ZeRO optimizer (Rajbhandari et al., 2020) for efficient training. We use
AdamW (Loshchilov & Hutter, 2019) optimizer with learning rate and weight decay set to 2e− 5 and
0, respectively. We also follow the standard setting of using a WarmupDecayLR as the learning rate
scheduler, where the warm-up iterations are set to 100. The weights of the text generation loss λtxt

and the face reconstruction loss λface are set to 1.0 and 0.1, respectively. Following (Li et al., 2023),
those of the pixel loss λpixel, the perceptual loss λper, the landmark loss λLM , and the regularization
loss λreg are set to 0.5, 0.25, 5e-4 and 0.1, respectively. The landmarks of human faces are obtained
with (Bulat & Tzimiropoulos, 2017) and pre-trained ArcFace (Deng et al., 2019a) is used to compute
perceptual loss. The batch size is set to 8 per GPU and gradient accumulation step is set to 4.

Evaluation Metrics. For text-based face generation task, we compare the estimated 3D human face
with the ground truth mesh to measure the Chamfer Distance(CD), Complete Rate(CR) and Relative
Face Recognition Rate(RFRR) following Describe3D (Wu et al., 2023a). Both Chamfer Distance and
Complete Rate would be used to reflect the accuracy of 3D meshes. And Relative Face Recognition
Rate can measure the identity similarity of the textured 3D face rendering. We also additionally
perform a user study for speculative face generation task as it is a difficult task requiring common
sense of human. For image-based face reconstruction task, we measure the L2 photometric error
in RGB space and the L2 landmark error to reflect the quality of 3D face’s eometry and texture.
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This person appears to have just received a pleas-
ant surprise, like unexpectedly running into an
old friend at a social gathering.

This person seems to be listening to a melancholic
piece of music, lost in thoughts and emotions
stirred by the melody.

This person is shouting angrily at a referee, react-
ing to a controversial call during a crucial sports
match.

Implicit description Describe3D LLaVA-Key FaceGPT

Figure 3: Qualitative results for speculative face generation. The abstract concepts and human
activities in the descriptions are highlighted with bold text. FaceGPT presents a better capability in
understanding the abstract concept and human activities compared to other methods.

Table 1: Quantitative results for speculative face generation. FaceGPT achieves a significant advantage
in terms of the predicted 3D mesh’s accuracy and user preference compared to other methods.

Method Unsupervised CD ↓ CR (%) ↑ RFRR ↑ User Study (%) ↑
Describe3D ✗ 153.1 25.6 14.0 11.2
LLaVA-Key ✓ 38.5 68.1 40.0 31.5
FaceGPT ✓ 11.5 83.6 64.0 57.2

The instruction following ability is measured with GPT-assisted evaluation as described in Liu et al.
(2023b), which queries GPT4 to obtain the grading of generated responses.

User Study. For evaluating the quality of speculative face generation task, we also perform a user
study with 23 volunteers. Each volunteer will be presented with 20 questions from SPG benchmark
and each question consists of an implicit description with the visual results generated by different
methods given this description as input. For each question, the volunteer will be asked to utilize their
understanding about the abstract descriptions and to select the result which best matches the implicit
descriptions. The ratio of the number of times a specific method is selected to the total number of
questions will be reported as the result.

4.3 SPECULATIVE FACE GENERATION

In this section, we evaluate FaceGPT’s zero-shot capabilities at speculative face generation. We
use the same template in Text-to-Face Data to query model and replace the {description} with
the implicit description in the benchmark. For a fair comparison, we only select the face region of
each method during the evaluation and align the 3D point clouds with the Iterative Closest Point
(ICP) method before evaluation. The results are presented in Table 1 quantitatively and in Figure 3
qualitatively. We can observe that FaceGPT has significant advantages compared to Describe3D and
the baseline LLaVA-Key method in terms of the quality of 3D shape and in terms of preference ratings
in the user study. Interestingly, our baseline LLaVA-Key also outperforms Describe3D which requires
a CLIP model and 3D supervision during training. In summary, FaceGPT develops a common sense
about human faces that enables it to infer facial features from abstract and indirect descriptions.
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Input Image FaceGPT LLaVA-Key DECA Deep3D FOCUS

Figure 4: Qualitative results for 3D face reconstruction. Our approach allows for the regression of
pose, shape, expression, skin reflectance, and illumination from a single monocular image, achieving
quality comparable to recent state-of-the-art methods.

4.4 EXPLICIT TEXT-BASED 3D FACE GENERATION

Table 2: Performance of explicit text-based
3D face reconstruction. The evaluation is
performed on shape and expression by com-
paring pseudo ground truth produced by
FOCUS method.

Method CD ↓ CR ↑ RFRR ↑
Describe3D 96.88 29.3 16.27

LLaVA-Key 16.89 71.8 42.38
FaceGPT 7.28 91.7 64.88

Table 2 shows the results of FaceGPT at 3D face re-
construction with explicit text description. As there are
no public unsupervised methods available that perform
this task, we compare FaceGPT to a supervised method
Describe3D and our LLaVA-Key baseline. LLaVA-Key
would fine-tune LLaVA to predict the 2D coordinates
of face landmarks given text description as input and an
optimization-based method is utilized to fit a 3DMM
on predicted landmarks.

Like in speculative face generation benchmark, We
also observe the significant advantage that FaceGPT
achieves over other methods. Despite being trained in
a self-supervised manner, FaceGPT can achieve faith-
ful text-based 3D face reconstructions. These results
demonstrate embedding 3D knowledge about our world into a VLM is in principle possible without
detailed human annotations, hence demonstrating the large potential of combining VLM’s with
vision-as-inverse graphics for self-supervised learning. The qualitative results can be found in the
supplementary.

4.5 IMAGE-BASED 3D FACE RECONSTRUCTION

Table 3: Performance at classical monocu-
lar 3D face reconstruction.

Method photo ↓ keypoint ↓
DECA 0.216 5.2px
Deep3D 0.073 3.2px
FOCUS 0.077 2.2px
LLaVa-Key 0.110 14.0px
FaceGPT 0.103 3.0px

We evaluate FaceGPT on image-based 3D face recon-
struction and compare it with SOTA specialized meth-
ods for unsupervised monocular face reconstruction
and a VLM-based baseline LLaVa-Key in Table 3.

Moreover, Fig. 4 shows a qualitative comparison of
FaceGPT and all baselines at the classic task of 3D face
reconstruction from a single image. As reported in prior
works for VLM-based segmentation Lai et al. (2024)
and human pose estimation Feng et al. (2024), our
FaceGPT model does, as expected, not reach the state-
of-the-art performance of specialized models. However,
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Table 4: GPT4-Assisted Evaluation on instruction-following capability. “Conv", “Details", and “Com-
plex" correspond to three types of questions(conversation, detailed description, complex reasoning)
produced by LLaVA’s data generation pipeline. GPT4 will be prompted to evaluate the answers from
different models along with the ground truth answer produced by text-only GPT4 (gpt-4-0613). It
would then give a score for each answer with an explanation.

Conv Detail Complex All

ChatPose (Feng et al., 2024) 74.5 81.0 93.3 82.9
LLaVA-V1.5-13B (Liu et al., 2023a) 80.4 81.4 90.9 84.2
LLaVA-V1.5-7B (Liu et al., 2023b) 79.9 77.6 92.4 83.4
FaceGPT 79.6 81.5 92.6 84.6

Table 5: Influence of face-centric conversation generation

Method face convs photo keypoint Conv Detail Complex All

LLaVA-1.5-7B ✗ - - 79.9 77.6 92.4 83.4
FaceGPT ✗ 0.110 3.2px 78.4 80.8 89.0 82.7
FaceGPT ✓ 0.103 3.0px 79.6 81.5 92.6 84.6

we note that FaceGPT has a frozen vision encoder to preserve the generalist behavior, whereas all
baseline models have a fine-tuned task-specific backbone. Moreover, our model does outperform
DECA, which is a highly competitive and widely applied baseline model Zheng et al. (2023). When
compared to the VLM baseline model, FaceGPT achieves large improvements, highlighting the
benefit of embedding the 3DMM parameters directly in the token space of the VLM.

4.6 GPT-ASSISTED EVALUATION

Table 4 shows that FaceGPT preserves the ability of instruction following by following LLaVA’s
evaluation (Liu et al., 2023b) protocol, using GPT4-Assisted evaluation on LLaVA-Bench (COCO).
FaceGPT compares favorably to LLaVA-v1.5-7B and reaches similar or better performance in the
benchmark compared to VLMs with more parameters. This performance advantage can be attributed
to the specialized face training dataset and the usage of our face-centric conversation. These elements
enhance FaceGPT’s proficiency in interpreting face-related language-based instructions, improving
its overall effectiveness in relevant tasks.

4.7 ABLATION STUDY

Influence of face-centric conversation generation. To prove the necessity of our face-centric
conversation generation strategy, we train a model only using a simple single-turn conversation
template for face images, which is a common strategy used in the VLM-based image understanding
works like LISA and ChatPose. The comparison results are demonstrated in Table 5. We observe that
face-centric conversations help a lot in improving model’s ability in performing detailed description
and complex reasoning. The face-centric conversations only have a small effect on the face recon-
struction task, which is expected, as the generated conversations do not contain information about the
3DMM parameters of faces.

5 CONCLUSION

FaceGPT is the first self-supervised learning framework for Large Vision-Language Models to reason
about 3D human faces. We show that VLMs can learn to predict detailed 3D human faces from not
only images, but also from textual inputs, in a fully self-supervised manner via inverse rendering. As
a generalist model, FaceGPT achieves strong results across various tasks, including text-based face
generation, traditional 3D face reconstruction, visual instruction following. FaceGPT also presents
impressive ability to infer 3D faces from abstract and indirect text descriptions. We believe our work
also has general implications beyond face analytics, as it points towards a way forward to enable
large multi-modal language-models to reason about our 3D world without supervision.
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A APPENDIX

A.1 SPECULATIVE FACE GENERATION BENCHMARK

As an AI visual assistant specializing in human face analysis, your task is to infer possible
activities, events, and emotional states a person might be experiencing based on a detailed
visual and textual description of their face. Your goal is to focus on the high-level emotional
context and plausible scenarios that this person could be engaging in, rather than anatomical
details. For each facial description, consider the following key questions before formulating
your response:

1. What emotion is the person likely experiencing? How does this emotion differ from a
typical representation of this feeling?
2. What specific activity might this individual be participating in, based on their emotional
state and facial expression?
3. What event could have triggered the current emotional expression or facial state?
4. Could the individual be engaged in other parallel activities that are influencing their
expression?

Once you’ve considered these questions, craft 5 distinct facial descriptions, each beginning
with "This person," followed by one or two sentences that clearly suggest a plausible activity
or situation. Ensure that each description provides a rich context that allows the user to
imagine and even replicate the facial expression if they were in that situation. Avoid vague or
general terms, and be as diverse as possible in your interpretations.

Example answers and face descriptions:
Answer to the questions:
1. The individual appears to be deeply worried, but there’s an undertone of surprise not typical
of worry alone.
2. The individual could be reviewing a critical work email and is taken aback by unexpected
information.
3. It seems like the individual just encountered an unexpected delay for an important event.
4. Additionally, the person might be contemplating a difficult decision while trying to process
sudden news.

Facial descriptions:
1. This person looks like they have just received news that their flight has been canceled at
the last minute.
2. This person is struggling to concentrate during a crucial work presentation, trying to mask
their frustration.
3. This person might be reading an intense plot twist in a book, causing both confusion and
intrigue.
4. This person seems to be on the verge of delivering uncomfortable feedback to a colleague.
5. This person appears to be caught off guard in a meeting, unexpectedly asked to answer a
difficult question.

Figure 5: Prompts for querying GPT-4V to convert explicit text descriptions and facial images into
implicit descriptions

Due to the lack of public datasets and benchmarks that provide implicit facial texts paired with
corresponding 3D faces, , we choose to construct the Speculative Face Generation Benchmark with
the help of powerful GPT4-V OpenAI et al. (2024). Inspired by Feng et al. (2024), we extract face
images and human anotated facial descriptions to GPT4-V to generate implicit facial descriptions.
Specifically, we select 74 high-quality facial images from CelebAHQ dataset Karras et al. (2018) and
their explicit descriptions from CelebAText dataset Sun et al. (2021). Using the prompt detailed in
Figure 5, we instruct the GPT4-V to analyze our provided images and detailed human descriptions
and generate appropriate implicit descriptions to reflect the possible activities and the emotion
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states associated with the faces. For each case, we ask GPT4-V to produce five potential implicit
descriptions. We then fed these five candidate descriptions, along with the corresponding facial image,
back into GPT-4V and requested it to select the implicit description that best matches the image. This
process yielded a total of 444 responses from GPT-4V and 74 candidate text-face pairs. After manual
verification, we finalized 64 test cases for our Speculative Face Generation benchmark.

A.2 IMPLEMENTATION DETAILS ON LLAVA-KEY BASELINE

For Image-based 3D Face Reconstruction and text-based 3D Face Reconstruction, we develop
a baseline based on VLM called LLaVA-Key where the human face is represented as text.
Following Feng et al. (2024), we represent the human face through the 68 landmarks on 2D
images as landmarks tracks the locations of eyes, nose, mouth and so on, which also contains rich
information about faces. We utilize templates like "USER: <IMAGE> Please estimate
the 68 facial landmarks coordinates. The output format should be
Jawline-1:(x1,y1),Jawline-2:(x2,y2),... ASSISTANT: The detected
landmarks are Jawline-0:(41, 88),Jawline-1:(43, 107), ...,Inner
Lip-67:(101, 159)." for image-to-face data and templates like "USER: There
is a person with the following description:{description} Please
estimate the 68 facial landmarks coordinates. The output format
should be Jawline-1:(x1,y1),Jawline-2:(x2,y2),... ASSISTANT: The
detected landmarks are Jawline-0:(41, 88),Jawline-1:(43, 107),
...,Inner Lip-67:(101, 159)." for text-to-face data where {description} would
be replaces with text description for faces generated by LLaVA. And we use an off-the-shelf face
detector to provide the coordinates landmarks for each face. LLaVA model is finetuned to produce
2D coordinates of 68 faicl landmarks with the formatted data. After finetuning, LLaVA would be
prompted to predict the landmarks in the test set and an optimization-based method is used to fit
3DMM for the estimated landmarks. For image-to-face data, we utilize lossface defined in 3 to
optimize the 3DMM parameters on estimated landmarks and input image. For text-to-face data,
we only utilize the landmark loss and regularization defined in 3.2 for optimization. Experiments
reflect that representing human face as a new modality outperform naively encoding human face in
language.

A.3 FACE-CENTRIC CONVERSATION GENERATION

To enrich the diversity of question-answer pairs for image-to-face data, we inqury LLaVA with the
face image and the questions listed in 6 and collect the answers from LLaVA to construct face-centric
conversations for each face image. During training, we would randomly pick question-answer pairs
from these generated conversation and fuse the conversation with task-static template presented in
4.1 as the text of training data.

Table 6: The list of instructions for constructing face-centric conversations.

• “How is the person’s hair styled?"
• “What colors dominate this image?"
• “Based on the attire and styling, can you infer anything about the event or occasion for

this photo?"
• “Can you describe the person’s expression?"
• “Is there any indication of where this person might be?"
• “What is the person wearing?"

A.4 TEXT-TO-FACE DATA GENERATION

As there is no public text-to-3DMM data available, we propose a way to utilize the powerful pretrained
VLM to build a connection between face image with textual description. Specifically, we design
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a template to inqury pretrained LLaVA to output detailed description about human faces, which is
presented as following:

Analyze the image and generate a detailed textual description of the human face it contains.
Focus on the following aspects:

1. Face Shape: Description of the jawline shape (e.g., square, round, oval, heart-shaped).
Forehead size and shape (e.g., wide, narrow, rounded). Cheekbone structure (e.g., high, low,
prominent).
2. Face Expression: Eyebrows (e.g., arched, straight, furrowed). Eyes (e.g., wide open,
squinting, normal). Mouth (e.g., smiling, frowning, neutral). Additional details if any specific
expression is featured (e.g., wrinkling of forehead, dimples).
3. Face Color: Skin tone (e.g., fair, olive, dark, light). Any distinct color features such as
freckles, rosiness, tan lines. Makeup if applicable (e.g., lipstick shade, eyeshadow color).
4. Face Lighting: Direction of the light source (e.g., frontal, side, backlit). Intensity of the
light (e.g., soft, harsh, moderate). Shadows observed on the face (specify areas such as under
eyes, neck).

5. Pose of Head: Mention the orientation of the head (e.g., facing forward, tilted to the side,
looking upwards).
Please give a response starting with ’He’ or ’She’.

Figure 6: Prompts for querying LLaVA to generate explicit text descriptions on face images

The question covers many requirement on detailed description for many facial attributes and the
response from pretrained LLaVA would be collected as the description for the face image and the
3DMM parameter of the corresponding face. Then we utilize these generated description with
unsupervised face loss described in 3 to guide the model optimization.

A.5 EVALUATION METRICS

For text-based face generation tasks, we generally use three metrics to measure the quality of the
predicted 3DMM: Chamfer Distance(CD), Complete Rate(CR), and Relative Face Recognition
Rate(RFRR). We will elaborate about how to compute each metric below:

• Chamfer Distance(CD): CD measures the similarity between two sets of point clouds. Given
the predicted 3D mesh Mp and the ground truth 3D mesh Mg , Chamfer Distance is defined
as:

CD(Mp,Mg) =
∑

a∈Mp

min
b∈Mg

∥a− b∥2 +
∑
b∈Mg

min
a∈Mp

∥a− b∥2 , (6)

• Complete Rate(CR): CR is used to evaluate the completeness of a 3D point cloud, which
can be formulated as the ratio between matched points and all points. The mathematical
formulation of CR can be defined as:

CR =
P0

P
(7)

P0 is the number of points with CD value less than 10mm and P is the number of all points.
• Relative Face Recognition Rate(RFRR): RFRR measures how well the reconstructed 3D

face preserves identity information in comparison to the original face. For our case, we
follow Wu et al. (2023a) and render the predicted mesh and the ground truth with the same
pose and the lighting. Then we compute the cosine similarity in the feature space of ArcFace
Deng et al. (2019a)to measure the idnetity preservation.

For image-based face reconstruction task, we measure the L2 photometric error and the L2 landmark
error by comparing the rendered 3D face and the ground truth 2D images as they can directly reflect
the quality of geometry and texture for the estimates meshes.
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Table 7: Influence of LLM towards human face understanding

Method photo keypoint

CLIP ViT + MLP 0.133 7.6px
FaceGPT 0.103 3.0px

He has a square jawline and a prominent cheekbone structure. His 
forehead is narrow and his nose is of average size. His mouth is wide 
with thick lips that are slightly curved. His eyes are wide open, and 
he has arched eyebrows. His skin tone is fair, and he has a five 
o'clock shadow. The lighting is frontal, and the intensity of the light 
is moderate. The shadows are visible under his eyes and on his neck. 
He is facing forward.

He has a smiling face with a wide mouth and thick lips. His eyes are 
wide open and his eyebrows are arched. His skin tone is olive and he 
has a prominent cheekbone structure. The lighting is frontal and the 
intensity is moderate. The man is facing forward with a smile on his 
face.

He has a square jawline, a wide forehead, and prominent 
cheekbones. His nose is large and straight, and his mouth is wide 
with thick lips. He is smiling in the image, showing off his teeth. His 
skin tone is dark, and he appears to be well-groomed. The lighting in 
the image is frontal, with a soft intensity, casting a gentle shadow 
under his eyes. The head is positioned facing forward.

Explicit text description Describe3D LLaVA-Key FaceGPT

Figure 7: We present some examples for explicit text-based face generation tasks. While some
methods may overlook specific underlined details in the descriptions, FaceGPT consistently produces
3D faces with superior semantic alignment to the provided text.

• Photometric error: Photometric error can measure the quality of geometry and texture for
3D face estimation jointly. The error Ephoto can be formulated as:

Ephoto = ||A⊙ (ximg − ŷrec)||2 (8)

A is the skin region in the ground truth face image.
• Landmark error: Landmark error can measure the quality of the geometry of 3D face and

the accuracy of the estimated camera pose. The error Elm can be formulated as:

Elm = ||LMimg − LMrec||2 (9)

A.6 MORE RESULTS

A.6.1 INFLUENCE OF LLM ON FACE UNDERSTANDING

Classical methods mainly rely on a vision encoder for regressing the 3DMM face parameters. In
contrast, LLaVA utilizes a combination of frozen vision encoder and an LLM to perceive information
from images. To study the effect of the LLM head, we train a baseline model with the vision encoder
of LLaVA and an MLP to predict the human face parameters directly. The results are presented in
Table 7 and show that the additional LLM helps in predicting better face parameters based on the
visual representations from the frozen encoder.

A.6.2 COMPARISON BETWEEN SUPERVISED FACE LOSS AND UNSUPERVISED FACE LOSS

Recent VLM-based works on segmentation and pose estimation generally rely on supervised learning
with ground truth data or pseudo ground truth data. To study the influence of supervision on the
model’s capability, we compare the model trained with supervised 3DMM losses and self-supervised
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Table 8: Comparison when learning with supervised and unsupervised losses.

Method photo. keyp.

FaceGPT(sup) 0.092 2.1px
FaceGPT(unsup) 0.103 3.0px

2D face losses. For the supervised 3DMM loss, we extract the 3DMM parameters on the same
CelebA-HQ trainset with the state-of-the-art face reconstruction method FOCUS (Li et al., 2023). L1
loss is used for optimization on 3DMM ground truth. We observe in Table 8, that the model utilizing
a supervised 3DMM loss outperforms its unsupervised counterpart, indicating that the performance
ceiling is not reached yet and improvements on the self-supervised training could potentially lead to
further performance gains.

A.6.3 QUANTITATIVE RESULTS FOR EXPLICIT TEXT-BASED FACE GENERATION

We present visual results for explicit text-based face generation in Figure 7. Compared to other
methods, the output of FaceGPT are generally better aligned to the text descriptions.
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